%SIG
hash
contains names or references of user-installed signal handlers. These
handlers will be called with an argument which is the name of the signal
that triggered it. A signal may be generated intentionally from a
particular keyboard sequence like control-C or control-Z, sent to you from
another process, or triggered automatically by the kernel when special
events transpire, like a child process exiting, your process running out of
stack space, or hitting file size limit.
For example, to trap an interrupt signal, set up a handler like this. Do as little as you possibly can in your handler; notice how all we do is set a global variable and then raise an exception. That's because on most systems, libraries are not re-entrant; particularly, memory allocation and I/O routines are not. That means that doing nearly anything in your handler could in theory trigger a memory fault and subsequent core dump.
sub catch_zap { my $signame = shift; $shucks++; die "Somebody sent me a SIG$signame"; } $SIG{INT} = 'catch_zap'; # could fail in modules $SIG{INT} = \&catch_zap; # best strategy
The names of the signals are the ones listed out by kill -l
on your system, or you can retrieve them from the Config module. Set up an
@signame
list indexed by number to get the name and a
%signo
table indexed by name to get the number:
use Config; defined $Config{sig_name} || die "No sigs?"; foreach $name (split(' ', $Config{sig_name})) { $signo{$name} = $i; $signame[$i] = $name; $i++; }
So to check whether signal 17 and SIGALRM were the same, do just this:
print "signal #17 = $signame[17]\n"; if ($signo{ALRM}) { print "SIGALRM is $signo{ALRM}\n"; }
You may also choose to assign the strings 'IGNORE'
or 'DEFAULT'
as the handler, in which case Perl will try to discard the signal or do the
default thing. Some signals can be neither trapped nor ignored, such as the
KILL and STOP (but not the TSTP) signals. One strategy for temporarily
ignoring signals is to use a local()
statement, which will be
automatically restored once your block is exited. (Remember that
local()
values are ``inherited'' by functions called from
within that block.)
sub precious { local $SIG{INT} = 'IGNORE'; &more_functions; } sub more_functions { # interrupts still ignored, for now... }
Sending a signal to a negative process ID means that you send the signal to the entire Unix process-group. This code send a hang-up signal to all processes in the current process group except for the current process itself:
{ local $SIG{HUP} = 'IGNORE'; kill HUP => -$$; # snazzy writing of: kill('HUP', -$$) }
Another interesting signal to send is signal number zero. This doesn't actually affect another process, but instead checks whether it's alive or has changed its UID.
unless (kill 0 => $kid_pid) { warn "something wicked happened to $kid_pid"; }
You might also want to employ anonymous functions for simple signal handlers:
$SIG{INT} = sub { die "\nOutta here!\n" };
But that will be problematic for the more complicated handlers that need to
reinstall themselves. Because Perl's signal mechanism is currently based on
the signal(3)
function from the C library, you may sometimes
be so misfortunate as to run on systems where that function is ``broken'',
that is, it behaves in the old unreliable SysV way rather than the newer,
more reasonable BSD and POSIX fashion. So you'll see defensive people
writing signal handlers like this:
sub REAPER { $waitedpid = wait; # loathe sysV: it makes us not only reinstate # the handler, but place it after the wait $SIG{CHLD} = \&REAPER; } $SIG{CHLD} = \&REAPER; # now do something that forks...
or even the more elaborate:
use POSIX ":sys_wait_h"; sub REAPER { my $child; while ($child = waitpid(-1,WNOHANG)) { $Kid_Status{$child} = $?; } $SIG{CHLD} = \&REAPER; # still loathe sysV } $SIG{CHLD} = \&REAPER; # do something that forks...
Signal handling is also used for timeouts in Unix, While safely protected
within an eval{} block, you set a signal handler to trap alarm signals and then schedule to
have one delivered to you in some number of seconds. Then try your blocking
operation, clearing the alarm when it's done but not before you've exited
your eval{} block. If it goes off, you'll use die()
to jump out of the
block, much as you might using longjmp()
or
throw()
in other languages.
Here's an example:
eval { local $SIG{ALRM} = sub { die "alarm clock restart" }; alarm 10; flock(FH, 2); # blocking write lock alarm 0; }; if ($@ and $@ !~ /alarm clock restart/) { die }
For more complex signal handling, you might see the standard POSIX module. Lamentably, this is almost entirely undocumented, but the t/lib/posix.t file from the Perl source distribution has some examples in it.
To create a named pipe, use the Unix command mknod(1)
or on
some systems, mkfifo(1).
These may not be in your normal path.
# system return val is backwards, so && not || # $ENV{PATH} .= ":/etc:/usr/etc"; if ( system('mknod', $path, 'p') && system('mkfifo', $path) ) { die "mk{nod,fifo} $path failed; }
A fifo is convenient when you want to connect a process to an unrelated one. When you open a fifo, the program will block until there's something on the other end.
For example, let's say you'd like to have your .signature file be a named pipe that has a Perl program on the other end. Now every time any program (like a mailer, news reader, finger program, etc.) tries to read from that file, the reading program will block and your program will supply the new signature. We'll use the pipe-checking file test -p to find out whether anyone (or anything) has accidentally removed our fifo.
chdir; # go home $FIFO = '.signature'; $ENV{PATH} .= ":/etc:/usr/games";
while (1) { unless (-p $FIFO) { unlink $FIFO; system('mknod', $FIFO, 'p') && die "can't mknod $FIFO: $!"; }
# next line blocks until there's a reader open (FIFO, "> $FIFO") || die "can't write $FIFO: $!"; print FIFO "John Smith (smith\@host.org)\n", `fortune -s`; close FIFO; sleep 2; # to avoid dup signals }
open()
statement can also be used for
unidirectional interprocess communication by either appending or prepending
a pipe symbol to the second argument to open().
Here's how to
start something up in a child process you intend to write to:
open(SPOOLER, "| cat -v | lpr -h 2>/dev/null") || die "can't fork: $!"; local $SIG{PIPE} = sub { die "spooler pipe broke" }; print SPOOLER "stuff\n"; close SPOOLER || die "bad spool: $! $?";
And here's how to start up a child process you intend to read from:
open(STATUS, "netstat -an 2>&1 |") || die "can't fork: $!"; while (<STATUS>) { next if /^(tcp|udp)/; print; } close STATUS || die "bad netstat: $! $?";
If one can be sure that a particular program is a Perl script that is expecting filenames in @ARGV, the clever programmer can write something like this:
$ program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile
and irrespective of which shell it's called from, the Perl program will read from the file f1, the process cmd1, standard input (tmpfile in this case), the f2 file, the cmd2 command, and finally the f3 file. Pretty nifty, eh?
You might notice that you could use backticks for much the same effect as opening a pipe for reading:
print grep { !/^(tcp|udp)/ } `netstat -an 2>&1`; die "bad netstat" if $?;
While this is true on the surface, it's much more efficient to process the file one line or record at a time because then you don't have to read the whole thing into memory at once. It also gives you finer control of the whole process, letting you to kill off the child process early if you'd like.
Be careful to check both the open()
and the
close()
return values. If you're writing to a pipe, you should also trap SIGPIPE. Otherwise, think of what happens
when you start up a pipe to a command that doesn't exist: the
open()
will in all likelihood succeed (it only reflects the
fork()'s
success), but then your output will
fail--spectacularly. Perl can't know whether the command worked because
your command is actually running in a separate process whose
exec()
might have failed. Therefore, while readers of bogus
commands return just a quick end of file, writers to bogus command will
trigger a signal they'd better be prepared to handle. Consider:
open(FH, "|bogus"); print FH "bang\n"; close FH;
open(),
but on some systems this means that the child process
cannot outlive the parent.
system("cmd &");
The command's STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the same as the parent's. You won't need to catch SIGCHLD because of the double-fork taking place (see below for more details).
fork && exit;
open()
function will accept a file argument of either "-|"
or "|-"
to do a very interesting thing: it forks a child connected to the
filehandle you've opened. The child is running the same program as the
parent. This is useful for safely opening a file when running under an
assumed UID or GID, for example. If you open a pipe to minus, you can write to the filehandle you opened and your kid will find it
in his STDIN. If you open a pipe from minus, you can read from the filehandle you opened whatever your kid writes
to his STDOUT.
use English; my $sleep_count = 0;
do { $pid = open(KID_TO_WRITE, "|-"); unless (defined $pid) { warn "cannot fork: $!"; die "bailing out" if $sleep_count++ > 6; sleep 10; } } until defined $pid;
if ($pid) { # parent print KID_TO_WRITE @some_data; close(KID_TO_WRITE) || warn "kid exited $?"; } else { # child ($EUID, $EGID) = ($UID, $GID); # suid progs only open (FILE, "> /safe/file") || die "can't open /safe/file: $!"; while (<STDIN>) { print FILE; # child's STDIN is parent's KID } exit; # don't forget this }
Another common use for this construct is when you need to execute something
without the shell's interference. With system(),
it's
straightforward, but you can't use a pipe open or backticks safely. That's
because there's no way to stop the shell from getting its hands on your
arguments. Instead, use lower-level control to call exec()
directly.
Here's a safe backtick or pipe open for read:
# add error processing as above $pid = open(KID_TO_READ, "-|");
if ($pid) { # parent while (<KID_TO_READ>) { # do something interesting } close(KID_TO_READ) || warn "kid exited $?";
} else { # child ($EUID, $EGID) = ($UID, $GID); # suid only exec($program, @options, @args) || die "can't exec program: $!"; # NOTREACHED }
And here's a safe pipe open for writing:
# add error processing as above $pid = open(KID_TO_WRITE, "|-"); $SIG{ALRM} = sub { die "whoops, $program pipe broke" };
if ($pid) { # parent for (@data) { print KID_TO_WRITE; } close(KID_TO_WRITE) || warn "kid exited $?";
} else { # child ($EUID, $EGID) = ($UID, $GID); exec($program, @options, @args) || die "can't exec program: $!"; # NOTREACHED }
Note that these operations are full Unix forks, which means they may not be correctly implemented on alien systems. Additionally, these are not true multithreading. If you'd like to learn more about threading, see the modules file mentioned below in the SEE ALSO section.
open(PROG_FOR_READING_AND_WRITING, "| some program |")
and if you forget to use the -w flag, then you'll miss out entirely on the diagnostic message:
Can't do bidirectional pipe at -e line 1.
If you really want to, you can use the standard open2()
library function to catch both ends. There's also an open3()
for tridirectional I/O so you can also catch your child's STDERR, but doing
so would then require an awkward select()
loop and wouldn't
allow you to use normal Perl input operations.
If you look at its source, you'll see that open2()
uses
low-level primitives like Unix pipe()
and exec()
to create all the connections. While it might have been slightly more
efficient by using socketpair(),
it would have then been even
less portable than it already is. The open2()
and
open3()
functions are unlikely to work anywhere except on a
Unix system or some other one purporting to be POSIX compliant.
Here's an example of using open2():
use FileHandle; use IPC::Open2; $pid = open2( \*Reader, \*Writer, "cat -u -n" ); Writer->autoflush(); # default here, actually print Writer "stuff\n"; $got = <Reader>;
The problem with this is that Unix buffering is really going to ruin your
day. Even though your Writer
filehandle is auto-flushed, and the process on the other end will get your
data in a timely manner, you can't usually do anything to force it to give
it back to you in a similarly quick fashion. In this case, we could,
because we gave cat a -u flag to make it unbuffered. But very few Unix commands are designed to
operate over pipes, so this seldom works unless you yourself wrote the
program on the other end of the double-ended pipe.
A solution to this is the nonstandard Comm.pl library. It uses pseudo-ttys to make your program behave more reasonably:
require 'Comm.pl'; $ph = open_proc('cat -n'); for (1..10) { print $ph "a line\n"; print "got back ", scalar <$ph>; }
This way you don't have to have control over the source code of the program
you're using. The Comm library also has expect()
and interact()
functions. Find the library (and we hope its successor IPC::Chat) at your nearest CPAN archive as detailed in the SEE ALSO section below.
The Perl function calls for dealing with sockets have the same names as the corresponding system calls in C, but their arguments tend to differ for two reasons: first, Perl filehandles work differently than C file descriptors. Second, Perl already knows the length of its strings, so you don't need to pass that information.
One of the major problems with old socket code in Perl was that it used
hard-coded values for some of the constants, which severely hurt
portability. If you ever see code that does anything like explicitly
setting $AF_INET = 2
, you know you're in for big trouble: An immeasurably superior approach is
to use the Socket
module, which more reliably grants access to various constants and
functions you'll need.
If you're not writing a server/client for an existing protocol like NNTP or SMTP, you should give some thought to how your server will know when the client has finished talking, and vice-versa. Most protocols are based on one-line messages and responses (so one party knows the other has finished when a ``\n'' is received) or multi-line messages and responses that end with a period on an empty line (``\n.\n'' terminates a message/response).
Here's a sample TCP client using Internet-domain sockets:
#!/usr/bin/perl -w require 5.002; use strict; use Socket; my ($remote,$port, $iaddr, $paddr, $proto, $line);
$remote = shift || 'localhost'; $port = shift || 2345; # random port if ($port =~ /\D/) { $port = getservbyname($port, 'tcp') } die "No port" unless $port; $iaddr = inet_aton($remote) || die "no host: $remote"; $paddr = sockaddr_in($port, $iaddr);
$proto = getprotobyname('tcp'); socket(SOCK, PF_INET, SOCK_STREAM, $proto) || die "socket: $!"; connect(SOCK, $paddr) || die "connect: $!"; while (defined($line = <SOCK>)) { print $line; }
close (SOCK) || die "close: $!"; exit;
And here's a corresponding server to go along with it. We'll leave the address as INADDR_ANY so that the kernel can choose the appropriate interface on multihomed hosts. If you want sit on a particular interface (like the external side of a gateway or firewall machine), you should fill this in with your real address instead.
#!/usr/bin/perl -Tw require 5.002; use strict; BEGIN { $ENV{PATH} = '/usr/ucb:/bin' } use Socket; use Carp;
sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }
my $port = shift || 2345; my $proto = getprotobyname('tcp'); $port = $1 if $port =~ /(\d+)/; # untaint port number
socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!"; setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1)) || die "setsockopt: $!"; bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!"; listen(Server,SOMAXCONN) || die "listen: $!";
logmsg "server started on port $port";
my $paddr;
$SIG{CHLD} = \&REAPER;
for ( ; $paddr = accept(Client,Server); close Client) { my($port,$iaddr) = sockaddr_in($paddr); my $name = gethostbyaddr($iaddr,AF_INET);
logmsg "connection from $name [", inet_ntoa($iaddr), "] at port $port";
print Client "Hello there, $name, it's now ", scalar localtime, "\n"; }
And here's a multithreaded version. It's multithreaded in that like most typical servers, it spawns (forks) a slave server to handle the client request so that the master server can quickly go back to service a new client.
#!/usr/bin/perl -Tw require 5.002; use strict; BEGIN { $ENV{PATH} = '/usr/ucb:/bin' } use Socket; use Carp;
sub spawn; # forward declaration sub logmsg { print "$0 $$: @_ at ", scalar localtime, "\n" }
my $port = shift || 2345; my $proto = getprotobyname('tcp'); $port = $1 if $port =~ /(\d+)/; # untaint port number
socket(Server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!"; setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1)) || die "setsockopt: $!"; bind(Server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!"; listen(Server,SOMAXCONN) || die "listen: $!";
logmsg "server started on port $port";
my $waitedpid = 0; my $paddr;
sub REAPER { $waitedpid = wait; $SIG{CHLD} = \&REAPER; # loathe sysV logmsg "reaped $waitedpid" . ($? ? " with exit $?" : ''); }
$SIG{CHLD} = \&REAPER;
for ( $waitedpid = 0; ($paddr = accept(Client,Server)) || $waitedpid; $waitedpid = 0, close Client) { next if $waitedpid and not $paddr; my($port,$iaddr) = sockaddr_in($paddr); my $name = gethostbyaddr($iaddr,AF_INET);
logmsg "connection from $name [", inet_ntoa($iaddr), "] at port $port";
spawn sub { print "Hello there, $name, it's now ", scalar localtime, "\n"; exec '/usr/games/fortune' or confess "can't exec fortune: $!"; };
}
sub spawn { my $coderef = shift;
unless (@_ == 0 && $coderef && ref($coderef) eq 'CODE') { confess "usage: spawn CODEREF"; }
my $pid; if (!defined($pid = fork)) { logmsg "cannot fork: $!"; return; } elsif ($pid) { logmsg "begat $pid"; return; # I'm the parent } # else I'm the child -- go spawn
open(STDIN, "<&Client") || die "can't dup client to stdin"; open(STDOUT, ">&Client") || die "can't dup client to stdout"; ## open(STDERR, ">&STDOUT") || die "can't dup stdout to stderr"; exit &$coderef(); }
This server takes the trouble to clone off a child version via
fork()
for each incoming request. That way it can handle many
requests at once, which you might not always want. Even if you don't
fork(),
the listen()
will allow that many pending
connections. Forking servers have to be particularly careful about cleaning
up their dead children (called ``zombies'' in Unix parlance), because
otherwise you'll quickly fill up your process table.
We suggest that you use the -T flag to use taint checking (see the perlsec manpage) even if we aren't running setuid or setgid. This is always a good idea for servers and other programs run on behalf of someone else (like CGI scripts), because it lessens the chances that people from the outside will be able to compromise your system.
Let's look at another TCP client. This one connects to the TCP ``time'' service on a number of different machines and shows how far their clocks differ from the system on which it's being run:
#!/usr/bin/perl -w require 5.002; use strict; use Socket;
my $SECS_of_70_YEARS = 2208988800; sub ctime { scalar localtime(shift) }
my $iaddr = gethostbyname('localhost'); my $proto = getprotobyname('tcp'); my $port = getservbyname('time', 'tcp'); my $paddr = sockaddr_in(0, $iaddr); my($host);
$| = 1; printf "%-24s %8s %s\n", "localhost", 0, ctime(time());
foreach $host (@ARGV) { printf "%-24s ", $host; my $hisiaddr = inet_aton($host) || die "unknown host"; my $hispaddr = sockaddr_in($port, $hisiaddr); socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die "socket: $!"; connect(SOCKET, $hispaddr) || die "bind: $!"; my $rtime = ' '; read(SOCKET, $rtime, 4); close(SOCKET); my $histime = unpack("N", $rtime) - $SECS_of_70_YEARS ; printf "%8d %s\n", $histime - time, ctime($histime); }
ls(1)
listing.
$ ls -l /dev/log srw-rw-rw- 1 root 0 Oct 31 07:23 /dev/log
You can test for these with Perl's -S file test:
unless ( -S '/dev/log' ) { die "something's wicked with the print system"; }
Here's a sample Unix-domain client:
#!/usr/bin/perl -w require 5.002; use Socket; use strict; my ($rendezvous, $line);
$rendezvous = shift || '/tmp/catsock'; socket(SOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!"; connect(SOCK, sockaddr_un($rendezvous)) || die "connect: $!"; while (defined($line = <SOCK>)) { print $line; } exit;
And here's a corresponding server.
#!/usr/bin/perl -Tw require 5.002; use strict; use Socket; use Carp;
BEGIN { $ENV{PATH} = '/usr/ucb:/bin' }
my $NAME = '/tmp/catsock'; my $uaddr = sockaddr_un($NAME); my $proto = getprotobyname('tcp');
socket(Server,PF_UNIX,SOCK_STREAM,0) || die "socket: $!"; unlink($NAME); bind (Server, $uaddr) || die "bind: $!"; listen(Server,SOMAXCONN) || die "listen: $!";
logmsg "server started on $NAME";
$SIG{CHLD} = \&REAPER;
for ( $waitedpid = 0; accept(Client,Server) || $waitedpid; $waitedpid = 0, close Client) { next if $waitedpid; logmsg "connection on $NAME"; spawn sub { print "Hello there, it's now ", scalar localtime, "\n"; exec '/usr/games/fortune' or die "can't exec fortune: $!"; }; }
As you see, it's remarkably similar to the Internet domain TCP server, so
much so, in fact, that we've omitted several duplicate functions--spawn(),
logmsg(),
ctime(),
and
REAPER()--which
are exactly the same as in the other server.
So why would you ever want to use a Unix domain socket instead of a simpler
named pipe? Because a named pipe doesn't give you sessions. You can't tell
one process's data from another's. With socket programming, you get a
separate session for each client: that's why accept()
takes
two arguments.
For example, let's say that you have a long running database server daemon that you want folks from the World Wide Web to be able to access, but only if they go through a CGI interface. You'd have a small, simple CGI program that does whatever checks and logging you feel like, and then acts as a Unix-domain client and connects to your private server.
#!/usr/bin/perl -w use IO::Socket; $remote = IO::Socket::INET->new( Proto => "tcp", PeerAddr => "localhost", PeerPort => "daytime(13)", ) or die "cannot connect to daytime port at localhost"; while ( <$remote> ) { print }
When you run this program, you should get something back that looks like this:
Wed May 14 08:40:46 MDT 1997
Here are what those parameters to the new
constructor mean:
"www.perl.com"
, or an address like "204.148.40.9"
. For demonstration purposes, we've used the special hostname "localhost"
, which should always mean the current machine you're running on. The
corresponding Internet address for localhost is "127.1"
, if you'd rather use that.
"daytime"
on systems with a well-configured system services file,[FOOTNOTE: The
system services file is in /etc/services under Unix] but just in case, we've specified the port number (13) in
parentheses. Using just the number would also have worked, but constant
numbers make careful programmers nervous.
new
constructor is used as a filehandle in the while
loop? That's what's called an indirect filehandle, a scalar variable
containing a filehandle. You can use it the same way you would a normal
filehandle. For example, you can read one line from it this way:
$line = <$handle>;
all remaining lines from is this way:
@lines = <$handle>;
and send a line of data to it this way:
print $handle "some data\n";
#!/usr/bin/perl -w use IO::Socket; unless (@ARGV > 1) { die "usage: $0 host document ..." } $host = shift(@ARGV); foreach $document ( @ARGV ) { $remote = IO::Socket::INET->new( Proto => "tcp", PeerAddr => $host, PeerPort => "http(80)", ); unless ($remote) { die "cannot connect to http daemon on $host" } $remote->autoflush(1); print $remote "GET $document HTTP/1.0\n\n"; while ( <$remote> ) { print } close $remote; }
The web server handing the ``http'' service, which is assumed to be at its
standard port, number 80. If your the web server you're trying to connect
to is at a different port (like 1080 or 8080), you should specify as the
named-parameter pair, PeerPort => 8080
. The autoflush
method is used on the socket because otherwise the system would buffer up
the output we sent it. (If you're on a Mac, you'll also need to change
every "\n"
in your code that sends data over the network to be a "\015\012"
instead.)
Connecting to the server is only the first part of the process: once you have the connection, you have to use the server's language. Each server on the network has its own little command language that it expects as input. The string that we send to the server starting with ``GET'' is in HTTP syntax. In this case, we simply request each specified document. Yes, we really are making a new connection for each document, even though it's the same host. That's the way you always used to have to speak HTTP. Recent versions of web browsers may request that the remote server leave the connection open a little while, but the server doesn't have to honor such a request.
Here's an example of running that program, which we'll call webget:
shell_prompt$ webget www.perl.com /guanaco.html HTTP/1.1 404 File Not Found Date: Thu, 08 May 1997 18:02:32 GMT Server: Apache/1.2b6 Connection: close Content-type: text/html
<HEAD><TITLE>404 File Not Found</TITLE></HEAD> <BODY><H1>File Not Found</H1> The requested URL /guanaco.html was not found on this server.<P> </BODY>
Ok, so that's not very interesting, because it didn't find that particular document. But a long response wouldn't have fit on this page.
For a more fully-featured version of this program, you should look to the lwp-request program included with the LWP modules from CPAN.
This client is more complicated than the two we've done so far, but if you're on a system that supports the powerful fork call, the solution isn't that rough. Once you've made the connection to whatever service you'd like to chat with, call fork to clone your process. Each of these two identical process has a very simple job to do: the parent copies everything from the socket to standard output, while the child simultaneously copies everything from standard input to the socket. To accomplish the same thing using just one process would be much harder, because it's easier to code two processes to do one thing than it is to code one process to do two things. (This keep-it-simple principle is one of the cornerstones of the Unix philosophy, and good software engineering as well, which is probably why it's spread to other systems as well.)
Here's the code:
#!/usr/bin/perl -w use strict; use IO::Socket; my ($host, $port, $kidpid, $handle, $line);
unless (@ARGV == 2) { die "usage: $0 host port" } ($host, $port) = @ARGV;
# create a tcp connection to the specified host and port $handle = IO::Socket::INET->new(Proto => "tcp", PeerAddr => $host, PeerPort => $port) or die "can't connect to port $port on $host: $!";
$handle->autoflush(1); # so output gets there right away print STDERR "[Connected to $host:$port]\n";
# split the program into two processes, identical twins die "can't fork: $!" unless defined($kidpid = fork());
# the if{} block runs only in the parent process if ($kidpid) { # copy the socket to standard output while (defined ($line = <$handle>)) { print STDOUT $line; } kill("TERM", $kidpid); # send SIGTERM to child } # the else{} block runs only in the child process else { # copy standard input to the socket while (defined ($line = <STDIN>)) { print $handle $line; } }
The kill function in the parent's if
block is there to send a signal to our child process (current running in
the else
block) as soon as the remote server has closed its end of the connection.
The kill at the end of the parent's block is there to eliminate the child process as soon as the server we connect to closes its end.
If the remote server sends data a byte at time, and you need that data
immediately without waiting for a newline (which might not happen), you may
wish to replace the while
loop in the parent with the following:
my $byte; while (sysread($handle, $byte, 1) == 1) { print STDOUT $byte; }
Making a system call for each byte you want to read is not very efficient (to put it mildly) but is the simplest to explain and works reasonably well.
IO::Socket::INET->new()
method with slightly different arguments than the client did.
"tcp"
here.
netstat -a
command will show which services current have servers.
To add to user-friendliness, our server prompts the user for commands. Most servers don't do this. Because of the prompt without a newline, you'll have to use the sysread variant of the interactive client above.
This server accepts one of five different commands, sending output back to
the client. Note that unlike most network servers, this one only handles
one incoming client at a time. Multithreaded servers are covered in Chapter
6 of the Camel or in the perlipc(1)
manpage.
Here's the code. We'll
#!/usr/bin/perl -w use IO::Socket; use Net::hostent; # for OO version of gethostbyaddr
$PORT = 9000; # pick something not in use
$server = IO::Socket::INET->new( Proto => 'tcp', LocalPort => $PORT, Listen => SOMAXCONN, Reuse => 1);
die "can't setup server" unless $server; print "[Server $0 accepting clients]\n";
while ($client = $server->accept()) { $client->autoflush(1); print $client "Welcome to $0; type help for command list.\n"; $hostinfo = gethostbyaddr($client->peeraddr); printf "[Connect from %s]\n", $hostinfo->name || $client->peerhost; print $client "Command? "; while ( <$client>) { next unless /\S/; # blank line if (/quit|exit/i) { last; } elsif (/date|time/i) { printf $client "%s\n", scalar localtime; } elsif (/who/i ) { print $client `who 2>&1`; } elsif (/cookie/i ) { print $client `/usr/games/fortune 2>&1`; } elsif (/motd/i ) { print $client `cat /etc/motd 2>&1`; } else { print $client "Commands: quit date who cookie motd\n"; } } continue { print $client "Command? "; } close $client; }
Here's a UDP program similar to the sample Internet TCP client given
earlier. However, instead of checking one host at a time, the UDP version
will check many of them asynchronously by simulating a multicast and then
using select()
to do a timed-out wait for I/O. To do something
similar with TCP, you'd have to use a different socket handle for each
host.
#!/usr/bin/perl -w use strict; require 5.002; use Socket; use Sys::Hostname;
my ( $count, $hisiaddr, $hispaddr, $histime, $host, $iaddr, $paddr, $port, $proto, $rin, $rout, $rtime, $SECS_of_70_YEARS);
$SECS_of_70_YEARS = 2208988800;
$iaddr = gethostbyname(hostname()); $proto = getprotobyname('udp'); $port = getservbyname('time', 'udp'); $paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick
socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!"; bind(SOCKET, $paddr) || die "bind: $!";
$| = 1; printf "%-12s %8s %s\n", "localhost", 0, scalar localtime time; $count = 0; for $host (@ARGV) { $count++; $hisiaddr = inet_aton($host) || die "unknown host"; $hispaddr = sockaddr_in($port, $hisiaddr); defined(send(SOCKET, 0, 0, $hispaddr)) || die "send $host: $!"; }
$rin = ''; vec($rin, fileno(SOCKET), 1) = 1;
# timeout after 10.0 seconds while ($count && select($rout = $rin, undef, undef, 10.0)) { $rtime = ''; ($hispaddr = recv(SOCKET, $rtime, 4, 0)) || die "recv: $!"; ($port, $hisiaddr) = sockaddr_in($hispaddr); $host = gethostbyaddr($hisiaddr, AF_INET); $histime = unpack("N", $rtime) - $SECS_of_70_YEARS ; printf "%-12s ", $host; printf "%8d %s\n", $histime - time, scalar localtime($histime); $count--; }
mmap()
to have shared memory so as to share a variable amongst
several processes. That's because Perl would reallocate your string when
you weren't wanting it to.
Here's a small example showing shared memory usage.
$IPC_PRIVATE = 0; $IPC_RMID = 0; $size = 2000; $key = shmget($IPC_PRIVATE, $size , 0777 ); die unless defined $key;
$message = "Message #1"; shmwrite($key, $message, 0, 60 ) || die "$!"; shmread($key,$buff,0,60) || die "$!";
print $buff,"\n";
print "deleting $key\n"; shmctl($key ,$IPC_RMID, 0) || die "$!";
Here's an example of a semaphore:
$IPC_KEY = 1234; $IPC_RMID = 0; $IPC_CREATE = 0001000; $key = semget($IPC_KEY, $nsems , 0666 | $IPC_CREATE ); die if !defined($key); print "$key\n";
Put this code in a separate file to be run in more than one process. Call the file take:
# create a semaphore
$IPC_KEY = 1234; $key = semget($IPC_KEY, 0 , 0 ); die if !defined($key);
$semnum = 0; $semflag = 0;
# 'take' semaphore # wait for semaphore to be zero $semop = 0; $opstring1 = pack("sss", $semnum, $semop, $semflag);
# Increment the semaphore count $semop = 1; $opstring2 = pack("sss", $semnum, $semop, $semflag); $opstring = $opstring1 . $opstring2;
semop($key,$opstring) || die "$!";
Put this code in a separate file to be run in more than one process. Call this file give:
# 'give' the semaphore # run this in the original process and you will see # that the second process continues
$IPC_KEY = 1234; $key = semget($IPC_KEY, 0, 0); die if !defined($key);
$semnum = 0; $semflag = 0;
# Decrement the semaphore count $semop = -1; $opstring = pack("sss", $semnum, $semop, $semflag);
semop($key,$opstring) || die "$!";
The SysV IPC code above was written long ago, and it's definitely clunky
looking. It should at the very least be made to use strict
and require "sys/ipc.ph"
. Better yet, check out the IPC::SysV modules on CPAN.
use strict
and some of the my()
statements for 5.000, and for both you'll
have to load in version 1.2 or older of the Socket.pm module, which is included in perl5.002.
Most of these routines quietly but politely return undef when they fail instead of causing your program to die right then and there
due to an uncaught exception. (Actually, some of the new Socket conversion functions croak()
on bad arguments.) It is
therefore essential that you should check the return values of these
functions. Always begin your socket programs this way for optimal success,
and don't forget to add
-T taint checking flag to the pound-bang line for servers:
#!/usr/bin/perl -w require 5.002; use strict; use sigtrap; use Socket;
Because few vendors provide C libraries that are safely re-entrant, the
prudent programmer will do little else within a handler beyond setting a
numeric variable that already exists; or, if locked into a slow
(restarting) system call, using die()
to raise an exception
and longjmp(3)
out. In fact, even these may in some cases
cause a core dump. It's probably best to avoid signals except where they
are absolutely inevitable. This perilous problems will be addressed in a
future release of Perl.
For intrepid programmers, the classic textbook Unix Network Programming by Richard Stevens (published by Addison-Wesley). Note that most books on networking address networking from the perspective of a C programmer; translation to Perl is left as an exercise for the reader.
The IO::Socket(3) manpage describes the object library, and the
Socket(3)
manpage describes the low-level interface to
sockets. Besides the obvious functions in the perlfunc manpage, you should also check out the modules file at your nearest CPAN site. (See the perlmodlib manpage or best yet, the Perl
FAQ for a description of what CPAN is and where to get it.)
Section 5 of the modules file is devoted to ``Networking, Device Control (modems), and Interprocess Communication'', and contains numerous unbundled modules numerous networking modules, Chat and Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, SNMP, SMTP, Telnet, Threads, and ToolTalk--just to name a few.