The JavaTM Tutorial
Previous Page Lesson Contents Next Page Start of Tutorial > Start of Trail > Start of Lesson Search

Trail: Creating a GUI with JFC/Swing
Lesson: Using Other Swing Features

How to Support Assistive Technologies

You might be wondering what exactly assistive technologies are, and why you should care. Primarily, assistive technologies exist to enable people with permanent or temporary disabilities to use the computer. For example, if you get carpal tunnel syndrome, you can use assistive technologies to accomplish your work without using your hands.

Assistive technologies -- voice interfaces, screen readers, alternate input devices, and so on -- are useful not only for people with disabilities, but also for people using computers in non-office environments. For example, if you're stuck in a traffic jam, you might use assistive technologies to check your e-mail, using only voice input and output. The information that enables assistive technologies can be used for other tools, as well, such as automated GUI testers and input devices such as touchscreens. Assistive technologies get information from components using the Accessibility API, which is defined in the javax.accessibility(in the API reference documentation) package.

Because support for the Accessibility API is built into the Swing components, your Swing program will probably work just fine with assistive technologies, even if you do nothing special. For example, assistive technologies can automatically get the text information that is set by the following lines of code:

JButton button = new JButton("I'm a Swing button!");
label = new JLabel(labelPrefix + "0    ");
label.setText(labelPrefix + numClicks);
JFrame frame = new JFrame("SwingApplication");
Assistive technologies can also grab the tool tip text (if any) associated with a component and use it to describe the component to the user.

With very little extra effort, however, you can make your program function even more smoothly with assistive technologies. Besides helping individual users, this will also make your product more attractive to government, education, and large corporate markets.

The rest of this section covers these topics:

Rules for Supporting Accessibility

Here are a few things you can do to make your program work as well as possible with assistive technologies:

Setting Accessible Names and Descriptions on Components

Here's a picture of one of our demo programs, called ScrollDemo.

A snapshot of the original, inaccessible ScrollDemo.

You can find all of the files necessary to compile and run the program in How to Use Scroll Panes(in the Creating a User Interface trail). Let's compare the original version of ScrollDemo to a version of the program to which the rules for supporting accessibility have been applied.

Try this: 
  1. Compile and run the accessible version of the application. The main source file is AccessibleScrollDemo.java. You also need a few other source files and an image file. See the examples index for links to all the files required by this example.
    See Getting Started with Swing if you need help compiling or running this application.
  2. Run the accessible version along-side the original and compare. The only noticeable difference is that the cm toggle button and the photograph have tool tips in the accessible version.
  3. Now run the two versions under Monkey as described in Testing for Accessibility. You can see detailed information for the various components. The custom components (rules and corners) that weren't accessible in the original version are accessible in the modified version. This can make quite a difference to assistive technologies.

Following is a complete listing of AccessibleScrollDemo's constructor, which creates the scroll pane and the custom components it uses. The bold statements give components names and descriptions that assistive technologies can use.
public AccessibleScrollDemo() {

    //Load the photograph into an image icon.
    ImageIcon david = new ImageIcon("images/youngdad.jpeg");
    david.setDescription("Photograph of David McNabb in his youth.");

    //Create the row and column headers
    columnView = new Rule(Rule.HORIZONTAL, true);
    columnView.setPreferredWidth(david.getIconWidth());
    columnView.getAccessibleContext().
        setAccessibleName("Column Header");
    columnView.getAccessibleContext().
        setAccessibleDescription("Displays horizontal ruler for " +
                                 "measuring scroll pane client.");
    rowView = new Rule(Rule.VERTICAL, true);
    rowView.setPreferredHeight(david.getIconHeight());
    rowView.getAccessibleContext().
        setAccessibleName("Row Header");
    rowView.getAccessibleContext().
        setAccessibleDescription("Displays vertical ruler for " +
                                 "measuring scroll pane client.");

    //Create the corners
    JPanel buttonCorner = new JPanel();
    isMetric = new JToggleButton("cm", true);
    isMetric.setFont(new Font("SansSerif", Font.PLAIN, 11));
    isMetric.setMargin(new Insets(2,2,2,2));
    isMetric.addItemListener(new UnitsListener());
    isMetric.setToolTipText("Toggles rulers' unit of measure " +
                            "between inches and centimeters.");
    buttonCorner.add(isMetric); //Use the default FlowLayout
    buttonCorner.getAccessibleContext().
                 setAccessibleName("Upper Left Corner");

    String desc = "Fills the corner of a scroll pane " +
                  "with color for aesthetic reasons.";
    Corner lowerLeft = new Corner();
    lowerLeft.getAccessibleContext().
              setAccessibleName("Lower Left Corner");
    lowerLeft.getAccessibleContext().setAccessibleDescription(desc);

    Corner upperRight = new Corner();
    upperRight.getAccessibleContext().
               setAccessibleName("Upper Right Corner");
    upperRight.getAccessibleContext().setAccessibleDescription(desc);

    //Set up the scroll pane
    picture = new ScrollablePicture(david, columnView.getIncrement());
    picture.setToolTipText(david.getDescription());
    picture.getAccessibleContext().
        setAccessibleName("Scroll pane client");

    JScrollPane pictureScrollPane = new JScrollPane(picture);
    pictureScrollPane.setPreferredSize(new Dimension(300, 250));
    pictureScrollPane.setViewportBorder(
        BorderFactory.createLineBorder(Color.black));
 
    pictureScrollPane.setColumnHeaderView(columnView);
    pictureScrollPane.setRowHeaderView(rowView);

    pictureScrollPane.setCorner(JScrollPane.UPPER_LEFT_CORNER,
                                buttonCorner);
    pictureScrollPane.setCorner(JScrollPane.LOWER_LEFT_CORNER,
                                lowerLeft);
    pictureScrollPane.setCorner(JScrollPane.UPPER_RIGHT_CORNER,
                                upperRight); 

    setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
    add(pictureScrollPane);
    setBorder(BorderFactory.createEmptyBorder(20,20,20,20));
}
Often, the program sets a component's name and description directly through the component's accessible context. Other times, the program sets an accessible description indirectly with tool tips. In the case of the cm toggle button, the program gives the component an accessible name as a side effect of creating it.

Concepts: How Accessibility Works

An object is accessible if it implements the Accessible(in the API reference documentation) interface. The Accessible interface defines just one method, getAccessibleContext, which returns an AccessibleContext(in the API reference documentation) object. The AccessibleContext object is an intermediary that contains the accessible information for an accessible object. The following figure shows how assistive technologies get the accessible context from an accessible object and query it for information:

How assistive technologies get information from accessible objects.

AccessibleContext is an abstract class that defines the minimum set of information an accessible object must provide about itself. The minimum set includes name, description, role, state set, and so on. To identify its accessible object as having particular capabilities, an accessible context can implement one or more of the following interfaces:

The JComponent class itself does not implement the Accessible interface. So instances of its direct subclasses are not accessible. If you write a custom component that inherits directly from JComponent, you need to explicitly make it implement the Accessible interface. JComponent does have an accessible context, called AccessibleJComponent, that implements the AccessibleComponent interface and provides a minimal amount of accessible information. You can provide an accessible context for your custom components by creating a subclass of AccessibleJComponent and overriding important methods. Making Custom Components Accessible shows two examples of doing this.

All of the other standard Swing components implement the Accessible interface and have an accessible context that implements one or more of the preceding interfaces as appropriate. The accessible contexts for Swing components are implemented as inner classes and have names of this style:

Component.AccessibleComponent
If you create a subclass of a standard Swing component and your subclass is substantially different from its superclass, then you should provide a custom accessible context for it. The easiest way is to create a subclass of the superclass's accessible context class and override methods as necessary. For example, if you create a JLabel subclass substantially different from JLabel, then your JLabel subclass should contain an inner class that extends AccessibleJLabel. The next section shows how to do so, using examples in which JComponent subclasses extend AccessibleJComponent.

Making Custom Components Accessible

The scroll demo program uses three custom component classes. ScrollablePicture is a subclass of JLabel, and Corner and Rule are both subclasses of JComponent.

The ScrollablePicture class relies completely on accessibility inherited from JLabel through JLabel.AccessibleJLabel(in the API reference documentation). The code that creates an instance of ScrollablePicture sets the tool tip text for the scrollable picture. The tool tip text is used by the context as the component's accessible description. This behavior is provided by AccessibleJLabel.

The accessible version of the Corner class contains just enough code to make its instances accessible. We implemented accessibility support by adding the code shown in bold to the original version of Corner.

public class Corner extends JComponent implements Accessible {

    public void paintComponent(Graphics g) {
        //fill me with dirty brown/orange
        g.setColor(new Color(230, 163, 4));
        g.fillRect(0, 0, getWidth(), getHeight());
    }

    public AccessibleContext getAccessibleContext() {
        if (accessibleContext == null) {
            accessibleContext = new AccessibleCorner();
        }
        return accessibleContext;
    }

    protected class AccessibleCorner extends AccessibleJComponent {
        //Inherit everything, override nothing.
    }
}
All of the accessibility provided by this class is inherited from AccessibleJComponent(in the API reference documentation). This approach is fine for Corner because AccessibleJComponent provides a reasonable amount of default accessibility information and because corners are uninteresting -- they exist only to take up a little bit of space onscreen. Other classes, such as Rule, need to provide customized information.

Rule provides an accessible context for itself in the same manner as Corner, but the context overrides two methods to provide details about the component's role and state:

protected class AccessibleRuler extends AccessibleJComponent {

    public AccessibleRole getAccessibleRole() {
        return AccessibleRuleRole.RULER;
    }

    public AccessibleStateSet getAccessibleStateSet() {
        AccessibleStateSet states =
            super.getAccessibleStateSet();
        if (orientation == VERTICAL) {
            states.add(AccessibleState.VERTICAL);
        } else {
            states.add(AccessibleState.HORIZONTAL);
        }
        if (isMetric) {
            states.add(AccessibleRulerState.CENTIMETERS);
        } else {
            states.add(AccessibleRulerState.INCHES);
        }
        return states;
    }
}
AccessibleRole(in the API reference documentation) is an enumeration of objects that identify roles that Swing components can play. It contains predefined roles such as label, button, and so on. The rulers in our example don't fit well into any of the predefined roles, so the program invents a new one in a subclass of AccessibleRole:
class AccessibleRuleRole extends AccessibleRole {
    public static final AccessibleRuleRole RULER
        = new AccessibleRuleRole("ruler");

    protected AccessibleRuleRole(String key) {
        super(key);
    }

    //Should really provide localizable versions of these names
    public String toDisplayString(String resourceBundleName,
                                  Locale locale) {
        return key;
    }
}
Any component that has state can provide state information to assistive technologies by overriding the getAccessibleStateSet method. A rule has two sets of states: its orientation can be either vertical or horizontal, and its units of measure can be either centimeters or inches. AccessibleState(in the API reference documentation) is an enumeration of predefined states. This program uses its predefined states for vertical and horizontal orientation. Because AccessibleState contains nothing for centimeters and inches, the program makes a subclass to provide appropriate states:
class AccessibleRulerState extends AccessibleState {
    public static final AccessibleRulerState INCHES
        = new AccessibleRulerState("inches");
    public static final AccessibleRulerState CENTIMETERS
        = new AccessibleRulerState("centimeters");

    protected AccessibleRulerState(String key) {
        super(key);
    }

    //Should really provide localizable versions of these names
    public String toDisplayString(String resourceBundleName,
                                  Locale locale) {
        return key;
    }
}
You've seen how to implement accessibility for two simple components, which exist only to paint themselves onscreen. Components that do more, such as responding to mouse or keyboard events, need to provide more elaborate accessible contexts. You can find examples of implementing accessible contexts by delving in the source code for the Swing components.

Testing for Accessibility

The examples that come with the accessibility utilities can give you an idea of how accessible your program is. You can download the accessibility utilities and the examples for free from http://java.sun.com/products/jfc/#download-access. Follow the instructions in the accessibility utilities documentation for setting up the Java Virtual Machine to run one or more of the utilities automatically.

For example, to get an idea of the benefit gained by rewriting ScrollDemo, you can run Monkey on the original program and its accessible cousin, AccessibleScrollDemo. Here's a snapshot of Monkey running on ScrollDemo:

Monkey running on inaccessible version of ScrollDemo.

The left side of the split pane shows the actual component hierarchy for the program. The right side shows the accessible components in the hierarchy, which is what interests us.

The first thing to notice is that, even with no explicit support in ScrollDemo, Monkey is able to discover a lot of information about the various components in the program. Most of the components and their children appear in the tree. However, the names for most of the components are empty (null), which is rather unhelpful. The descriptions are also empty.

Further trouble comes with the program's custom components. The two rulers are inaccessible, so they are not included in the accessible tree. The viewports that contain the rulers are displayed as leaf nodes because they have no accessible children. The custom corners are also missing from the accessible tree.

Now here's a picture of the Monkey window for AccessibleScrollDemo:

Monkey running on accessible version of ScrollDemo.

[PENDING: add labels for the rules]
The rules are now listed as children of the viewports, and the corners are listed as children of the scroll pane. Furthermore, many of the components now have non-null names.

In the previous snapshot of Monkey, the Column Header item is selected. Monkey highlights the corresponding component in ScrollDemo program.

ScrollDemo shown when Column Header selected in Monkey.

When an item is selected, you can use Monkey's Panels menu to bring up one of four different panels that let you interact with the selected component. Choosing Panels > Accessibility API panel brings up a panel like the one shown in the following figure. This panel displays information available through methods defined in the AccessibleContext base class and the AccessibleComponent interface.

Accessibility API Panel for Column Header.

Monkey has three other panels: The accessibility utilities examples are handy as testing tools and can give you an idea of how accessible the components in your program are. However, even if your components behave well in Monkey or the other examples, they still might not be completely accessible because Monkey and the other examples exercise only certain portions of the Accessibility API. The only true test of accessibility is to run your programs with real-world assistive technologies.

The Accessibility API

The tables in this section cover just part of the accessibility API. For more information about the accessibility API, see the API documentation for the classes and packages in the accessibility package(in the API reference documentation). Also, refer to the API documentation for the accessible contexts for individual Swing components.

The API for supporting accessibility falls into the following categories:

Naming and Linking Components
Method Purpose
getAccessibleContext().setAccessibleName(String)
getAccessibleContext().setAccessibleDescription(String)

(on a JComponent or Accessible object)
Provide a name or description for an accessible object.
void setToolTipText(String)
(in JComponent)
Set a component's tool tip. If you don't set the description, than many accessible contexts use the tool-tip text as the accessible description.
void setLabelFor(Component)
(in JLabel)
Associates a label with a component. This tells assistive technologies that a label describes another component.
void setDescription(String)
(in ImageIcon)
Provides a description for an image icon.

Making a Custom Component Accessible
Method, Interface, or Class Purpose
Accessible
(an interface)
Components that implement this interface are accessible. Subclasses of JComponent must implement this explicitly.
AccessibleContext getAccessibleContext()
(in Accessible)
Get the accessible context for an accessible object. Custom components should implement this method to return a custom accessible context.
AccessibleContext
Component.AccessibleComponent

(an abstract class and its subclasses)
The base class defines the minimal set of information required of accessible objects. The accessible context for each Swing component is a subclass of this and named as shown. To provide custom accessible contexts, custom components should contain an inner class that is a subclass of AccessibleContext. Typically, the accessible context for a custom component is a subclass of one of the Swing component's accessible context classes.
AccessibleAction
AccessibleComponent
AccessibleHypertext
AccessibleSelection
AccessibleText
AccessibleValue

(interfaces)
Interfaces that accessible contexts can implement to identify particular behaviors.
AccessibleRole
AccessibleStateSet

(classes)
Define the objects returned by an AccessibleContext object's getAccessibleRole and getAccessibleStateSet methods respectively.

Examples that Use the Accessibility API

The following table lists some of our examples that have good support for assistive technologies.
[PENDING: we should do an accessibility audit, so we can add a few examples to this list.]

Example Where Described Notes
AccessibleScrollDemo This section Contains two custom components that implement the Accessible interface. To see a less accessible version of this program see How to Use Scroll Panes.
ButtonDemo How to Use the Common Button API(in the Creating a User Interface trail) Uses three buttons. Supports accessibility through button text, mnemonics, and tool tips.


Previous Page Lesson Contents Next Page Start of Tutorial > Start of Trail > Start of Lesson Search