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Planetary structure and tectonics

Crust: The chemically distinct silica-rich outer layer of a silicate planet

Mantle: The mafic (Fe,Mg-rich) deep interior

Lithosphere: The outer rigid portion of a planetary body that deforms primarily
by brittle and elastic processes over geologic timescales

* material beneath the lithosphere deforms viscously on geological timescales

 the lithosphere can be thicker or thinner than the crust

* below the lithosphere, the mantle deforms viscously over geologic timescales

Tectonics: The deformation of the lithosphere through faulting and folding




Planetary geodynamics

e Geodynamics — internally driven activity

* heat is generated in planetary interiors
* radioactive decay (U, Th, K)
* terrestrial planets, non-resonant satellites
* tidal heating
* satellites in orbital resonances (lo, Europa...)
* heat from accretion and differentiation (early)

* heat is released at the surface
* thermal conduction through the lithosphere (Mars)
* volcanism (lo)
* plate tectonics (Earth)

Every planet does what it does simply because it is trying to get rid of heat

PTYS 512: Planetary global tectonics — how and why do planets do what they do?



Mid-oceanic ridge

Earth: Plate Tectonics

* Most tectonics on Earth is related T T
to plate tectonics : |
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— 8 large plates

— ~2 dozen small plates
— moving at v~ 1-10 cm/year



Earth: Plate Tectonics

How does Earth get rid of it’s heat?
Plate tectonics

Heat is generated in the mantle

— radioactive decay of U, Th, K
Mantle convection brings that heat
to base of the lithosphere
Lithospheric plates in motion

— oceanic plates recycled at
subduction zones

— new oceanic crust/lithosphere
created at spreading centers

— most heat is lost through cooling of
newly created oceanic crust
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tectonics: Global seismicity

8,220 non-USA events with M >= 4.0 && M < 5.0 recorded by USArray from April 2004 to November 2013
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How does Mars get rid of heat?

* Martian mantle is convecting

e Martian lithosphere is stationary
* no plates or plate tectonics
* “one-plate planet” or “stagnant lid”

* Heat passes through the lithosphere by
conduction (like a pot on a stove)




Tectonics 101

 Stress: force per unit area
* represented with a 3x3 tensor of normal and shear stresses

* Strain: fractional change in length
* represented with a 3x3 tensor of normal and shear strains
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Tectonics 101

 Stress: force per unit area (o)

 Strain: fractional change in length (g)

* represented with a 3x3 tensor of normal and shear strains, or 3 principal strains

* 0,0, 03,8 & &3

* Linear elasticity: 1D
* spring: Hooke’s Law

F=kx
e Continuum: strain is proportional to stress
o =F¢

* Linear elasticity: 3D
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Deformation = strain = stress



Tectonics 101

* When stress exceeds some
critical value (yield strength) the
lithosphere will fail = fault

* Directions and magnitudes of the
three “principal stresses”
determine what style of fault
forms

- Anderson’s theory of faulting
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What causes stress (and tectonics) on Mars?

* load (force) causes deformation of the lithosphere
* bending the lithosphere = strain = stress

* load (force) can be directed upwards or downwards
* volcano {,
* icecap {
* warm mantle plume
* erosion T




What causes stress (and tectonics) on Mars?

* shortening or lengthening = strain = stress

* interior volume change (expansion or contraction) forces ¢
change in surface area

 Why?
* warming = expansion = extension in lithosphere
* cooling = contraction = compression in lithosphere




Why study tectonics?

* Martian tectonics reveals the geodynamic evolution
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* Deformation of the lithosphere and forces at play
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Martian geography

e € THE TOPOGRAPHY OF MARS BY THE MARS ORBITER 1 ASER ALTIMETER (MOLA) G S

(Topography: red=high, blue=low)



Mars tectonics

* In the absence of plate tectonics, most planetary tectonic structures
accommodate small strains in strong lithospheres




Major types of tectonic features
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Compressional structures: Wrinkle ridges

* wrinkle ridges: folding of a volcanic surface unit above a blind (not breaking the
surface) thrust fault
* mediated by layer-parallel slip between lava flows
 ubiquitous on volcanic plains of the Moon, Mars, Mercury, Venus




Wrinkle ridge morphology

* common morphology involves 3 scales of ridges
superposed

* broad ridge, narrow ridge, wrinkle
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Wrinkle ridge structure: v1

Depth (km)
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e Shallow thrust faults connecting to a horizontal £
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Do wrinkle ridges reflect local shallow stress, or deep lithosphere-scale stress?




Lobate scarps viercury

» Surface-breaking thrust faults in
ancient cratered surfaces

« Common on Mercury (and, less so,

Mars)
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Graben

» Simplest extensional tectonic landform

* Two antithetic normal faults, block between drops downward

Normal Fault

https://airandspace.si.edu/multimedia-gallery/3922hjpg



Graben

* Can occur in (relative) isolation, or in dense swarms




Graben

* Collapse features suggest void space at depth 2 magma withdrawal in dike

» Topographic signature of dike induced uplift (rare)
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[Hauber, 2010]

Rifts

* Crustal extension across a population of asymmetric arcuate normal faults
creating irregular graben and half-graben structures

* Accompanied by crustal thinning, volcanism, sedimentary filling, mantle uplift
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Tectonic evolution of Mars
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Mars Dichotomy

* Distinct transition from southern highlands to northern lowlands
* ~4 km elevation difference, ~20 km crustal thickness difference

THE TOPOGRAPHY OF MARS BY THE MARS ORBITER LASER ALTIMETER (MOLA)

——- Global crustal thickness A
| —— Thickness minus basins, k) i
Tharsis, Elysium i
------- Thickness minus Arabia Terra, |
basins, Tharsis, Elysium
—— Tharsis [

0 20 40 60 80 100
Crustal thickness (km)




Dichotomy formation: Plate tectonics?

nE & THE TOPOGRAPHY OF MARS BY THE MARS ORBITER LASER ALTIMETER (IMOLA) _ -
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[Sleep, 1994; Lenardic et al., 2004]




Dichotomy Formation: mantle convection?

« “Degree 1 convection” — Hemispheric asymmetry in mantle convection

« mantle upwelling on one side of the planet, downwelling on other side
» Crustal thickening OR thermal erosion above upwelling

[Roberts and Zhong, 2001, 2006; Elkins-Tanton et al., 2005; Keller and Tackley, 2009]
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Dichotomy formation: Giant impact

* La rgest impact basins are elllptlcal [Andrews-Hanna et al., 2008]
* Hellas (Mars), Utopia (Mars), Sputnik (Pluto), South Pole-Aitken (Moon)

* Northern lowlands is a giant elliptical depression — “Borealis basin”
* remove Tharsis to see true shape
» Consistent with impact of a ~2000 km diameter projectile
— 45° impact at 6-10 km/s [Marinova et al., 2008]

» Hybrid model? — impact causes mantle upwelling? [Reese, 2010; Citron, 2018]

Borealis Borealis
Hellas Isostatic root Topography South Pole-Aitken




The age of Borealis

» Borealis should have reset all surface ages on Mars

* Must be as old or older than:
* Age of shergotite source region: 4.48-4.50 Ga
* “Black Beauty” meteorite zircon ages ~4.43 Ga
[Humayun et al., 2013; Moser et al., 2013; 2015; Wittman et al., 2015]

U-Pb Isotopic Data from Zircon Grains
from Martian Meteorite NWA 7533
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(From Humayun ef al., 2013, Nature, v. 503, p. 513-516, doi:10.1038/nature12764.)

[Bottke and Andrews-Hanna, 2017; Bottke et al. 2010]



Pre-Noachian tectonics

* Pre-Noachian: between Borealis and Hellas = no major rearrangements of crust

* “The doldrums” 4.5-4.1 Ga
* No plate tectonics, no giant volcanic rises, no giant impact basins

* But tectonic processes are poorly constrained — no preservation of typical tectonic landforms
Topography (km)

5
Area-normalized basin age histogram

Free Air Gravity Anomaly (mGal)
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“the doldrums”
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Watters, 2003
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a. Best fits — -
(10636) D=15Kkm :

4=30°
T=30km

Noachian compressional tectonics

* Lobate scarps — late Noachian age
e Thrust faulting parallel to dichotomy boundary [Watters, 2003]

* Amenthes Rupes — lithosphere-scale thrust fault

MOLA elevation, m

[Herero-Gil, 2019]
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Noachian compressional tectonics in the highlands

e Circum Hellas pattern? [Egea-Gonzales, 2017]
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Noachian extensional tectonics in the highlands

* Tectonic troughs and rifts
* ancient rift valleys
e circum-Hellas pattern? [Wichman and Schultz, 1984]

HELLAS-CENTERED



Noachian extensional tectonics in the highlands

* Nilli Fossae — circumferential graben west of Isidis basin

* response to lithosphere loading from volcanic filling of the basin
* ~15 km of volcanic fill within basin [Ritzer, 2009; Searls, 2006]

- 80' ‘ 0' 100° )
[Ritzer and Hauck, 2009]



Tharsis

* Tharsis construction began in the
Noachian

* likely began with uplift above a giant
mantle plume

* = extension

Tharsis is the dominant cause of most
martian tectonism




Noachian rift zones in Tharsis

* Rifts in Claritas Fossae, Tempe Terra, Thaumasia

* Early phase of Tharsis uplift and extension

100 Km
==

: other fault

( major fault

NW-SE
trending ridges

/

100 km
-_ 105°W

[Hauber, 2005]




Noachian rift zones

Elevation [m]
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Noachian compression in Tharsis

e Thaumasia highlands and Claritas Rise —
Noachian rises

* Resembles “orogenic” mountain belts on Earth —
compressional tectonism

[Montgomery et al., 2009;
Nahm, 2010]




How are mountains built?

* Critical taper wedge mechanics
* Slope controlled by friction

https://rocktraumacenter.wikispaces.com/2010+Compressional+Models



How was Mt Lemmon built?




Basin and Range

South Tharsis Ridge Belt: Compression or extension?

* Belt of ridges SW of Tharsis

* Compressional ridges related to Thaumasia
highlands? [Schultz & Tanaka, 1994]

* Basin and Range style extension?
[Karasozen, et al., 2010]
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Tharsis loading

* By late Noachian to early
Hesperian, Tharsis has
transitioned to being a
downward load on lithosphere

* less support by mantle plume

* thick pile of basalt pushes down on
the lithosphere

e Global deformation and tectonics

Topography (km)




Tharsis Loading

* Volcanic load deforms the lithosphere
» Radial compression (circumferential thrust faults) within rise
» Circumferential extension (radial graben) outside rise
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Radial Graben

South Distance (km)
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« Long, narrow graben radiate 1000’s of km outside of Tharsis [Schultz, 2004]

— Late Noachian — Early Hesperian in age
— Likely underlain by dikes — collapse pits, lava flows, topography
— Giant dike swarms — form on Earth associated with large mantle plumes and continent breakups



Giant dike swarms on Earth

Mackenzie dike swarm 20
(1270 Ma) :

[Ernst et al., 2001] Central Atlantic Magmatic Province
(200 Ma)



Valles Marineris

Canyon system ~2000 km
long, 8 km deep, 200 km
wide

A, el s,

Formation may have begun in G
Noachian, but continued e .
through Hesperian o

K, T o
) o
0002 S

Straight tectonic walls, plus
erosion and landsliding

Sedimentary layered deposits
in interior




VM Formation: Rift Zone?

Claritas Fossae Rift Valles Marineris

topography

------

! isoo mGal
-500 mGal

gravity

Sty Ny A

e asymmetric half-graben — rectangular troughs

* dense population of faults — simple pairs of border faults

* arcuate normal faults — linear trough walls

« weak gravity anomalies (isostatic| — large negative gravity anomalies
compensation) (flexurally supported mass deficit)

Valles Marineris is NOT analogous to typical rift zones




VM Formation: Vertical Collapse?

* Horizontal extension is problematic
* inconsistent with rectangular troughs of uniform depth

* Long argued that vertical collapse must play a role

* Melting of ground ice, dissolution of carbonates, removal of pore
water, magma withdrawal, collapse into fissures

[Sharp, 1973; Lucchita, 1992; Spencer and Fanale, 1990; Tanaka and Golombek, 1989]




VM Formation: Flexural extension?

* Flexural extension predicted at
Valles Marineris

* BUT magnitude of extension N
alone is not enough
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A multi-stage origin for Valles Marineris

b  regional isostatic anomaly (km)

* Formation of Valles Marineris likely invoked some
combination of extension, faulting, intrusion,
collapse, subsidence, and sedimentation

» Stage 1: Lithospheric support of Tharsis

 Stage 2: Flexural extension, intrusion, and subsidence
» Stage 3: Sedimentary infilling, continued subsidence
» Stage 4: Erosion

Valles Marineris is unique in the solar system,
and its origin is still highly uncertain!




Wrinkle ridges: Tharsis-centric pattern

Compressional strain

* Hesperian aged

e Concentric to Tharsis — Tharsis

loading stresses control orientation
[Banerdt and Golombek, 2000]

e BUT occur even where stresses
should be weak or extensional

* Must be added source of
compression
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Northern Lowlands Wrinkle Ridges

* global population of wrinkle ridges

* dominantly circumferential to Tharsis
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Hesperian plains

e THE TOPOGRAPHY OF MARS BY THE MARS ORBITER 1 ASER ALTIMETER (MOLA) G S




Global contraction

* Key observations:
* Pervasive wrinkle ridges in Hesperian volcanic terrains

* Tharsis-centered wrinkle ridge pattern found even
where Tharsis stresses predict extension

* By the Hesperian, pervasive compressional
tectonism require addition of a global
compressional stress field

* Contraction of interior due to cooling
—> compression in lithosphere

* Cooling and contraction:
* Decay of radioactive isotopes
* Decrease in heat flow
* Cooling of interior
* Isotropic compression of lithosphere




Mars Thermal Evolution

* Cooling rate ~ 53 K/Gyr [Hauck and Phillips, 2001]
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Stress evolution

* Global contraction would have |
caused many areas that began in
an extensional stress state (o,
and o3 horizonal) to transition to

: THRUST
a compressional stress state (o,
and o, horizontal) %
* Must pass through a strike-slip \
stress-state (6, and o3 horizontal) - G2
— 03
NORMAL
P
STRIKE
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Faulting west of Tharsis

* Observe transition from extension (graben), to strike-slip faulting, to compression
(wrinkle ridges) [Okubo and Schultz, 2006; Andrews-Hanna, 2008]




Evolving Tectonics around Tharsis

b. do =50 MPa

Extension

Compression

d. do =150 MPa

Increasing compression

g. do =300 MPa

h. do = 350 MPa

[Andrews-Hanna, 2008]



Strain history

* Gradual cooling and contraction is dominant

paradigm to understand the evolution of Mars (and
Mercury, and the Moon), BUT...

Predicted: even more compression in ancient surfaces
Observed: little ancient compression
Predicted: steady rate of compression

Observed: rapid pulse of compression in early
Hesperian, with little since

Predicted: compressional faulting today at rates
similar to past 3 Ga

Observed: little or no active compressional tectonic
seismicity

Why did Mars experience a Hesperian pulse in
contractional tectonics?

* Is this a true record of the actual strain rate?

e |s the tectonic record biased?

strain (x103)

2.5 : —
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[Andrews-Hanna, 2023]



Age of Tharsis

Buried craters reveal ancient surface at

shallow depths within rise
Ancient parts of surface also Noachian in age
» characterized by extensional tectonics

and magnetic anomalies [Johnson and
Phillips]
First stages may have consisted of uplift,
fracturing, intrusion in the Noachian
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Age of Tharsis

Multiple centers and stages of Tharsis-
focused activity [Anderson, 2001]
Peak activity is in Noachian

Features Per Stage

-
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[Anderson, 2001]
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Age of Tharsis

* Revised ages of surface units and tectonic mapping

* Tharsis activity picking up in Late Noachian, peaking in Early Hesperian [Bouley et al., 2018]
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Or does this reflect the bias in strain history observed globally?

~w 140" W 120" W

100° W

80'W 60° W

T
40'wW




Amazonian Volcanism
and Tectonics:
Cerberus Fossa,
Elysium




Late Amazonian volcanism in Elysium Planitia
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Geologically recent explosive volcanism

* Dark, thin, mantling unit around
one of the Cerberus fossae fissures

* pyroclastic deposit from explosive
volcanic eruption

e ~53 kyr old!!




Global volcanic history
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InSight

* NASA’s latest Mars lander

* SEIS —seismometer to look for Mars quakes, probe the
interior structure

* Heatflow probe HP3 — measure the heat flow from the
interior
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Core




InSight -
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* Seismometer identifies seismic waves from Marsquakes so226 el
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