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Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces
of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows
are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and
Mars; methane for Saturn's moon Titan). In other cases, as onMercury, Venus, Earth's moon, and Jupiter's moon
Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and
valleys onMars sparked amajor controversy over the role of water in shaping the surface of that planet. The rec-
ognition of the fluvial character of these features has opened unresolved fundamental questions about the geo-
logical history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological
cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-
like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid
lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids,
such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedi-
mentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology
also illustrates fundamental epistemological andmethodological issues, including the role of analogy in geomor-
phological/geological inquiry.

© 2015 Elsevier B.V. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2. Volcanic channels: moon, Mercury, and Io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

2.1. Lunar sinuous rilles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.2. Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.3. Io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3. Venusian channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.1. Simple channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.2. Complex and compound channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4. The fluvial dissection of Titan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.1. Fluvial drainage distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2. Fluvial sediments observed on the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.3. Drainage (or fluvial) network morphologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5. The fluvial dissection of Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1. Timing of fluvial activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2. Valley networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
nd Water Resources, University of Arizona, Tucson, AZ 85721, USA. Tel.: +1 520 621 7875; fax: +1 520 621 1422.
.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomorph.2015.05.002&domain=pdf
http://dx.doi.org/10.1016/j.geomorph.2015.05.002
mailto:baker@email.arizona.edu
http://dx.doi.org/10.1016/j.geomorph.2015.05.002
http://www.sciencedirect.com/science/journal/0169555X
www.elsevier.com/locate/geomorph


150 V.R. Baker et al. / Geomorphology 245 (2015) 149–182
5.3. Alluvial rivers, deltas, and sedimentary rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4. The early Mars climate conundrum and a northern plains ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.5. Gullies and other recent flow phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.1. Gully distribution and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.5.2. Formation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5.3. Recurrent slope lineae (RSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6. Lava flow channels on Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1. Channel structures within volcanic plains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2. Channel-fed flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3. Endogenous flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4. Facies changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7. Martian cataclysmic flooding channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1. Cataclysmic megaflooding forms and processes on Earth and Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.1. Hierarchy of morphological forms in cataclysmic flooding channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.2. Differences in sediment transport and deposition on Mars and Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2. The circum-Chryse outflow channels region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.3. Megaflood generation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3.1. Pressurized outbursts from confined aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.3.2. Fissure eruption channels: water and lava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.3. Spillway cataclysmic flooding channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.4. The greatest fluvial system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
1. Introduction

Geomorphology, as a science, has achieved its greatest advances
through discoveries, notably through encounters with new landscapes,
such as those explored on Earth during the nineteenth century (Baker
and Twidale, 1991), andmost recently those imaged on other planetary
surfaces in the Solar System (Baker, 1984, 1985a, 1993, 2008a). The
modern era of planetary exploration has revealed fluvial, or fluvial-
Table 1
Fluvial and fluvial-like features on planetary surfaces discussed in this article.

Surface Feature Example Geological c

Moon Sinuous rilles Rima Prinz, Schroter's
Valley (Fig. 1)

Volcanic and
(no water-re

Mercury Broad channels Anghor Vallis, Timgad
Vallis (Fig. 2)

Volcanic and
(no water-re

Io Channels Tawhaki Vallis Volcanic
(no water-re

Venus Simple channels
With flow margins Fig. 3A "
Sinuous rilles Fig. 3B "
Canali Baltis Vallis (Fig. 3C) "

Complex channels
With flow margins Fig. 4A "
No flow margins Fig. 4B "

Compound channel Kallistos Vallis (Fig. 4C) Volcanic
(no water-re

Titan Channels/valleys Fig. 5 N2, CH4 atm
Fluvial dissection Fig. 6 "
Xanadu channels Fig. 7 "
Fluvial sediments Fig. 8 Erosion of w

Mars Valley networks Figs. 9, 10 Numerous o

Fluvial sediments Fig. 11 "
Alluvial fans Fig. 12 "
Fluvial deltas Figs. 13, 14 "
Gullies Figs. 15, 16, 17, 18 "
Lava channels Fig. 21 Volcanic and
Cataclysmic flooding channels Figs. 22, 23, 26, 27, 28 "

Streamlined uplands Fig. 24 Aqueous
Depositional landforms Figs. 25, 30 "
Spillway channels Figs. 29, 30 "
like, landforms (in this paper the term fluvial will be applied to both)
on the extraterrestrial surfaces of planets and moons (Table 1). More-
over, these discoveries pose interesting challenges for advancing our
fundamental understanding of fluvial processes and their associated
landforms (Komatsu and Baker, 1996; Baker and Komatsu, 1999;
Komatsu, 2007).

In the study of extraterrestrial planetary surfaces, one must con-
tend with the directionality of space exploration. Extraterrestrial
ontext Origin References

impact
lated context)

Lava Hurwitz et al. (2012)

impact
lated context)

Lava Hurwitz et al. (2013b)

lated context)
Lava Schenk and Williams (2004)

Lava Baker et al., 1992a
Lava "
Exotic Lava? Komatsu et al., 1992

Lava Komatsu et al, 1993
Lava "

lated context)
Exotic Lava? Baker et al., 1997

osphere Runoff Burr et al. (2013b)
" "
" "

ater ice " "
ther aqueous phenomena Runoff Luo and Stepinski (2009)

Hynek et al. (2010)
Fluvial Palucis et al. (2014)
" Moore and Howard (2005)
" DiAchille and Hynek (2010)
Hillslope Malin and Edgett (2000b)

Aqueous Volcanic Mouginis-Mark et al. (1992)
Cataclysmic flooding Baker and Milton (1974),

Carr (1996)
" Baker (1982)
" Irwin and Grant (2009)
" Irwin and Grant (2009)



Fig. 1.Apollo 15 image AS15-93-12628 showing Vallis Schröteri (Schröter's Valley) on the
Moon. Typical for lunar sinuous rilles, the valley's maximum width (11 km) and depth
(about 500 m) occur near its source. It narrows distally over about 160 km to less than a
kilometer wide near its terminus, where it grades into volcanic plains that resulted from
the immense amounts of lava that coursed through the channel. This is one of the largest
sinuous rilles on the Moon. The astronomer Johann Hieronymus Schröter first observed it
with a telescope in 1797. The sun direction for the image is from the upper left.
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planetary surfaces are first encountered by remote sensing at low
resolution. Subsequent, high-resolution imagery then allows focus-
ing on details, but there may be controversy concerning the genesis
of various landforms. This controversy commonly arises because
multiple processes can be envisioned that are physically capable of
producing many aspects of the observed landforms, a problem that
has been termed convergence and equifinality. Schumm (1991) intro-
duced the term “convergence” as applicable to actual landscapes,
and the term equifinalitywas introduced by Chorley (1962) in regard
to systems theory, which functions to explain landscapes. Thus, con-
vergence is a strong version of the concept, holding that nature in re-
ality does produce similar landforms by different combinations of
causative processes. In contrast, equifinality is a weak version, hold-
ing that diverse hypotheses or model formulations of a system, as
envisioned by scientists, can explain the same landforms. The strong
version is ontological, in that it makes a claim about nature, whereas
the weak version is epistemological, in that it deals with knowledge
or the ability of scientists to understand nature.

A challenge for science is to employ reasoning processes to get past
the equifinality issues and to recognize the true cases of convergence.
For some problems, the increases in resolution that accompany plane-
tary exploration, both spatial and spectral, can lead to a resolution of for-
mative processes (Zimbelman, 2001). More commonly these advances
in data quality must be combined with the study of terrestrial analog
landformswithwell-understood origins (Mutch, 1979).While explana-
tions for these landforms in terms of physical principles are necessary
for full understanding of their development, such explanations will al-
ways suffer from the equifinality problem unless the full range of
nature's realities are explored, and analogs can aidwith that exploration
(Baker, 2014a).

Analogy implies similarity among like features of otherwise dif-
ferent things; and, as with all thinking (Hofstadter and Sander,
2013), science relies upon analogy. Models and computer simula-
tions are actually extremely strong analogies, in which attributes
presumed to be fundamental to the two things being compared
(attributes such as basic physical or mathematical structure) are in-
corporated into a necessarily simplified system that can then be
compared via testing to the real world. Particularly in the study of ex-
traterrestrial planetary surfaces, the complexities of specific phe-
nomena require investigation that begins with weaker forms of
analogy, but which takes advantage of natural regularities that
allow direct comparisons between real world entities, such that a
newly discovered feature can be compared to features that are al-
ready known and understood. Insights gained from this comparison
then lead to further investigation into the cause(s) of the unknown
feature. Geological analogies serve not so much to provide definitive
explanations as they do to provide a source for fruitful working hy-
potheses (Chamberlin, 1890) that move geological investigation
into productive lines of inquiry (Gilbert, 1886, 1896).

In contrast to newly discovered fluvial-like landforms on other
planets, fluvial and fluvial-like landforms on Earth aremuchmore likely
to have their key features and their causative processes understood.
Thus, the sharing of key features between terrestrial analogs and extra-
terrestrial phenomena can suggest possible causes for the latter through
the understanding of the terrestrial causes. These possible causes then
become hypotheses that require further testing. However, unlike classi-
cal physics, geology cannot achieve such testing through controlled
experiments on its subject matter. An entire river, volcano, or glacier
cannot be isolated from its environment and placed into a completely
controlled laboratory setting. Instead, alternative means must be
found to test or corroborate the hypotheses that are suggested through
analogy. This testing or corroboration can be accomplished by exploring
consequences of the working hypotheses for consistency, coherence,
and consilience (see Baker, 2014a, for an in-depth discussion of the
role of terrestrial analogs in planetary geology and related aspects of
geological reasoning).
2. Volcanic channels: moon, Mercury, and Io

2.1. Lunar sinuous rilles

Channels visible by telescopic study of Earth's moon (Fig. 1) initially
looked promising as candidates for water flowing on that planetary sur-
face (Pickering, 1904; Firsoff, 1960). The excellent, high-resolution im-
ages returned in 1966–1967 from the Lunar Orbiter missions that
were designed to prepare for manned landing, provided data for de-
tailed comparisons between sinuous lunar channel ways and terrestrial
rivers (Peale et al., 1968; Schubert et al., 1970). Moreover, before the
return of rock samples from the Moon, the prevailing theories held
that, like Earth itself, Earth's moon had a primordial, water-rich hydro-
sphere (reviewed by Gilvarry, 1960). These theories even led the
famous Nobel laureate chemist, Harold Urey (1967) to conclude that,
given the obvious fluvial-like morphology of the sinuous rilles
(e.g., their sinuous planform), special processes must have occurred
on the airless Moon to allow water to flow. He even suggested that a
large comet impactmight have produced a temporarywater-rich atmo-
sphere. Lingenfelter et al. (1968) used theoretical modeling to show
that the lunar rivers could have been ice-covered and thereby able to
flow. Following the consequences of this fluvial hypothesis, Gilvarry
(1968) concluded that the lunarmaria, instead of being the result of im-
mense outpourings of lava,were actually the surface expressions of sed-
iments and sedimentary rocks.

Geochemical analyses of rock samples returned from the Apollo
landingmissions showed clearly that the lunar primordial hydrosphere
model was wrong and that the maria were the surface expressions of
immense outpourings of basaltic lava (Taylor, 1982). The Moon clearly
has no water-related context in which to place the sinuous rilles. In
the lead up to the Apollo missions, the equifinality problem was en-
countered because a variety of nonaqueous processes were also hy-
pothesized to be capable of producing sinuous rille morphologies. The
hypothesized genetic mechanisms included lava channeling and the
collapse of lava tubes (Baldwin, 1963; Oberbeck et al., 1969), pyroclastic
flows (Cameron, 1965), and various combinations of structure and sub-
sidence (Quaide, 1965; Schumm, 1970). In 1971, the Hadley Rille was
inspected in the field by the Apollo 15 astronauts, and their findings,
combined with studies of the regional geology showed that the lava
channel and lava tube hypothesiswasmost consistentwith all the avail-
able data (Greeley, 1971; Howard et al., 1972). Thus, in this case, the
various advances in resolution and measurement during the intensive
lunar exploration program of the 1960s eventually resolved the
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equifinality issue ofwater-versus-lava as the agent for forming the lunar
sinuous rilles.

In retrospect, important morphological differences exist between
fluvial channels or valleys and lunar sinuous rilles. Unlike fluvial
forms, the latter most commonly have decreasing width and depth
along their flow paths (Fig. 1). In a recent study of more than 200
lunar sinuous rilles, Hurwitz et al. (2013a) found that their lengths
range from 2 to 566 km,with amedianwidth of about 500m and ame-
dian depth of about 50 m. These authors attribute the pervasive down-
stream decreases in width and depth to turbulent lava flow that
facilitates thermal erosion in the proximal portions of the rille and
then transitions distally to laminar flow, leading to a progressive decline
in thermal erosion efficiency in a down-channel direction.

Hurwitz et al. (2012) used an analytical model to estimate the vol-
ume of lava needed to erode the Rima Prinz sinuous rill at ~50 km3 for
a very low viscosity lava and about 250 km3 for an intermediate viscos-
ity lava. From months to an Earth year would be required to form this
feature by lava eroding at up to a meter per day, and the distal accumu-
lation of solidified lava would extend over an area of about 2500 km2.
Thus, what was a highly erosive fluid near its source transitions to a
much less erosive fluid, eventually leaving a huge solidified accumula-
tion of all the channel-forming fluid. This is obviously very different
than what would occur with water flows, which might leave some vol-
ume of sediment related to the amount of material eroded from the
channel, but withmost of the eroding fluid eventually leaving the depo-
sitional area by evaporation, infiltration, or other processes.

2.2. Mercury

The MErcury Surface Space ENvironment, GEochemistry, and Rang-
ing (MESSENGER) mission that reached Mercury in 2008 revealed a
dozen or so flat-floored, shallow valleys associated with extensive vol-
canic plains at high latitudes in Mercury's northern hemisphere (Head
et al., 2011; Byrne et al., 2013). The feature shown in Fig. 2 is about
20 km wide with a smooth, lightly cratered floor that contrasts with
the adjacent rough and highly cratered terrain intowhich it is shallowly
incised. It was probably formed by the thermal and mechanical erosive
action of high-magnesian, mafic or ultramafic lavas (Hurwitz et al.,
2013b). The irregular knobs in the center right portion of the image
are remnants of a rim material of the 140-km-diameter Kofi impact
basin that was eroded by lavas emanating from vents about 50 km to
the northwest of the image.

2.3. Io

Lava channels were observed on the surface of Jupiter's moon, Io, in
the course of the 1996–2003 imaging phase of the Galileo spacemission
(Keszthelyi et al., 2001). Schenk and Williams (2004) documented
a particularly large channel, Tawhaki Vallis, that extends for about
Fig. 2. Portion of the Mercury lava channel Angkor Vallis at 57° N lat
The image is from the Mercury Dual Imaging System (MDIS) of the M
200 km and is up to 6 km wide, representing either an ultramafic or a
sulfur lava flow. The channel is shallowly incised (about 50 m) into
plains that are probably primarily composed of sulfur (Schenk and
Williams, 2004). The whole surface of Io must be relatively young, as
it lacks impact craters. The young surface age and the lava that generat-
ed the channel derive from widespread volcanism that resurfaces Io
through the intense tidal interaction of this relatively small moon with
the massive planet Jupiter (McEwen et al., 2004).

3. Venusian channels

Channel landforms on Venus were discovered in the early 1990s
through studies of images generated by the Synthetic Aperture Radar
(SAR) instrument onboard the Magellan spacecraft. More than 200
channels have been identified on the Magellan images of Venus (Baker
et al., 1992a, 1997; Komatsu et al., 1993), and they exhibit awide variety
of morphological characteristics (Gulick et al, 1992a, 1992b).

3.1. Simple channels

Simple channels (Baker et al., 1992a; Komatsu et al., 1993) generally
consist of a single, sinuous main channel that lacks the complex
branching and anastomosing reaches characteristic of other varieties
of Venusian channels (Gulick et al., 1992a). Simple channels can be fur-
ther subdivided into simple channels with flow margins, sinuous rilles,
and canali (Fig. 3). Some simple channels are located on well-defined
flow deposits or flow fields (Fig. 3A) (Komatsu et al., 1993). These sim-
ple channels with flow margins are similar in morphology to channels
that form on terrestrial lava flows. Because these channels have formed
on lava flows and do not seem to have incised surrounding terrain, they
appear to be similar to their terrestrial counterparts in being mostly
constructional in origin. In general, these simple channels lack distinc-
tive source regions.

Sinuous rilles emanate fromdistinct, circular, or elongated regions of
collapse (generally several kilometers in diameter), and they form
channels up to several kilometers wide and tens to hundreds of kilome-
ters long (Baker et al., 1992a; Komatsu et al., 1993). As in the case of
lunar sinuous rilles, these Venus counterparts become narrower and
shallower in a downstream direction (Fig. 3B). Most sinuous rilles on
Venus are not associatedwith detectable lavaflowmargins. The similar-
ities in morphology and size to lunar sinuous rilles may imply that
thermomechanical erosion by high-discharge, highly fluid lava was
also an important channel-forming process on Venus (Komatsu et al.,
1993; Komatsu and Baker, 1994a; Oshigami et al., 2009). Some of the
Venusian sinuous rilles are associated with networks of valleys or de-
pressions (Baker et al., 1992a; Gulick et al., 1992a,b; Komatsu et al.,
1993, 2001; Oshigami et al., 2009).

Canali are features that are unique to Venus. Unlike other simple
channels they have generally constantwidth anddepth over their entire
itude, 115° E longitude.
ESSENGER spacecraft and has a resolution of 250 m per pixel.



Fig. 3. Examples of simple channels on Venus (all examples are Magellan left-looking SAR images): (A) simple channel with flowmargin; (B) sinuous rille; and (C) a canali-type channel
(Baltis Vallis). Arrows show the channel locations, and north is up in this figure.
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flow path (Fig. 3C) (Baker et al., 1992a, 1997; Komatsu et al., 1992,
1993). These channels generally have widths ranging up to 3 km and
lengths exceeding 500 km. However, some canali may be up to 10 km
wide; and a few have enormous lengths, up to 6800 km in the case of
Baltis Vallis (Baker et al., 1992a; Komatsu et al., 1993). Canali may local-
ly exhibit numerous abandoned channel segments, cutoff meander
bends, levees, and radar dark terminal deposits (Baker et al., 1992a,
1997; Komatsu et al., 1993; Kargel et al., 1994). Sources and termini
are generally indistinct. Canali are generally located on topographic
plains (Komatsu et al., 1993), considered to be volcanic in origin and
mafic in composition (Kargel et al., 1993), and they are tectonically de-
formed along their longitudinal profiles (Komatsu and Baker, 1994b;
Langdon et al., 1996). The extraordinary length and a relatively short
formation time scale (i.e., geologically speaking) of Baltis Vallis allowed
this feature to be used to correlate distant geological units on Venus
plains to understand their sequential relationships (Basilevsky and
Head, 1996).

The morphology of these channels suggests that they probably
formed by continuously conveyed large discharges of low viscosity
lava to distant regions over prolonged periods (Baker et al., 1992a,
1997; Komatsu et al., 1992, 1993; Bray et al., 2007). Both erosional
and constructional origins have been proposed (Komatsu et al., 1992;
Gregg and Greeley, 1993; Bussey et al., 1995; Williams-Jones et al.,
1998; Lang and Hansen, 2006; Oshigami and Namiki, 2007). The forma-
tive fluids have been hypothesized to be awide range of silicate lava va-
rieties, as well as low-viscosity flows of sulfur or carbonatite lava (Baker
et al., 1992a, 1997; Komatsu et al., 1992, 1993; Gregg andGreeley, 1993;
Kargel et al., 1994).More speculative hypotheses invoke the role of non-
volcanic fluids, including turbidity currents that would have had to
occur at a time when an ocean existed on the Venusian surface (Jones
and Pickering, 2003). Alternatively, Waltham et al. (2008) envisioned
particulate gravity currents resulting from the suspension of fine partic-
ulatematter in the dense Venusian atmosphere andmoving downslope
to travel long distances. The origin of the Venusian canali remains poor-
ly understood.

3.2. Complex and compound channels

Complex channels form anastomosing, braided, or distributary
patterns that are generally (but not always) on flow deposits (Gulick
et al., 1992a; Komatsu et al., 1993). Individual channel widths range
from ~3 km down to the limit of resolution, while the total width of
the channel system can range from 20 to 30 km, and up to hundreds
of kilometers in length (Gulick et al., 1992a). Most complex channels
are located on flow deposits and are classified as complex channels
with flow margins (Fig. 4A) (Komatsu et al., 1993). Complex channels
are often located along with simple channels on flow deposits, indicat-
ing a genetic connection to the lava flows. These channels are common-
ly separated by radar-bright (or radar-dark in some cases) material
that is considered to be lava, and the channels probably formed by a
constructional process. Complex channels that are not located on flow
deposits appear to have eroded into surrounding terrain. This particular
subclass of complex channels is simply known as complex channels
without flow margins (Fig. 4B) (Komatsu et al., 1993).

Compound channels contain simple and complex segments (Fig. 4C)
(Komatsu et al., 1993). The channels vary greatly in size, with widths
ranging between several tens of kilometers in complex regions down
to the limit of resolution in simple reaches. Total lengths of compound
channels can range from 75 km to thousands of kilometers (Gulick
et al., 1992a).

Kallistos Vallis (Fig. 4C) is a particularly interesting compound chan-
nel. It emanates from a distinct collapse region (Baker et al., 1992a,
1997; Komatsu et al., 1993). However, instead of becoming distally
narrower and shallower like a sinuous rille, the channel displays a
great variety of morphologies as it extends about 1200 km. Some mor-
phologic characteristics of Kallistos Vallis, in particular the collapsed
source region and anastomosing segment, bear a resemblance to some
aspects ofwhat have been termedMartianoutflowchannels, and the in-
formal name outflow channel was given to Kallistos Vallis (Baker et al.,
1992a). Leverington (2011) has drawn particular attention to these fea-
tures of Kallistos Vallis and applied the outflow designation much more
generally to lunar and Venusian sinuous rills and various other volcanic
channel forms sourced at fissures, vents, collapse areas, and other types
of depressions, proposing further that these all share a common origin
with the Martian channels (see Section 7).

Important differences can be documented between Kallistos Vallis
and what are more properly termed cataclysmic flood channels on
Mars. Of course, the regional geological context is totally different.
Venus is a planet dominated by themanifestation of volcanic processes,
with the greatest variety of lava-related flow features to have yet been
discovered. No regional or temporal context indicates a role of water
in forming any of the landscape features on the surface of Venus. Mars
is a completely different planet in regard to the role of water, with
rich manifestations of relict fluvial forms and other indicators of water
andwater–ice compositions and processes in shaping the planetary sur-
face (see Sections 5 and 7). Ancient Mars was earthlike in that regard
(Carr, 2012); Venus was not.

The main similarities of Kallistos Vallis to an outflow channel are its
collapsed source region (upper left of Fig. 4C) and the anastomosing
segment (lower center of Fig. 4C). However, the collapse region leads
not to a fluvial channel but to a linear trough about 400 km long and
about 600 km deep. The collapse source pit is connected to the trough
by an incised gorge, and a sinuous canali-type channel also emanates
from this gorge. The canali channel is about 1.5 km wide and 175 km
long. Typical for Venusian canali, it maintains a relatively constant
width over its entire length, implying genesis under very poorly under-
stood conditions by a poorly understood fluid process. The linear trough
of Kallistos Vallis eventually narrows to only 1.5 kmwide and shallows



Fig. 4. Examples of complex channels and compound channels on Venus (all are Magellan left-looking SAR images: A) complex channel with flow margin; B) complex channel without
flow margin; C) compound channel (Kallistos Vallis). Arrows show the channel locations, and north is up in this figure.

154 V.R. Baker et al. / Geomorphology 245 (2015) 149–182
to less than 150m deep. Beyond this point the channeled fluid seems to
have spilled out to create the distinctive anastomosing subchannels that
are spread over a width of as much as 18 km (lower center part of
Fig. 4C). Deflected eastward, the flows were impounded upstream of a
north–south ridge, eroding through that obstacle to create streamlined
hills in the divide crossing. Downstream of this divide the system
displays a distinctive distributary pattern of radar-bright channels
(lower right of Fig. 4C) that feed into an immense area of lobate de-
posits, the likely solidified flows that traversed the channel, and these
cover an area of about 100,000 km2. The distributary pattern of channels
and most of the lava plains are not shown in Leverington's (2014) map
of the system.

4. The fluvial dissection of Titan

Titan is the largest satellite of Saturn. Unusual for a moon, it has a
thick, N2-rich atmosphere with ~5% methane (CH4) (Niemann et al.,
2005). The methane cycle on Titan generates clouds, fluvial features,
and near-polar lakes (Lunine and Atreya, 2008). These atmospheric
and surface features have been observed by instruments on board the
Cassini–Huygens mission to the Saturnian (or Kronian) system
(Matson et al., 2003). Three instruments on the Cassini spacecraft—the
Cassini Titan Radar Mapper (Elachi et al., 2004), the Visual and Infrared
Mapping Spectrometer (Brown et al., 2004), and the Imaging Science
Subsystem (Porco et al., 2004)—can sense the moon's surface. Of these
three surface-imaging data sets, the synthetic aperture radar data
from the Titan Radar Mapper instrument (Elachi et al., 2004) provides
the highest resolution surface images (~0.3 km/pixel to ~1.7 km/pixel).
In addition, a near-visible-wavelength camera, part of the Descent Im-
ager/Spectral Radiometer (DISR) experiment on board the Huygens
probe (Tomasko et al., 2002), took images from beneath the obscuring
haze at a resolution of ~20–90 m/pixel as the probe fell to the surface
(Lebreton et al., 2005; Tomasko et al., 2005).

In addition, a near-visible-wavelength camera, part of the DISR
experiment on board the Huygens probe (Tomasko et al., 2002), took
images as the probe fell to the surface, with diminishing amounts of ob-
scuring haze enabling higher resolutions (meters to tens of meters per
pixel) than were achievable from the three Cassini instruments
(Lebreton et al., 2005; Tomasko et al., 2005). The SAR and DISR data
sets form the basis for interpreting the fluvial geomorphology of Titan
(Burr et al., 2013b). Although very localized and limited in coverage,
the DISR images with their higher resolution reveal drainage networks
with valleys on the scale of tens of meters in width (Fig. 5). Although
much coarser in resolution, the SAR data provide more global coverage
(~50% of the surface for recent analyses conducted to date), which
shows a broad distribution of drainage (or fluvial) networks (Fig. 6). As-
pects of the drainage networks and the individual fluvial features can be
discerned in these complementary data sets.

4.1. Fluvial drainage distribution

Drainages mapped in SAR data (Lorenz et al., 2008; Langhans et al.,
2012; Burr et al., 2013a) show a near-global distribution, although
their density is not homogeneous. A parameter entitled delineated fluvi-
al feature densitywas calculated for each band of 30° latitude as the total
distance along delineated network links ratioed to the area of SAR



Fig. 5.Mosaic of images taken by the Descent Imager/Spectral Radiometer (DISR) on the
Huygens probe during descent to the surface of Titan showing fluvial networks. Image
quality varies across the mosaic as a function of the amount of haze between the camera
and the surface. North is up, and themage is ~6 kmwide, so that themost prominent net-
work in the center of the mosaic is ~4 km from west to east.
Image courtesy of National Aeronautics and Space Administration (NASA)/Jet Propulsion
Laboratory (JPL)/European Space Agency (ESA)/U. Arizona.

Fig. 7.Mosaic of synthetic aperture radar (SAR) images from the TitanRadarMapper of the
Cassini Mission, showing narrow, elongate fluvial valleys in the Xanadu region, approxi-
mately 100° S, 1370°WonTitan. On this image,fluvial feature are bright, which is hypoth-
esized for other radar-bright fluvial features to result from internal reflections from
cobble-sized debris. SAR image quality varies across the mosaic. North is up in this figure.
Image courtesy of National Aeronautics and Space Administration (NASA)/Jet Propulsion
Laboratory (JPL)/European Space Agency (ESA)/U. Arizona.
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coverage. The parameter is similar to drainage density but, because the
resolution and noise of the SAR data preclude delineation of the low-
order links or small networks, it underestimates true drainage density.
Comparison of values among latitudinal bands shows that fluvial fea-
tures are denser, by an order of magnitude, at high northern latitudes
(Burr et al., 2013a) where they drain radar-bright, rugged terrain and
empty into the numerous north polar lakes (Stofan et al., 2007; Hayes
et al., 2008; Cartwright et al., 2011). Like the lakes, the north polar net-
works are commonly radar-dark, possibly as a result of a drape of fine-
grained organic sediments deposited either during backflooding of the
river valleys during lake high-stand or during thewaning stage of fluvial
flow (Lorenz et al., 2008; Burr et al., 2013b).

Fluvial features are also concentrated around the Xanadu province
(Burr et al., 2013a), a photometrically and geographically distinct region
Fig. 6. (A) Colorizedmosaic of Titan RadarMapper synthetic aperture radar (SAR) images of the
to be a shallow lake of liquid methane. An example of a narrow, elongate valley can be seen in
visible along the lake margins to the west and east. Ligeia Mare is ~400 km inmaximum north–
image quality varies across the mosaic. The inset (B) shows the location of the image on the rig
detail in the black-and-white SAR image.
Images courtesy of National Aeronautics and Space Administration (NASA)/Jet Propulsion Labo
that stretched over ~100° along the equator (Radebaugh et al., 2011).
Standing as high as 2000 m above the surrounding landscape, Xanadu
(like the north polar regions) has radar-bright high-relief terrain with
irregular or crenulated texture, inferred to be mountain ranges
(Radebaugh et al., 2011). Radar-bright fluvial valleys with cobble-
sized sediments are incised within the crenulated terrain (Fig. 7) (Burr
et al., 2013b). The fact that most of these networks within Xanadu are
below the resolution of the SAR data suggests that other uplands on
Titan that lack discernable networks may nonetheless be fluvially
dissected (Burr et al., 2013b). The networks imaged by DISR, although
not discernable in overlying SAR data, are evidently heavily incised.
Some higher-order links and trunk valleys are visible, as are wide
radar-bright extensions that stretch from the Xanadu networks across
the surrounding plains (Le Gall et al., 2010). The radar-bright return
northern lakes region of Titan. The scene shows a large dark region, LigeiaMare, interpreted
the lower right of the image, feeding into a drowned network. Other drowned valleys are
south extent (along longitude lines). The North Pole is off the image to the upper left. SAR
ht. Right: Another drowned network near the lower center of the image is shown inmore

ratory (JPL)/European Space Agency (ESA)/U. Arizona.



156 V.R. Baker et al. / Geomorphology 245 (2015) 149–182
from these wide fluvial features is interpreted as a result of rounded
cobbles greater than a few centimeters in diameter (Le Gall et al.,
2010), and the features themselves are inferred to be the deposits of
gravel-bed, braided, ephemeral rivers (Burr et al., 2013b).

The remaining fluvial networks visible in SAR data are scattered
within the mid-latitudes (Burr et al., 2013a,b); the extensive tropical
dunes on Titan apparently either preclude the formation of fluvial
flow because of aridity and/or cover over past fluvial flow features at
tropical latitudes (Lorenz et al., 2006; Radebaugh et al., 2008; Lorenz
and Radebaugh, 2009). In contrast to the polar and Xanadu networks,
these scattered mid-latitude networks occur in relatively low-relief set-
tings (the undifferentiated plains of Lopes et al., 2010), where they com-
monly form broad, shallow, radar-dark features, hypothesized to be
braided or anabranching channel patterns (Lorenz et al., 2008; Burr
et al., 2013b). Often radar-dark, they are interpreted to be braided or
anabranching fluvial systems with possible terminal splays of fine-
grained sediment (Lorenz et al., 2008; Burr et al., 2013b).

4.2. Fluvial sediments observed on the surface

Although the networks imaged by DISR are below the resolution of
the SAR data (Soderblom et al., 2007), their appearance in the DISR im-
ages provides some indication of sediment type and size. In these
visible-wavelength images from altitude, the DISR networks appear
dark and are interpreted as being mantled with fine-grained, likely or-
ganic, sediment (Tomasko et al., 2005; Perron et al., 2006). TheHuygens
probe landed several kilometers from the outlet of the fluvial network
on a dark flat surface hypothesized to be a dry lakebed. At the surface,
the DISR camera images show rounded cobbles (Fig. 8), inferred to be
Fig. 8. Rounded cobbles imaged by the Huygens probe at its landing site. The largest clast
in the image is about 15 cm in diameter.
icy but with significant non-icy material. The relationship between the
fluvial networks and the icy cobbles is not clear, but the presence of
the cobbles provides plausibility for the interpretation of rounded icy
cobbles in the radar-bright fluvial features draining Xanadu (Le Gall
et al., 2010).

4.3. Drainage (or fluvial) network morphologies

By virtue of their regional extent and responsiveness to formative
conditions, drainage or fluvial networks provide important evidence
for surface, and subsurface conditions. Terrestrial drainages have been
classified into several basic and modified patterns (e.g., Howard, 1967;
although see Drummond, 2012, for a discussion of the slight differences
among drainage classification schemes). Each of these drainage patterns
carries specific implications regarding landscape slope, substrate erod-
ibility biases, and other conditions at the time of fluvial runoff. Based
on a quantitative algorithm for classifying drainages on Earth, an anal-
ysis of drainage morphologies visible in SAR and DISR images classified
one-half of all the mapped networks as rectangular (Burr et al., 2013a).
These rectangular networks are globally distributed in the available SAR
data (Burr et al., 2013a), although gaps in the SAR coverage preclude a
rigorous statistical analysis of geospatial distribution. As rectangular
networks on Earth are commonly the result of control on overland
flow by subsurface structures or topography associated with structures,
this finding for the Titan networks was interpreted as indicating wide-
spread structural control on fluvial flow (Burr et al., 2013a).

5. The fluvial dissection of Mars

As recognized early in the era of spacecraft exploration, channels and
valleys extensively dissect the surface of Mars (Fig. 9). Valleys are low-
lying, elongate troughs on planetary surfaces that are surrounded by el-
evated topography. On Earth, fluvial valleys either contain or formerly
contained a stream or river with an outlet, but the river or its predeces-
sor is/was confined to the valley floor or, commonly, to just a portion of
the valley floor. The stream or river flows or flowed in a channel, which
is an elongate depression that conducts or conducted flows of water
that wet the channel boundaries. Most commonly such river channels
have much smaller cross sections than do the valleys in which they
occur.

About 200 years ago a major geomorphological controversy arose
concerning the origins of valleys on Earth (Davies, 1969). One view
held that valleys in areas such as Scotland were actually former chan-
nels that had been filled by theflowingwater that had created them rel-
atively rapidly as the result of cataclysmic events. The alternative view
held that the prolonged and progressive action of small streams occupy-
ing channels on the valley floors was responsible for the valley excava-
tion. Although by the middle nineteenth century this debate was
generally resolved in favor of the noncataclysmic, uniformitarian hy-
pothesis, later discoveries revealed that cataclysmic flooding did indeed
explain some terrestrial landscapes, notably the Channeled Scabland
region of the northwestern United States (Bretz, 1923)—though that
insight was resisted by much of the scientific community until the
1960s (Baker, 1981, 2008b). Interestingly the immense cataclysmic
flooding channels discovered on Mars are much larger than the many
fluvial valleys that dissect portions of that planet (Baker, 1982; Baker
et al., 1992b); and unlike those valleys, the Mars channels display
clear evidence for large-scale fluid flow across their floors and on their
walls or banks, thereby leading to a resurrection of similarmethodolog-
ical issues that played out in regard to the origin of Earth's cataclysmic
flooding channels (Baker, 1978a, 1981).

The Mariner 6 and 7 spacecraft first imaged the networks of small
valleys dissecting the ancient, heavily cratered terrains of Mars in
1969 (Schultz and Ingerson, 1973). However, these features were not
recognized as fluvial until the higher resolution Mariner 9 images
were obtained in the early 1970s (McCauley et al., 1972; Masursky,



Fig. 9.MapofMars showing the distribution of small valleys in red and possible extents of ancient inundation to up to topographic level of−3780m(dark blue) and−1680m(light blue).
The possible inundation levels correspond to theContact 2 (lower level) and Contact 1 (higher level) shorelines defined byParker et al. (1989, 1993),whichwere renamed respectively the
Deuternolilus and Arabia Shorelines by Clifford and Parker (2001). Other features indicated by letters are volcanoes, B—Alba Patera, E—ElysiumMons, O—OlympusMons, TV—Tharsis vol-
canoes, Y—Syrtis Major Planitia, and Z—Hecates Tholis; impact basins and craters, A—Argyre, C—Chryse, F—Jezero Crater, G—Gale Crater, H—Hellas; deltas-F—Jezero, U—Eberswalde; tec-
tonic features, N—Noctis Labyrinthus, V—Valles Marineris; channels and valleys, D—Okavango Vallis, I—Athabasca Vallis, J—Maja Vallis, K—Kasei Vallis, L—Mangala Vallis, M—Ma'adim
Vallis, P—Marte Vallis, Q—Warrego Vallis, R—Hrad Vallis, S—Shalbatana Vallis, T—Tiu and Simud Valles, U—Uzboi Vallis, W—Mawth Vallis, X—Aram Chaos and channel. The valleys
were extracted fromMars Orbiter Laser Altimeter (MOLA) digital elevation model (DEM) data using a computer algorithm that recognizes valleys by their concave upward morphologic
signature, aided by visual inspection against Thermal Emission Imaging System (THEMIS) imagery to remove any false positive identifications by the algorithm (see Luo and Stepinski,
2009).
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1973; Milton, 1973). Some confusion was imparted to the early litera-
ture by the designation of these small valleys as small and closely spaced
channels (Masursky, 1973). Because of their dendritic patterns, Sharp
and Malin (1975) referred to the networks of small valleys as runoff
channels, leaving open the possibility that the runoff could have been
generated by precipitation in a manner familiar for Earth. The original
channel designation, as opposed to valley, can be attributed to the
lower resolution of the available Mariner 9 imagery, which did not
clearly show the morphology of the valley floors, which the newer
high-resolution imagery has shown to be largely obscured by eolian
and volcanic deposits.

As noted above, Mariner 9 also revealed other types of fluvial fea-
tures on Mars. The most spectacular of these were the immense cata-
clysmic flooding channels, initially termed broad channels (Masursky,
1973) because of their size. These were subsequently named outflow
channels by Sharp and Malin (1975) because the examples first noted
on the Mariner 9 images emerged from rubble-filled depressions
termed chaotic terrain (Sharp, 1973). It is now known that these very
large channels have multiple modes of origin, but further discussion of
their characteristics will be held until Section 7 below.
5.1. Timing of fluvial activity

The extensive dissection of the heavily cratered terrain on Mars by
valley networks (e.g., Fig. 10) was long used to argue that the networks
themselves dated to the Noachian epoch (e.g., Carr and Clow, 1981;
Carr, 1996). As with other age categories for Mars, the Noachian epoch
is defined by the density of impact craters and by comparisons to radio-
metric dates on lunar cratering (e.g., Hartmann and Neukum, 2001).
This procedure defines the Noachian as the portion of Mars geological
history prior to 3.7 Ga. Later Mars epochs are then divided into the
Hesperian, from about 3.7 to 3.0 Ga, and the Amazonian for surfaces
younger than 3.0 Ga.

Recent work has shown that the formation of the well-developed
valley networks on Mars is more concentrated in time, with much of
the activity occurring close to the Noachian/Hesperian boundary
(Howard et al., 2005; Irwin et al., 2005b). Moreover, as was apparent
from some of the older Viking imagery of Mars (Baker and Partridge,
1986), fluvial activity in the valley networks continued into the Hespe-
rian (Mangold and Ansan, 2006; Bouley et al., 2009, 2010; Hynek et al.,
2010). Also apparent from the earlier Viking images, dense networks of
fluvial valleys dissect Amazonian-aged surfaces on someMartian volca-
noes, such as Alba Patera and Hecates Tholis (Gulick and Baker, 1989,
1990).

5.2. Valley networks

As noted in Table 2, two major types of Martian valleys can be dis-
tinguished. The longitudinal valleys (Baker, 1982) are relatively wide
and elongate with few tributaries. They commonly dissect upland
plateaus, and their theater-like valley heads suggest an important role
of groundwater seepage undermining slopes (i.e., sapping, in their ori-
gin; Goldspiel and Squyres, 2000; Harrison and Grimm, 2008). Exam-
ples include Nirgal Vallis and Nanedi Vallis. Some of these valleys have
small but relatively well-preserved deltas at their termini (Fassett and
Head, 2005; Irwin et al., 2005a; Mangold and Ansan, 2006; Di Achille
et al., 2007; Mangold et al., 2007; Kraal et al., 2008; Hauber et al.,
2009; Dehouck et al., 2010).

Topographic data provided by the Mars Orbiter Laser Altimeter
(MOLA) instrument on the Mars Global Surveyor (MGS) orbiter
(Smith et al., 1999) show that the orientations of the numerous multi-
branched networks of valleys are consistent with gravitational control
of fluid flow on the Martian surface. The latter is locally warped by the



Fig. 10. Fluvial network dissection of the heavily cratered highlands ofMars. Elevation data from theMars Observer Laser Altimeterwas combinedwith imagery so that low-lying areas are
indicated in darker shades of blue and higher areas in darker shades of brown. North is up in this figure.
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formation of a trough and bulge that formed around the immense load-
ing of the crust by the Tharsis volcanics (locality TV, Fig. 9) in late Noa-
chian time (Phillips et al., 2001).
Table 2
Geomorphological aspects of the largest fluvial features on Mars.

Attribute Valley networks Longitudinal valleys C

General Dendritic and quasi-parallel
patterns of dissection
with multiple low-order
tributaries. Locally high
densities (0.1 to 1 km−1). Valleys
widen and
deepen in a downstream direction.

Long, wide main valley with
poor tributary
development. Sourced at
theater-like valley
heads. Width relatively constant
in downstream
direction.

H
a
u
tr

Length b200–2000 km Hundreds of km Fe
Width 1–4 km Several to 20 km 3
Depth Tens to 300 m Hundreds to 500 m U
Age Mid Noachian to Early Hesperian.

Reactivation
occurred locally in Late Hesperian.
Early Amazonian
valleys dissect some volcanoes.

Late Noachian to Hesperian M
fr

Erosional
features

Local inner channels, where not
obscured by
eolian deposition

Local inner channels, erosional
meander bends

S
lo
C

Depositional
features

Some deltas and fans, but termini
obscured by
later lava flows or eolian deposition

Deltas at channel termini, where
flows entered
paleolakes

D
ex

Origin Mainly precipitation, rainfall for the
older networks,
and probably snow for younger
ones

Ground-water sapping C
o

Discharges 300–5000 m3 s−1 104–105 m3 s−1 1
Examples Warrego V. Nanedi Vallis, Nirgal Vallis,

Zarga Vallis
A
M
V

The network valleyswiden and deepen in the downstream direction
(Craddock and Howard, 2002; Howard et al., 2005; Irwin et al., 2008;
Hynek et al., 2010). Small channels that are relicts from the rivers that
ataclysmic flooding channels

uge troughs with low sinuosity, local
nastomosing reaches, streamlined
plands (“islands”), generally lacking
ibutaries.

w hundred to 3000 km
–400 km
p to 2.5 km
ainly Late Hesperian, but extend
om late Noachian to late Amazonian

uite of scabland erosional forms:
ngitudinal grooves, inner channels,
ataracts, scour marks
epositional bars (pendant, eddy, and
pansion); fans; northern plains deposits

ataclysmic flood generation by a variety
f processes (see Tables 3 and 4)

05–109 m3 s−1

res Vallis, Kasei Vallis, Ravi Vallis,
arte Vallis , Nirgal Vallis, Zarga Vallis, Athabasca Vallis, Mangala Vallis, Ma'adim
allis, Uzboi–Ladon–Morava Vallis, Okavango Vallis



Fig. 11. Fluvial conglomerate imaged by the Curiosity Lander of the Mars Science Labora-
tory Mission.
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formed the valleys are only rarely discernable because of the relatively
young eolian deposits that commonly mantle the valley floors (Irwin
et al., 2005a; Jaumann et al., 2005; Kleinhans, 2005). Similarly, deposits
at the valley termini, are commonly missing, either because of erosion
or mantling by younger lava flows, mostly of Hesperian age (Irwin
et al., 2005a; Ansan et al., 2008; Ansan and Mangold, 2013).

The image resolution issue, discussed in Section 1, played an im-
portant role for valley network interpretation in that the relatively
low-resolution images from the Mariner 9 and Viking Orbiter missions
of the 1970s and 1980s seemed to indicate low drainage densities
(length of valleys or channels per unit area) for the networks. Based
on a global analysis of the relatively low-resolution Viking orbital
imagery Carr (1996) and Carr and Chuang (1997) inferred that areas
of highly dissected southern highlands on Mars had average drainage
densities of only ~0.005 km−1, which is much lower than typical values
for fluvial drainage on Earth. These low values suggested that regional
rainfall and runoff processes might not be the major cause for valley
network formation on Mars (e.g., Squyres and Kasting, 1994; Segura
et al., 2002).

The early summaries of drainage densities on Mars did not incor-
porate some results, also from Viking data (Baker and Partridge,
1986), that showed that local valley networks in the heavily cratered
terrain consist of younger (pristine) elements that are portions of
much older, though degraded networks. By considering the latter,
Baker and Partridge (1986) found that the degraded network densities
were as high as 0.1 km−1,which is consistentwith some terrestrial data.
Using higher-resolution Viking data, Gulick and Baker (1989, 1990) de-
termined that drainage densities were actually an order of magnitude
higher for the fluvial valleys that formed on some younger Martian
volcanoes (most notably Alba and Hecates) than those in the heavily
cratered Noachian terrains. These values were much more similar to
their terrestrial counterparts, with the Alba valleys (locality B, Fig. 9)
having values between 0.3 and 1.5 km−1 compared to 0.2 and
5.0 km−1 on the Hawaiian volcanoes (Gulick and Baker, 1989, 1990).
These higher values imply at least localized atmospheric precipitation
(Gulick et al., 1997), and overland flow developed on a volcanic ash
mantle overlying the very porous volcanic lava flows (Gulick and
Baker, 1990).

The subsequent recognition of higher drainage densities usingMOLA
topographic data and higher resolution imagery from the MGS mis-
sion of the late 1990s (e.g., Hynek and Phillips, 2003) provided a con-
firmation of what had been shown in the more localized study of
Viking data, and it is now clear that drainage densities average 0.1 to
0.2 km−1 over extensive areas of the Martian surface (Ansan and
Mangold, 2006, 2013; Luo and Stepinski, 2009; Hynek et al., 2010).
The high values of drainage density strengthen the case that prolonged
precipitation and runoff processes were necessary for the origin of the
valley networks (Ansan and Mangold, 2006; Craddock and Howard,
2002; Mangold et al., 2004; Quantin et al., 2005; Mangold and Ansan,
2006; Ansan et al., 2008; Hynek et al., 2010).

Mangold et al. (2012) relate the evolution offluvial landscapes in the
heavily cratered terrains of Mars to degradation of the highland craters.
Craters older than about 3.9 Ga (Middle Noachian) date from the Late
Heavy Bombardment, a pulse of very high impact fluxes that occurred
throughout the inner solar system for about 100 My around 3.9 Ga.
These ancient craters typically have heavily degraded rims, and the
older ones are essentially rimless, with their ejecta having been
completely eroded away, probably by fluvial processes. The erodedma-
terials fill many of the crater floors and may represent a period of
prolonged and effective fluvial planation (Howard et al., 2005; Irwin
et al., 2005b). In contrast, the valley networks developed near the
time of the Noachian/Hesperian transition (~3.7 Ga) on this planation
surface. They dissect areas around craters that are eroded, but much
less so than the more ancient rimless forms. In the Hesperian, from
about 3.7 to 3.3 Ga, further degradation occurred within craters, leading
to alluvial fans on their floors (Moore and Howard, 2005) and local
dissection of rims but general preservation of the ejecta. Amazonian cra-
ters (younger than ~3.3 Ga) lack fluvial landforms and are relatively
fresh in appearance with pristine-looking ejecta blankets and central
peaks.

Detailed work in the Libya Montes area, just to the southeast of the
Syrtis Major volcanic complex (locality Y, Fig. 9), shows the later evolu-
tion of Martian valley networks in relation to standing bodies of water
on the planet's surface. The dendritic valley networks in the region
were formed in the Noachian between about 4.1 and 3.8 Ga (Jaumann
et al., 2010; Erkeling et al., 2012), with some activity continuing into
the Hesperian. The fluvial activity was associated with the ponding of
water in craters with associated deltas, hydrated minerals, and alluvial
fans. At the western end of the Libya Montes, near its margin with the
Syrtis Major volcanic complex, a large valley system, Zarga Vallis, has
(i) an older, eastern network of dendritic valleys that probably formed
by precipitation runoff processes and (ii) a younger, western segment
that is a longitudinal valley that probably developed by volcanicmelting
of ground ice (Jaumann et al., 2010). The transition from runoff valley
development to sapping or ground-ice melting seems to have occurred
in the middle Hesperian (~3.6 Ga).

5.3. Alluvial rivers, deltas, and sedimentary rocks

On 6 August 2012, the Curiosity Rover of theMars Science Laborato-
ryMission successfully landed on thefloor of the 150-km-diameter Gale
Crater (locality G, Fig. 9). The material on which it landed was a fluvial
conglomerate (Fig. 11), deposited near the distal end of an alluvial fan
(Fig. 12). As they were reported in the popular media, these features
had the appearance of unique discoveries. However, the landing site
had actually been carefully chosen to make such observations; the
choice was based on the developing understanding of Mars' watery
early history. Combined with observations from the Mars Exploration
Rover (MER) Opportunity landing site (the Burns Formation of
Grotzinger et al., 2005, 2006) and the related documentation of sedi-
mentary rocks by various orbiters, the recent lander studies leave no
doubt that Mars had a watery ancient past, involving the extensive em-
placement of sedimentary rocks (Grotzinger and Milliken, 2012).

Until the later 1990s, channels and valley networks cut into rock had
comprised the main evidence that was cited in support of the view that
Mars once had conditions that supported an earthlike hydrological
cycle. The view of a water-rich planet sharply contrasted with current
conditions on the planet and with the then-prevailing views from
physics and chemistry that Mars had always been cold and dry (Baker,
2014c). However, starting in the late 1990s, a rapid succession of



Fig. 12. Peace alluvial fan, the site of the Curiosity landing in Gale Crater, Mars. The small cross shows that actual landing site, and the dark ellipse outlines the planned landing zone. Note
the red colors indicating high thermal inertiameasuredwith the Thermal Emission Imaging System (THEMIS) on theMars Odyssey spacecraft. These are areas of finer-grained sediments
at the distal end of the alluvial fan.
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discoveries added to the list of evidence for more earthlike hydrological
conditions on early Mars. Although possible delta and fan-like deposi-
tional landforms had been tentatively recognized from the older low-
resolution data (e.g., De Hon, 1992; Cabrol and Grin, 1999; Ori et al.,
2000), the meter-scale images of the Mars Obiter Camera (MOC) on
theMGS spacecraft led to the key discovery of deltaic features very sim-
ilar in general morphology to what occurs on Earth (Malin and Edgett,
2003). The most impressive of these discoveries is a delta (Fig. 13) in
Eberswalde Crater (locality U, Fig. 9). Multiple studies have estimated
a dominant, channel-forming discharge for the paleochannels on this
delta at a few to several hundred cubic meters per second (Malin and
Edgett, 2003; Moore et al., 2003; Jerolmack et al., 2004; Howard et al.,
2007; Irwin et al., 2014).
Fig. 13. (A) Image of Eberswalde delta taken by the High-Resolution Stereo Camera (HRSC) of t
into a lake that occupied the Eberswalde crater. The inset (B) shows the location of thefigure on
Orbiter Camera (MOC). The channel sediments, presumably sand and/or gravel, are etched into
silt and/or clay. Note the prominent scroll bar topography associated with the meander bend n
Related to the Eberswalde Delta discovery (Malin and Edgett, 2003)
is the recognition of sinuous channels showing meander cutoffs, scroll
topography, and related features of alluvial rivers with floodplains.
Unlike rivers that are cut into bedrock, alluvial rivers on Earth have
channel beds and boundaries composed of the same sediments that
they transport. The Mars alluvial channels commonly display an
inverted relief, probably because eolian deflation selectively removed
the fine-grained sediments of the adjacent floodplains relative to the
coarse-grained channel-filling sediments (Williams and Edgett, 2005;
Pain et al., 2007). Particularly extensive alluvial river paleomeander
belts occur in the Aeolis Dorsa region (Burr et al., 2009a, 2010;
Williams et al., 2009a, 2013), which lies a few hundred kilometers
east of the Gale Crater region (locality G, Fig. 9). The meandering
heMars Express spacecraft. The delta surface is marked by alluvial paleochannels that fed
the right. Right: Detail of the distributary complex of alluvial channels imaged by theMars
positive relief because of the erosional removal of adjacentmaterials, presumably overbank
ear the center of the image. North is up in each figure.



Fig. 14. Composite imager generated fromdata from theMars ReconnaissanceOrbiter (MRO)Compact Reconnaissance Imaging Spectrometer forMars (CRISM) and Context (CTX) Imager
data. The background is composed on a CTX imagewith a resolution of 6mper pixel resolution, and the spectrometer data are show for the followingwavelengths: 2.38 μm(red), 1.80 μm
(green), and 1.15 μm (blue), which were acquired at 35 m/pixel resolution from CRISM image HRL000040FF. North is up in this figure.
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patterns seem to have formed in alluvial rivers because of the deposi-
tion of relatively fine sediments (clay/silt muds) that were flocculated
by dissolved salts (Matsubara et al., 2014).

Another interesting Mars delta (Fig. 14) occurs in Jezero Crater in
the Nili Fossae region of Mars (locality F, Fig. 9). Hyperspectral data
from the Visible and Near Infrared Mineralogical Mapping Spectrom-
eter (OMEGA—Observatoire pour la Minéralogie, l'Eau, les Glaces et
l'Activité) instrument on Mars Express and the Compact Reconnais-
sance Imaging Spectrometer (CRISM) instrument on the Mars Re-
connaissance Orbiter (MRO) revealed that this region has a diverse
assemblage of minerals, including phyllosilicates (e.g., clay minerals),
consistent with widespread liquid water activity that range from sur-
face weathering to hydrothermal processes (Mangold et al., 2007). A
valley network feeds from this altered source terrain to bedded sedi-
ments on the floor of Jezero Crater (Fig. 14), and these were probably
emplaced in a crater lake near the time of the Noachian/Hesperian
boundary (Fassett and Head, 2005). Some of these sediments are rich
in iron–magnesium smectite clay (indicated in green on the image
shown in Fig. 14) (Ehlmann et al., 2008), and the clay was probably
transported as suspended load by a river that drained source areas char-
acterized by clay-rich rocks (Mangold et al., 2007; Ehlmann et al., 2008).

While most Mars delta landforms are younger than the main phase
of valley network development, a striking example of a late Noachian/
early Hesperian delta occurs at Terby Crater, a 174-km-diameter feature
on the northern edge of Hellas Planitia (locality H, Fig. 9) centered at
28°S, 73°E. At that location a cumulative thickness of 2000 m of sedi-
mentation is inferred (Ansan et al., 2011). Such great accumulations of
sediment show that the erosion by the valley networks probably was
an important contributor to the filling of craters in the ancient heavily
cratered terrain of Mars.

5.4. The early Mars climate conundrum and a northern plains ocean

The spatial distribution of the valley networks is not uniform
throughout the heavily cratered terrain (Gulick, 2001), as might be ex-
pected if impacts into the southern highlands were responsible for
episodic formation of the networks (e.g., Toon et al., 2010). Instead,
the densest concentrations of valleys (Fig. 9) follow a swath that circles
the planet, extending several hundred kilometers into cratered high-
lands from the latter's boundary with the northern plains. Allowance
must be made for the great Tharsis volcanic province, which is younger
than the valley networks and which imposed itself on this boundary.
This pattern is consistent with what would be expected for a precipita-
tion source associated with a hypothetical northern plains ocean (Luo
and Stepinski, 2009; Stepinski and Luo, 2010). The relationship of
valleys to the northern margins of the heavily cratered terrain of
the southern highlands has been confirmed by an independent study
that quantified the spatial distribution of drainage densities (Hynek
et al., 2010). The distribution also corresponds to the locations of deltas
that are graded to the base level of the northern plains ocean (Di Achille
and Hynek, 2010), to the concentrations of sedimentary rocks on
Mars (Malin and Edgett, 2000a; Delano and Hynek, 2011), and to the
presence of high-Al clay minerals in deep weathering profiles (Le Deit
et al., 2012; Loizeau et al., 2012). The latter would require intense
leaching in a surficial environment for their formation. Moreover, such
a leaching episode would occur at the Hesperian/Noachian boundary
(Loizeau et al., 2012), corresponding to the same episode of precipita-
tion that is recognized in regard to the valley networks.

An ancient ocean-scale water body, about 3 × 107 km2 in area, infor-
mally named Oceanus Borealis (Baker et al., 1991), has long been hy-
pothesized for the northern plains of Mars (Fig. 9). Although it was
initially inferred from the mapping of sedimentary landforms (Jons,
1985; Lucchitta et al., 1986), the ancient ocean hypothesis was more
controversially tied to the identification of what were interpreted as
shoreline landforms by Parker et al. (1989, 1993). However, failure to
confirm the latter (Malin and Edgett, 1999, 2001) and variations in
the hypothesized shoreline elevations of up to a couple of kilometers
(Carr and Head, 2003) led some to reject the hypothesis. More recent
studies, including the explanation of shoreline deformation by true
polar wander generated by the formation of the immense Tharsis rise
(Perron et al., 2007) and interpretations of compositional data (Dohm
et al., 2009), have lent support to the ocean hypothesis. Moreover,
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recent studies have shown that, unlike Earth's oceans, Mars' Oceanus
Borealis formed episodically (Baker et al., 1991; Fairén et al., 2003). At
least one earlier oceanic phase occurred at a time coincident with the
formation valley networks in the Martian highlands (Clifford and
Parker, 2001), and later phases were associated with inflows from the
immense cataclysmic flood channels that are described in Section 7.

Multiple studies indicate that the formation of the valley networks
required prolonged periods of rainfall in amounts comparable to what
occurs for Earth's arid or semiarid regions (Howard, 2007; Barnhart
et al., 2009; Luo and Stepinski, 2009; Hoke et al., 2011; Irwin et al.,
2011; Matsubara et al., 2013). Associated lakes, deltas, and alluvial
fans show complex histories of fluctuating water and sediment dis-
charges (Malin and Edgett, 2003; Moore and Howard, 2005; Fassett
and Head, 2005, 2008; Di Achille et al., 2006; Pondrelli et al., 2008; Di
Achille and Hynek, 2010; Grant et al., 2011; Hoke et al., 2014), and
these also imply prolonged periods of precipitation and runoff (Moore
et al., 2003; Jerolmack et al., 2004; Matsubara et al., 2011).

This extensive evidence for warm, wet conditions on early Mars cli-
mate poses a conundrum because of the inability of current theoretical
models to explain all this. In contrast to earlier theory (e.g., Pollack et al.,
1987), if one assumes a CO2–H2O atmosphere, which involves the most
parsimonious extrapolation that can bemade from current Mars condi-
tions to those of the ancient past, then brining the global mean surface
temperature ofMars to near the freezingpoint ofwaterwould not phys-
ically have been possible at or before about 3.8 Ga ago (Kasting, 1991).
These same assumptions apply to more complex calculations (Forget
et al., 2013; Wordsworth et al., 2013), which also lead to a conclusion
that a CO2–H2O Martian atmosphere cannot generate the needed
warm temperatures.

Another view holds that it may not be necessary to bring global
mean temperatures above the freezing point. Gulick et al. (1997) ex-
plored the potential climatic effects of instantaneous pulses of CO2,
such as may have been released during outflow channel formation
and subsequent ocean formation as hypothesized by Baker et al.
(1991). They found that a one to two bar pulse is sufficient to raise
mean global temperatures above 240 or 250 K for tens to hundreds of
millions of years, even when accounting for CO2 condensation. Such
pulses can place the atmosphere into a stable, higher pressure, warmer
greenhouse state, where substantial water volumes could be transport-
ed from a frozen lake or ocean to higher elevations, despite global tem-
peratures well below freezing. This water, precipitated as snow, could
melt, infiltrate, and runoff, ultimately forming fluvial valleys in the
southern highlands if associated with localized heat sources and hydro-
thermal systems, such as magmatic intrusions, volcanoes, or cooling
impacts (Gulick, 1998). Thus, if outflow channel discharges were ac-
companied by a significant release of CO2, a limited hydrological cycle
could result that would be capable of producing fluvial erosion and val-
ley formation. Sources of atmospheric CO2 during this time could have
been provided by venting from associated volcanism, release of gases
dissolved in groundwater, de-adsorption of gases from inundated rego-
lith, and vaporization of clathrate in the regolith and ices resident in the
polar caps (Baker et al., 1991).

Mischna et al. (2013) recently proposed another scenario. They en-
vision combinations of three driving factors for promoting transient
warm/wet conditions on early Mars: (i) an insolation effect, mainly
driven by changes in Mars' obliquity; (ii) a trigger effect, mainly as it
will subsequently promote a transient water-rich greenhouse effect;
and (iii) an albedo effect involving relatively dark portions of the
Martian surface. The insolation effect results in periods of increased
solar heating at various latitudes. The albedo effect can arise either
(i) fromdark, dust-free exposures of basalt bedrock or (ii) from the tem-
porary presence of relatively low albedo, ponded water, notably the
northern plains ocean inferred for early Mars, acting in the manner hy-
pothesized by Baker et al. (1991) and Baker (2001, 2009a). Finally, a
trigger effect can be provided by themassive, short-term volcanic injec-
tion into the atmosphere of particularly potent greenhouse gases, such
as sulfur dioxide. Though such gases may be generally short-lived in
the atmosphere, their temporary warming effect can provide a trigger
to get large quantities of water vapor into the atmosphere and that
water will contribute to more prolonged greenhouse warming.

Halevy and Head (2014) also invoke the episodic volcanic release of
sulfur dioxide, but in combination with aerosols, as a means of short-
term warming of a dusty Martian atmosphere. The combination of
mechanisms envisioned by Mischna et al. (2013) might then achieve
the necessarywarming, especially adjacent to themargins of the north-
ern plains ocean that would supply water vapor. The warming could
persist long enough to generate the rainfall/runoff conditions needed
to produce the valley networks, but ultimately Mars would return to
ice-house conditions as the obliquity changed on timescales of mil-
lennia. These overall interactions are similar to what was hypothesized
by Baker (2009a).

5.5. Gullies and other recent flow phenomena

The discovery of gully forms (Malin and Edgett, 2000b) inMGSMOC
images sparked a spirited newdebate over the history ofwater onMars.
Although current average temperatures are below 273 K and atmo-
spheric pressures are at or below the triple-point vapor pressure of
water at 6.1 mbar, many investigators concluded that the morphology
of at least some of the gullies implied a formation mechanism involving
the flow ofwater. Additional studies imply that some gullymodification
processes may still be ongoing today, including the discovery of gullies
on surfaces devoid of craters and gullies with deposits that overlap
other modern, possibly active, landforms, such as dunes and polygons.

Although terrestrial gullies are commonly defined simply by the
presence of an incised channel segment, Malin and Edgett (2000b) de-
fined the Martian gullies as having an alcove in the source region, a de-
fined channel or system of channels in the mid-section and a debris
apron in the terminus. The formation andmodification of gully systems
on Earth involve a variety of fluvial and hillslope processes. These in-
clude fluvial (including overland, soil water, and groundwater flow),
colluvial, and mass wasting (e.g., debris flows and avalanches) process-
es. The challenge posed by the Martian gullies is to determine which of
these, or other, mechanisms are primarily responsible for gully forma-
tion and which are simply modification processes.

5.5.1. Gully distribution and types
Gullies on Mars are concentrated in the mid-latitude regions,

primarily in the southern hemisphere, but they are also found in the
northern hemisphere (Malin and Edgett, 2000b; Costard et al., 2002;
Heldmann and Mellon, 2004; Balme et al., 2006; Dickson et al., 2007;
Heldmann et al., 2007). Although the earlier studies concluded that
gullies are mostly located on pole-facing slopes in the southern hemi-
sphere, later work points to prominent gully systems formed at various
slope orientations in the northern hemisphere and southern latitudes
(e.g., Gulick, 2008; Gulick and Davatzes, 2009; Head et al., 2009; Hart
et al., 2010). These systems are located on a variety of surfaces, including
central peaks and pits of craters, craters, channel and valley walls, polar
pits, mounds, mesas, and mid-latitude dune fields.

Imagery from the High Resolution Imaging Science Experiment
(HiRISE) camera of the current MRO mission affords a much closer
look (~0.3 m/pixel; meter-scale features resolvable) at the gullies than
was available in the MOC discovery images (~1.5 to 12 m/pixel; tens
ofmeters-scale features resolvable), and at this higher resolution gullies
exhibit a great deal of morphological diversity. While some gullies ex-
hibit the canonical single source alcove, incisedmiddle reach and termi-
nal debris fan deposits, others form tributaries that coalesce into
complex networks. Lengths range from several tens of meters to several
kilometers; widths range from several tens of meters down to HiRISE's
resolvable meter-scale. Some gully sources blend in gradually with the
surrounding uplands, while others start full-borne from blunt theater
heads. Gully systems displaying different morphologic patterns can be



Fig. 15. (A) Crater gullies southeast of GorgoniumChaos. Note the detail of gullies that have eroded into bedrock of theproximal source regions shown in (B) and into distal surfaces shown
in (C) of drainages off the inner rim of an impact crater shown in (A). North is up in each figure.
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located adjacent to each other, morphologically complex gully systems
commonly originate at rocky layers on a cliff face (Fig. 15). Such gullies
often undercutwalls, erode into the underlying rock and sediment, form
point bars and cut banks, exhibit braided and anastomosing reaches,
erode multiple terraces along gully margins, and deposit rocks and sed-
iments along the gully and superposed adjacent systems. The resulting
complex suite of morphological features is consistent with a fluvial ori-
gin (Gulick, 2008).

In contrast, gullies located on mid-latitude dune fields (Mangold
et al., 2003; Reiss and Jaumann, 2003) are sourced from alcoves located
at dune crests, erode constant-width channels with levees, but general-
ly lack the distal deposits common to the other gullies. Boulders are
present at the termini of some dune gullies. Multitemporal imaging
(repeat imaging of specific locations taken over multiple seasons and/
or years) has documented seasonal changes in the dune gullies
(Jouannic et al., 2012; Diniega et al., 2013). Sliding blocks of CO2 ice
down dune slopes (Diniega et al., 2013) and seasonal melting of an
upper H2O ice and brine layer are among several hypotheses that have
been proposed for the formation of the linear dune gullies (Kereszturi
et al., 2009; Reiss et al., 2010). Recently, long-term observations of cra-
ter wall gullies employing HiRISE imagery has documented the role of
CO2 processes on present-day Mars as active processes related to gully
morphology (Dundas et al., 2014).

Still other gully types have distinct source regions and debris fans,
but lack incised middle reaches. These particular gully forms are usually
located on steep slopes, such as the inner walls of several volcano
calderas, as well as on some crater, valley, and canyon walls; and they
may be more akin to debris chutes where material is transported
down steep slopes mostly by gravity alone.

HiRISE imaging also shows that gullies in a single locale sometimes
emerge atmultiple elevations and display a striking variety of morphol-
ogies. For example, miniature gully systems, some less than a kilometer
long, are located along a crater wall in the Terra Sirenum region
(Fig. 16A). These small gullies exhibit typical gully morphologic charac-
teristics. However they emerge much farther downslope than do their
nearby full-scale counterparts (Gulick, 2008). Other intriguing gully sys-
tems are located on some pristine, mid-sized impact craters (McEwen
et al., 2007a; Tornabene et al., 2007). For example, well-developed
and integrated gully systems heavily dissect the eastern rim region of
Mojave Crater (Fig. 16B). In another example, pristine gullies have erod-
ed both sides of the rim of Hale Crater (Figs. 17, 18), flowing in opposite
directions. In one location, only a narrow ridge separates eastward- and
westward-oriented gullies (Gulick, 2008). Although these gullies
displaymorphological characteristics consistentwith a fluvial origin, as-
sociations such as thesemay challenge any single gully formationmech-
anism applicable to geologically recent times.

5.5.2. Formation processes
Given such diversity in morphology, a continuum of processes is

likely involved in the formation and modification of various gully sys-
tems. Formation mechanisms may include flows of hyperconcentrated
fluids, debris flows, dry mass wasting flows and slides, and seasonally
active processes involving CO2 and/or H2O ice. Proposed sources of
water flows include melting snowpacks (Christensen, 2003); melting
ground ice during periods of high obliquity (Costard et al., 2002;
Dickson and Head, 2009); and melting ice-rich, debris-covered, glacial
material (Schon and Head, 2012). Other mechanisms involve liquid
water from groundwater flow in near-surface aquifers (Malin and
Edgett, 2000b), from atmospheric sources (Costard et al., 2002; Hecht,
2002; Christensen, 2003; Dickson et al., 2007; Williams et al., 2009b),
or from wet debris flows (Costard et al., 2002; Dickson and Head,
2009; Williams et al., 2009a; Heldmann et al., 2010; Mangold et al.,
2010; Schon and Head, 2011). Still other proposed mechanisms include
dry mass wasting; granular flows; (Shinbrot et al., 2004) exotic fluids



Fig. 16. (A) A portion ofMars Reconnaissance Orbiter (MRO)High Resolution Imaging Science Experiment (HiRISE) image PSP_1712_1405 (0.3m/pixel resolution) showing theater head-
ed gully tributaries with inner channels (left). Sun direction is from the left, and north is up. (B) Portion of HiRISE image PSP_001415_1877 (0.3 m/pixel resolution). The image shows the
eastern rim region of Mojave crater, which is extensively dissected by integrated gully systems. North is up in the figure, and the sun is illuminating from the left.
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(Musselwhite et al., 2001; Treiman, 2003; Hugenholtz, 2008); seasonal
CO2 frost (Dundas et al., 2014); and, for the linear dune gullies in partic-
ular, sliding and sublimation of CO2 blocks (Hansen et al., 2007; Diniega
et al., 2013).

HiRISE has taken several thousand images of gully forms since 2006,
and many of these are repeat, stereo images. Such long-term repeat
imaging of specific sites, taken over multiple seasons and years,
Fig. 17. Portion of High Resolution Imaging Science Experiment (HiRISE) image
ESP_011753_1445 (0.3 m/pixel resolution), showing gullies along the eastern rim of
Hale Crater. Gullies with different orientations are developed on both sides of the ridge
running through the center of the image. Note bright deposits along some gullies. North
is up in the figure, and the sun is illuminating from the left.
provides information on seasonal morphologic changes or clues that
may lead to detection of processes that are currently active in the
gully systems. Additionally, HiRISE digital terrain models (DTMs) can
be produced frommanyof theseHiRISE stereo image pairs.Most images
are generally ~0.25–0.50 m/pixel, which yields a post-spacing equal to
~1–2 m with vertical precision in the tens of centimeters (McEwen
et al., 2007b). In particular, HiRISE DTMs have enabled a new level of
gully studies for quantitative detailed longitudinal profile analysis and
more accurate volume calculations using slope, distance, and elevation.
Several recent studies of Martian gully systems (e.g., Hart et al., 2010;
Jouannic et al., 2012; Glines and Gulick, 2014; Hernandez et al, 2014;
Hobbs et al., 2014; Narlesky and Gulick, 2014) have incorporated anal-
ysis of HiRISE DTMs. These studies have led to estimates of eroded
gully volumes and their associated deposits, thus providing a measure
of the missing water or volatile volumes associated with gully forma-
tion. For example, Gulick et al. (2014) determined that the volume of
the resulting debris aprons within Kaiser and Corozal craters was
~40% of the eroded gully volumes that resulted in a total water or vola-
tile volume of ~60% of the total gully volume. Such studies provide a
better understanding of Mars recent hydrological history and detailed
comparisons with terrestrial gully systems.
5.5.3. Recurrent slope lineae (RSL)
A relatively recent discovery onMars is the identification ofwhatmay

be the best candidate for modern-day liquid water flow on Mars. The
evidence for flow consists of linear patterns, probably of wetting and/or
chemical precipitation, that extend and contract seasonally on steep,
warm, rocky Martian slopes (McEwen et al., 2011). The phenomenon
has been documented on equator-facing slopes of the southern mid-
latitudes of Mars, and the transient flow features occur in the local spring
and summer seasons (McEwen et al., 2011; Ojha et al., 2014). Termed re-
curring slope lineae (RSL), these features also occur in the VallesMarineris
(McEwen et al., 2014). While McEwen et al. (2011) originally proposed
that these present day flows would likely need to be briny because of



Fig. 18. Portion of High Resolution Imaging Science Experiment (HiRISE) color image PSP_002932_1445 (0.3 m/pixel resolution) showing greater detail of the Hale Crater gullies. North is
up in the image, and the sun is illuminating from the left.
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the current surface temperature and pressure conditions, new observa-
tions by Stillman et al. (2014) support fresh shallowwater flows forming
RSL in the southernmid-latitudes. They observed that the vastmajority of
RSL lengthen onlywhenmid-afternoon surface temperatures are N273 K.
Detailed RSL observations over time (Stillman et al., 2014) have been
shown by modeling to be consistent with subsurface water flow over a
shallow aquitard (Grimm et al., 2014).

6. Lava flow channels on Mars

Mars obviously has a rich fluvial history, particularly in its first bil-
lion years. However, this history is also interconnectedwith a rich histo-
ry of volcanic phenomena, including interactions of volcanism with
water-related processes. These interactions lead to equifinality issues
in regard to volcanic versus fluvial channel origins. As an alternative to
the fluvial outflow channel hypothesis (see Section 7 below),
Leverington (2004, 2006, 2009, 2011) argued that thermal and/or me-
chanical erosion by lavamay have carved theMartian outflow channels.
However, discrimination between fluvial and lava channels on Mars is
complicated by possible overprinting relationships in which lava flows
Fig. 19. Lava channel formation scenarios: (A) partially drained channel bounded by confining
formed by thermal‐mechanical erosion into the substrate followed by partial drainage of the p
lava drainage without substrate erosion.
may have resurfaced fluvial outflow channels. For instance, high-
resolution imaging of Amazonian-aged Athabasca Valles shows that
this outflow channel is draped in lava (Jaeger et al., 2007, 2008, 2010;
Ryan and Christensen, 2012), possibly implying a secondary rather
than primary role for lava. Understanding the relative roles of fluvial
and volcanic processes in channel formation is therefore vital for under-
standing the evolution of the Martian surface and climate.

6.1. Channel structures within volcanic plains

OnMars, basaltic provinces divide into threemain types (Greeley and
Spudis, 1981; Zuber andMouginis-Mark, 1992): (i) large shield volcanoes
fed primarily from centralized sources (e.g., OlympusMons and the other
Tharsis Montes; Bleacher et al., 2007), (ii) regional packages of sheet-like
flood lava that appear to originate from fissures (e.g., the Cerberus Fossae
Units in Elysium Planitia; Plescia, 1990; Jaeger et al., 2007, 2010), and (iii)
vent fields composed of coalesced lava from widely distributed low
shields (e.g., Tempe Terra Formation in northeastern Tharsis; Plescia,
1981). Each of these basaltic landscapes includes a diverse range of chan-
nels, which may be related to volcanism, bedrock erosion by overland
levees; (B) broad sheet‐like lava lobe bounded by the initial topography; (C) deep channel
referred lava pathway; (D) deep channel formed by constructional processes followed by



Fig. 20. Examples of terrestrial lava channels: (Left) example of an active lava channel forming on Kīlauea, Hawaii, during the 2007–2008 phase of the Pu'u 'Ō'ō eruption; (Right) example
of a 5-m-deep channel formed within the 1783–1784 A.D. Laki eruption in Iceland.
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flows ofwater, or a combination of both processes. However, distinguish-
ing among these hypotheses requires determining if the channels are pri-
marily features associated with lava flow emplacement, or if they are
products of subsequent erosional processes. This can be achieved by
considering themorphological characteristics and facies relationships as-
sociated with lava flows, which generally involve two end-member em-
placement mechanisms: channel-fed growth (e.g., Booth and Self, 1973;
Baloga et al., 1995; Kilburn, 1996; Harris and Rowland, 2001; Glaze
et al., 2009; Harris et al., 2009) and endogenous growth (e.g., Walker,
1991; Hon et al., 1994; Keszthelyi and Denlinger, 1996).
6.2. Channel-fed flows

Channel-fed lavas (Figs. 19, 20) can form within a range of lava flow
types including 'a'ā, pāhoehoe, and transitional lavas (e.g., blocky, rubbly,
slabby, and platy flows). Lava channels are commonly associated with
high lava-discharge rates, which favor the transport of lava in open 'a'ā
channels caused by shear-induced disruption of the lava surface
(Macdonald, 1953; Pinkerton and Sparks, 1976; Rowland and Walker,
1990). Viscous tearing of the lava surface also enhances the cooling of
the underlying molten lava, thereby resulting in a thermally inefficient
lava transport system, relative to endogenous flows. With distance from
the vent 'a'ā channel geometries tend to evolve from being narrow and
leveed in the proximal regions to wide and nonleveed near the flow
front (Lipman and Banks, 1987; Kilburn and Guest, 1993; Cashman
et al., 1999). However, as theflow front continues to advance, the stagnat-
ed lateral margins of the 'a'ā can develop into stationary levees that help
to focus the continued through flux of lava. As the eruption progresses,
the leveesmay continue to growas lava episodically overtops the channel
banks to form a combination of overbank flows and rubble avalanches.
However, as lava-discharge rates wane, the 'a'ā channel may partially
drain to produce a deep topographic depression bounded by levees on
either side.

Pāhoehoe flows tend to be associated with lower lava-discharge
rates (Rowland and Walker, 1990), which favor the formation of lobes
that are bounded by a continuous surface crust (see the discussion
of endogenous flows below for more detail). However, in the vent-
proximal region, or along segments of a lava pathway where local
lava-discharge rates are high (e.g., due to topographic constrictions
and/or breakouts of stored lava), lava flow velocitiesmay be sufficiently
great that a continuous surface is unable to form. At these localities,
pāhoehoe and transitional lavas may also form open channels that can
subsequently drain to produce topographic depressions.

Channels within 'a'ā and pāhoehoe lava flows can be expressed
as distinctive landforms that are perched above their surroundings
by their high-standing margins. However, large eruptions can also
produce broad sheet-like flows that inundate the landscape such that
they are confined by pre-eruption topography rather than auto-
confining by lateral lava levees (Self et al., 1996, 1998; Thordarson and
Self, 1998). These flood lavas may include one or more preferred
pathways that drain as lava-discharge rates wane to produce channel-
like depressions that appear to incise into an existing plain. In
some cases, lava pathways may carve into the pre-eruption landscape
through processes of thermal-mechanical erosion (Baloga et al., 1995;
Williams et al., 2000, 2001a,b, 2005), but this process is exceedingly diffi-
cult to discern from remote sensing data alone because the apparent ex-
cess depth of the channel may simply reflect the fact that the preferred
pathway formed above the lowest point in the initial landscape.

6.3. Endogenous flows

In contrast to channelized flows, endogenous (e.g., pāhoehoe) lava
flows tend to be composed of self-similar lobes (Bruno et al., 1994)
that transport lava though thermally insulated internal pathways,
whichmay range from to narrow lava tubes to broad sheet-like regions
(Self et al., 1998). Endogenous flows grow as new lobes breakout along
existing flow margins (Crown and Baloga, 1999). These breakouts ex-
pose fluidal lava that quickly cools to develop a rheological gradient
consisting of a brittle outer crust, underlying viscoelastic layer, and
inner molten core. Once lobes develop sufficient rigidity to retain in-
coming lava, they can pressurize and inflate as a network of lobes or co-
alesce to form a lava-rise plateau (Walker, 1991). Lava-rise plateaus
generally have a broad sheet-like geometry, but as they thicken by infla-
tion, they can also generate lava-rise pits above topographic highs in the
pre-eruption landscape (Walker, 1991). Lava-rise plateaus and lava-rise
pits are important diagnostics of inflation because they are large enough
to be observable on high-resolution remote sensing data (e.g., MRO
HiRISE and Context Camera (CTX) imagery).

6.4. Facies changes

Distinguishing between channelized and endogenous growthmech-
anisms is vital for inferring lava emplacement dynamics, modeling flow
behavior, and understanding the origin of volcanic plain units on Earth,
Mars, and other planetary bodies (Self et al., 1998). However, lava trans-
port mechanisms evolve with distance from source and with time such
that structures preserved at the surface of a flow may only represent
one part of a complex emplacement history. To address this issue, a
facies-based approach can prove fruitful for advancing understanding
the formation and characteristics of lava channels.

A facies refers to the suite of characteristics (i.e., appearance, compo-
sition, etc.) of a rock unit, or stratified, body that reflects its origin and



Fig. 21. Examples of partially drained lava channels onMars: (A) digital terrain model (DTM) (1m/pixel) derived from High Resolution Imaging Science Experiment (HiRISE) stereo-im-
ages ESP 012444 2065 and ESP_014000_2065; and (B) DTM (1 m/pixel) derived from HiRISE stereo-images ESP_019235_2050 and ESP_018945_2050. North is up in each figure.
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enables the unit to be distinguished from others around it. In the con-
text of lava facies, Kilburn and Guest (1993) described how lava flows
can change continuously from the initial emplacement of isothermal
sheets to flows with tubes and channels, which commonly evolve
from pāhoehoe to 'a'ā flows. Kilburn and Guest (1993) also explored
how combinations of poorly/well-crusted and sheet/channel zones
can be used to establish a continuum of facies. These facies reflect the
balance between dynamic processes of lava cooling, crustal growth,
and surface stability relative to themode of lava transport in either ther-
mally insulated internal pathways or open channels. Facies changewith
distance from the source and at any given location with time, which
makes facies relationships a much stronger diagnostic of a unit's volca-
nic origin than isolated observations.

In the context of Mars (Fig. 21), small sinuous channel systems in vol-
canic terrains have been particularly contentious, with proposed origins
ranging from fluvial processes and mudflows (e.g., Murray et al., 2010;
El Maarry et al., 2012) to lava flow emplacement (e.g., Hamilton et al.,
2010, 2011). These channels are hundreds of meters wide, tens of meters
deep, and tens to hundreds of kilometers long. Such channels tend to
head from fissures, but they are much smaller than outflow channels.
These smaller sinuous channel systems are typically located in the Tharsis
and Elysium volcanic provinces (localities TV and E, Fig. 9), but they are
also distributed in the southern highlands. The channels can have
single-stem or multichannel (anabranching) forms with streamlined
islands and terraced margins, which are often thought to be diagnostic
of bedrock erosion by water. However, examples of similar landforms
are also observedwithin lava flows on Earth (Soule et al., 2004). Unfortu-
nately, in cases where volcanic eruptions have continued for long periods
of time, initial lava flow structures, such as anabranching channel mor-
phologies, may be overprinted and erased by subsequent lava flows. For
example, as lava-discharge rates wane, endogenous flow units emplaced
under lower lava-discharge conditions may overlie channel-fed flows
that formed under peak lava-discharge conditions. The time-scales of em-
placement for lava flows onMars are poorly constrained, but Jaeger et al.
(2007, 2008, 2010) advocated that some Martian lava flows, such as the
Athabasca Valles flood lava (locality I, Fig. 9), may have been emplaced
over a relatively short duration, on the order of several weeks. If so,
short-lived, but relatively high lava-discharge rate eruptions (e.g., the De-
cember 1974 flow on Kīlauea, Hawai'i) may provide valuable insight into
the formation of sinuous lava channels on Mars.

7. Martian cataclysmic flooding channels

The largest fluvial channels of the solar system occur on Mars. Their
discovery on the Mariner 9 images revealed morphologies that, despite
the then-prevailing physical theory of a water-impoverished planet
(e.g., Leighton and Murray, 1966), indicated formation by flowing
water to the geologists on the Mariner 9 team (McCauley et al., 1972;
Masursky, 1973; Milton, 1973). The name outflow channel was applied
(Sharp and Malin, 1975) because of the immense collapse areas of
blocky, fractured terrain at the heads of the largest channels, including
Kasei, Maja, Shalbatana, Simud, Tiu, and Ares Valles (Fig. 22). The indi-
cated immense flows of water were attributed to volcanic melting of
ground ice (McCauley et al., 1972; Sharp, 1973; Masursky et al., 1977),
and various formulations of this mechanism have been dominant in ex-
planations ever since.

In published scientific papers over the seven or eight years following
their discovery in 1972, nearly every conceivable fluid was invoked to
explain the Martian outflow channels. These included flows of lava
(Cutts et al., 1978; Schonfeld, 1979); wind (Whitney, 1979a,b; Cutts
and Blasius, 1981), CO2 (Lambert and Chamberlin, 1978),flows of debris
(Thompson, 1979; Nummedal and Prior, 1981), glacial flow (Lucchitta
et al., 1981; Lucchitta, 1982), tectonism (Schumm, 1974), and even
flows of liquid alkanes (Yung and Pinto, 1978). Motivation for these
hypotheses derived from the perceived inconsistency with physical
models of the Martian atmosphere (e.g., Leighton and Murray, 1966)
and geochemical arguments that purported to indicate a very small
planetary water inventory (Anders and Owen, 1977), as well as the
lack of deltas at the mouths of various channels (Cutts et al., 1978).
However, all the various nonaqueous fluid-flow candidates had conse-
quences for morphology and planetary history that could be evaluated
against the facts that were known in regard to those consequences
(e.g., Baker, 1982, 1985b). This testing of hypotheses led to a general in-
vestigative community consensus in favor of the cataclysmic flooding
hypothesis (Mars Channel Working Group, 1983; Baker et al., 1992b)
that relied heavily on the analogy drawn to the megaflood landscapes
of the Channeled Scabland and Iceland (Baker and Milton, 1974; Baker
and Nummedal, 1978; Baker, 1982, 2009b,c; Rice and Edgett, 1997).
Relationships for cataclysmic flooding features in Martian channels
have since been reviewed in numerous publications (e.g., Nelson and
Greeley, 1999; Baker, 2001; Coleman, 2005; Pacifici et al., 2009;
Warner et al., 2010a).

After a hiatus of a couple of decades, a new generation of nonaque-
ous models has been resurrected, including the decompression of
solid CO2 (Hoffman, 2000) and massive eruptions of very fluid lava
(Leovy, 2002; Leverington, 2004, 2011; Leone, 2014). The CO2 hypothe-
sis of Hoffman (2000) predicted that Mars had always been so cold and
dry that water never could have been liquid on its surface—a conse-
quence clearly at odds with the immense number and variety of
newly discovered features on Mars that are clearly associated with liq-
uid water processes. Urquhart and Gulick (2001) reviewed the plausi-
bility of the White Mars hypothesis and concluded that the subsurface
of Mars is unlikely to have been as cold as this model suggested and
that liquid water would be present much closer to the surface than



Fig. 22.Mapof eastern Tharsis and circum-Chryse areas ofMars onMOLA topographic base (low areas in blue, high areas in red and brown). Features indicatedby letters include volcanoes,
I—Alba Patera, P—Pavonis Mons, Q—Arsia Mons, Z—Ascraeus Mons; impact basins and craters, C—Chryse, H—Holden; delta—Eberswalde; tectonic features, N—Noctis Labyrinthus,
VM—Valles Marineris; channels and valleys, A—Ares, B—Columbia and Daga Valles, D—Simud Vallis, F—Nanedi Vallis, G—Nirgal Vallis, J—Maja Vallis, K—Kasei Vallis, L—Ladon Vallis,
M—Morava Vallis, O—Osuga Vallis, R—Ravi Vallis, S—Shalbatana Vallis, T—Tiu Vallis, U—Uzboi Vallis, W—Mawth Vallis, X—Aran Chaos and channel, Y—Iani Chaos.
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predicted by this hypothesis. The assumptions of the White Mars hy-
pothesis regarding the globally averaged crustal heat flow are below
most estimates for the current thermal state of the Martian crust and
well below probable values.

Recently the term outflow channel has been applied to many fea-
tures with very different morphologies than those associated with the
original designation. In his model of massive outpourings of very fluid
lava on the surface of Mars, Leverington (2011) applied the term not
only to features associated with the original definition but to a great va-
riety of large channel forms of volcanic origin, including lunar sinuous
rilles (see Section 2.1); channels of more uncertain origin, such as
those on Venus (see Section 3); and to Martian channels that do not
head at outflow regions, such as Ma'adim Vallis, which has a complex
history associated with crater lake spillways (Irwin et al., 2002, 2004).
Leone (2014) even applied the term outflow channel to the troughs of
the VallesMarineris. Carr (2012, pp. 2204–2205) responded to themas-
sive lava hypothesis in his review of the fluvial history of Mars by ob-
serving, as follows: “…the consensus is that the channels were cut by
water, based on the strong resemblance to terrestrial flood features,
on the availability of water as indicated by other indications of hydro-
logical activity such as the valley networks, and on geophysical model-
ing of channel formation…”. Nevertheless, as noted in Section 5,
problems remain for relating the aqueous origins of fluvial features on
Mars to the general theory of environmental change on the planet, but
this poses a challenge to the theory—not to the realities of the fluvial
features.

7.1. Cataclysmic megaflooding forms and processes on Earth and Mars

7.1.1. Hierarchy of morphological forms in cataclysmic flooding channels
The erosional and depositional bedforms of terrestrial catastrophic

floods can be described according to a hierarchical classification of
macroforms and mesoforms, as originally recognized in the Channeled
Scabland (Baker, 1978b, 2009b,c). Macroscale forms (scale controlled
by flowwidth in the channel) develop in cataclysmic flooding channels
through the erosion of rock and sediment and/or by deposition (gener-
ally as in-channel bars). Some examples of erosional macro-scale forms
are channel anastomosis, channels with low sinuosity and high channel
width–depth ratios, large-scale streamlined residual hills, and scoured
surfaces. Examples of depositional macroscale forms include the largest
pendant bars, expansion bars, eddy bars, and fan complexes.

Catastrophic floods also produce mesoscale forms, which have their
scale controlled by flow depth in the channel. Some examples of ero-
sional mesoscale forms include longitudinal grooves, cataracts, and
inner channels. Depositional mesoscale forms include large transverse
bedforms (fluvial dunes), smaller pendant bar forms, and slackwater
depositional areas. Although the hierarchical arrangement of cataclys-
mic flooding landformswas originally recognized onMars at scales con-
siderably larger thanwhat occurs in the Channeled Scabland (e.g., Baker
and Milton, 1974; Baker and Kochel, 1979), more recent work with
high-resolution imagery has revealed areas where the scales are more
comparable (Rodriguez et al., 2014).

In terrestrial catastrophic flooding examples the association of
macroforms and superimposed mesoforms result from the nature of
the flood hydrograph. For most continuously flowing rivers, flood
hydrographs have a long recession phase. The depositional bedforms
that are stable at high flow stages (meso-scale forms) get washed out
during the prolonged recessional phase, and post-flood surfaces pre-
serve only the more stable macroscale forms, such as alternate bars.
However, some catastrophic floods, such as those responsible for the
Channeled Scabland (Baker, 1973), undergo an abrupt cessation of
flood discharge, and this results in the preservation of many of the me-
soscale forms (e.g., fluvial dunes), especially those located on higher el-
evation bar surfaces. In contrast, other terrestrial catastrophic flood
landscapes do not preservemesoforms because of theirmore prolonged
flow. This was the case for the Bonneville megaflooding (Malde, 1968;



Fig. 23.Mouth of Kasei, the largest and longest (2400 km) “outflow channel” onMars. This oblique viewwas generated at 2× vertical exaggeration from the THEMIS data acquired by the
Mars Odyssey spacecraft. The view is upstream, and the large crater in the center is Sharonov, which is 100 km in diameter. Note the splitting and convergence of channels (anastomosis).
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O'Connor, 1993), which has no known examples of large-scale trans-
verse bedforms (fluvial dunes). The lack of fluvial dunes in many Mars
catastrophic flooding channels may result from similarly prolonged
flow phenomena.

Examples of cataclysmic megaflooding landforms on Mars include
channel anastomosis (Fig. 23), streamlined hills and longitudinal
grooves (Figs. 23 and 24), and expansion bars (Fig. 25). Detailed map-
ping and analysis of Ares Vallis (locality A, Fig. 22), one of the largest cat-
aclysmic flood channels that was a type example for the designation
outflow channel, revealed excellent examples of eddy and pendant
Fig. 24. Streamlined features in Ares Vallis (15.9° N, 330° E) imaged at visible wavelengths
by the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter. The
cataclysmic flooding came from the lower right. Lins is the post-flooding, fresh looking
crater in the lower right. It is about 6 km in diameter, and the imaged scene is about
40 × 50 km. The streamlined features probably developed by a combination of deposition
and preservation of pre-flood bedrock downstream from obstructions to the cataclysmic
flood flows. There are also smaller-scaled lineated forms that may have developed as
grooves or as depositional accumulations behind small obstructions. They are oriented
longitudinally relative to the cataclysmicfloodflows. Some intriguing transverse bedforms
occur in the upper left quadrant of the image. These have orientations similar to what
would be expected for subfluvial dunes, but at a spacing of about 500m they are even larg-
er that would occurs in terrestrial cataclysmic flooding channels. North is up in the figure.
bars (Pacifici, 2008; Pacifici et al., 2009). These features are characteris-
tic of macroform deposits in the Missoula megaflooding landscapes of
the Channeled Scabland (Baker, 1973, 2009b,c). Detailed mapping of
upper Ares Vallis usingMars Express HRSC data (Pacifici 2008) showed
the association of these depositional landforms with erosional land-
forms that are also typical of the Channeled Scabland, including longitu-
dinal grooves, streamlined uplands, and cataracts. A spectacular
example of the latter is about 500 m high and 15 km wide (Pacifici
et al., 2009; Warner et al., 2010a).

The downstream reaches of Ares Vallis are dominated by ice-related
landforms that developed after the cataclysmic flooding phase (Costard
andKargel, 1995; Costard andBaker, 2001). These include kame-like fea-
tures and thermokarst depressions that occur in sediments overlying the
cataclysmic flooding landforms (Costard and Baker, 2001; Pacifici et al.,
2009; Warner et al., 2010b,c). It is also clear from recent work (Pacifici,
2008; Warner et al., 2009, 2010a, 2013; Roda et al., 2014) that Ares
was formed by multiple cataclysmic flooding events/episodes spanning
from Early Hesperan (~3.7 Ga) to early Amazonian (~2.7 Ga) time.

7.1.2. Differences in sediment transport and deposition on Mars and Earth
The lack of extensive deposits within the Martian catastrophic flood

channels and at their mouths has been noted from the time of their ear-
liest study in the 1970s. Recently resurrected by Leverington (2011),
these observations include the supposed lack of fluvial bars within
the channels and the lack of deltas at the mouths of many Martian
“rivers”where they entered lakes or the ancient ocean that is hypothe-
sized to have episodically occupied the planet's northern plains (see
Section 5.4 above). This is an example of a flawed analogy.

The largeMartian channelswere not formed by the long-term action
of Earth-like river flows (hence the need to refer to them as cataclysmic
flooding channels). Their appropriate terrestrial analogs are not rivers at
all, but rather the relatively rare cataclysmic food channels on Earth that
are mainly associated with past periods of glaciation in which large ice
sheets developed various instabilities because of subglacial volcanism
and/or marginal or subglacial lakes. Since the early work in the 1970s
on the origin of the Mars cataclysmic flooding channels, many new dis-
coveries have been made of cataclysmic flooding landscapes on Earth
(Baker, 1997, 2002a,b, 2009d, 2013), and megaflood-generating pro-
cesses (e.g., Table 3) are now recognized as being much more impor-
tant, particularly for the glacial periods of Earth's Pleistocene epoch
(e.g., Baker, 1997, 2014b).

High-energy cataclysmic flooding on Earth andMars occurred when
watermany tens to hundreds ofmeters deepflowedwith very steep en-
ergy slopes, thereby generating velocities of tens of meters per second,
which were associated with values of bed shear stress and unit stream
power that exceeded by many orders of magnitude those of rivers like
the Mississippi (Baker and Costa, 1987; Baker, 2002a). The latter has a



Fig. 25. Expansion bar complex in Osuga Vallis. This is an oblique view generated data provided by the High Resolution Stereo Camera (HRSC) on theMars Express spacecraft. The view is
downstream, and the channel width is about 20 km. The regional context for this image is shown in Fig. 29.
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very flat gradient, and its channels convey mainly mud and some sand
at velocities of no more than about a meter per second and at very
low values of bed shear stress and unit stream power. The sand sepa-
rates out as bedload that is locally deposited as channel or point bars,
while the silt and clay move as suspended load that either is conveyed
to the river's mouth and delta or is deposited as overbank mud on the
floodplains that border the river channel.

As pointed out by Komar (1979, 1980), the combination of extreme-
ly high unit stream power and reduced gravity means that the particles
in the high-velocityMartian flood flows did not separate out as bedload
and suspended bed-material load in a manner typical for a low-energy
Earth river like the Mississippi. In cataclysmic megaflooding on Mars,
very coarse particles moved as washload, or auto-suspension load,
that, instead of being deposited as bars, was mostly flushed through
the whole channel system and only was subject to deposition where
the high energy levels dropped, as occurred in the huge expanse of a ter-
minal basin, which for Kasei Vallis was the northern plains of Mars
(Fig. 26). Fig. 26 shows the immense amount of erosion that occurred
along Kasei Vallis and the lack of an obvious delta or fan where the
Kasei channels terminated in the northern plains lowlands (blue colors
in Fig. 26). The correct analogy here is not to a terrestrial river that
would deposit its load at this point, but to terrestrial cataclysmic flood
channels entering Earth's oceans. The Columbia River, one of the largest
in North America, also has no delta of sediment accumulation at its
mouth. Instead, the immense fluxes of sediment generated by the
megafloods that occurred in the Columbia River basin are distributed
over 2000 km of the abyssal plains of the Pacific Ocean (Normark and
Reid, 2003). The bulk of the sediments were carried far out into the ter-
minal basin and spread thinly over immense areas (Baker, 2007). Simi-
larly, sediments moved through theMartian cataclysmic flood channels
terminating at the northern plains would have entered the Oceanus
Table 3
Megaflood generation processes for Earth.

Mechanism Example References

Subglacial volcanism Icelandic jokulhlaups Gudmundsson et al. (1997)
Ice-dammed lake
bursts

Missoula Pardee (1942)
Altai Baker et al. (1993)

Lake spillways Bonneville Man Malde (1968), O'Connor (1993)
Ocean, sea spillways English Channel

(La Manche)
Smith (1985), Gupta et al. (2007)

Bosporus Ryan et al. (2003)
Strait of Gilbraltar Baker (2001, 2002);

Garcia-Castellanos et al. (2009)
Pressurized subglacial
lake outbursts

Laurentide ice sheet
Antarctic

Shaw (1996)

Missoula Shaw et al. (1999)
Borealis (see Section 5.4) as hyperpycnal flows, and the resulting sub-
marine density flows would have been spread out over distances of
thousands of kilometers from the channelmouths, constituting deposits
that would mantle the entire northern plains of Mars.

While a complete discussion of the hydraulics of the ancientMartian
floods and their related erosional/depositional processes is beyond the
scope of this review, useful summaries can be found in papers by
Baker (1979, 1982), Komar (1979), Baker and Komar (1987), Komatsu
and Baker (1997), Burr (2003), Kleinhans (2005), and Wilson et al.
(2004, 2009). Advances in computational power now allow the applica-
tion of two-dimensional hydraulic models to very complex channelized
regions like Athabasca Vallis (Keszthelyi et al., 2007; Kim et al., 2014),
and it is clear that more work of this type will contribute greatly to
our understanding of mechanics of both erosion and deposition for
the Martian cataclysmic flooding channels.

7.2. The circum-Chryse outflow channels region

The chaotic source areas and related outflow channels surrounding
the Chryse region of Mars (locality C, Figs. 9 and 22) have received
extensive study for more than 40 years (Sharp, 1973; Baker and
Milton, 1974; Carr, 1979; Baker et al., 1991; Clifford and Parker, 2001;
Rodriguez et al., 2003, 2005a,b, 2006b, 2007, 2011; Bargery and
Wilson, 2011; McIntyre et al., 2012). The upper crustal stratigraphy in
this region is thought to consist of interbedded volcanic and sedimen-
tary deposits that were mostly emplaced during the Noachian (Rotto
and Tanaka, 1995; Scott and Tanaka, 1986; MacKinnon and Tanaka,
1989). These deposits are hypothesized to contain large populations of
buried impact craters (Malin and Edgett, 2001; Frey, 2003; Rodriguez
et al., 2005b). Regional investigations indicate that aquifers developed
in association with buried craters (Malin and Edgett, 2001; Frey, 2003;
Rodriguez et al., 2005b) and tectonic fabrics (Rodriguez et al., 2007).
The instabilities within these aquifers probably led to the formation
of chaotic terrains. Though not well understood, the instabilities have
been linked to conditions such as intrusive magmatism into the hy-
drosphere/cryosphere (e.g., Rodriguez et al., 2003, 2005b; Harrison
and Grimm, 2008), explosive dissociation of upper crustal clathrate
deposits (e.g., Komatsu et al., 2000; Rodriguez et al., 2006b; Gainey
and Elwood Madden, 2012), and the thermally insolating effect of hy-
drated salts (Kargel et al., 2007) and porous sediments (Rodriguez
et al., 2011).

The regional mapping of Rotto and Tanaka (1995) portrays a gener-
alized history of channel dissection and includes four outflow channel
units that distinguish older and younger, higher (shallow) and lower
(deep) channel floors. Their mapping suggests that the chaotic terrains
and outflow channels mostly developed between the Late Hesperian



Fig. 26. Kasei Vallis (bottom right quadrant) entering the northern plains of Mars as shown on a topographic base provided by the MOLA instrument on Mars Global Surveyor. Note the
transitions from the cataclysmic flooding channels directly into the northern plains without extensive sediment accumulation. Themouth of Kasei in the lower center of the image is also
shown in Fig. 23.
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and the Early Amazonian. However, recent analysis of very high-
resolution imagery shows that portions of Simud, Tiu, and Ares Valles
experienced major outflow channel flows during the Early and Middle
Amazonian, extending to as recent as ~900 Ma (Rodriguez et al.,
2015). Other regional hydrogeologic processes, including valley dissec-
tion and groundwater upwelling,may have lasted from the Late Noachi-
an until the Amazonian (Andrews-Hanna and Phillips, 2007; Glotch and
Rogers, 2007; Fassett and Head, 2008).

Higher levels within the circum-Chryse outflow channels consist of
~20–50-km-wide canyons, the floors of which are marked by promi-
nent ridges and grooves. Their formation has been attributed to cata-
strophic floods generated by groundwater eruptions along the flanks
of chaotic terrains and plateau zones of subsidence (Rodriguez et al.,
2006a). Someof these chaotic terrains are enclosed,while others extend
over highlands andmodify craters and intercrater plains alike. Associat-
ed zones of subsidence consist of complex systems of warped and
faulted highlands (Rodriguez et al., 2003, 2005a,b). In addition, a few
of these outflow channels extend from structures produced by
Table 4
Various megaflood generation processes hypothesized for Mars.

Mechanism Example

Pressurized flow through permeable media Circum-Chryse channels

Magmatic intrusion and melting of cryosphere Circum-Chryse channels

Lake formation by melting of buried ice sheet Aram Chaos and valley
Lake Spillways Ma'adim Vallis

Uzboi–Ladon–Moreava
Mangala Vallis
Okavango Vallis

Lake drainage Circum-Chryse channels
Columbia and Daga Valles

Geothermal heating of confined water General
Fissure eruptions of water and lava Mangala Vallis

Anthabasca Vallis
Marte and Grjota Valles

Liquefaction of sensitive substrates Ravi Vallis
Catastrophic dissociation of gas hydrates General

Meteor impacts into ground ice General
Catastrophic dewatering of evaporite deposits Circum-Chryse
Cavern formation by hydrothermal processes Shalbatana Vallis

Xanthe Terra channels
dilational (Hanna and Phillips, 2006; Coleman et al., 2007) and contrac-
tional (Rodriguez et al., 2007) tectonism.

Lower levels within the circum-Chryse outflow channels consist of
much broader troughs, generally a few hundred kilometers in width.
Their floors are marked by faint ridges and include widespread knobs,
which may consist of large blocks likely transported by debris flows
(Tanaka, 1997, 1999; Rodriguez et al., 2006b). The debris flow hypoth-
esis is consistent with the finding of rounded, submeter size clasts and
imbricated boulders at the Mars Pathfinder landing site (Golombek
et al., 1997; Tanaka, 1997, 1999). These debris flows might have been
triggered during episodes of large-scale collapse within the Ganges
Chasma (Rodriguez et al., 2006a) or by discharges from vast paleolakes
within Valles Marineris (locality VM, Fig. 22) (Rotto and Tanaka, 1995;
Lucchitta et al., 1994; Warner et al., 2013). In addition, glaciers appear
to have significantly contributed to the formational history of the
circum-Chryse outflow channels (Lucchitta, 1982, 2001), and immense
amounts of glacial ice may have occupied the Valles Marineris (Mege
and Bourgeois, 2011; Gourronc et al., 2014).
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Fig. 27.Ravi Vallis. A 200-km long catastrophicflooding channel that emanates fromAromatumChaos (left). Note the erosion of two chaos zones in the channel (center) and distal spilling
of the channel-formingfluid over and the plateau edge to disappear into another chaos region (right foreground). This oblique viewwas generated from theMarsOdyssey spacecraft using
the THEMIS instrument with a vertical exaggeration of about 1.5×.
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7.3. Megaflood generation processes

7.3.1. Pressurized outbursts from confined aquifers
The classic morphology of outflow channels involves a headward

source area of chaotic terrain. This has long been inferred to imply a
morphogenetic relationship between chaotic terrains/zones of subsi-
dence in the ice-rich Martian subsurface and the outflow channels
(McCauley et al., 1972; Sharp, 1973; Baker and Milton, 1974; Sharp
and Malin, 1975; Scott and Carr, 1978; Carr, 1979, 1996; Scott and
Tanaka, 1986; Baker et al., 1991; Clifford, 1993; Clifford and Parker,
2001; Rodriguez et al., 2003, 2005b, 2006a, 2007). One of manymodels
for megaflood generation from this association (see Table 4) invokes
pressurized water emerging from a confined aquifer (Carr, 1979). A
transition from the hypothesized warmwet conditions of the late Noa-
chian (see Section 5) to dominantly frigid climatic conditions during the
Early Hesperian was proposed by Carr (1979) to have led to the forma-
tion of vast aquifers (hydrosphere) trapped underneath thick ice-rich
permafrost (cryosphere) (Clifford, 1993). These aquifers might have
been globally connected (Clifford and Parker, 2001) or regionally com-
partmentalized (Harrison and Grimm, 2008). This particular hypothesis
has many difficulties, some of which have been summarized by
Leverington (2011), who claims that the falsification of this particular
mechanism, which he claims to be the generally accepted mechanism
for the formation of all the Martian outflow channels, achieves a kind
Fig. 28.High Resolution Stereo Camera (HRSC) image of Osuga Vallis. This relatively short catac
bar complex in the upper center portion of the image is also shown in Fig. 25. The cataclysmicflo
the lower right of the image. The floodwater entering this depressionmust have been able to dr
(Fig. 22). Otherwise, thewater would have ponded, preventing the erosion of the channel. Subte
right in this figure.
of blanket falsification of aqueous origins for cataclysmic flooding chan-
nels onMars and therefore results in a need to explain these features by
volcanic processes.

Ground-water flow through porousmedia is inadequate to generate
the huge discharges evident from the size of the largest cataclysmic
flood channels, including Ares, Kasei, Simud-Tiu, and Maja (Fig. 22).
Closed basins at the head of these channels and the immense canyon
system of Valles Marineris were more likely to have filled relatively
slowly with any water provided by groundwater flow. However, the
ponding of this water would have led to opportunities to release im-
mense outbursts through the breaching of divides (Coleman and
Baker, 2009; Irwin and Grant, 2009;Warner et al., 2010a). Alternatively
or in combination, volcanismmayhave contributed, either by impacting
the cryosphere (Chapman and Tanaka, 2002) or by interactionwith gla-
cial ice, such as might have occupied the Valles Marineris (Gourronc
et al., 2014).

Ravi Vallis (Fig. 27) (locality R, Fig. 22) shows the typical headward
chaos zones of an outflow channel. However, it can also be seen that
chaos areas are also developed along lower reaches of the channel.
Moreover, these have been eroded by flows coming from the upstream
portions of the channel (Coleman and Baker, 2009). This relationship is
one of secondary chaotic terrains (Coleman, 2005; Rodriguez et al.,
2005a,b, 2011), which form within the floors of outflow channels, and
therefore post-date the outflow channel formational events. Their
lysmic flooding channel has length of ~160 km, but its depth is up to 900m. The expansion
odwaters flowed toward the northeast (lower right in the image), entering a depression at
ain away very quickly, probably into the adjacent chasmata canyons of the VallesMarineris
rranean conduitswould have beennecessary to convey the immenseflows. North is to the



Fig. 29. Sketch map of the western hemisphere of Mars, showing the 8000 km drainage
system, including theUzboi–Ladon–Margaritifer (ULM) system, that extends to the north-
ern plains (‘Oceanus Borealis’) from the layered deposits (LD) that underlie the South
Polar Cap (SPC). Elements of the drainage include (from south to north): Dzigai Vallis
(D), the Argyre impact basin, Uzboi Vallis (U), Holden Crater (H), Ladon Vallis (L), Ladon
Basin (LB), Margaritifer Vallis (M), and Ares Vallis (A). Other prominent cataclysmic
flooding channels include Mangala Vallis (N), Kasei Vallis (K), Maja Valis (J), and
Shalbatana Vallis (S).
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origin has been attributed to gradual volatile-driven resurfacing by
intra-cryospheric fluid lenses exhumed by catastrophic flood erosion
(Rodriguez et al., 2011), devolatilization of water-rich sediments
(Rodriguez et al., 2005a,b), and exposure of the hydrosphere's upper
boundary (Coleman, 2005). Whatever process was releasing fluid
from the subsurface, it was clearly acting in a complex manner.

A number of cataclysmic flooding channels also terminate in sites
where the fluid flows disappear into subsurface fractures of crevices,
as in the case of Hrad Vallis (Rodriguez et al., 2012) and Osuga Vallis
(Fig. 28) (locality O, Fig. 22). This suggests that huge subsurface cavities
are present. Acting as conduits, such cavitieswould alsohave been capa-
ble of conveying immense discharges of water to channel source areas,
as has been argued for Shalbatana Vallis (Rodriguez et al., 2005b).Water
flow through large subsurface conduits, perhaps formed within buried
ice zones, would have resulted in the capability to producemuch great-
er subsurface flow than would be possible through the porous media
that was envisioned by the confined aquifer hypothesis.

7.3.2. Fissure eruption channels: water and lava
Some cataclysmic flood channels are associated with fissures that

evidently erupted lava and pressurized water. The presence of a thick,
ice-rich cryosphere seems to be an important factor for this mode of
sourcing cataclysmic flows. Magma rising along fractures (dikes) may
have risen to just below this thick cryosphere, promoting itswidespread
melting and emergence on the surface as erosive megafloods of water.
The magma accumulations at depth would also have sourced effusive
lavas, whichwould then run down the preexisting channelways created
by the flood erosion. This sequence of processes seems reasonable as
an explanation for relationships observed at Mangala Vallis (locality
L, Fig. 9) (Tanaka and Chapman, 1990; Wilson and Head, 2004;
Basilevsky et al., 2009) and Athabasca Vallis (Burr et al., 2002, 2009b).
The flooding episodes at Mangala Valles spanned much of Mars history
with phases dated to 3.5, 1, 0.5, and 0.2 Ga (Basilevsky et al., 2009). The
Athabasca flooding was much younger, perhaps as recent as 10 Ma
(Berman and Hartmann, 2002).

7.3.3. Spillway cataclysmic flooding channels
Ma'adim Vallis (locality M, Fig. 9) extends for about 900 km from

a large enclosed basin in the heavily cratered southern highlands
northward to Gusev Crater at the junction of the highlands with the
northern plains (Irwin and Grant, 2009). The source basin is interpreted
as filling and overflowing in Late Noachian time, releasing as much as
250,000 km3 of water (Irwin et al., 2002, 2004). A series of breached ba-
sins occur along its length, as well as local anastomosis, longitudinal
grooves, and at least one large sedimentary bar (Irwin and Grant,
2009). Gusev Crater was the landing site for the Spirit Mars Exploration
Rover, which found that floor of the crater was resurfaced by basaltic
lava flows of Early Hesperian age (Greeley et al., 2005). This precluded
access by the lander to any direct evidence of the earlier breaching of
the crater by the Late Noachian megaflooding that formed Ma'adim
Vallis.

Another example of a spillway system of cataclysmic flood channels
is Okavango Vallis (locality D, Fig. 9) (Mangold and Howard, 2013). This
system extends for about 400 km flowing northward toward the north-
ern plains from the cratered southern highlands, at around Lat. 40° N,
Long. 10° E. Okavango Vallis displays erosional scour/groove morphol-
ogies, fluvial bars, and anastomosing channels, where cataclysmic
floods of water spilled through crater rims. Multiple delta fans are de-
velopedwhere the floods entered pondedwater on the floors of the de-
pressions. As noted byMangold andHoward (2013), these relationships
are in conflict with the model of Leverington (2011), who considers all
outflow channels of planetary surfaces to be of volcanic origin.

7.3.4. The greatest fluvial system
An especially remarkable fluvial phenomenon on Mars is the con-

nection of several of the cataclysmic flood channels and related
paleofluvial and paleolacustrine features into a great 8000-km-long
chain (Fig. 29). As recognized by Parker (1985), this system of channels
fed through various breached impact basins to eventually connect up to
channels leading to the northern plains of Mars (Clifford and Parker,
2001). As noted in Section 5.4, the latter region has been inferred to
have been periodically occupied by the temporary water informally
named Oceanus Borealis by Baker et al. (1991).

What is now termed the Uzboi–Ladon–Morava (ULM) (near locality
U, Fig. 9) channel system (Irwin and Grant, 2009) heads at the Argyre
impact basin (locality A, Fig. 9) and trends northward along a broad,
elongate topographic depression, the Chryse Trough (Saunders, 1979;
Baker, 1982). The Argyre Basin is connected to the south polar region
of Mars by longitudinal valleys that head in areas underlain by the
Dorsa Argentea Formation (Head and Pratt, 2001). Fastook et al.
(2012) considered portions of the Dorsa Argentea Formation to be evi-
dence of south polar ice sheet activity that extends back to the late
Noachian. This would have been the ultimate source of the great system
of channels that spilled into multiple impact basins (Fig. 30) before
reaching the northern plains.

Baker (2007) pointed out that the great Mars fluvial system would
be comparable in length to the interconnected paleolakes and spillways
that developed in Asia at the end of the last ice age. These two systems
would have temporarily constituted the largest river systems for their
respective planets, and it is interesting that they shared many morpho-
logical similarities, including spillways between basins, ice-rich source
areas, termination in their respective world oceans, and perhaps even
influences on global climates (Baker, 2009a).

8. Discussion

In studying newly discovered fluvial phenomena on planetary sur-
faces, one needs to rely upon analogy (Baker, 2014a). As pointed out
by Gilbert (1886), analogical reasoning does not work by comparing a
phenomenon that is not fully understood, like the Kallistos Vallis



Fig. 30.Oblique viewwith a 2× vertical exaggeration of a portion of theUzboi–Ladon–Margaritifer (ULM) systemgenerated fromvisible THEMISdata acquired by theMarsOdyssey space-
craft. The view is toward the southwest, showing themouth of Uzboi Vallis (center) into Holden Crater through its southern rim. There is a fan-like accumulation of layered sediments at
this junction, and a possible landing site for the Mars Science Laboratory rover was proposed for the flat, smooth area at right center, close to where the channel cuts through the rim.
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compound channel (Section 3.2) on Venus, to a newly discovered phe-
nomenon that one is trying to understand, like the cataclysmic flood
channels on Mars. In planetary science one employs terrestrial analogs
precisely because they are understood (Baker, 2014a), though one
must also make allowances for physical realities, as in the case of how
the relatively lowMartian gravity affects fluid flow and sediment trans-
port. Analogical reasoning in geology cannot be verified by controlled
experimentation, but must rather rely upon consistency, coherence,
and consilience (Baker, 2014a). The fluvial-like channels of Mercury,
Venus, the Moon, and Io all occur in volcanic contexts and completely
lack any aqueous context. The valley networks and cataclysmic flood
channels of Mars and Earth all have extensive aqueous contexts. Some
very interestingMars and Earth channels have contexts involving inter-
actions among both volcanism and water.

In addition to the similarities of landform assemblages between
the Martian cataclysmic flood channels and the Channeled Scabland,
interesting similarities can be found in the history of finding the
source for the megaflooding. In both cases it is the landforms indica-
tive of aqueous flooding that were first discovered. Various per-
ceived problems with the cataclysmic explanation were then noted,
and this led to controversy concerning the mechanism for explaining
those landforms and identifying the source of the immense fluid
flows. In the case of the Channeled Scabland controversy, glaciation,
normal river flow, and collapsed lava tubes were all invoked to ex-
plain the landforms (Baker, 1978a, 1981, 2008b). In the initial stages
of the debate, J Harlen Bretz, the advocate of the cataclysmic flooding
hypothesis, posed a number of problematic source mechanisms.
These included the rapid melting of ice sheets and the effects of sub-
glacial volcanism. Neither of these hypotheses proved viable and
that recognition was used as an argument against Bretz's cataclysmic
flooding hypothesis, with some claiming that failure of Bretz's gener-
ative mechanisms made alternatives to cataclysmic flooding more
likely. The problemwith this type of argument is that rejection of im-
perfect hypotheses for generating scabland flooding does not consti-
tute a falsification of all the possible ways that nature could generate
such flooding. It is nature that has the answer to this problem, not the
scientists. Ultimately a very complete case was developed for a cata-
clysmic flooding origin for the assemblages of Channeled Scabland
landforms and for their relationship to the geological context. That
context included effects beyond the Channeled Scabland region
that could clearly be related in time and genesis to the megaflooding.
The study of extraterrestrial fluvial and fluvial-like features raises
many questions, and the foregoing review has introduced some of
these. The surface of Venus (see Section 3 above) is particularly puzzling
in regard to the indicated scale and erosive capability of lava flows, es-
pecially those that formed the canali. Moreover, this puzzle illustrates
the general need to advance understanding of the flow mechanics and
physical conditions that occur for various lava compositions, water–
sediment mixtures, and more exotic fluids, such as liquid sulfur
and methane (see Section 4 above). Much more can be gleaned from
terrestrial analogs (see Section 6 above), but a challenge remains for
explaining those phenomena that differ greatly in their causal associa-
tions from what can be accessibly inferred from Earth analogs.

The surface of Mars is particularly interesting with regard to under-
standing fluvial phenomena on Earth. The very early geological history
of Mars probably involved conditions that were able to generate the
Earthlike valley networks (see Sections 5.2 and 5.3 above). Unresolved,
however, is the role of the hypothesized northern plains ocean in facil-
itating anEarthlike global hydrological cycle onMars.Moreover, there is
a climate conundrum in that physical models do not seem to be able to
produce the climatic conditions that would be consistentwith the fluvi-
al evidence (see Section 5.4 above). Equally puzzling is the intriguing
evidence for very recent, even current, water-related activity on Mars
(see Section 5.5 above).

Another first-order unresolved problem involves the cataclysmic
flooding channels that formed on early Mars, with some activity even
extending to relatively recent geological history. Those channels ema-
nating from subsurface sources are still not well understood. How can
the indicated immense flows be generated? How many flow events
are required to produce the resulting channel morphologies? How do
some source areas, such as those for Athabasca and Mangala Valles, ap-
parently produce alternating outbursts of both lava and water? Clearly
then, plenty of unanswered fluvial geomorphological questions remain
for future scientific inquiry.

9. Conclusions

This review has highlighted the very rapid progress in discovery and
explanation concerning the great variety of fluvial and fluvial-like land-
forms on extraterrestrial planetary surfaces. Unlike Earth and Mars, the
Moon, Io, and Mercury do not have geological contexts that include
water-related landforms and a history of water-related processes on
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their surfaces. Earth and Mars have such a history, and their surfaces
display an immense abundance and variety of fluvial landforms, though,
in the case of Mars, these are generally related to the planet's ancient
geological history and are not forming today.

After decades of arguingwhetherMars waswater-rich or not, dis-
coveries of the last decade or so have completely eliminated the not
(Baker, 2014c). It is no longer necessary or even reasonable to invoke
nonaqueous mechanisms for explaining fluvial features on Mars be-
cause of physical and chemical models that purport to demonstrate
the not (e.g., Hoffman, 2000). The inconsistency of the geomorpho-
logical interpretations of water-related processes with physical and
chemical arguments for Mars being water-poor, summarized by
Carr (1996), has now been replaced by the conundrum of reconciling
the geochemical and physical understanding of Mars with the fact of
its watery past. Moreover, no longer does the geomorphological in-
terpretation of imagery provide the main evidence for that aqueous
history. The abundance of Mars water, mostly ice today, but liquid
in the ancient past, is now supported by the physical measurements
of gamma ray spectrometry (Boynton et al., 2002), neutronmeasure-
ments (Feldman et al., 2002), and radar penetration of the subsur-
face (Holt et al., 2008; Plaut et al., 2009), as well as by chemical
signatures obtained from orbital spectrometers (Bibring et al.,
2006) and in situ measurements made from multiple lander mis-
sions (Grotzinger et al., 2006, 2014; Smith et al., 2009; Arvidson
et al., 2014). These new data confirm the geomorphological infer-
ence (e.g., Baker, 1982) that Mars, like Earth, has a geological history
as a water planet. The problem today is reconciling this abundant ev-
idence with a physical understanding of environmental change on
the planet.

Early in the modern era of exploring planetary surfaces with
spacecraft observations, the geomophologist Robert Sharp (1980)
recognized that planetary geomorphology is not confined to the un-
derstanding of alien landscapes. What is learned from such study is
that other planetary surfaces can also be used to advance terrestrial
geomorphology (Baker, 1985a, 1993, 2008a). However, one must
exert care in that application. As noted in regard to cataclysmic
flood sedimentation on Mars, the controls on processes can be differ-
ent, and this will result in differences of response. Today with grow-
ing prospects for exciting discoveries of extra-solar, water-rich
Earthlike planets (Heller, 2015), Sharp's broad vision can be seen to
apply particularly well to fluvial geomorphology and that many
new discoveries from Earth-like planets will greatly enhance what
has already been learned from the familiar fluvial forms that have
been studied on Earth.
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