PostgreSQL
PrevChapter 31. Extending SQL: FunctionsNext

Query Language (SQL) Functions

SQL Functions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type, such as int4:

    CREATE FUNCTION one() RETURNS int4
     AS 'SELECT 1 as RESULT' LANGUAGE 'sql';

    SELECT one() AS answer;

         +-------+
         |answer |
         +-------+
         |1      |
         +-------+

Notice that we defined a target list for the function (with the name RESULT), but the target list of the query that invoked the function overrode the function's target list. Hence, the result is labelled answer instead of one.

It's almost as easy to define SQL functions that take base types as arguments. In the example below, notice how we refer to the arguments within the function as $1 and $2.

    CREATE FUNCTION add_em(int4, int4) RETURNS int4
     AS 'SELECT $1 + $2;' LANGUAGE 'sql';

    SELECT add_em(1, 2) AS answer;

         +-------+
         |answer |
         +-------+
         |3      |
         +-------+

SQL Functions on Composite Types

When specifying functions with arguments of composite types (such as EMP), we must not only specify which argument we want (as we did above with $1 and $2) but also the attributes of that argument. For example, take the function double_salary that computes what your salary would be if it were doubled.

    CREATE FUNCTION double_salary(EMP) RETURNS int4
     AS 'SELECT $1.salary * 2 AS salary;' LANGUAGE 'sql';

    SELECT name, double_salary(EMP) AS dream
     FROM EMP
     WHERE EMP.dept = 'toy';

         +-----+-------+
         |name | dream |
         +-----+-------+
         |Sam  | 2400  |
         +-----+-------+

Notice the use of the syntax $1.salary. Before launching into the subject of functions that return composite types, we must first introduce the function notation for projecting attributes. The simple way to explain this is that we can usually use the notation attribute(class) and class.attribute interchangably.

    --
    -- this is the same as:
    --  SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
    --
    SELECT name(EMP) AS youngster
     FROM EMP
     WHERE age(EMP) < 30;

         +----------+
         |youngster |
         +----------+
         |Sam       |
         +----------+

As we shall see, however, this is not always the case. This function notation is important when we want to use a function that returns a single instance. We do this by assembling the entire instance within the function, attribute by attribute. This is an example of a function that returns a single EMP instance:

    CREATE FUNCTION new_emp() RETURNS EMP
     AS 'SELECT \'None\'::text AS name,
      1000 AS salary,
      25 AS age,
      \'none\'::char16 AS dept;'
      LANGUAGE 'sql';

In this case we have specified each of the attributes with a constant value, but any computation or expression could have been substituted for these constants. Defining a function like this can be tricky. Some of the more important caveats are as follows:

Any collection of commands in the SQL query language can be packaged together and defined as a function. The commands can include updates (i.e., insert, update and delete) as well as select queries. However, the final command must be a select that returns whatever is specified as the function's returntype.

    CREATE FUNCTION clean_EMP () RETURNS int4
     AS 'DELETE FROM EMP WHERE EMP.salary <= 0;
    SELECT 1 AS ignore_this'
     LANGUAGE 'sql';

    SELECT clean_EMP();

         +--+
         |x |
         +--+
         |1 |
         +--+


PrevHomeNext
Extending SQL: FunctionsUpProgramming Language Functions