
The Java™ Web
Services Tutorial

Eric Armstrong
Stephanie Bodoff

Debbie Carson
Maydene Fisher

Dale Green
Kim Haase

February 4, 2002

iii
Copyright © 2002 by Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013(c)(1)(iii) and FAR 52.227-19.

The release described in this book may be protected by one or more U.S. patents, foreign patents, or pending applica-
tions.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, Java, JavaSoft, Java Software, JavaScript, JDBC, JDBC Compliant, JavaOS, JavaBeans, Enterprise
JavaBeans, JavaServer, JavaServer Pages, J2EE, J2SE, JavaMail, Java Naming and Directory Interface, EJB, and JSP
are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. All other product names mentioned
herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS PUBLICATION AT ANY TIME.

iv

iii

Contents

Preface. xv

Who Should Use This Tutorial xvi
About the Examples xvi

Prerequisites for the Examples xvi
Running the Examples xvi

Related Information xix
How to Print This Tutorial xx
Typographical Conventions xx

Chapter 1: Introduction to Web Services . 1

The Role of XML and the Java™ Platform 2
What Is XML? 4

What Makes XML Portable? 5
Overview of the Java APIs for XML 6
JAXP 7

The SAX API 8
The DOM API 10
The XSLT API 13

JAX-RPC 16
Using JAX-RPC 16

JAXM 17
Getting a Connection 19
Creating a Message 21
Populating a Message 21
Sending a Message 24

JAXR 24
Using JAXR 25

Sample Scenario 27
Scenario 28

iv
Conclusion 29

Chapter 2: Understanding XML .31

Introduction to XML 31
What Is XML? 32
Why Is XML Important? 37
How Can You Use XML? 39

XML and Related Specs: Digesting the Alphabet Soup 42
Basic Standards 43
Schema Standards 45
Linking and Presentation Standards 48
Knowledge Standards 49
Standards That Build on XML 50
Summary 52

Designing an XML Data Structure 53
Saving Yourself Some Work 53
Attributes and Elements 53
Normalizing Data 56
Normalizing DTDs 57

Chapter 3: Getting Started With Tomcat .59

Setting Up 60
Getting the Example Code 60
Checking the Environment Variables 61

Creating the Getting Started Application 61
The Converter Class 61
The Web Client 62

Building and Deploying the Getting Started Application Using Ant 64
Setting the CLASSPATH 64
Creating the Build File for Ant 64
Compiling the Source Files 66
Deploying the Application 66

Running the Getting Started Application 67
Starting Tomcat 67
Running the Web Client 67
Shutting Down Tomcat 68

Modifying the Application 68
Modifying a Class File 69
Modifying the Web Client 69

v

Reloading the Application 69
Common Problems and Their Solutions 70

Compilation Errors 70
Deployment Errors 71

Chapter 4: Java™ API for XML Processing. 73

The JAXP APIs 74
An Overview of the Packages 74
The Simple API for XML (SAX) APIs 75

The SAX Packages 78
The Document Object Model (DOM) APIs 78

The DOM Packages 80
The XML Stylesheet Language for Transformation (XSLT) APIs 81

The XSLT Packages 82
Where Do You Go from Here? 82

Chapter 5: Simple API for XML. 85

Writing a Simple XML File 86
Creating the File 87
Writing the Declaration 87
Adding a Comment 87
Adding Nested Elements 89
Adding HTML-Style Text 89
Adding an Empty Element 90
The Finished Product 91

Echoing an XML File with the SAX Parser 91
Creating the Skeleton 92
Importing Classes 93
Setting up for I/O 93
Implementing the ContentHandler Interface 94
Setting up the Parser 95
Writing the Output 96
Spacing the Output 97
Handling Content Events 97
Compiling and Running the Program 100
Command Scripts 100
Checking the Output 101
Identifying the Events 101
Compressing the Output 103

vi
Inspecting the Output 105
Documents and Data 106

Adding Additional Event Handlers 107
Identifying the Document’s Location 107
Handling Processing Instructions 108
Summary 110

Handling Errors with the Nonvalidating Parser 111
Substituting and Inserting Text 120

Handling Special Characters 120
Using an Entity Reference in an XML Document 121
Handling Text with XML-Style Syntax 122
Handling CDATA and Other Characters 124

Creating a Document Type Definition (DTD) 124
Basic DTD Definitions 124
Defining Text and Nested Elements 126
Limitations of DTDs 127
Special Element Values in the DTD 128
Referencing the DTD 128

DTD’s Effect on the Nonvalidating Parser 129
Tracking Ignorable Whitespace 130
Cleanup 132
Documents and Data 132
Empty Elements, Revisited 133

Defining Attributes and Entities in the DTD 133
Defining Attributes in the DTD 133
Defining Entities in the DTD 135
Echoing the Entity References 137
Additional Useful Entities 138
Referencing External Entities 138
Echoing the External Entity 139
Summarizing Entities 140

Referencing Binary Entities 140
Using a MIME Data Type 140
The Alternative: Using Entity References 142

Using the Validating Parser 142
Configuring the Factory 142
Changing the Environment Variable 143
Experimenting with Validation Errors 143
Error Handling in the Validating Parser 145

Defining Parameter Entities and Conditional Sections 146
Creating and Referencing a Parameter Entity 146

vii
Conditional Sections 148
Parsing the Parameterized DTD 149

DTD Warnings 151
Handling Lexical Events 152

How the LexicalHandler Works 153
Working with a LexicalHandler 153

Using the DTDHandler and EntityResolver 159
The DTDHandler API 159
The EntityResolver API 161

Chapter 6: Document Object Model . 163

Reading XML Data into a DOM 164
Creating the Program 164
Additional Information 168
Looking Ahead 171

Displaying a DOM Hierarchy 171
Echoing Tree Nodes 171
Convert DomEcho to a GUI App 171
Create Adapters to Display the DOM in a JTree 177
Finishing Up 187

Examining the Structure of a DOM 187
Displaying A Simple Tree 187
Displaying a More Complex Tree 190
Finishing Up 194

Constructing a User-Friendly JTree from a DOM 195
Compressing the Tree View 195
Acting on Tree Selections 200
Handling Modifications 209
Finishing Up 209

Creating and Manipulating a DOM 209
Obtaining a DOM from the Factory 209
 Normalizing the DOM 213
Other Operations 214
Finishing Up 215

Using Namespaces 215
Defining a Namespace 216
Referencing a Namespace 217
Defining a Namespace Prefix 217

viii
Chapter 7: XML Stylesheet Language for Transformations221

Introducing XSLT and XPath 222
The XSLT Packages 222
How XPath Works 223
Summary 232

Writing Out a DOM as an XML File 232
Reading the XML 232
Creating a Transformer 234
Writing the XML 236
Writing Out a Subtree of the DOM 237
Summary 238

Generating XML from an Arbitrary Data Structure 238
Creating a Simple File 239
Creating a Simple Parser 241
Modifying the Parser to Generate SAX Events 244
Using the Parser as a SAXSource 250
Doing the Conversion 252

Transforming XML Data with XSLT 252
Defining an Ultra-Simple article Document Type 253
Creating a Test Document 255
Writing an XSLT Transform 256
Processing the Basic Structure Elements 257
Writing the Basic Program 261
Trimming the Whitespace 263
Processing the Remaining Structure Elements 266
Process Inline (Content) Elements 271
Printing the HTML 275
What Else Can XSLT Do? 275

Concatenating XSLT Transformations with a Filter Chain 278
Writing the Program 278
Understanding How it Works 281
Testing the Program 283
Conclusion 285

Chapter 8: Java™ API for XML Messaging287

Overview of JAXM 288
Messages 288
Connections 291
Messaging Providers 293

Running the Samples 295

ix
The Sample Programs 296
The Provider Administration Tool 297

Tutorial 299
Client without a Messaging Provider 299
Client with a Messaging Provider 306
Adding Attachments 312

Code Examples 315
Request.java 316
MyUddiPing.java 318

Chapter 9: Java™ API for
XML-based RPC329

What is JAX-RPC? 330
A Simple Example: HelloWorld 331

HelloWorld at Runtime 331
HelloWorld Files 333
Overview of Steps 333
Setting Up 333
Coding the Service Definition Interface and Implementation Class 334
Compiling the Service Definition Code 335
Creating the Configuration File 335
Generating the Stubs and Ties 336
Creating the Deployment Descriptor 337
Packaging the Service Definition 338
Deploying the Service Definition 339
Coding the Client 340
Compiling the Client Code 341
Running the Client 341

The Dynamic Invocation Interface 342
When to Use DII 342
A DII Client Example 343

Chapter 10: Java™ API for XML Registries 347

Overview of JAXR 348
What is a Registry? 348
What Is JAXR? 348
JAXR Architecture 349

Implementing a JAXR Client 350
Establishing a Connection 351

x

Querying a Registry 353
Managing Registry Data 355
Running the Client Examples 360

Using the Registry Browser 362
Querying a Registry 362
Managing Registry Data 363

Chapter 11: The Java™ WSDP Registry Server367

Setting Up the Registry Server 368
Using the JAXR Registry Browser with the Registry Server 369

Adding Organizations 369
Querying the Registry 369

Using the Command Line Client Scripts with the Registry Server 370
Using the JAXR API to Access the Registry Server 371
Using the Indri Tool to Access the Registry Server Database 372

Chapter 12: Web Applications .375

Web Application Life Cycle 376
Web Application Archives 378

Creating a WAR File 379
Web Application Deployment Descriptors 379

Prolog 380
Context Parameters 380
Filter Mappings 381
Event Listeners 381
Alias Paths 381
Error Mappings 382
References to Environment Entries, Resource Environment Entries, or
Resources 383

Deploying Web Applications 383
Specifying the Web Application Context 384
Example 385

Running Web Applications 385
Updating Web Applications 385
Internationalizing and Localizing Web Applications 386
Accessing Databases from Web Applications 388

The Examples 388
Downloading and Starting the Database Server 389
Populating the Database 389

xi
Configuring the Web Application to Use the Database 390
Configuring the Server to Recognize the Database 390

Chapter 13: Java™ Servlet Technology 393

What is a Servlet? 394
The Example Servlets 395

Troubleshooting 396
Servlet Life Cycle 397

Handling Servlet Life Cycle Events 397
Handling Errors 399

Sharing Information 400
Using Scope Objects 400
Controlling Concurrent Access to Shared Resources 402
Accessing Databases 403

Initializing a Servlet 404
Writing Service Methods 405

Getting Information From Requests 406
Constructing Responses 408

Filtering Requests and Responses 410
Programming Filters 411
Programming Customized Requests and Responses 413
Specifying Filter Mappings 415

Invoking Other Web Resources 417
Including Other Resources in the Response 418
Transferring Control to Another Web Component 420

Accessing the Web Context 421
Maintaining Client State 422

Accessing a Session 422
Associating Attributes with a Session 422
Session Management 423
Session Tracking 424

Finalizing a Servlet 425
Tracking Service Requests 425
Notifying Methods to Shut Down 426
Creating Polite Long-Running Methods 427

Chapter 14: JavaServer Pages™ Technology 429

What is a JSP Page? 430
The Example JSP Pages 432

xii
The Life Cycle of a JSP Page 434
Translation and Compilation 435
Execution 436

Initializing and Finalizing a JSP Page 437
Creating Static Content 438
Creating Dynamic Content 438

Using Objects Within JSP Pages 438
JSP Scripting Elements 441

Including Content in a JSP Page 444
Transferring Control to Another Web Component 445

Param Element 446
Including an Applet 446
Extending the JSP Language 448

Chapter 15: JavaBeans™ Components in JSP™ Pages451

JavaBeans Component Design Conventions 452
Why Use a JavaBeans Component? 453
Creating and Using a JavaBeans Component 454
Setting JavaBeans Component Properties 455
Retrieving JavaBeans Component Properties 458

Chapter 16: Custom Tags in JSP™ Pages.461

What is a Custom Tag? 462
The Example JSP Pages 463
Using Tags 465

Declaring Tag Libraries 465
Making the Tag Library Implementation Available 466
Types of Tags 466

Defining Tags 469
Tag Handlers 469
Tag Library Descriptors 471
Simple Tags 473
Tags With Attributes 474
Tags With Bodies 477
Tags That Define Scripting Variables 479
Cooperating Tags 483

Examples 485
An Iteration Tag 485
A Template Tag Library 489

xiii
How Is a Tag Handler Invoked? 494

Chapter 17: JavaServer Pages™ Standard Tag Library 497

The Example JSP Pages 498
Using JSTL 499
Expression Language Support 501

Twin Libraries 502
Specifying an Expression Language Evaluator 503
Simplest Possible Expression Language (SPEL) 504
Tag Collaboration 505

Core Tags 506
Expression Tags 506
Flow Control Tags 507
Import Tags 509

XML Tags 509
Core Tags 510
Flow Control Tags 511
Transformation Tags 511

Internationalization Tags 512
Messaging Tags 512
Formatting Tags 513

SQL Tags 514
query Tag Result-Related Interfaces 515

Chapter 18: The xrpcc Tool. 519

Syntax 519
Configuration File 521

Starting With RMI Interfaces 521
Starting With a WSDL Document 523
Specifying the Type Mapping 524

Chapter 19: HTTP Overview. 525

HTTP Requests 526
HTTP Responses 526

Chapter 20: Java™ Encoding Schemes 527

Bios For Contributing Authors 529

xiv

Preface

THE Java™ Web Services Tutorial is a beginner’s guide to developing Web
services and Web applications using the Java™ Web Services Developer Pack
(“Java WSDP”). The Java WSDP is an all-in-one download containing key tech-
nologies to simplify building of Web services using the Java 2 Platform. The
technologies available on the Java WSDP are:

• Java Servlets

• JavaServer Pages™ (JSP™)

• JSP Standard Tag Library (“JSTL”)

• Java XML Pack, which includes:

• Java API for XML Messaging (“JAXM”)

• Java API for XML Processing (“JAXP”)

• Java API for XML Registries (“JAXR”)

• Java API for XML-based RPC (“JAX-RPC”)

To provide a development and deployment environment, the Java WSDP
includes the:

• Tomcat servlet and JSP container

• ant build tool

• Java WSDP Registry Server

Here we cover all the things you need to know to make the best use of the Java
Web Services Tutorial.

Who Should Use This Tutorial . xvi
About the Examples . xvi
Related Information . xix
How to Print This Tutorial . xx
Typographical Conventions . xx
xv

xvi
Who Should Use This Tutorial
This tutorial is intended for programmers interested in developing and deploying
Web services and Web applications on the Java WSDP.

About the Examples
This tutorial includes many complete, working examples.

Prerequisites for the Examples
To understand the examples you will need a good knowledge of the Java pro-
gramming language, SQL, and relational database concepts. The following top-
ics in the Java Tutorial are particularly relevant:

Running the Examples
This section tells you everything you need to know to obtain, build, deploy, and
run the examples.

Required Software
If you are viewing this online, you need to download the Java Web Services
Tutorial from:

KWWS���MDYD�VXQ�FRP�ZHEVHUYLFHV�GRZQORDGV�ZHEVHUYLFHVWXWRULDO�KWPO

Topic Java Tutorial

JDBC™ KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�MGEF

Threads KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�HVVHQWLDO�WKUHDGV

JavaBeans™ KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�MDYDEHDQV

Security KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�VHFXULW\���

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/essential/threads
http://java.sun.com/docs/books/tutorial/javabeans
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/webservices/downloads/webservicestutorial.html

RUNNING THE EXAMPLES xvii
Once you have installed the tutorial bundle, the example source code is in the
�-:6'3B+20(!�GRFV�WXWRULDO�H[DPSOHV directory, with subdirectories for
each of the technologies included in the pack.

This tutorial documents the Java WSDP EA1. To build, deploy, and run the
examples you need a copy of the Java WSDP and the Java™ 2 Platform, Stan-
dard Edition (J2SE™) SDK 1.3.1 or 1.4. You can download the Java WSDP
from:

KWWS���MDYD�VXQ�FRP�ZHEVHUYLFHV�GRZQORDGV�ZHEVHUYLFHVSDFN�KWPO

the J2SE 1.3.1 SDK from

KWWS���MDYD�VXQ�FRP�M�VH�����

or the J2SE 1.4 SDK from

KWWS���MDYD�VXQ�FRP�M�VH�����

Set the environment variables to the values noted in Table 1.

Building the Examples
Most of the examples are distributed with a configuration file for version 1.4.1 of
DQW, a portable build tool contained in the Java WSDP. Directions for building
the examples are provided in each chapter.

Table 1 Required Environment Variables

Environment Variable Value

-9B+20(The location of the J2SE SDK installation.

-:6'3B+20(
The location of the Java WSDP installation. This variable is used
by the example build files.

3$7+

Add the ELQ directories of the Java WSDP and J2SE SDK instal-
lations to the front. The Java WSDP bin directory contains the
startup scripts for Tomcat, ant, and the registry server as well as
other tools.

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.4/
http://java.sun.com/webservices/downloads/webservicespack.html

xviii
Deploying the Examples
Most of the Java WSDP examples run on Tomcat. Before you can run an exam-
ple you must first deploy it on Tomcat. To deploy an application execute DQW
GHSOR\. The deploy task usually copies some files into the
�-:6'3B+20(!�ZHEDSSV directory. Some things you need to keep in mind:

• For this release of the Java WSDP you must be running Tomcat on the
same machine that you are developing on.

• The first time an application is deployed you must start or restart Tomcat
(see next section). Thereafter, when you modify an application, you can
build, deploy, and then reload the example, as described in the next section.

Running Tomcat
You run Tomcat by executing the VWDUWXS script in a terminal window.

Reloading the Examples
You reload an application with the command:

KWWS���ORFDOKRVW������PDQDJHU�UHORDG"SDWK �WDUJHW

This command invokes the PDQDJHU Web application. Before you can use this
application you must add your user name and password combination and associ-
ate the role name PDQDJHU with it to <-:6'3B+20(!�FRQI�WRPFDW�XVHUV�[PO,
which can be edited with any text editor. This file contains an element �XVHU!
for each individual user, which might look something like this:

�XVHU�QDPH �DGHYHORSHU��SDVVZRUG �VHFUHW��UROHV �PDQDJHU���!

The Tomcat reference documentation distributed with the Java WSDP contains
information about the manager application.

Related Information
For further information on the technologies discussed in this tutorial see the ref-
erence documentation contained in the Java WSDP

RUNNING THE EXAMPLES xix
(<-:6'3B+20(!�GRFV�LQGH[�KWPO) and the Web sites listed in Table 2. Refer-
ences to individual technology homes listed in some chapters map as follows:

• -$;0�+20(to -:6'3B+20(�GRFV�MD[P�LQGH[�KWPO

• -$;3�+20(to -:6'3B+20(�GRFV�MD[S�LQGH[�KWPO

• -$;5�+20(to -:6'3B+20(�GRFV�MD[U�LQGH[�KWPO

• -$;53&�+20(to -:6'3B+20(�GRFV�MD[USF�LQGH[�KWPO

How to Print This Tutorial
To print this tutorial, follow these steps:

• Ensure that Adobe Acrobat Reader is installed on your system.

• Open the PDF version of this book.

• Click the printer icon in Adobe Acrobat Reader.

Table 2 Related Information

Technology Web Site

Java Servlets KWWS���MDYD�VXQ�FRP�SURGXFWV�VHUYOHW�LQGH[�KWPO

JavaServer
Pages

KWWS���MDYD�VXQ�FRP�SURGXFWV�MVS�LQGH[�KWPO

JSP Standard
Tag Library

KWWS���MDYD�VXQ�FRP�SURGXFWV�MVS�WDJOLEUDULHV�KWPO�MVWO

JAXM KWWS���MDYD�VXQ�FRP�[PO�MD[P�LQGH[�KWPO

JAXP KWWS���MDYD�VXQ�FRP�[PO�MD[S�LQGH[�KWPO

JAXR KWWS���MDYD�VXQ�FRP�[PO�MD[U�LQGH[�KWPO

JAX-RPC KWWS���MDYD�VXQ�FRP�[PO�MD[USF�LQGH[�KWPO

Tomcat KWWS���MDNDUWD�DSDFKH�RUJ�WRPFDW�LQGH[�KWPO

ant KWWS���MDNDUWD�DSDFKH�RUJ�DQW�LQGH[�KWPO

http://java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/taglibraries.html#jstl
http://java.sun.com/products/servlet/index.html
JavaWSTutorial.pdf
http://java.sun.com/xml/jaxm/index.html
http://java.sun.com/xml/jaxp/index.html
http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/xml/jaxrpc/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/ant/index.html

xx
Typographical Conventions
The following table lists the typographical conventions used in this tutorial.

Font Style Uses

italic Emphasis, titles, first occurrence of terms

PRQRVSDFH
URLs, code examples, file names, command
names, programming language keywords

LWDOLF�PRQRVSDFH Programming variables, variable file names

Introduction to Web
Services

Maydene Fisher

WEB services, as the name implies, are services offered via the Web. In a typ-
ical Web services scenario, a business application sends a request to a service at
a given URL using the SOAP protocol over HTTP. The service receives the
request, processes it, and returns a response. An often-cited example of a Web
service is that of a stock quote service, in which the request asks for the current
price of a specified stock, and the response gives the stock price. This is one of
the simplest forms of a Web service in that the request is filled almost immedi-
ately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route for the deliv-
ery of goods. In this case, a business sends a request containing the delivery des-
tinations, which the service processes to determine the most cost-effective
delivery route. The time it takes to return the response depends on the complex-
ity of the routing, but the response will probably be sent as an operation that is
separate from the request.

Web services and consumers of Web services are typically businesses, making
Web services predominantly business-to-business (B-to-B) transactions. An
enterprise can be the provider of Web services and also the consumer of other
Web services. For example, a wholesale distributor of spices could be in the con-
sumer role when it uses a Web service to check on the availability of vanilla
beans and in the provider role when it supplies prospective customers with dif-
ferent vendors’ prices for vanilla beans.
1

2 INTRODUCTION TO WEB SERVICES
In This Chapter
The Role of XML and the Java™ Platform 2
What Is XML? 4

What Makes XML Portable? 5
Overview of the Java APIs for XML 6
JAXP 7

The SAX API 8
The DOM API 10
The XSLT API 13

JAX-RPC 16
Using JAX-RPC 16

JAXM 17
Getting a Connection 19
Creating a Message 21
Populating a Message 21
Sending a Message 24

JAXR 24
Using JAXR 25

Sample Scenario 27
Scenario 28
Conclusion 29

The Role of XML and the Java™
Platform

Web services depend on the ability of parties to communicate with each other
even if they are using different information systems and different data formats.
XML, a markup language that makes data portable, is a key technology in
addressing this need. Enterprises have discovered the benefits of using XML for
the integration of data both internally for sharing legacy data among departments
and externally for sharing data with other enterprises. As a result, Web services
are increasingly being used for enterprise integration applications, both in tightly
coupled and loosely coupled systems. Because of this data integration ability,
XML has become the underpinning for Web-related computing.

Web services also depend on the ability of enterprises using different computing
platforms to communicate with each other. This requirement makes the Java™

platform, which makes code portable, the natural choice for developing Web ser-
vices. This choice is even more attractive as the new Java APIs for XML become

3

available, making it easier and easier to use XML from the Java programming
language. These APIs are summarized later in this introduction and explained in
detail in the tutorials for each API.

In addition to data portability and code portability, Web services need to be scal-
able, secure, and efficient, especially as they grow. The Java™ 2 Platform,
Enterprise Edition (J2EE™), is specifically designed to fill just such needs. It
facilitates the really hard part of developing Web services, which is program-
ming the infrastructure, or “plumbing.” This infrastructure includes features
such as security, distributed transaction management, and connection pool man-
agement, all of which are essential for industrial strength Web services. And
because components are reusable, development time is substantially reduced.

XML and the Java platform, being such an ideal combination, have come to play
a central role in Web services. In fact, the advantages offered by the Java APIs
for XML and the J2EE platform make them the ideal combination for deploying
Web services.

The APIs described in this tutorial complement and layer on top of the J2EE
APIs. These APIs enable the Java community, developers, tool and container
vendors, to start developing Web services applications and products using stan-
dard Java APIs that maintain the fundamental Write Once, Run Anywhere™
proposition of Java technology. The Java Web Services Developer Pack (“Java
WSDP”) makes all these APIs available into a single bundle. The Java WSDP
includes JAR files implementing these APIs as well as documentation and exam-
ples. The examples in the Java WSDP will run in the Tomcat container (included
in the Java WSDP to help with ease of use), as well as in a J2EE container once
the Java WSDP JAR files are installed in the J2EE SDK. Instructions on how to
install the JAR files on the J2EE SDK will be available with the 1.3.1 release of
the J2EE SDK.

The remainder of this introduction first gives a quick look at XML and how it
makes data portable. Then it gives an overview of the Java APIs for XML,
explaining what they do and how they make writing Web applications easier. It
describes each of the APIs individually and then presents a scenario that illus-
trates how they can work together.

The tutorials that follow give more detailed explanations and walk you through
how to use the Java APIs for XML to build applications for Web services. They
also provide sample applications that you can run.

4 INTRODUCTION TO WEB SERVICES
What Is XML?
The chapter Understanding XML (page 31) includes a more thorough and
detailed explanation of XML and how to process it. The goal of this section is to
give you a quick introduction to what XML is and how it makes data portable so
that you have some background for reading the summaries of the Java APIs for
XML that follow.

XML (Extensible Markup Language) is an industry-standard, system-indepen-
dent way of representing data. Like HTML (HyperText Markup Language),
XML encloses data in tags, but there are significant differences between the two
markup languages. First, XML tags relate to the meaning of the enclosed text,
whereas HTML tags specify how to display the enclosed text. The following
XML example shows a price list with the name and price of two coffees.

�SULFH/LVW!
�FRIIHH!

�QDPH!0RFKD�-DYD��QDPH!
�SULFH!�������SULFH!

��FRIIHH!
�FRIIHH!

�QDPH!6XPDWUD��QDPH!
�SULFH!�������SULFH!

��FRIIHH!
��SULFH/LVW!

The �FRIIHH! and ��FRIIHH! tags tell a parser that the information between them
is about a coffee. The two other tags inside the �FRIIHH! tags specify that the
enclosed information is the coffee’s name and its price per pound. Because XML
tags indicate the content and structure of the data they enclose, they make it pos-
sible to do things like archiving and searching.

A second major difference between XML and HTML is that XML tags are
extensible, allowing you to write your own XML tags to describe your content.
With HTML, you are limited to using only those tags that have been predefined
in the HTML specification.

With the extensibility that XML provides, you can create the tags you need for a
particular type of document. You define the tags using an XML schema lan-
guage. A schema describes the structure of a set of XML documents and can be
used to constrain the contents of the XML documents. Probably the most-widely
used schema language is still the Document Type Definition schema language
because it is an integral part of the XML 1.0 specification. A schema written in

WHAT MAKES XML PORTABLE? 5
this language is called a DTD. The DTD that follows defines the tags used in the
price list XML document. It specifies four tags (elements) and further specifies
which tags may occur (or are required to occur) in other tags. The DTD also
defines the hierarchical structure of an XML document, including the order in
which the tags must occur.

��(/(0(17�SULFH/LVW��FRIIHH��!
��(/(0(17�FRIIHH��QDPH��SULFH��!
��(/(0(17�QDPH���3&'7��!
��(/(0(17�SULFH���3&'7��!

The first line in the example gives the highest level element, SULFH/LVW, which
means that all the other tags in the document will come between the �SULFH/LVW!
and ��SULFH/LVW! tags. The first line also says that the SULFH/LVW element must
contain one or more FRIIHH elements (indicated by the plus sign). The second
line specifies that each FRIIHH element must contain both a QDPH element and a
SULFH element, in that order. The third and fourth lines specify that the data
between the tags �QDPH! and ��QDPH! and between �SULFH! and ��SULFH! is
character data that should be parsed. The name and price of each coffee are the
actual text that makes up the price list.

Another popular schema language is XML schema, which is being developed by
the World Wide Web (W3C) consortium. XML Schema is a significantly more
powerful language than DTD, and with its passage into a W3C Recommendation
in May of 2001, its use and implementations have increased. The community of
developers using the Java platform has recognized this, and the expert group for
the Java™ API for XML Processing (“JAXP”) has been working on adding sup-
port for XML Schema to the JAXP 1.2 specification. This release of the Java™
Web Services Developer Pack (“Java WSDP”) includes support for XML
Schema.

What Makes XML Portable?
A schema gives XML data its portability. The SULFH/LVW DTD, discussed previ-
ously, is a simple example of a schema. If an application is sent a SULFH/LVW doc-
ument in XML format and has the SULFH/LVW DTD, it can process the document
according to the rules specified in the DTD. For example, given the SULFH/LVW
DTD, a parser will know the structure and type of content for any XML docu-
ment based on that DTD. If the parser is a validating parser, it will know that the
document is not valid if it contains an element not included in the DTD, such as

6 INTRODUCTION TO WEB SERVICES
the element �WHD!, or if the elements are not in the prescribed order, such as hav-
ing the SULFH element precede the QDPH element.

Other features also contribute to the popularity of XML as a method for data
interchange. For one thing, it is written in a text format, which is readable by
both human beings and text-editing software. Applications can parse and process
XML documents, and human beings can also read them in case there is an error
in processing. Another feature is that because an XML document does not
include formatting instructions, it can be displayed in various ways. Keeping
data separate from formatting instructions means that the same data can be pub-
lished to different media.

XML enables document portability, but it cannot do the job in a vacuum; that is,
parties who use XML must agree to certain conditions. For example, in addition
to agreeing to use XML for communicating, two applications must agree to what
set of elements they will use and what those elements mean. For them to use
Web services, they must also agree on what Web services methods they will use,
what those methods do, and when more than one method is needed, the order in
which they are invoked.

Enterprises have several technologies available to help satisfy these require-
ments. They can use DTDs and XML schemas to describe the valid terms and
XML documents they will use in communicating with each other. Registries pro-
vide a means for describing Web services and their methods. For higher level
concepts, enterprises can use partner agreements and workflow charts and chore-
ographies. There will be more about schemas and registries later in this docu-
ment.

Overview of the Java APIs for XML
The Java APIs for XML let you write your Web applications entirely in the Java
programming language. They fall into two broad categories: those that deal
directly with processing XML documents and those that deal with procedures.

• Document-oriented

• Java™ API for XML Processing (“JAXP”) — processes XML docu-
ments using various parsers

• Procedure-oriented

• Java™ API for XML Messaging (“JAXM”) — sends SOAP messages
over the Internet in a standard way

WHAT MAKES XML PORTABLE? 7
• Java™ API for XML Registries (“JAXR”) — provides a standard way
to access business registries and share information

• Java™ API for XML-based RPC (“JAX-RPC”) — sends SOAP method
calls to remote parties over the Internet and receives the results

Perhaps the most important feature of the Java APIs for XML is that they all sup-
port industry standards, thus ensuring interoperability. Various network interop-
erability standards groups, such as the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured Information Standards
(OASIS), have been defining standard ways of doing things so that businesses
who follow these standards can make their data and applications work together.

 Another feature of the Java APIs for XML is that they allow a great deal of flex-
ibility. Users have flexibility in how they use the APIs. For example, JAXP code
can use various tools for processing an XML document, and JAXM code can use
various messaging protocols on top of SOAP. Implementers have flexibility as
well. The Java APIs for XML define strict compatibility requirements to ensure
that all implementations deliver the standard functionality, but they also give
developers a great deal of freedom to provide implementations tailored to spe-
cific uses.

The following sections discuss each of these APIs, giving an overview and a feel
for how to use them.

JAXP
The Java™ API for XML Processing (page 73) (“JAXP”) makes it easy to pro-
cess XML data using applications written in the Java programming language.
JAXP leverages the parser standards SAX (Simple API for XML Parsing) and
DOM (Document Object Model) so that you can choose to parse your data as a
stream of events or to build an object representation of it. The latest versions of
JAXP also supports the XSLT (XML Stylesheet Language Transformations)
standard, giving you control over the presentation of the data and enabling you
to convert the data to other XML documents or to other formats, such as HTML.
JAXP also provides namespace support, allowing you to work with XML Sche-
mas that might otherwise have naming conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which allows you to plug in an implementation of the SAX or DOM APIs. The

8 INTRODUCTION TO WEB SERVICES
pluggability layer also allows you to plug in an XSL processor, letting you con-
trol how your XML data is displayed.

The latest version of JAXP is JAXP 1.2, a maintenance release that adds support
for XML Schema. This version is currently being finalized through the Java
Community ProcessSM (JSR-63). An early access version of JAXP 1.2 is
included in this Java WSDP release and is also available in the Java XML Pack.

The SAX API
The Simple API for XML (page 85) defines an API for an event-based parser.
Being event-based means that the parser reads an XML document from begin-
ning to end, and each time it recognizes a syntax construction, it notifies the
application that is running it. The SAX parser notifies the application by calling
methods from the &RQWHQW+DQGOHU interface. For example, when the parser
comes to a less than symbol (“<”), it calls the VWDUW(OHPHQW method; when it
comes to character data, it calls the FKDUDFWHUV method; when it comes to the
less than symbol followed by a slash (“</”), it calls the HQG(OHPHQW method, and
so on. To illustrate, let’s look at part of the example XML document from the
first section and walk through what the parser does for each line. (For simplicity,
calls to the method LJQRUDEOH:KLWH6SDFH are not included.)

�SULFH/LVW!>SDUVHU�FDOOV�VWDUW(OHPHQW@
�FRIIHH!� >SDUVHU�FDOOV�VWDUW(OHPHQW@

�QDPH!0RFKD�-DYD��QDPH!� >SDUVHU�FDOOV�VWDUW(OHPHQW�
FKDUDFWHUV��DQG�HQG(OHPHQW@

�SULFH!�������SULFH!� >SDUVHU�FDOOV�VWDUW(OHPHQW�
FKDUDFWHUV��DQG�HQG(OHPHQW@

��FRIIHH!� >SDUVHU�FDOOV�HQG(OHPHQW@

The default implementations of the methods that the parser calls do nothing, so
you need to write a subclass implementing the appropriate methods to get the
functionality you want. For example, suppose you want to get the price per
pound for Mocha Java. You would write a class extending 'HIDXOW+DQGOHU (the
default implementation of &RQWHQW+DQGOHU) in which you write your own imple-
mentations of the methods VWDUW(OHPHQW and FKDUDFWHUV.

You first need to create a 6$;3DUVHU object from a 6$;3DUVHU)DFWRU\ object.
You would call the method SDUVH on it, passing it the price list and an instance of
your new handler class (with its new implementations of the methods VWDUW(OH�
PHQW and FKDUDFWHUV�. In this example, the price list is a file, but the SDUVH

http://java.sun.com/xml/downloads/javaxmlpack.html

THE SAX API 9
method can also take a variety of other input sources, including an ,QSXW6WUHDP
object, a URL, and an ,QSXW6RXUFH object.

6$;3DUVHU)DFWRU\�IDFWRU\� �6$;3DUVHU)DFWRU\�QHZ,QVWDQFH���
6$;3DUVHU�VD[3DUVHU� �IDFWRU\�QHZ6$;3DUVHU���
VD[3DUVHU�SDUVH��SULFH/LVW�[PO���KDQGOHU��

The result of calling the method SDUVH depends, of course, on how the methods
in KDQGOHU were implemented. The SAX parser will go through the file
SULFH/LVW�[PO line by line, calling the appropriate methods. In addition to the
methods already mentioned, the parser will call other methods such as VWDUW�
'RFXPHQW, HQG'RFXPHQW, LJQRUDEOH:KLWH6SDFH, and SURFHVVLQJ,QVWUXFWLRQV,
but these methods still have their default implementations and thus do nothing.

The following method definitions show one way to implement the methods
FKDUDFWHUV and VWDUW(OHPHQW so that they find the price for Mocha Java and
print it out. Because of the way the SAX parser works, these two methods work
together to look for the QDPH element, the characters “Mocha Java”, and the
SULFH element immediately following Mocha Java. These methods use three
flags to keep track of which conditions have been met. Note that the SAX parser
will have to invoke both methods more than once before the conditions for print-
ing the price are met.

SXEOLF�YRLG�VWDUW(OHPHQW������6WULQJ�HOHPHQW1DPH������^
LI�HOHPHQW1DPH�HTXDOV��QDPH���^

LQ1DPH� �WUXH�
`�HOVH�LI�HOHPHQW1DPH�HTXDOV��SULFH���		�LQ0RFKD-DYD��^

LQ3ULFH� �WUXH�
LQ1DPH� �IDOVH�

`
`

SXEOLF�YRLG�FKDUDFWHUV�FKDU�>@�EXI��LQW�RIIVHW��LQW�OHQ��^
6WULQJ�V� �QHZ�6WULQJ�EXI��RIIVHW��OHQ��
LI��LQ1DPH�		�V�HTXDOV��0RFKD�-DYD����^

LQ0RFKD-DYD� �WUXH�
LQ1DPH� �IDOVH�

`�HOVH�LI��LQ3ULFH��^
6\VWHP�RXW�SULQWOQ��7KH�SULFH�RI�0RFKD�-DYD�LV������V��
LQ0RFKD-DYD� �IDOVH�
LQ3ULFH� �IDOVH�
`

`
`

10 INTRODUCTION TO WEB SERVICES
Once the parser has come to the Mocha Java coffee element, here is the relevant
state after the following method calls:

next invocation of VWDUW(OHPHQW -- LQ1DPH is WUXH
next invocation of FKDUDFWHUV -- LQ0RFKD-DYD is WUXH
next invocation of VWDUW(OHPHQW -- LQ3ULFH is WUXH
next invocation of FKDUDFWHUV -- prints price

The SAX parser can perform validation while it is parsing XML data, which
means that it checks that the data follows the rules specified in the XML docu-
ment’s DTD. A SAX parser will be validating if it is created by a 6$;3DUVHU)DF�
WRU\ object that has had validation turned on. This is done for the
6$;3DUVHU)DFWRU\ object IDFWRU\�in the following line of code.

IDFWRU\�VHW9DOLGDWLQJ�WUXH���

So that the parser knows which DTD to use for validation, the XML document
must refer to the DTD in its '2&7<3(declaration. The '2&7<3(declaration should
be similar to this:

��'2&7<3(�3ULFH/LVW�6<67(0��SULFH/LVW�'7'�!

The DOM API
The Document Object Model (page 163), defined by the W3C DOM Working
Group, is a set of interfaces for building an object representation, in the form of a
tree, of a parsed XML document. Once you build the DOM, you can manipulate
it with DOM methods such as LQVHUW and UHPRYH, just as you would manipulate
any other tree data structure. Thus, unlike a SAX parser, a DOM parser allows
random access to particular pieces of data in an XML document. Another differ-
ence is that with a SAX parser, you can only read an XML document, but with a
DOM parser, you can build an object representation of the document and manip-
ulate it in memory, adding a new element or deleting an existing one.

In the previous example, we used a SAX parser to look for just one piece of data
in a document. Using a DOM parser would have required having the whole doc-
ument object model in memory, which is generally less efficient for searches
involving just a few items, especially if the document is large. In the next exam-
ple, we add a new coffee to the price list using a DOM parser. We cannot use a
SAX parser for modifying the price list because it only reads data.

THE DOM API 11
Let’s suppose that you want to add Kona coffee to the price list. You would read
the XML price list file into a DOM and then insert the new coffee element, with
its name and price. The following code fragment creates a 'RFXPHQW%XLOGHU)DF�
WRU\ object, which is then used to create the 'RFXPHQW%XLOGHU object EXLOGHU.
The code then calls the SDUVH method on EXLOGHU, passing it the file
SULFH/LVW�[PO.

'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\�
'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���

'RFXPHQW%XLOGHU�EXLOGHU� �IDFWRU\�QHZ'RFXPHQW%XLOGHU���
'RFXPHQW�GRFXPHQW� �EXLOGHU�SDUVH��SULFH/LVW�[PO���

At this point, GRFXPHQW is a DOM representation of the price list sitting in mem-
ory. The following code fragment adds a new coffee (with the name “Kona” and
the price 13.50) to the price list document. Because we want to add the new cof-
fee right before the coffee whose name is “Mocha Java”, the first step is to get a
list of the name elements and iterate through the list to find “Mocha Java”. Using
the 1RGH interface included in the RUJ�Z�F�GRP package, the code then creates a
1RGH object for the new coffee element and also new nodes for the name and
price elements. The name and price elements contain character data, so the code
creates a 7H[W1RGH object for each of them and appends the text nodes to the
nodes representing the QDPH and SULFH elements.

1RGH/LVW�OLVW� �GRFXPHQW�JHW(OHPHQWV%\7DJ1DPH��QDPH���
1RGH�WKLV1RGH� �OLVW�LWHP����

���ORRS�WKURXJK�OLVW
1RGH�WKLV&KLOG� �WKLV1RGH�JHW&KLOG1RGH���

12 INTRODUCTION TO WEB SERVICES
LI��WKLV1RGH�JHW)LUVW&KLOG���LQVWDQFHRI�RUJ�Z�F�GRP�7H[W1RGH��
^

6WULQJ�GDWD� �WKLV1RGH�JHW)LUVW&KLOG���JHW'DWD���
`

LI��GDWD�HTXDOV��0RFKD�-DYD����^�
���QHZ�QRGH�ZLOO�EH�LQVHUWHG�EHIRUH�0RFKD�-DYD
1RGH�QHZ1RGH� �GRFXPHQW�FUHDWH(OHPHQW��FRIIHH���
1RGH�QDPH1RGH� �GRFXPHQW�FUHDWH(OHPHQW��QDPH���
7H[W1RGH�WH[W1RGH� �GRFXPHQW�FUHDWH7H[W1RGH��.RQD���
QDPH1RGH�DSSHQG&KLOG�WH[W1RGH��

1RGH�SULFH1RGH� �GRFXPHQW�FUHDWH(OHPHQW��SULFH���
7H[W1RGH�WS1RGH� �GRFXPHQW�FUHDWH7H[W1RGH����������
SULFH1RGH�DSSHQG&KLOG�WS1RGH��

QHZ1RGH�DSSHQG&KLOG�QDPH1RGH��
QHZ1RGH�DSSHQG&KLOG�SULFH1RGH��
WKLV1RGH�LQVHUW%HIRUH�QHZ1RGH��WKLV1RGH��

`

You get a DOM parser that is validating the same way you get a SAX parser that
is validating: You call VHW9DOLGDWLQJ�WUXH� on a DOM parser factory before
using it to create your DOM parser, and you make sure that the XML document
being parsed refers to its DTD in the DOCTYPE declaration.

XML Namespaces
All the names in a DTD are unique, thus avoiding ambiguity. However, if a par-
ticular XML document references more than one DTD, there is a possibility that
two or more DTDs contain the same name. Therefore, the document needs to
specify a namespace for each DTD so that the parser knows which definition to
use when it is parsing an instance of a particular DTD.

There is a standard notation for declaring an XML Namespace, which is usually
done in the root element of an XML document. In the following example
namespace declaration, the notation [POQV identifies QV1DPH as a namespace, and
QV1DPH is set to the URL of the actual namespace:

�SULFH/LVW�[POQV�QV1DPH �P\'7'�GWG�
[POQV�RWKHU1V1DPH �P\2WKHU'7'�GWG�!

���
��SULFH/LVW!

THE XSLT API 13
Within the document, you can specify which namespace an element belongs to
as follows:

�QV1DPH�SULFH!����

To make your SAX or DOM parser able to recognize namespaces, you call the
method VHW1DPHVSDFH$ZDUH�WUXH� on your 3DUVHU)DFWRU\ instance. After this
method call, any parser that the parser factory creates will be namespace aware.

The XSLT API
XML Stylesheet Language for Transformations (page 221), defined by the W3C
XSL Working Group, describes a language for transforming XML documents
into other XML documents or into other formats. To perform the transformation,
you usually need to supply a style sheet, which is written in the XML Stylesheet
Language (XSL). The XSL style sheet specifies how the XML data will be dis-
played. XSLT uses the formatting instructions in the style sheet to perform the
transformation. The converted document can be another XML document or a
document in another format, such as HTML.

JAXP supports XSLT with the MDYD[�[PO�WUDQVIRUP package, which allows you
to plug in an XSLT transformer to perform transformations. The subpackages
have SAX-, DOM-, and stream-specific APIs that allow you to perform transfor-
mations directly from DOM trees and SAX events. The following two examples
illustrate how to create an XML document from a DOM tree and how to trans-
form the resulting XML document into HTML using an XSL style sheet.

Transforming a DOM Tree to an XML
Document
To transform the DOM tree created in the previous section to an XML document,
the following code fragment first creates a 7UDQVIRUPHU object that will perform
the transformation.

7UDQVIRUPHU)DFWRU\�WUDQV)DFWRU\�
7UDQVIRUPHU)DFWRU\�QHZ,QVWDQFH���

7UDQVIRUPHU�WUDQVIRUPHU� �WUDQV)DFWRU\�QHZ7UDQVIRUPHU���

14 INTRODUCTION TO WEB SERVICES
Using the DOM tree root node, the following line of code constructs a '20�
6RXUFH object as the source of the transformation.

'206RXUFH�VRXUFH� �QHZ�'206RXUFH�GRFXPHQW��

The following code fragment creates a 6WUHDP5HVXOW object to take the results
of the transformation and transforms the tree to XML.

)LOH�QHZ;0/� �QHZ�)LOH��QHZ;0/�[PO���
)LOH2XWSXW6WUHDP�RV� �QHZ�)LOH2XWSXW6WUHDP�QHZ;0/��
6WUHDP5HVXOW�UHVXOW� �QHZ�6WUHDP5HVXOW�RV��
WUDQVIRUPHU�WUDQVIRUP�VRXUFH��UHVXOW��

Transforming an XML Document to an HTML
Document
You can also use XSLT to convert the new XML document, QHZ;0/�[PO, to
HTML using a style sheet. When writing a style sheet, you use XML
Namespaces to reference the XSL constructs. For example, each style sheet has a
root element identifying the style sheet language, as shown in the following line
of code.

�[VO�VW\OHVKHHW�YHUVLRQ ������[POQV�[VO
�KWWS���ZZZ�Z��RUJ������;6/�7UDQVIRUP�!

When referring to a particular construct in the style sheet language, you use the
namespace prefix followed by a colon and the particular construct to apply. For
example, the following piece of style sheet indicates that the name data must be
inserted into a row of an HTML table.

�[VO�WHPSODWH�PDWFK �QDPH�!
�WU!�WG!

�[VO�DSSO\�WHPSODWHV�!
��WG!��WU!

��[VO�WHPSODWH!

The following style sheet specifies that the XML data is converted to HTML and
that the coffee entries are inserted into a row in a table.

�[VO�VW\OHVKHHW�YHUVLRQ �����
[POQV�[VO �KWWS���ZZZ�Z��RUJ������;6/�7UDQVIRUP�!

�[VO�WHPSODWH�PDWFK �SULFH/LVW�!
�KWPO!�KHDG!&RIIHH�3ULFHV��KHDG!

THE XSLT API 15
�ERG\!
�WDEOH!

�[VO�DSSO\�WHPSODWHV��!
��WDEOH!

��ERG\!
��KWPO!

��[VO�WHPSODWH!
�[VO�WHPSODWH�PDWFK �QDPH�!

�WU!�WG!
�[VO�DSSO\�WHPSODWHV��!

��WG!��WU!
��[VO�WHPSODWH!
�[VO�WHPSODWH�PDWFK �SULFH�!

�WU!�WG!
�[VO�DSSO\�WHPSODWHV��!

��WG!��WU!
��[VO�WHPSODWH!

��[VO�VW\OHVKHHW!

To perform the transformation, you need to obtain an XSLT transformer and use
it to apply the style sheet to the XML data. The following code fragment obtains
a transformer by instantiating a 7UDQVIRUPHU)DFWRU\ object, reading in the style
sheet and XML files, creating a file for the HTML output, and then finally
obtaining the 7UDQVIRUPHU object WUDQVIRUPHU from the 7UDQVIRUPHU)DFWRU\
object W)DFWRU\.

7UDQVIRUPHU)DFWRU\�W)DFWRU\�
7UDQVIRUPHU)DFWRU\�QHZ,QVWDQFH���

6WULQJ�VW\OHVKHHW� ��SULFHV�[VO��
6WULQJ�VRXUFH,G� ��QHZ;0/�[PO��
)LOH�SULFHV+70/� �QHZ�)LOH��SULFHV+70/�KWPO���
)LOH2XWSXW6WUHDP�RV� �QHZ�)LOH2XWSXW6WUHDP�SULFHV+70/��
7UDQVIRUPHU�WUDQVIRUPHU� �

W)DFWRU\�QHZ7UDQVIRUPHU�QHZ�6WUHDP6RXUFH�VW\OHVKHHW����

The transformation is accomplished by invoking the WUDQVIRUP method, passing
it the data and the output stream.

WUDQVIRUPHU�WUDQVIRUP�
QHZ�6WUHDP6RXUFH�VRXUFH,G���QHZ�6WUHDP5HVXOW�RV���

16 INTRODUCTION TO WEB SERVICES
JAX-RPC
The Java™ API for XML-based RPC (page 329) (“JAX-RPC”) makes it possi-
ble to write an application in the Java programming language that uses SOAP to
make a remote procedure call (RPC). JAX-RPC can also be used to send
request-response messages and, in some cases, one-way messages. In addition to
these conventional uses, JAX-RPC makes it possible for an application to define
its own XML schema and to use that schema to send XML documents and XML
fragments. The result of this combination of JAX-RPC and XML Schema is a
powerful computing tool.

The Java programming language already has two other APIs for making remote
procedure calls, Java IDL and Remote Method Invocation (RMI). All three have
an API for marshalling and unmarshalling arguments and for transmitting and
receiving procedure calls. The difference is that JAX-RPC is based on SOAP
and is geared to Web services. Java IDL is based on the Common Object Request
Broker Architecture (CORBA) and uses the Object Management Group’s Inter-
face Definition Language (OMG IDL). RMI is based on RPC where both the
method calls and the methods being invoked are in the Java programming lan-
guage--although with RMI over IIOP, the methods being invoked may be in
another language. Sun will continue its support of CORBA and RMI in addition
to developing JAX-RPC, as each serves a distinct need and has its own set of
users.

All varieties of RPC are fairly complex underneath, involving the mapping and
reverse mapping of data types and the marshalling and unmarshalling of argu-
ments. However, these take place behind the scenes and are not visible to the
user. JAX-RPC continues this model, which means that a client using XML-
based RPC can invoke remote procedures or do SOAP messaging by simply
making Java method calls.

Using JAX-RPC
JAX-RPC makes using a Web service easier, and it also makes developing a Web
service easier, especially if you use the J2EE platform. An RPC-based Web ser-
vice is basically a collection of procedures that can be called by a remote client
over the Internet. The service itself is a server application deployed on a server-
side container that implements the procedures that are available for clients to
call. For example, a typical RPC-based Web service is a stock quote service that

USING JAX-RPC 17
takes a SOAP request for the price of a specified stock and returns the price via
SOAP.

A Web service needs to make itself available to potential clients, which it can do,
for instance, by describing itself using the Web Services Description Language
(WSDL). A consumer (Web client) can then do a lookup of the WSDL document
to access the service.

Interoperability across clients and servers that have been described using WSDL
is key to JAX-RPC. A consumer using the Java programming language can use
JAX-RPC to send its request to a service that may or may not have been defined
and deployed on a Java platform. The converse is also possible, that is, a client
using another programming language can send its request to a service that has
been defined and deployed on a Java platform. This interoperability is a primary
strength of JAX-RPC.

Although JAX-RPC implements a remote procedure call as a request-response
SOAP message, a user of JAX-RPC is shielded from this level of detail. So,
underneath the covers, JAX-RPC is based on SOAP messaging.

JAX-RPC is the main client and server Web services API, largely because of its
simplicity. The JAX-RPC API is simple to use and requires no set up. Also,
JAX-RPC focuses on point-to-point SOAP messaging, the basic mechanism that
most Web services clients use. Although it can provide asynchronous messaging
and can be extended to provide higher quality support, JAX-RPC concentrates
on being easy to use for the most common tasks. Thus, JAX-RPC is a good
choice for applications that wish to avoid the more complex aspects of SOAP
messaging and for those that find communication using the RPC model a good
fit.

JAX-RPC is not yet final. The specification is still being fine tuned, and the lat-
est draft includes features such as interceptors and Servlet JAX-RPC endpoints.
In future releases of the Java WSDP, this introductory overview will be
expanded to reflect JAX-RPC more fully.

JAXM
The Java™ API for XML Messaging (page 287) (“JAXM”) provides a standard
way to send XML documents over the Internet from the Java platform. It is
based on the SOAP 1.1 and SOAP with Attachments specifications and can be
extended to work with higher level messaging protocols such as ebXML Trans-
port, Routing, and Packaging that are built on top of SOAP.

18 INTRODUCTION TO WEB SERVICES
Typically, a business uses a messaging provider service, which does the behind-
the-scenes work required to transport and route messages. When a messaging
provider is used, all JAXM messages go through it, so when a business sends a
message, the message first goes to the sender’s messaging provider, then to the
recipient’s messaging provider, and finally to the intended recipient. It is also
possible to route a message to go to intermediate recipients before it goes to the
ultimate destination.

Because messages go through it, a messaging provider can take care of house-
keeping details like assigning message identifiers, storing messages, and keeping
track of whether a message has been delivered before. A messaging provider can
also try resending a message that did not reach its destination on the first attempt
at delivery. The beauty of a messaging provider is that the client using JAXM
technology (“JAXM client”) is totally unaware of what the provider is doing in
the background. The JAXM client simply makes Java method calls, and the mes-
saging provider in conjunction with the messaging infrastructure makes every-
thing happen behind the scenes.

Though in the typical scenario a business uses a messaging provider, it is also
possible to do JAXM messaging without using a messaging provider. In this
case, the JAXM client (called a standalone client) is limited to sending point-to-
point messages directly to a Web service that is implemented for request-
response messaging. Request-response messaging is synchronous, meaning that
a request is sent and its response is received in the same operation. A request-
response message is sent over a 62$3&RQQHFWLRQ object via the method 62$3�
&RQQHFWLRQ�FDOO, which sends the message and blocks until it receives a
response. A standalone client can operate only in a client role, that is, it can only
send requests and receive their responses. In contrast, a JAXM client that uses a
messaging provider may act in either the client or server (service) role. In the cli-
ent role, it can send requests; in the server role, it can receive requests, process
them, and send responses.

Though it is not required, JAXM messaging usually takes place within a con-
tainer, generally a servlet or a J2EE™ container. A Web service that uses a mes-
saging provider and is deployed in a container has the capability of doing one-
way messaging, meaning that it can receive a request as a one-way message and
can return a response some time later as another one-way message.

Because of the features that a messaging provider can supply, JAXM can some-
times be a better choice for SOAP messaging than JAX-RPC. The following list

GETTING A CONNECTION 19
includes features that JAXM can provide and that RPC, including JAX-RPC,
does not generally provide:

• One-way (asynchronous) messaging

• Routing of a message to more than one party

• Reliable messaging with features such as guaranteed delivery

A JAXM message is made up of two parts, a required SOAP part and an optional
attachment part. The SOAP part, which consists of a 62$3(QYHORSH object con-
taining a 62$3+HDGHU object and a 62$3%RG\ object. The 62$3%RG\ object can
hold XML fragments as the content of the message being sent. If you want to
send content that is not in XML format or that is an entire XML document, your
message will need to contain an attachment part in addition to the SOAP part.
There is no limitation on the content in the attachment part, so it can include
images or any other kind of content, including XML fragments and documents.

Getting a Connection
The first thing a JAXM client needs to do is get a connection, either a 62$3&RQ�
QHFWLRQ object or a 3URYLGHU&RQQHFWLRQ object.

Getting a Point-to-Point Connection
A standalone client is limited to using a 62$3&RQQHFWLRQ object, which is a point-
to-point connection that goes directly from the sender to the recipient. All JAXM
connections are created by a connection factory. In the case of a 62$3&RQQHFWLRQ
object, the factory is a 62$3&RQQHFWLRQ)DFWRU\ object. A client obtains the
default implementation for 62$3&RQQHFWLRQ)DFWRU\ by calling the following line
of code.

62$3&RQQHFWLRQ)DFWRU\�IDFWRU\�
62$3&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

The client can use factory to create a 62$3&RQQHFWLRQ object.

62$3&RQQHFWLRQ�FRQ� �IDFWRU\�FUHDWH&RQQHFWLRQ���

20 INTRODUCTION TO WEB SERVICES
Getting a Connection to the Messaging
Provider
In order to use a messaging provider, an application must obtain a 3URYLGHU&RQ�
QHFWLRQ object, which is a connection to the messaging provider rather than to a
specified recipient. There are two ways to get a 3URYLGHU&RQQHFWLRQ object, the
first being similar to the way a standalone client gets a 62$3&RQQHFWLRQ object.
This way involves obtaining an instance of the default implementation for 3UR�
YLGHU&RQQHFWLRQ)DFWRU\, which is then used to create the connection.

3URYLGHU&RQQHFWLRQ)DFWRU\�SF)DFWRU\�
3URYLGHU&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

3URYLGHU&RQQHFWLRQ�SF&RQ� �SF)DFWRU\�FUHDWH&RQQHFWLRQ���

The variable SF&RQ represents a connection to the default implementation of a
JAXM messaging provider.

The second way to create a 3URYLGHU&RQQHFWLRQ object is to retrieve a 3UR�
YLGHU&RQQHFWLRQ)DFWRU\ object that is implemented to create connections to a
specific messaging provider. The following code demonstrates getting such a
3URYLGHU&RQQHFWLRQ)DFWRU\ object and using it to create a connection. The first
two lines use the JNDI API to retrieve the appropriate 3URYLGHU&RQQHFWLRQ)DF�
WRU\ object from the naming service where it has been registered with the name
“CoffeeBreakProvider”. When this logical name is passed as an argument, the
method ORRNXS returns the 3URYLGHU&RQQHFWLRQ)DFWRU\ object to which the log-
ical name was bound. The value returned is a Java 2EMHFW, which must be nar-
rowed to a 3URYLGHU&RQQHFWLRQ)DFWRU\ object so that it can be used to create a
connection. The third line uses a JAXM method to actually get the connection.

&RQWH[W�FW[� �JHW,QLWLDO&RQWH[W���
3URYLGHU&RQQHFWLRQ)DFWRU\�SF)DFWRU\�
�3URYLGHU&RQQHFWLRQ)DFWRU\�FW[�ORRNXS��&RIIHH%UHDN3URYLGHU���

3URYLGHU&RQQHFWLRQ�FRQ� �SF)DFWRU\�FUHDWH&RQQHFWLRQ���

The 3URYLGHU&RQQHFWLRQ instance FRQ represents a connection to The Coffee
Break’s messaging provider.

CREATING A MESSAGE 21
Creating a Message
As is true with connections, messages are created by a factory. And similar to the
case with connection factories, 0HVVDJH)DFWRU\ objects can be obtained in two
ways. The first way is to get an instance of the default implementation for the
0HVVDJH)DFWRU\ class. This instance can then be used to create a basic 62$30HV�
VDJH object.

0HVVDJH)DFWRU\�PHVVDJH)DFWRU\� �0HVVDJH)DFWRU\�QHZ,QVWDQFH���
62$30HVVDJH�P� �PHVVDJH)DFWRU\�FUHDWH0HVVDJH���

All of the 62$30HVVDJH objects that PHVVDJH)DFWRU\ creates, including m in the
previous line of code, will be basic SOAP messages. This means that they will
have no pre-defined headers.

Part of the flexibility of the JAXM API is that it allows a specific usage of a
SOAP header. For example, protocols such as ebXML can be built on top of
SOAP messaging. This usage of SOAP by a given standards group or industry is
called a profile. In the second way to create a 0HVVDJH)DFWRU\ object, you use
the 3URYLGHU&RQQHFWLRQ method FUHDWH0HVVDJH)DFWRU\ and give it a profile.
The 62$30HVVDJH objects produced by the resulting 0HVVDJH)DFWRU\ object will
support the specified profile. For example, in the following code fragment, in
which VFKHPD85, is the URI of the schema for the desired profile, P� will sup-
port the messaging profile that is supplied to FUHDWH0HVVDJH)DFWRU\.

0HVVDJH)DFWRU\�PHVVDJH)DFWRU\��
FRQ�FUHDWH0HVVDJH)DFWRU\��VFKHPD85,!��

62$30HVVDJH�P�� �PHVVDJH)DFWRU\��FUHDWH0HVVDJH���

Each of the new 62$30HVVDJH objects P and P� automatically contains the
required elements 62$33DUW, 62$3(QYHORSH, and 62$3%RG\, plus the optional ele-
ment 62$3+HDGHU (which is included for convenience). The 62$3+HDGHU and
62$3%RG\ objects are initially empty, and the following sections will illustrate
some of the typical ways to add content.

Populating a Message
Content can be added to the 62$33DUW object, to one or more $WWDFKPHQW3DUW
objects, or to both parts of a message.

22 INTRODUCTION TO WEB SERVICES
Populating the SOAP Part of a Message
As stated earlier, all messages have a 62$33DUW object, which has a 62$3(QYH�
ORSH object containing a 62$3+HDGHU object and a 62$3%RG\ object. One way to
add content to the SOAP part of a message is to create a 62$3+HDGHU(OHPHQW
object or a 62$3%RG\(OHPHQW object and add an XML document that you build
with the method 62$3(OHPHQW�DGG7H[W1RGH. The first three lines of the follow-
ing code fragment access the 62$3%RG\ object body, which is used to create a
new 62$3%RG\(OHPHQW object and add it to body. The argument passed to the
FUHDWH1DPH method is a 1DPH object identifying the 62$3%RG\(OHPHQW being
added. The last line adds the XML string passed to the method DGG7H[W1RGH.

62$33DUW�VS� �P�JHW62$33DUW���
62$3(QYHORSH�HQYHORSH� �VS�JHW62$3(QYHORSH���
62$3%RG\�ERG\� �HQYHORSH�JHW62$3%RG\���
62$3%RG\(OHPHQW�ERG\(OHPHQW� �ERG\�DGG%RG\(OHPHQW�

HQYHORSH�FUHDWH1DPH��WH[W�� �KRWLWHPV��
�KWWS���KRWLWHPV�FRP�SURGXFWV�JL]PR���

ERG\(OHPHQW�DGG7H[W1RGH��VRPH�[PO�WH[W���

Another way is to add content to the 62$33DUW object by passing it a
MDYD[�[PO�WUDQVIRUP�6RXUFH object, which may be a 6$;6RXUFH, '206RXUFH, or
6WUHDP6RXUFH object. The 6RXUFH object contains content for the SOAP part of
the message and also the information needed for it to act as source input. A
6WUHDP6RXUFH object will contain the content as an XML document; the 6$;�
6RXUFH or '206RXUFH object will contain content and instructions for transform-
ing it into an XML document.

The following code fragments illustrates adding content as a '206RXUFH object.
The first step is to get the 62$33DUW object from the 62$30HVVDJH object. Next the
code uses methods from the Java™ API for XML Processing (“JAXP”) to build
the XML document to be added. It uses a 'RFXPHQW%XLOGHU)DFWRU\ object to get
a 'RFXPHQW%XLOGHU object. Then it parses the given file to produce the document

POPULATING A MESSAGE 23
that will be used to initialize a new '206RXUFH object. Finally, the code passes the
'206RXUFH object GRP6RXUFH to the method 62$33DUW�VHW&RQWHQW.

62$33DUW�VRDS3DUW� �PHVVDJH�JHW62$33DUW���

'RFXPHQW%XLOGHU)DFWRU\�GEI
'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���

'RFXPHQW%XLOGHU�GE� �GEI�QHZ'RFXPHQW%XLOGHU���
'RFXPHQW�GRF� �GE�SDUVH��ILOH����IRR�EDU�VRDS�[PO���
'206RXUFH�GRP6RXUFH� �QHZ�'206RXUFH�GRF��

VRDS3DUW�VHW&RQWHQW�GRP6RXUFH��

Populating the Attachment Part of a Message
A 0HVVDJH object may have no attachment parts, but if it is to contain anything
that is not in XML format, that content must be contained in an attachment part.
There may be any number of attachment parts, and they may contain anything
from plain text to image files. In the following code fragment, the content is an
image in a JPEG file, whose URL is used to initialize the MDYD[�DFWLYD�
WLRQ�'DWD+DQGOHU object GK. The 0HVVDJH object P creates the $WWDFKPHQW3DUW
object DWWDFK3DUW, which is initialized with the data handler containing the
URL for the image. Finally, the message adds DWWDFK3DUW to itself.

85/�XUO� �QHZ�85/��KWWS���IRR�EDU�LPJ�MSJ���
'DWD+DQGOHU�GK� �QHZ�'DWD+DQGOHU�XUO��
$WWDFKPHQW3DUW�DWWDFK3DUW� �P�FUHDWH$WWDFKPHQW3DUW�GK��
P�DGG$WWDFKPHQW3DUW�DWWDFK3DUW��

A 62$30HVVDJH object can also give content to an $WWDFKPHQW3DUW object by
passing an 2EMHFW and its content type to the method FUHDWH$WWDFKPHQW3DUW.

$WWDFKPHQW3DUW�DWWDFK3DUW� �
P�FUHDWH$WWDFKPHQW3DUW��FRQWHQW�VWULQJ����WH[W�SODLQ���

P�DGG$WWDFKPHQW3DUW�DWWDFK3DUW��

A third alternative is to create an empty $WWDFKPHQW3DUW object and then to pass
the $WWDFKPHQW3DUW�VHW&RQWHQW method an 2EMHFW and its content type. In this

24 INTRODUCTION TO WEB SERVICES
code fragment, the 2EMHFW is a %\WH$UUD\,QSXW6WUHDP initialized with a jpeg
image.

$WWDFKPHQW3DUW�DS� �P�FUHDWH$WWDFKPHQW3DUW���
E\WH>@�MSHJ'DWD� ������
DS�VHW&RQWHQW�QHZ�%\WH$UUD\,QSXW6WUHDP�MSHJ'DWD��

�LPDJH�MSHJ���
P�DGG$WWDFKPHQW3DUW�DS��

Sending a Message
Once you have populated a 62$30HVVDJH object, you are ready to send it. A stan-
dalone client uses the 62$3&RQQHFWLRQ method FDOO to send a message. This
method sends the message and then blocks until it gets back a response. The
arguments to the method FDOO are the message being sent and an (QGSRLQW object
that contains the URL of the receiver.

62$30HVVDJH�UHVSRQVH� �
VRDS&RQQHFWLRQ�FDOO�PHVVDJH��XUO(QGSRLQW��

An application that is using a messaging provider uses the 3URYLGHU&RQQHFWLRQ
method VHQG to send a message. This method sends the message asynchronously,
meaning that it sends the message and returns immediately. The response, if any,
will be sent as a separate operation at a later time. Note that this method takes
only one parameter, the message being sent. The messaging provider will use
header information to determine the destination.

SURYLGHU&RQQHFWLRQ�VHQG�PHVVDJH��

JAXR
The Java™ API for XML Registries (page 347) (“JAXR”) provides a convenient
way to access standard business registries over the Internet. Business registries
are often described as electronic yellow pages because they contain listings of
businesses and the products or services the businesses offer. JAXR gives devel-
opers writing applications in the Java programming language a uniform way to
use business registries that are based on open standards (such as ebXML) or
industry consortium-led specifications (such as UDDI).

Businesses can register themselves with a registry or discover other businesses
with which they might want to do business. In addition, they can submit material

USING JAXR 25
to be shared and search for material that others have submitted. Standards groups
have developed DTDs for particular kinds of XML documents, and two busi-
nesses might, for example, agree to use the DTD for their industry’s standard
purchase order form. Because the DTD is stored in a standard business registry,
both parties can use JAXR to access it.

Registries are becoming an increasingly important component of Web services
because they allow businesses to collaborate with each other dynamically in a
loosely coupled way. Accordingly, the need for JAXR, which enables enterprises
to access standard business registries from the Java programming language, is
also growing.

Using JAXR
The following sections give examples of two of the typical ways a business reg-
istry is used. They are meant to give you an idea of how to use JAXR rather than
to be complete or exhaustive.

Registering a Business
An organization that uses the Java platform for its electronic business would use
JAXR to register itself in a standard registry. It would supply its name, a descrip-
tion of itself, and some classification concepts to facilitate searching for it. This
is shown in the following code fragment, which first creates the 5HJLVWU\6HU�
YLFH object UV and then uses it to create the %XVLQHVV/LIH&\FOH0DQDJHU object
OFP and the %XVLQHVV4XHU\0DQDJHU object ETP. The business, a chain of coffee
houses called The Coffee Break, is represented by the 2UJDQL]DWLRQ object RUJ,
to which The Coffee Break adds its name, a description of itself, and its classifi-
cation within the North American Industry Classification System (NAICS).
Then RUJ, which now contains the properties and classifications for The Coffee

26 INTRODUCTION TO WEB SERVICES
Break, is added to the &ROOHFWLRQ object RUJV. Finally, RUJV is saved by OFP,
which will manage the life cycle of the 2UJDQL]DWLRQ objects contained in RUJV.

5HJLVWU\6HUYLFH�UV� �FRQQHFWLRQ�JHW5HJLVWU\6HUYLFH���

%XVLQHVV/LIH&\FOH0DQDJHU�OFP�
UV�JHW%XVLQHVV/LIH&\FOH0DQDJHU���

%XVLQHVV4XHU\0DQDJHU�ETP� �
UV�JHW%XVLQHVV4XHU\0DQDJHU���

2UJDQL]DWLRQ�RUJ� �OFP�FUHDWH2UJDQL]DWLRQ��7KH�&RIIHH�%UHDN���
RUJ�VHW'HVFULSWLRQ�

�3XUYH\RU�RI�RQO\�WKH�ILQHVW�FRIIHHV��(VWDEOLVKHG��������

&ODVVLILFDWLRQ6FKHPH�F6FKHPH� �
ETP�ILQG&ODVVLILFDWLRQ6FKHPH%\1DPH��QWLV�JRY�QDLFV���

&ODVVLILFDWLRQ�FODVVLILFDWLRQ� �
�&ODVVLILFDWLRQ�OFP�FUHDWH&ODVVLILFDWLRQ�F6FKHPH��
�6QDFN�DQG�1RQDOFRKROLF�%HYHUDJH�%DUV�������������

&ROOHFWLRQ�FODVVLILFDWLRQV� �QHZ�$UUD\/LVW���
FODVVLILFDWLRQV�DGG�FODVVLILFDWLRQ��

RUJ�DGG&ODVVLILFDWLRQV�FODVVLILFDWLRQV��
&ROOHFWLRQ�RUJV� �QHZ�$UUD\/LVW���
RUJV�DGG�RUJ��
OFP�VDYH2UJDQL]DWLRQV�RUJV��

Searching a Registry
A business can also use JAXR to search a registry for other businesses. The fol-
lowing code fragment uses the %XVLQHVV4XHU\0DQDJHU object ETP to search for
The Coffee Break. Before ETP can invoke the method ILQG2UJDQL]DWLRQV, the
code needs to define the search criteria to be used. In this case, three of the possi-
ble six search parameters are supplied to ILQG2UJDQL]DWLRQV; because QXOO is
supplied for the third, fifth, and sixth parameters, those criteria are not used to
limit the search. The first, second, and fourth arguments are all &ROOHFWLRQ
objects, with ILQG4XDOLILHUV and QDPH3DWWHUQV being defined here. The only
element in ILQG4XDOLILHUV is a 6WULQJ specifying that no organization be
returned unless its name is a case-sensitive match to one of the names in the
QDPH3DWWHUQV parameter. This parameter, which is also a &ROOHFWLRQ object with
only one element, says that businesses with “Coffee” in their names are a match.
The other &ROOHFWLRQ object is FODVVLILFDWLRQV, which was defined when The

USING JAXR 27
Coffee Break registered itself. The previous code fragment, in which the indus-
try for The Coffee Break was provided, is an example of defining classifications.

%XVLQHVV4XHU\0DQDJHU�ETP� �UV�JHW%XVLQHVV4XHU\0DQDJHU���

��'HILQH�ILQG�TXDOLILHUV
&ROOHFWLRQ�ILQG4XDOLILHUV� �QHZ�$UUD\/LVW���
ILQG4XDOLILHUV�DGG�)LQG4XDOLILHU�&$6(B6(16,7,9(B0$7&+��
&ROOHFWLRQ�QDPH3DWWHUQV� �QHZ�$UUD\/LVW���
QDPH3DWWHUQV�DGG���&RIIHH��������)LQG�RUJV�ZLWK�QDPH�FRQWDLQLQJ�
·&RIIHH·

��)LQG�XVLQJ�RQO\�WKH�QDPH�DQG�WKH�FODVVLILFDWLRQV
%XON5HVSRQVH�UHVSRQVH� �ETP�ILQG2UJDQL]DWLRQV�ILQG4XDOLILHUV�

QDPH3DWWHUQV��QXOO� FODVVLILFDWLRQV��QXOO��QXOO��
&ROOHFWLRQ�RUJV� �UHVSRQVH�JHW&ROOHFWLRQ���

JAXR also supports using an SQL query to search a registry. This is done using a
'HFODUDWLYH4XHU\0DQDJHU object, as the following code fragment demon-
strates.

'HFODUDWLYH4XHU\0DQDJHU�GTP� �UV�JHW'HFODUDWLYH4XHU\0DQDJHU���
4XHU\�TXHU\� �GTP�FUHDWH4XHU\�4XHU\�48(5<B7<3(B64/�
�6(/(&7�LG�)520�5HJLVWU\(QWU\�:+(5(�QDPH�/,.(��&RIIHH�����

�$1'�PDMRU9HUVLRQ�! ���$1'����
��PDMRU9HUVLRQ�! ���25�PLQRU9HUVLRQ�! ������

%XON5HVSRQVH�UHVSRQVH�� �GTP�H[HFXWH4XHU\�TXHU\��

The %XON5HVSRQVH object UHVSRQVH� will contain a value for LG (a uuid) for
each entry in 5HJLVWU\(QWU\ that has “Coffee” in its name and that also has a
version number of 1.3 or greater.

To ensure interoperable communication between a JAXR client and a registry
implementation, the messaging is done using JAXM. This is done completely
behind the scenes, so as a user of JAXR, you are not even aware of it.

Sample Scenario
The following scenario is an example of how the Java APIs for XML might be
used and how they work together. Part of the richness of the Java APIs for XML
is that in many cases they offer alternate ways of doing something and thus let
you tailor your code to meet individual needs. This section will point out some

28 INTRODUCTION TO WEB SERVICES
instances in which an alternate API could have been used and will also give the
reasons why one API or the other might be a better choice.

Scenario
Suppose that the owner of a chain of coffee houses, called The Coffee Break,
wants to expand the line of coffees that he sells. He instructs his business man-
ager to find some new coffee suppliers, get their wholesale prices, and then
arrange for orders to be placed as the need arises. The Coffee Break can analyze
the prices and decide which new coffees it wants to carry and which companies
it wants to buy them from. The business manager assigns the task to the com-
pany’s software engineer, who decides that the best way to locate new coffee
suppliers is to search a Universal Description, Discovery, and Integration
(UDDI) registry, where The Coffee Break has already registered itself.

The engineer uses JAXR to send a query searching for wholesale coffee suppli-
ers. JAXR sends messages using JAXM in the background, which ensures that
the registry will be able to receive and understand it.

The UDDI registry will receive the query and apply the search criteria transmit-
ted in the JAXR code to the information it has about the organizations registered
with it. When the search is completed, the registry will send back information on
how to contact the wholesale coffee distributors that met the specified criteria.

The engineer’s next step is to draft a request for price lists and send it to each of
the coffee distributors using JAXM. She writes an application that gets a connec-
tion to the company’s messaging service so that she can send the requests. She
then creates a JAXM message, adds the request, and sends it.

Each coffee distributor receives the request, and before sending out current
prices, checks with its stock quote service using JAX-RPC to get the latest
quotes for the relevant coffee futures. Based on the figures they get back, the dis-
tributors send The Coffee Break their newly revised prices in an XML price
sheet. The vendors use an agreed upon XML schema for their price sheets
because that way they can use a format that is convenient for them and that their
buyers can process easily.

Compare Prices and Order Coffees
The engineer processes the price lists using SAX. After her application gets the
price quoted by the different vendors, it compares them and displays the results.

CONCLUSION 29
When the owner and business manager decide which suppliers to do business
with, based on the engineer’s price comparisons, they are ready to send orders to
the suppliers. The orders are sent via JAXM, and each supplier will acknowledge
receipt of the order via JAXM.

Selling Coffees on the Internet
Meanwhile, The Coffee Break has been preparing for its expanded coffee line. It
will need to publish a new price list/order form in HTML for its Web site. But
before that can be done, the company needs to determine what prices it will
charge. The engineer writes an application that will multiply each price by 125%
to arrive at the price that The Coffee Break will charge. With a few modifica-
tions, the list of retail prices will become the online order form.

The engineer uses JavaServer Pages™ (JSP™) technology to create an HTML
order form that customers can use to order coffee online. From the JSP page, she
uses SAX to access the name and the price of each coffee, and then she inserts
them into an HTML table on the JSP page. The customer enters the quantity of
each coffee he or she wants to order and clicks the Submit button to send the
order.

Conclusion
Although this scenario is simplified for the sake of brevity, it illustrates how per-
vasive XML technologies are becoming in the world of Web services. And now,
with the Java APIs for XML and the J2EE platform, it keeps getting easier to
implement Web services and to write applications that are the consumers of Web
services.

30 INTRODUCTION TO WEB SERVICES

Understanding XML
Eric Armstrong

THIS chapter describes the Extensible Markup Language (XML) and its
related specifications.

In This Chapter
Introduction to XML 31

What Is XML? 32
Why Is XML Important? 37
How Can You Use XML? 39

XML and Related Specs: Digesting the Alphabet Soup 42
Basic Standards 43
Schema Standards 45
Linking and Presentation Standards 48
Knowledge Standards 49
Standards That Build on XML 50
Summary 52

Designing an XML Data Structure 53
Saving Yourself Some Work 53
Attributes and Elements 53
Normalizing Data 56
Normalizing DTDs 57

Introduction to XML
This section covers the basics of XML. The goal is to give you just enough infor-
mation to get started, so you understand what XML is all about. (You’ll learn
31

Bios.html#ericArmstrong

32 UNDERSTANDING XML
about XML in later sections of the tutorial.) We then outline the major features
that make XML great for information storage and interchange, and give you a
general idea of how XML can be used.

What Is XML?
XML is a text-based markup language that is fast becoming the standard for data
interchange on the Web. As with HTML, you identify data using tags (identifiers
enclosed in angle brackets, like this: ����!). Collectively, the tags are known as
“markup”.

But unlike HTML, XML tags identify the data, rather than specifying how to dis-
play it. Where an HTML tag says something like “display this data in bold font”
(�E!�����E!), an XML tag acts like a field name in your program. It puts a label
on a piece of data that identifies it (for example: �PHVVDJH!�����PHVVDJH!).

Note: Since identifying the data gives you some sense of what means (how to inter-
pret it, what you should do with it), XML is sometimes described as a mechanism
for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on the
tag names they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

�PHVVDJH!
<to>\RX#\RXU$GGUHVV�FRP</to>
<from>PH#P\$GGUHVV�FRP</from>
<subject>;0/�,V�5HDOO\�&RRO</subject>
<text>

+RZ�PDQ\�ZD\V�LV�;0/�FRRO"�/HW�PH�FRXQW�WKH�ZD\V���
</text>

��PHVVDJH!

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to be in bold!

WHAT IS XML? 33
The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. As in HTML, the �WR!
tag has a matching end tag: ��WR!. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
�WR! tag is entirely contained within the scope of the �PHVVDJH!����PHVVDJH!
tag. It is this ability for one tag to contain others that gives XML its ability to
represent hierarchical data structures.

Once again, as with HTML, whitespace is essentially irrelevant, so you can for-
mat the data for readability and yet still process it easily with a program. Unlike
HTML, however, in XML you could easily search a data set for messages con-
taining “cool” in the subject, because the XML tags identify the content of the
data, rather than specifying its representation.

Tags and Attributes
Tags can also contain attributes—additional information included as part of the
tag itself, within the tag’s angle brackets. The following example shows an email
message structure that uses attributes for the �WR�, �IURP�, and �VXEMHFW�
fields:

�PHVVDJH�to="\RX#\RXU$GGUHVV�FRP" from=�PH#P\$GGUHVV�FRP"�
subject=";0/�,V�5HDOO\�&RRO"!�

�WH[W!
+RZ�PDQ\�ZD\V�LV�;0/�FRRO"�/HW�PH�FRXQW�WKH�ZD\V���

��WH[W!
��PHVVDJH!

As in HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored—if present, they generate an
error.

Since you could design a data structure like �PHVVDJH! equally well using either
attributes or tags, it can take a considerable amount of thought to figure out
which design is best for your purposes. Designing an XML Data
Structure (page 53), includes ideas to help you decide when to use attributes and
when to use tags.

34 UNDERSTANDING XML
Empty Tags
One really big difference between XML and HTML is that an XML document is
always constrained to be well formed. There are several rules that determine
when a document is well-formed, but one of the most important is that every tag
has a closing tag. So, in XML, the ��WR! tag is not optional. The �WR! element is
never terminated by any tag other than ��WR!.

Note: Another important aspect of a well-formed document is that all tags are com-
pletely nested. So you can have �PHVVDJH!���WR!����WR!����PHVVDJH!, but never
�PHVVDJH!���WR!����PHVVDJH!����WR!. A complete list of requirements is con-
tained in the list of XML Frequently Asked Questions (FAQ) at
KWWS���ZZZ�XFF�LH�[PO��)$4�9$/,':). (This FAQ is on the w3c “Recommended
Reading” list at KWWS���ZZZ�Z��RUJ�;0/�.)

Sometimes, though, it makes sense to have a tag that stands by itself. For exam-
ple, you might want to add a �IODJ� tag that marks message as important. A tag
like that doesn’t enclose any content, so it’s known as an “empty tag”. You can
create an empty tag by ending it with �! instead of !. For example, the following
message contains such a tag:

�PHVVDJH�WR �\RX#\RXU$GGUHVV�FRP��IURP �PH#P\$GGUHVV�FRP��
VXEMHFW �;0/�,V�5HDOO\�&RRO�!

<flag/>�
�WH[W!

+RZ�PDQ\�ZD\V�LV�;0/�FRRO"�/HW�PH�FRXQW�WKH�ZD\V���
��WH[W!

��PHVVDJH!

Note: The empty tag saves you from having to code �IODJ!��IODJ! in order to have
a well-formed document. You can control which tags are allowed to be empty by
creating a Document Type Definition, or DTD. We’ll talk about that in a few
moments. If there is no DTD, then the document can contain any kinds of tags you
want, as long as the document is well-formed.

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

WHAT IS XML? 35
Comments in XML Files
XML comments look just like HTML comments:

�PHVVDJH�WR �\RX#\RXU$GGUHVV�FRP��IURP �PH#P\$GGUHVV�FRP��
VXEMHFW �;0/�,V�5HDOO\�&RRO�!

<!-- This is a comment -->
�WH[W!

+RZ�PDQ\�ZD\V�LV�;0/�FRRO"�/HW�PH�FRXQW�WKH�ZD\V���
��WH[W!

��PHVVDJH!

The XML Prolog
To complete this journeyman’s introduction to XML, note that an XML file
always starts with a prolog. The minimal prolog contains a declaration that iden-
tifies the document as an XML document, like this:

�"[PO�YHUVLRQ �����"!

The declaration may also contain additional information, like this:

�"[PO�YHUVLRQ ������HQFRGLQJ �,62���������VWDQGDORQH �\HV�"!

The XML declaration is essentially the same as the HTML header, �KWPO!,
except that it uses �"��"! and it may contain the following attributes:

version
Identifies the version of the XML markup language used in the data. This
attribute is not optional.

encoding
Identifies the character set used to encode the data. “ISO-8859-1” is “Latin-
1” the Western European and English language character set. (The default is
compressed Unicode: UTF-8.)

standalone
Tells whether or not this document references an external entity or an exter-
nal data type specification (see below). If there are no external references,
then “yes” is appropriate

The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are valid in the document, both declared in a Document Type Definition
(DTD) that can be defined directly within the prolog, as well as with pointers to

36 UNDERSTANDING XML
external specification files. But those are the subject of later tutorials. For more
information on these and many other aspects of XML, see the Recommended
Reading list of the w3c XML page at KWWS���ZZZ�Z��RUJ�;0/�.

Note: The declaration is actually optional. But it’s a good idea to include it when-
ever you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future, and if the data ever needs to be localized
for different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

Processing Instructions
An XML file can also contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

���"WDUJHW LQVWUXFWLRQV"!

where the target is the name of the application that is expected to do the process-
ing, and instructions is a string of characters that embodies the information or
commands for the application to process.

Since the instructions are application specific, an XML file could have multiple
processing instructions that tell different applications to do similar things,
though in different ways. The XML file for a slideshow, for example, could have
processing instructions that let the speaker specify a technical or executive-level
version of the presentation. If multiple presentation programs were used, the pro-
gram might need multiple versions of the processing instructions (although it
would be nicer if such applications recognized standard instructions).

Note: The target name “xml” (in any combination of upper or lowercase letters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you’re working with the parser later,
you’ll see that the method for handling processing instructions never sees the dec-
laration.)

http://www.w3.org/XML/

WHY IS XML IMPORTANT? 37
Why Is XML Important?
There are a number of reasons for XML’s surging acceptance. This section lists a
few of the most prominent.

Plain Text
Since XML is not a binary format, you can create and edit files with anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and makes it useful for storing small amounts of
data. At the other end of the spectrum, an XML front end to a database makes it
possible to efficiently store large amounts of XML data as well. So XML pro-
vides scalability for anything from small configuration files to a company-wide
data repository.

Data Identification
XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break up the data into parts, an email
program can process it, a search program can look for messages sent to particu-
lar people, and an address book can extract the address information from the rest
of the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

Stylability
When display is important, the stylesheet standard, XSL (page 45), lets you dic-
tate how to portray the data. For example, the stylesheet for:

�WR!\RX#\RXU$GGUHVV�FRP��WR!

can say:

1. Start a new line.

2. Display “To:” in bold, followed by a space

3. Display the destination data.

Which produces:

To: \RX#\RXU$GGUHVV

38 UNDERSTANDING XML
Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, since XML is inherently style-free, you can use a
completely different stylesheet to produce output in postscript, TEX, PDF, or
some new format that hasn’t even been invented yet. That flexibility amounts to
what one author described as “future-proofing” your information. The XML
documents you author today can be used in future document-delivery systems
that haven’t even been imagined yet.

Inline Reusability
One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can be included “in line” in a document.
The included sections look like a normal part of the document—you can search
the whole document at one time or download it in one piece. That lets you mod-
ularize your documents without resorting to links. You can single-source a sec-
tion so that an edit to it is reflected everywhere the section is used, and yet a
document composed from such pieces looks for all the world like a one-piece
document.

Linkability
Thanks to HTML, the ability to define links between documents is now regarded
as a necessity. The next section of this tutorial, XML and Related Specs: Digest-
ing the Alphabet Soup (page 42), discusses the link-specification initiative. This
initiative lets you define two-way links, multiple-target links, “expanding” links
(where clicking a link causes the targeted information to appear inline), and links
between two existing documents that are defined in a third.

Easily Processed
As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a �GW! tag can be delim-
ited by ��GW!, another �GW!, �GG!, or ��GO!. That makes for some difficult pro-
gramming. But in XML, the �GW! tag must always have a ��GW! terminator, or
else it will be defined as a �GW�! tag. That restriction is a critical part of the con-
straints that make an XML document well-formed. (Otherwise, the XML parser
won’t be able to read the data.) And since XML is a vendor-neutral standard, you

HOW CAN YOU USE XML? 39
can choose among several XML parsers, any one of which takes the work out of
processing XML data.

Hierarchical
Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, like stepping through a table of contents. They are also eas-
ier to rearrange, because each piece is delimited. In a document, for example,
you could move a heading to a new location and drag everything under it along
with the heading, instead of having to page down to make a selection, cut, and
then paste the selection into a new location.

How Can You Use XML?
 There are several basic ways to make use of XML:

• Traditional data processing, where XML encodes the data for a program to
process

• Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components

• Archiving—the foundation for document-driven programming, where the
customized version of a component is saved (archived) so it can be used
later

• Binding, where the DTD or schema that defines an XML data structure is
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing
XML is fast becoming the data representation of choice for the Web. It’s terrific
when used in conjunction with network-centric Java-platform programs that
send and retrieve information. So a client/server application, for example, could
transmit XML-encoded data back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an e-mail program expect to see tags named �),567! and �/$67!, or
�),5671$0(! and �/$671$0(!) The need for common standards will generate a

40 UNDERSTANDING XML
lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “translate” the tags in an XML document will be
important. Such mechanisms include projects like the RDF (page 49) initiative,
which defines “meat tags”, and the XSL (page 45) specification, which lets you
translate XML tags into other XML tags.

Document-Driven Programming (DDP)
The newest approach to using XML is to construct a document that describes
how an application page should look. The document, rather than simply being
displayed, consists of references to user interface components and business-logic
components that are “hooked together” to create an application on the fly.

Of course, it makes sense to utilize the Java platform for such components. Both
Java BeansTM for interfaces and Enterprise Java BeansTM for business logic can
be used to construct such applications. Although none of the efforts undertaken
so far are ready for commercial use, much preliminary work has already been
done.

Note: The Java programming language is also excellent for writing XML-process-
ing tools that are as portable as XML. Several Visual XML editors have been writ-
ten for the Java platform. For a listing of editors, processing tools, and other XML
resources, see the “Software” section of Robin Cover’s SGML/XML Web Page at
KWWS���ZZZ�RDVLV�RSHQ�RUJ�FRYHU�.

Binding
Once you have defined the structure of XML data using either a DTD or the one
of the schema standards, a large part of the processing you need to do has already
been defined. For example, if the schema says that the text data in a �GDWH! ele-
ment must follow one of the recognized date formats, then one aspect of the val-
idation criteria for the data has been defined—it only remains to write the code.
Although a DTD specification cannot go the same level of detail, a DTD (like a
schema) provides a grammar that tells which data structures can occur, in what
sequences. That specification tells you how to write the high-level code that pro-
cesses the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That process is
known as binding—creating classes that recognize and process different data

http://www.oasis-open.org/cover/

HOW CAN YOU USE XML? 41
elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, so you can focus on the programming that is unique to
your application.

Archiving
The Holy Grail of programming is the construction of reusable, modular compo-
nents. Ideally, you’d like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it in and instantiate it using its saved parameters. (For exam-
ple, if you saved a table component, its parameters might be the number of rows
and columns to display.) Archived components can also be shuffled around the
Web and used in a variety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classes if you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that’s
hard to do with a binary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object’s state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “search and replace”.

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For all of these reasons, XML-based
archiving is likely to become an important force in the not-too-distant future.

Summary
XML is pretty simple, and very flexible. It has many uses yet to be discovered—
we are just beginning to scratch the surface of its potential. It is the foundation
for a great many standards yet to come, providing a common language that dif-
ferent computer systems can use to exchange data with one another. As each
industry-group comes up with standards for what they want to say, computers
will begin to link to each other in ways previously unimaginable.

42 UNDERSTANDING XML
For more information on the background and motivation of XML, see this great
article in Scientific American at

KWWS���ZZZ�VFLDP�FRP����������LVVXH�����ERVDN�KWPO�

XML and Related Specs: Digesting the
Alphabet Soup

Now that you have a basic understanding of XML, it makes sense to get a high-
level overview of the various XML-related acronyms and what they mean. There
is a lot of work going on around XML, so there is a lot to learn.

The current APIs for accessing XML documents either serially or in random
access mode are, respectively, SAX (page 43) and DOM (page 43). The specifi-
cations for ensuring the validity of XML documents are DTD (page 44) (the
original mechanism, defined as part of the XML specification) and various
Schema Standards (page 45) proposals (newer mechanisms that use XML syntax
to do the job of describing validation criteria).

Other future standards that are nearing completion include the XSL (page 45)
standard—a mechanism for setting up translations of XML documents (for
example to HTML or other XML) and for dictating how the document is ren-
dered. The transformation part of that standard, XSLT (+XPATH) (page 45), is
completed and covered in this tutorial. Another effort nearing completion is the
XML Link Language specification (XML Linking (page 48)), which enables
links between XML documents.

Those are the major initiatives you will want to be familiar with. This section
also surveys a number of other interesting proposals, including the HTML-
lookalike standard, XHTML (page 49), and the meta-standard for describing the
information an XML document contains, RDF (page 49). There are also stan-
dards efforts that aim to extend XML, including XLink, and XPointer.

Finally, there are a number of interesting standards and standards-proposals that
build on XML, including Synchronized Multimedia Integration Language
(SMIL (page 51)), Mathematical Markup Language (MathML (page 51)), Scal-
able Vector Graphics (SVG (page 51)), and DrawML (page 51), as well as a
number of eCommerce standards.

http://www.sciam.com/1999/0599issue/0599bosak.html

BASIC STANDARDS 43
The remainder of this section gives you a more detailed description of these ini-
tiatives. To help keep things straight, it’s divided into:

• Basic Standards (page 43)

• Schema Standards (page 45)

• Linking and Presentation Standards (page 48)

• Knowledge Standards (page 49)

• Standards That Build on XML (page 50)

Skim the terms once, so you know what’s here, and keep a copy of this document
handy so you can refer to it whenever you see one of these terms in something
you’re reading. Pretty soon, you’ll have them all committed to memory, and
you’ll be at least “conversant” with XML!

Basic Standards
These are the basic standards you need to be familiar with. They come up in
pretty much any discussion of XML.

SAX
Simple API for XML

This API was actually a product of collaboration on the XML-DEV mailing list,
rather than a product of the W3C. It’s included here because it has the same
“final” characteristics as a W3C recommendation.

You can also think of this standard as the “serial access” protocol for XML. This
is the fast-to-execute mechanism you would use to read and write XML data in a
server, for example. This is also called an event-driven protocol, because the
technique is to register your handler with a SAX parser, after which the parser
invokes your callback methods whenever it sees a new XML tag (or encounters
an error, or wants to tell you anything else).

For more information on the SAX protocol, see Simple API for XML (page 85).

DOM
Document Object Model

44 UNDERSTANDING XML
The Document Object Model protocol converts an XML document into a collec-
tion of objects in your program. You can then manipulate the object model in any
way that makes sense. This mechanism is also known as the “random access”
protocol, because you can visit any part of the data at any time. You can then
modify the data, remove it, or insert new data. For more information on the
DOM specification, see Document Object Model (page 163).

DTD
Document Type Definition

The DTD specification is actually part of the XML specification, rather than a
separate entity. On the other hand, it is optional—you can write an XML docu-
ment without it. And there are a number of Schema Standards (page 45) propos-
als that offer more flexible alternatives. So it is treated here as though it were a
separate specification.

A DTD specifies the kinds of tags that can be included in your XML document,
and the valid arrangements of those tags. You can use the DTD to make sure you
don’t create an invalid XML structure. You can also use it to make sure that the
XML structure you are reading (or that got sent over the net) is indeed valid.

Unfortunately, it is difficult to specify a DTD for a complex document in such a
way that it prevents all invalid combinations and allows all the valid ones. So
constructing a DTD is something of an art. The DTD can exist at the front of the
document, as part of the prolog. It can also exist as a separate entity, or it can be
split between the document prolog and one or more additional entities.

However, while the DTD mechanism was the first method defined for specifying
valid document structure, it was not the last. Several newer schema specifica-
tions have been devised. You’ll learn about those momentarily.

For more information, see Creating a Document Type Definition
(DTD) (page 124).

Namespaces
The namespace standard lets you write an XML document that uses two or more
sets of XML tags in modular fashion. Suppose for example that you created an
XML-based parts list that uses XML descriptions of parts supplied by other
manufacturers (online!). The “price” data supplied by the subcomponents would
be amounts you want to total up, while the “price” data for the structure as a

SCHEMA STANDARDS 45
whole would be something you want to display. The namespace specification
defines mechanisms for qualifying the names so as to eliminate ambiguity. That
lets you write programs that use information from other sources and do the right
things with it.

The latest information on namespaces can be found at
KWWS���ZZZ�Z��RUJ�75�5(&�[PO�QDPHV.

XSL
Extensible Stylesheet Language

The XML standard specifies how to identify data, not how to display it. HTML,
on the other hand, told how things should be displayed without identifying what
they were. The XSL standard has two parts, XSLT (the transformation standard,
described next) and XSL-FO (the part that covers formatting objects, also known
as flow objects). XSL-FO gives you the ability to define multiple areas on a page
and then link them together. When a text stream is directed at the collection, it
fills the first area and then “flows” into the second when the first area is filled.
Such objects are used by newsletters, catalogs, and periodical publications.

The latest W3C work on XSL is at KWWS���ZZZ�Z��RUJ�75�:'�[VO.

XSLT (+XPATH)
Extensible Stylesheet Language for Transformations

The XSLT transformation standard is essentially a translation mechanism that
lets you specify what to convert an XML tag into so that it can be displayed—for
example, in HTML. Different XSL formats can then be used to display the same
data in different ways, for different uses. (The XPATH standard is an addressing
mechanism that you use when constructing transformation instructions, in order
to specify the parts of the XML structure you want to transform.)

For more information, see XML Stylesheet Language for
Transformations (page 221).

Schema Standards
A DTD makes it possible to validate the structure of relatively simple XML doc-
uments, but that’s as far as it goes.

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-xsl

46 UNDERSTANDING XML
A DTD can’t restrict the content of elements, and it can’t specify complex rela-
tionships. For example, it is impossible to specify with a DTD that a <heading>
for a <book> must have both a <title> and an <author>, while a <heading> for a
<chapter> only needs a <title>. In a DTD, once you only get to specify the struc-
ture of the <heading> element one time. There is no context-sensitivity.

This issue stems from the fact that a DTD specification is not hierarchical. For a
mailing address that contained several “parsed character data” (PCDATA) ele-
ments, for example, the DTD might look something like this:

��(/(0(17�PDLO$GGUHVV��name��DGGUHVV��]LSFRGH�!
��(/(0(17�name���3&'7�!
��(/(0(17�DGGUHVV���3&'7�!
��(/(0(17�]LSFRGH���3&'7�!

As you can see, the specifications are linear. That fact forces you to come up
with new names for similar elements in different settings. So if you wanted to
add another “name” element to the DTD that contained the <firstname>, <mid-
dleInitial>, and <lastName>, then you would have to come up with another iden-
tifier. You could not simply call it “name” without conflicting with the <name>
element defined for use in a <mailAddress>.

Another problem with the non hierarchical nature of DTD specifications is that it
is not clear what comments are meant to explain. A comment at the top like ���
��$GGUHVV�XVHG�IRU�PDLOLQJ�YLD�WKH�SRVWDO�V\VWHP���! would apply to
all of the elements that constitute a mailing address. But a comment like ����
$GGUHVVHH� ��! would apply to the QDPH element only. On the other hand, a
comment like ����� $� ��GLJLW� VWULQJ� ��! would apply specifically to the
�3&'7 part of the]LSFRGH element, to describe the valid formats. Finally,
DTDs do not allow you to formally specify field-validation criteria, such as the
5-digit (or 5 and 4) limitation for the]LSFRGH field.

Finally, a DTD uses syntax which substantially different from XML, so it can’t
be processed with a standard XML parser. That means you can’t read a DTD into
a DOM, for example, modify it, and then write it back out again.

To remedy these shortcomings, a number of proposals have been made for a
more database-like, hierarchical “schema” that specifies validation criteria. The
major proposals are shown below.

SCHEMA STANDARDS 47
XML Schema
A large, complex standard that has two parts. One part specifies structure rela-
tionships. (This is the largest and most complex part.) The other part specifies
mechanisms for validating the content of XML elements by specifying a (poten-
tially very sophisticated) datatype for each element. The good news is that XML
Schema for Structures lets you specify any kind of relationship you can conceive
of. The bad news is that it takes a lot of work to implement, and it takes a bit of
learning to use. Most of the alternatives provide for simpler structure definitions,
while incorporating the XML Schema datatype standard.

For more information on the XML Schema proposal, see the W3C specs XML
Schema (Structures) and XML Schema (Datatypes).

RELAX
Regular Language description for XML

Simpler than XML Structure Schema, RELAX uses XML syntax to express the
structure relationships that are present in a DTD, and adds the XML Datatype
Schema mechanisms, as well. Includes a DTD to RELAX converter.

For more information on Relax, see KWWS���ZZZ�[PO�JU�MS�UHOD[�.

SOX
Schema for Object-oriented XML

SOX is a schema proposal that includes extensible data types, namespaces, and
embedded documentation.

For more information on SOX, see KWWS���ZZZ�Z��RUJ�75�127(�62;.

TREX
Tree Regular Expressions for XML

A means of expressing validation criteria by describing a pattern for the struc-
ture and content of an XML document. Includes a RELAX to TREX converter.

For more information on TREX, see KWWS���ZZZ�WKDLRSHQVRXUFH�FRP�WUH[�.

http://www.xml.gr.jp/relax/
http://www.w3.org/TR/NOTE-SOX
http://www.thaiopensource.com/trex/

48 UNDERSTANDING XML
Schematron
Schema for Object-oriented XML

An assertion-based schema mechanism that allows for sophisticated validation.

For more information on Schematron, see
KWWS���ZZZ�DVFF�QHW�[PO�UHVRXUFH�VFKHPDWURQ�VFKHPDWURQ�KWPO.

Linking and Presentation Standards
Arguably the two greatest benefits provided by HTML were the ability to link
between documents, and the ability to create simple formatted documents (and,
eventually, very complex formatted documents). The following standards aim at
preserving the benefits of HTML in the XML arena, and to adding additional
functionality, as well.

XML Linking
These specifications provide a variety of powerful linking mechanisms, and are
sure to have a big impact on how XML documents are used.

 XLink
The XLink protocol is a proposed specification to handle links between
XML documents. This specification allows for some pretty sophisticated
linking, including two-way links, links to multiple documents, “expanding”
links that insert the linked information into your document rather than
replacing your document with a new page, links between two documents
that are created in a third, independent document, and indirect links (so you
can point to an “address book” rather than directly to the target document—
updating the address book then automatically changes any links that use it).

XML Base
This standard defines an attribute for XML documents that defines a “base”
address, that is used when evaluating a relative address specified in the doc-
ument. (So, for example, a simple file name would be found in the base-
address directory.)

XPointer
In general, the XLink specification targets a document or document-segment
using its ID. The XPointer specification defines mechanisms for “addressing
into the internal structures of XML documents”, without requiring the author
of the document to have defined an ID for that segment. To quote the spec, it

http://www.ascc.net/xml/resource/schematron/schematron.html

KNOWLEDGE STANDARDS 49
provides for “reference to elements, character strings, and other parts of
XML documents, whether or not they bear an explicit ID attribute”.

For more information on the XML Linking standards, see
KWWS���ZZZ�Z��RUJ�;0/�/LQNLQJ.

XHTML
The XHTML specification is a way of making XML documents that look and act
like HTML documents. Since an XML document can contain any tags you care
to define, why not define a set of tags that look like HTML? That’s the thinking
behind the XHTML specification, at any rate. The result of this specification is a
document that can be displayed in browsers and also treated as XML data. The
data may not be quite as identifiable as “pure” XML, but it will be a heck of a lot
easier to manipulate than standard HTML, because XML specifies a good deal
more regularity and consistency.

For example, every tag in a well-formed XML document must either have an
end-tag associated with it or it must end in �!. So you might see �S!�����S!, or
you might see �S�!, but you will never see �S! standing by itself. The upshot of
that requirement is that you never have to program for the weird kinds of cases
you see in HTML where, for example, a �GW! tag might be terminated by ��'7!,
by another �'7!, by �GG!, or by ��GO!. That makes it a lot easier to write code!

The XHTML specification is a reformulation of HTML 4.0 into XML. The latest
information is at KWWS���ZZZ�Z��RUJ�75�[KWPO�.

Knowledge Standards
When you start looking down the road five or six years, and visualize how the
information on the Web will begin to turn into one huge knowledge base (the
“semantic Web”). For the latest on the semantic Web, visit
KWWS���ZZZ�Z��RUJ������VZ�.

In the meantime, here are the fundamental standards you’ll want to know about:

RDF
Resource Description Framework

RDF is a proposed standard for defining data about data. Used in conjunction
with the XHTML specification, for example, or with HTML pages, RDF could

http://www.w3.org/XML/Linking
http://www.w3.org/TR/xhtml1
http://www.w3.org/2001/sw/

50 UNDERSTANDING XML
be used to describe the content of the pages. For example, if your browser stored
your ID information as),5671$0(, /$671$0(, and (0$,/, an RDF description
could make it possible to transfer data to an application that wanted 1$0(and
(0$,/$''5(66. Just think: One day you may not need to type your name and
address at every Web site you visit!

For the latest information on RDF, see KWWS���ZZZ�Z��RUJ�75�5(&�UGI�V\Q�
WD[.

RDF Schema
The RDF Schema proposal allows the specification of consistency rules and
additional information that describe how the statements in a Resource Descrip-
tion Framework (RDF) should be interpreted.

For more information on the RDF Schema recommendation, see
KWWS���ZZZ�Z��RUJ�75�UGI�VFKHPD.

XTM
XML Topic Maps

In many ways a simpler, more readily usable knowledge-representation than
RDF, the topic maps standard is one worth watching. So far, RDF is the W3C
standard for knowledge representation, but topic maps could possibly become
the “developer’s choice” among knowledge representation standards.

For more information on XML Topic Maps, KWWS���ZZZ�WRSLF�
PDSV�RUJ�[WP�LQGH[�KWPO. For information on topic maps and the Web, see
KWWS���ZZZ�WRSLFPDSV�RUJ�.

Standards That Build on XML
The following standards and proposals build on XML. Since XML is basically a
language-definition tool, these specifications use it to define standardized lan-
guages for specialized purposes.

Extended Document Standards
These standards define mechanisms for producing extremely complex docu-
ments—books, journals, magazines, and the like—using XML.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/

STANDARDS THAT BUILD ON XML 51
SMIL
Synchronized Multimedia Integration Language

SMIL is a W3C recommendation that covers audio, video, and animations. It
also addresses the difficult issue of synchronizing the playback of such elements.

For more information on SMIL, see KWWS���ZZZ�Z��RUJ�75�5(&�VPLO.

MathML
Mathematical Markup Language

MathML is a W3C recommendation that deals with the representation of mathe-
matical formulas.

For more information on MathML, see KWWS���ZZZ�Z��RUJ�75�5(&�0DWK0/.

SVG
Scalable Vector Graphics

SVG is a W3C working draft that covers the representation of vector graphic
images. (Vector graphic images that are built from commands that say things like
“draw a line (square, circle) from point xi to point m,n” rather than encoding the
image as a series of bits. Such images are more easily scalable, although they
typically require more processing time to render.)

For more information on SVG, see KWWS���ZZZ�Z��RUJ�75�:'�69*.

DrawML
Drawing Meta Language

DrawML is a W3C note that covers 2D images for technical illustrations. It also
addresses the problem of updating and refining such images.

For more information on DrawML, see KWWS���ZZZ�Z��RUJ�75�127(�GUDZPO.

eCommerce Standards
These standards are aimed at using XML in the world of business-to-business
(B2B) and business-to-consumer (B2C) commerce.

ICE
Information and Content Exchange

http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/WD-SVG
http://www.w3.org/TR/NOTE-drawml

52 UNDERSTANDING XML
ICE is a protocol for use by content syndicators and their subscribers. It focuses
on “automating content exchange and reuse, both in traditional publishing con-
texts and in business-to-business relationships”.

For more information on ICE, see KWWS���ZZZ�Z��RUJ�75�127(�LFH.

ebXML
Electronic Business with XML

This standard aims at creating a modular electronic business framework using
XML. It is the product of a joint initiative by the United Nations (UN/CEFACT)
and the Organization for the Advancement of Structured Information Systems
(OASIS).

For more information on ebXML, see KWWS���ZZZ�HE[PO�RUJ�.

cxml
Commerce XML

cxml is a RosettaNet (ZZZ�URVHWWDQHW�RUJ) standard for setting up interactive
online catalogs for different buyers, where the pricing and product offerings are
company specific. Includes mechanisms to handle purchase orders, change
orders, status updates, and shipping notifications.

For more information on cxml, see KWWS���ZZZ�F[PO�RUJ�

CBL
Common Business Library

CBL is a library of element and attribute definitions maintained by Com-
merceNet (ZZZ�FRPPHUFH�QHW).

For more information on CBL and a variety of other initiatives that work
together to enable eCommerce applications, see KWWS���ZZZ�FRP�
PHUFH�QHW�SURMHFWV�FXUUHQW�
SURMHFWV�HFR�ZJ�H&RB)UDPHZRUNB6SHFLILFDWLRQV�KWPO.

Summary
XML is becoming a widely-adopted standard that is being used in a dizzying
variety of application areas.

http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/
http://www.cxml.org/
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html

SAVING YOURSELF SOME WORK 53
Designing an XML Data Structure
This section covers some heuristics you can use when making XML design deci-
sions.

Saving Yourself Some Work
Whenever possible, use an existing DTD. It’s usually a lot easier to ignore the
things you don’t need than to design your own from scratch. In addition, using a
standard DTD makes data interchange possible, and may make it possible to use
data-aware tools developed by others.

So, if an industry standard exists, consider referencing that DTD with an external
parameter entity. One place to look for industry-standard DTDs is at the reposi-
tory created by the Organization for the Advancement of Structured Information
Standards (OASIS) at KWWS���ZZZ�;0/�RUJ. Another place to check is Com-
merceOne’s XML Exchange at KWWS���ZZZ�[PO[�FRP, which is described as “a
repository for creating and sharing document type definitions”.

Note: Many more good thoughts on the design of XML structures are at the OASIS
page, KWWS���ZZZ�RDVLV�RSHQ�RUJ�FRYHU�HOHPHQWVQGWWUV�KWPO.

Attributes and Elements
One of the issues you will encounter frequently when designing an XML struc-
ture is whether to model a given data item as a subelement or as an attribute of an
existing element. For example, you could model the title of a slide either as:

�VOLGH!
�WLWOH!7KLV�LV�WKH�WLWOH��WLWOH!

��VOLGH!

or as:

�VOLGH�WLWOH �7KLV�LV�WKH�WLWOH�!�����VOLGH!

In some cases, the different characteristics of attributes and elements make it
easy to choose. Let’s consider those cases first, and then move on to the cases
where the choice is more ambiguous.

http://www.XML.org
http://www.xmlx.com
http://www.oasis-open.org/cover/elementsAndAttrs.html

54 UNDERSTANDING XML
Forced Choices
Sometimes, the choice between an attribute and an element is forced on you by
the nature of attributes and elements. Let’s look at a few of those considerations:

The data contains substructures
In this case, the data item must be modeled as an element. It can’t be mod-
eled as an attribute, because attributes take only simple strings. So if the title
can contain emphasized text like this: 7KH��HP!%HVW��HP!�&KRLFH, then the
title must be an element.

The data contains multiple lines
Here, it also makes sense to use an element. Attributes need to be simple,
short strings or else they become unreadable, if not unusable.

The data changes frequently
When the data will be frequently modified, especially by the end user, then it
makes sense to model it as an element. XML-aware editors tend to make it
very easy to find and modify element data. Attributes can be somewhat
harder to get to, and therefore somewhat more difficult to modify.

The data is a small, simple string that rarely if ever changes
This is data that can be modeled as an attribute. However, just because you
can does not mean that you should. Check the “Stylistic Choices” section
next, to be sure.

The data is confined to a small number of fixed choices
Here is one time when it really makes sense to use an attribute. Using the
DTD, the attribute can be prevented from taking on any value that is not in
the preapproved list. An XML-aware editor can even provide those choices
in a drop-down list. Note, though, that the gain in validity restriction comes
at a cost in extensibility. The author of the XML document cannot use any
value that is not part of the DTD. If another value becomes useful in the
future, the DTD will have to be modified before the document author can
make use of it.

Stylistic Choices
As often as not, the choices are not as cut and dried as those shown above. When
the choice is not forced, you need a sense of “style” to guide your thinking. The
question to answer, then, is what makes good XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as
defining “style” when it comes to art or music. There are a few ways to approach

ATTRIBUTES AND ELEMENTS 55
it, however. The goal of this section is to give you some useful thoughts on the
subject of “XML style”.

Visibility
The first heuristic for thinking about XML elements and attributes uses the
concept of visibility. If the data is intended to be shown—to be displayed to
some end user—then it should be modeled as an element. On the other hand,
if the information guides XML processing but is never displayed, then it
may be better to model it as an attribute. For example, in order-entry data for
shoes, shoe size would definitely be an element. On the other hand, a manu-
facturer’s code number would be reasonably modeled as an attribute.

Consumer / Provider
Another way of thinking about the visibility heuristic is to ask who is the
consumer and/or provider of the information. The shoe size is entered by a
human sales clerk, so it’s an element. The manufacturer’s code number for a
given shoe model, on the other hand, may be wired into the application or
stored in a database, so that would be an attribute. (If it were entered by the
clerk, though, it should perhaps be an element.) You can also think in terms
of who or what is processing the information. Things can get a bit murky at
that end of the process, however. If the information “consumers” are order-
filling clerks, will they need to see the manufacturer’s code number? Or, if
an order-filling program is doing all the processing, which data items should
be elements in that case? Such philosophical distinctions leave a lot of room
for differences in style.

Container vs. Contents
Another way of thinking about elements and attributes is to think of an ele-
ment as a container. To reason by analogy, the contents of the container
(water or milk) correspond to XML data modeled as elements. On the other
hand, characteristics of the container (blue or white, pitcher or can) corre-
spond to XML data modeled as attributes. Good XML style will, in some
consistent way, separate each container’s contents from its characteristics.

To show these heuristics at work: In a slideshow the type of the slide (executive
or technical) is best modeled as an attribute. It is a characteristic of the slide that
lets it be selected or rejected for a particular audience. The title of the slide, on
the other hand, is part of its contents. The visibility heuristic is also satisfied
here. When the slide is displayed, the title is shown but the type of the slide isn’t.
Finally, in this example, the consumer of the title information is the presentation
audience, while the consumer of the type information is the presentation pro-
gram.

56 UNDERSTANDING XML
Normalizing Data
The section Designing an XML Data Structure (page 53) shows how to create an
external entity that you can reference in an XML document. Such an entity has
all the advantages of a modularized routine—changing that one copy affects
every document that references it. The process of eliminating redundancies is
known as normalizing, so defining entities is one good way to normalize your
data.

In an HTML file, the only way to achieve that kind of modularity is with HTML
links—but of course the document is then fragmented, rather than whole. XML
entities, on the other hand, suffer no such fragmentation. The entity reference
acts like a macro—the entity’s contents are expanded in place, producing a
whole document, rather than a fragmented one. And when the entity is defined in
an external file, multiple documents can reference it.

The considerations for defining an entity reference, then, are pretty much the
same as those you would apply to modularized program code:

• Whenever you find yourself writing the same thing more than once, think
entity. That lets you write it one place and reference it multiple places.

• If the information is likely to change, especially if it is used in more than
one place, definitely think in terms of defining an entity. An example is
defining SURGXFW1DPH as an entity so that you can easily change the doc-
uments when the product name changes.

• If the entity will never be referenced anywhere except in the current file,
define it in the local_subset of the document’s DTD, much as you would
define a method or inner class in a program.

• If the entity will be referenced from multiple documents, define it as an
external entity, the same way that would define any generally usable class
as an external class.

External entities produce modular XML that is smaller, easier to update and
maintain. They can also make the resulting document somewhat more difficult to
visualize, much as a good OO design can be easy to change, once you under-
stand it, but harder to wrap your head around at first.

You can also go overboard with entities. At an extreme, you could make an
entity reference for the word “the”—it wouldn’t buy you much, but you could do
it.

NORMALIZING DTDS 57
Note: The larger an entity is, the less likely it is that changing it will have unin-
tended effects. When you define an external entity that covers a whole section on
installation instructions, for example, making changes to the section is unlikely to
make any of the documents that depend on it come out wrong. Small inline substi-
tutions can be more problematic, though. For example, if SURGXFW1DPH is defined
as an entity, the name change can be to a different part of speech, and that can kill
you! Suppose the product name is something like “HtmlEdit”. That’s a verb. So you
write, “You can HtmlEdit your file...”. Then, when the official name is decided, it’s
“Killer”. After substitution, that becomes “You can Killer your file...”. Argh. Still,
even if such simple substitutions can sometimes get you in trouble, they can also
save a lot of work. To be totally safe, though, you could set up entities named SUR�
GXFW1RXQ, SURGXFW9HUE, SURGXFW$GM, and SURGXFW$GYHUE!

Normalizing DTDs
Just as you can normalize your XML document, you can also normalize your
DTD declarations by factoring out common pieces and referencing them with a
parameter entity. This process is described in the SAX tutorial in Defining
Parameter Entities and Conditional Sections (page 146). Factoring out the DTDs
(also known as modularizing or normalizing) gives the same advantages and dis-
advantages as normalized XML—easier to change, somewhat more difficult to
follow.

You can also set up conditionalized DTDs, as described in the SAX tutorial sec-
tion Conditional Sections (page 148). If the number and size of the conditional
sections is small relative to the size of the DTD as a whole, that can let you “sin-
gle source” a DTD that you can use for multiple purposes. If the number of con-
ditional sections gets large, though, the result can be a complex document that is
difficult to edit.

58 UNDERSTANDING XML

Getting Started With
Tomcat

Debbie Carson

THIS chapter shows you how to develop, deploy, and run a simple Web appli-
cation that consists of a currency conversion class and a Web page client created
with JavaServer Pages™ technology (JSP™). This application will be deployed
to and run on Tomcat, the Java™ Servlet and JSP container included with the
Java Web Services Developer Pack (“Java WSDP”). This chapter is intended as
an introduction to using Tomcat to deploy Web services and Web applications.
The material in this chapter provides a basis for other chapters in this tutorial.

In This Chapter
Setting Up 60

Getting the Example Code 60
Checking the Environment Variables 61

Creating the Getting Started Application 61
The Converter Class 61
The Web Client 62

Building and Deploying the Getting Started Application Using Ant 64
Setting the CLASSPATH 64
Creating the Build File for Ant 64
Compiling the Source Files 66
Deploying the Application 66

Running the Getting Started Application 67
Starting Tomcat 67
Running the Web Client 67
59

Bios.html#debbieCarson

60 GETTING STARTED WITH TOMCAT
Shutting Down Tomcat 68
Modifying the Application 68

Modifying a Class File 69
Modifying the Web Client 69
Reloading the Application 69

Common Problems and Their Solutions 70
Compilation Errors 70
Deployment Errors 71

Setting Up
Before you start developing the example application, you should follow the
instructions in this section and in About the Examples (page xvi).

Getting the Example Code
The source code for the example is in
<JWDSP_HOME>/GRFV�WXWRULDO�H[DPSOHV�JV�, a directory that is created
when you unzip the tutorial bundle. If you are viewing this tutorial online, you
can download the tutorial bundle from:

KWWS���MDYD�VXQ�FRP�ZHEVHUYLFHV�GRZQORDGV�ZHEVHUYLFHVWXWRULDO�KWPO

The example application at <JWDSP_HOME>�GRFV�WXWRULDO�H[DPSOHV�JV�
consists of the following files.

• &RQYHUWHU�MDYD - The Java class that contains the methods GROODU7R<HQ
and \HQ7R(XUR� These methods are used to convert U.S. dollars to Yen,
then convert Yen to Euros.

• LQGH[�MVS - The Web client, which is a JavaServer Pages page that accepts
the value to be converted, the buttons to submit the value, and the result of
the conversion.

• EXLOG�[PO - The build file that uses the DQW tool to build and deploy the
Web application.

The rest of this document shows how this example application was created, built,
deployed, and run. If you would like to skip the information on creating the
example application, you can go directly to the sections describing how to build,
deploy, and run the example application, starting with Building and Deploying
the Getting Started Application Using Ant (page 64).

http://java.sun.com/webservices/downloads/webservicestutorial.html

CHECKING THE ENVIRONMENT VARIABLES 61
Checking the Environment Variables
The installation instructions for the Java Web Services Developer Pack explain
how to set the required environment variables. Please verify that the environ-
ment variables have been set to the values noted in the following table.

Creating the Getting Started
Application

The example application contains a &RQYHUWHU class and a Web component. For
this example, we will create a top-level project source directory named JV�. All
of the files in this example application are created in this directory.

The Converter Class
The &RQYHUWHU class used in the example application is used in conjunction with
a JavaServer Pages page. The resulting application is a form that enables you to
convert American dollars to Euros or Yen. The source code for the &RQYHUWHU
class is in the <JWDSP_HOME>/GRFV�H[DPSOHV�JV� directory.

Coding the Converter Class
The &RQYHUWHU class for this example implements two methods, GROODU7R<HQ
and \HQ7R(XUR. The source code for the &RQYHUWHU class follows.

Table 1 Required Environment Variables

Environment
Variable Value

-9B+20(
The location of the Java™ 2 Platform, Standard Edition (J2SE™)
installation.

-:6'3B+20(The location of the Java Web Services Developer Pack installation.

3$7+
Should include the ELQ directories of the Java Web Services Developer
Pack and J2SE installations. Make sure that these directories are located
at the front of your path statement.

62 GETTING STARTED WITH TOMCAT
LPSRUW�MDYD�PDWK�
�

SXEOLF�FODVV�&RQYHUWHU�^
�

VWDWLF�%LJ'HFLPDO�\HQ5DWH� �QHZ�%LJ'HFLPDO�´��������µ��
VWDWLF�%LJ'HFLPDO�HXUR5DWH� �QHZ�%LJ'HFLPDO�´������µ��

���SXEOLF�VWDWLF�%LJ'HFLPDO�GROODU7R<HQ�%LJ'HFLPDO�GROODUV��^
������%LJ'HFLPDO�UHVXOW� �GROODUV�PXOWLSO\�\HQ5DWH��
������UHWXUQ�UHVXOW�VHW6FDOH���%LJ'HFLPDO�5281'B83��
���`

���SXEOLF�VWDWLF�%LJ'HFLPDO�\HQ7R(XUR�%LJ'HFLPDO�\HQ��^
������%LJ'HFLPDO�UHVXOW� �\HQ�PXOWLSO\�HXUR5DWH��
������UHWXUQ�UHVXOW�VHW6FDOH���%LJ'HFLPDO�5281'B83��
���`

���SXEOLF�&RQYHUWHU���^`
`

The Web Client
The Web client is contained in the JSP page
<JWDSP_HOME>�GRFV�WXWRULDOV�H[DPSOHV�JV�LQGH[�MVS. A JSP page is a
text-based document that contains both static and dynamic content. The static
content is the template data that can be expressed in any text-based format, such
as HTML, WML, or XML. JSP elements construct the dynamic content.

Coding the Web Client
The JSP page, LQGH[�MVS, is used to create the form that will appear in the Web
browser when the application client is running. This JSP page is a typical mix-
ture of static HTML markup and JSP elements. If you have developed Web
pages, you are probably familiar with the HTML document structure statements
(�KHDG!, �ERG\!, and so on) and the HTML statements that create a form

THE WEB CLIENT 63
�IRUP! and a menu �VHOHFW!. The highlighted lines in the example contain the
following types of JSP constructs:

• Directives (<%@page ... %>) import classes in the &RQYHUWHU class, and set
the content type returned by the page.

• Scriptlets (<% ... %>) retrieve the value of the DPRXQW request parameter,
convert it to a %LJ'HFLPDO, and convert the value to Yen or Euro.

• Expressions (<%= ... %>) insert the value of the DPRXQW into the response.

The source code for LQGH[�MVS follows.

<%@ page import="Converter,java.math.*" %>
<%@ page contentType="text/html; charset=ISO-8859-1" %>
�KWPO!
�KHDG!

��WLWOH!&RQYHUWHU��WLWOH!
��KHDG!

�ERG\�EJFRORU �ZKLWH�!
�K�!�FHQWHU!&RQYHUWHU��FHQWHU!��K�!
�KU!
�S!(QWHU�DQ�DPRXQW�WR�FRQYHUW���S!
�IRUP�PHWKRG �JHW�!
�LQSXW�W\SH �WH[W��QDPH �DPRXQW��VL]H ����!
�EU!
�S!
�LQSXW�W\SH �VXEPLW��YDOXH �6XEPLW�!
�LQSXW�W\SH �UHVHW��YDOXH �5HVHW�!
��IRUP!
<%

 String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal (amount);
%>

�S!<%= amount %>�GROODUV�DUH��
<%= Converter.dollarToYen(d) %>��<HQ�

�S!<%= amount %>�<HQ�DUH�
<%= Converter.yenToEuro(d) %>��(XUR�

<%
 }

%>
��ERG\!
��KWPO!

64 GETTING STARTED WITH TOMCAT
Building and Deploying the Getting
Started Application Using Ant

Now the example Web application is ready to build and deploy.

Setting the CLASSPATH
To build and run the example code, you will need to set the CLASSPATH vari-
able properly. Instructions for setting up the CLASSPATH can be found online at

KWWS���MDYD�VXQ�FRP�M�VH�����GRFV�WRROGRFV�VRODULV�FODVVSDWK�KWPO

For this example, the CLASSPATH, which will need to include the
<JWSDP_HOME>�ZHEDSSV�JV�:(%�,1)�FODVVHV directory, is set in the build
file described in the next section. Information on what directories need to be
included in the CLASSPATH can be found at “Managing Files” in the Java™
Tutorial, which can be viewed from:

KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�MDYD�LQWHUSDFN�PDQDJLQJ�
ILOHV�KWPO

Creating the Build File for Ant
This release of the Java Web Services Developer Pack includes DQW, a make tool
that is portable across platforms. Documentation for the DQW tool can be found in
the file LQGH[�KWPO from the <JWDSP_HOME>/GRFV�DQW� directory of your Java
WSDP installation.

To use DQW for this example, create the file EXLOG�[PO in the JV� directory. The
code for this file follows:

<!-- Setting up the Getting Started example to prepare to build
and deploy -->

�SURMHFW�QDPH �ZVSDFN�JHWWLQJ�VWDUWHG�H[DPSOH��GHIDXOW ���
EDVHGLU ���!

�WDUJHW�QDPH �LQLW�!
�WVWDPS�!

��WDUJHW!

<!-- This section sets SURSHUWLHV�XVHG�LQ�WKH�UHVW�RI�WKLV
EXLOG�ILOH���!

�SURSHUW\�QDPH �EXLOG��YDOXH �EXLOG���!

http://java.sun.com/docs/books/tutorial/java/interpack/managingfiles.html
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/classpath.html

CREATING THE BUILD FILE FOR ANT 65
�SURSHUW\�HQYLURQPHQW �P\HQY���!

<!-- These libraries need to be included in the CLASSPATH -->
�SDWK�LG �FODVVSDWK�!
�ILOHVHW�GLU ��^P\HQY�-:6'3B+20(`�FRPPRQ�OLE�!
�LQFOXGH�QDPH �
�MDU��!
��ILOHVHW!
��SDWK!

<!-- This section prepares the directory structure needed
for Web applications -->

�WDUJHW�QDPH �SUHSDUH��GHSHQGV �LQLW�
GHVFULSWLRQ �&UHDWH�EXLOG�GLUHFWRULHV��!

�PNGLU�GLU ��^EXLOG`�:(%�,1)�FODVVHV���!
��WDUJHW!

<!-- This section compiles the Java files and copies the
HTML and JSP pages to the appropriate locations -->

�WDUJHW�QDPH �EXLOG��GHSHQGV �SUHSDUH�
GHVFULSWLRQ �&RPSLOH�DSS�-DYD�ILOHV�DQG�FRS\�+70/�DQG�-63
SDJHV��!

�MDYDF�VUFGLU ����GHVWGLU ��^EXLOG`�:(%�,1)�FODVVHV�!
�LQFOXGH�QDPH �

�
�MDYD���!
�FODVVSDWK�UHILG �FODVVSDWK��!

��MDYDF!
�FRS\�WRGLU ��^EXLOG`�!

�ILOHVHW�GLU ���!
�LQFOXGH�QDPH �
�KWPO���!
�LQFOXGH�QDPH �
�MVS���!

��ILOHVHW!
��FRS\!

��WDUJHW!

<!-- This section deploys the application by copying the
appropriate files to the webapps/ directory -->

�WDUJHW�QDPH �GHSOR\��GHSHQGV �EXLOG�
GHVFULSWLRQ �'HSOR\�DSS�WR�ZHEDSSV��!

�FRS\�WRGLU ��^P\HQY�-:6'3B+20(`�ZHEDSSV�JV�!
�ILOHVHW�GLU ��^EXLOG`���!

��FRS\!
��WDUJHW!�

��SURMHFW!

66 GETTING STARTED WITH TOMCAT
Compiling the Source Files
Tomcat automatically compiles JSP pages. The steps for compiling the Java
class (&RQYHUWHU�MDYD) follows.

1. In a terminal window, go to the JV� directory if you are creating the appli-
cation on your own, or go to the
<JWDSP_HOME>/GRFV�WXWRULDO�H[DPSOHV�JV� directory if you are com-
piling the example files downloaded with the tutorial.

2. Type the following command to build the Java files:

DQW�EXLOG

This command compiles the source files for the &RQYHUWHU class. It places the
resulting class files in the JV�EXLOG�:(%�,1)�FODVVHV��directory as specified
in the build target in EXLOG�[PO.

Deploying the Application
A Web application is defined as a hierarchy of directories and files in a standard
layout. In this example, the hierarchy is accessed in an “unpacked” form, where
each directory and file exists in the file system separately. In later releases of the
Java Web Services Developer Pack, this chapter will discuss creating a Web
ARchive (WAR) file for deploying your application and handling security issues.
This section includes information for deploying your application. For informa-
tion on handling security issues in this release, read Security Manager How-To in
<JWDSP_HOME>/GRFV�WRPFDW�VHFXULW\�PDQDJHU�KRZWR�KWPO.

The EXLOG�[PO file includes commands for deploying the Web application. The
steps for deploying this Web application follow.

1. In a terminal window, go to the JV��directory.

2. Type the following command to deploy the Web application files:

DQW�GHSOR\

This command copies the Web client file, LQGH[�MVS, to
�JWSDP_HOME!�ZHEDSSV�JV� and copies the Java class file, &RQYHUWHU�FODVV,
to �JWSDP_HOME!�ZHEDSSV�JV�:(%�,1)�FODVVHV�.

STARTING TOMCAT 67
Running the Getting Started
Application

To run the application, you need to start Tomcat, then run the JSP page from a
Web browser. Documentation for Tomcat can be found at
<JWDSP_HOME>�GRFV�WRPFDW�LQGH[�KWPO�

Starting Tomcat
To start Tomcat, type the following command in a terminal window. This com-
mand uses the environment variable -:6'3B+20(.

�-:6'3B+20(�ELQ�VWDUWXS�VK �8QL[�SODWIRUP�

�-:6'3B+20(�?ELQ?VWDUWXS �0LFURVRIW�:LQGRZV�

The startup script starts the task in the background and then returns the user to
the command line prompt immediately. Even though you are returned to the
command line, the startup script may not have completely started Tomcat. If the
Web Client does not run immediately, wait up to a minute and then retry to load
the Web client.

Running the Web Client
After Tomcat is started, you can run the Web client by pointing your browser at
the following URL. Replace <host>�with the name or IP address of the host run-
ning Tomcat. If your browser is running on the same host as Tomcat, you may
replace <host> with ORFDOKRVW.

KWWS����host!������JV

You should see the following after entering ��� in the input field and clicking
Submit:

68 GETTING STARTED WITH TOMCAT
Figure 1 Converter Web Client

Shutting Down Tomcat
When you are finished testing and developing your application, you should shut
down Tomcat.

�-:6'3B+20(�ELQ�VKXWGRZQ�VK �8QL[�SODWIRUP�

�-:6'3B+20(�?ELQ?VKXWGRZQ �0LFURVRIW�:LQGRZV�

Modifying the Application
Since the Java Web Services Developer Pack is intended for experimentation, it
supports iterative development. Whenever you make a change to an application,
you must redeploy and reload the application.

MODIFYING A CLASS FILE 69
Modifying a Class File
To modify a class file in a Java component, you change the source code, recom-
pile it, and redeploy the application. For example, suppose that you want to
change the exchange rate in the GROODU7R<HQ method of the &RQYHUWHU class:

1. Edit &RQYHUWHU�MDYD in the source directory.

2. Recompile &RQYHUWHU�MDYD by typing DQW EXLOG.

3. Redeploy &RQYHUWHU�MDYD by typing DQW GHSOR\.

4. Restart the Web application.

5. Reload the JSP page in the Web browser.

Modifying the Web Client
To modify the Web client:

1. Edit LQGH[�MVS in the source directory.

2. Redeploy LQGH[�MVS�by typing DQW GHSOR\.

3. Reload the Web application.

4. Reload the application in the Web browser.

Reloading the Application
You reload an application with the command:

KWWS���ORFDOKRVW������PDQDJHU�UHORDG"SDWK �target

This command invokes the PDQDJHU Web application. Before you can use this
application you must add your user name/password combination and associate
the role name PDQDJHU with it to <JWSDP_HOME!�FRQI�WRPFDW�XVHUV�[PO,
which can be edited with any text editor. This file contains an element �XVHU!
for each individual user, which might look something like this:

�XVHU�QDPH �DGHYHORSHU��SDVVZRUG �VHFUHW��UROHV �PDQDJHU���!

The Tomcat reference documentation distributed with the Java WSDP contains
information about the manager application.

70 GETTING STARTED WITH TOMCAT
Common Problems and Their Solutions
Cannot Start the Tomcat Server

“Out of Environment Space” Error
Symptom: An “out of environment space” error when running the startup and
shutdown batch files in Microsoft Windows 9X/ME-based operating systems.

Solution: In the Microsoft Windows Explorer, right-click on the VWDUWXS�EDW
and VKXWGRZQ�EDW files. Select Properties, then select the Memory tab. Increase
the Initial Environment field to something like 4096. Select Apply.

After you select Apply, shortcuts will be created in the directory you use to start
and stop the container.

Compilation Errors

Ant Cannot Locate the Build File
Symptom: When you type DQW EXLOG, these messages appear:

%XLOGILOH��EXLOG�[PO�GRHV�QRW�H[LVW�
%XLOG�IDLOHG�

Solution: Start DQW from the <JWSDP_HOME>/GRFV�WXWRULDO�H[DPSOHV�JV�
directory, or from the directory where you created the application. If you want to
run DQW from your current directory, then you must specify the build file on the
command line. For example, on Microsoft Windows operating systems, you
would type this command on a single line:

DQW��EXLOGILOH�&�?ZVSDFN���?GRFV?H[DPSOHV?VUF?JV?EXLOG�[PO
EXLOG

DEPLOYMENT ERRORS 71
The Compiler Cannot Resolve Symbols
Symptom: When you type DQW EXLOG, the compiler reports many errors, includ-
ing these:

FDQQRW�UHVROYH�V\PERO
�����
%8,/'�)$,/('
�����
&RPSLOH�IDLOHG��PHVVDJHV�VKRXOG�KDYH�EHHQ�SURYLGHG

Solution: Make sure that you’ve set the JWSDP_HOME environment variable
correctly. See Checking the Environment Variables (page 61).

Deployment Errors

Failure to run client application
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: The startup script starts the task in the background and then returns the
user to the command line prompt immediately. Even though you are returned to
the command line, the startup script may not have completely started Tomcat. If
the Web Client does not run immediately, wait up to a minute and then retry to
load the Web client.

The localhost Machine Is Not Found
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Sometimes when you are behind a proxy and the firewall will not let
you access the ORFDOKRVW machine. To fix this, change the proxy setting so that
it does not use the proxy to access ORFDOKRVW.

To do this in the Netscape Navigator™ browser, select Edit -> Preferences ->
Advanced -> Proxies and select 1R� 3UR[\� IRU�� ORFDOKRVW. In Internet
Explorer, select Tools -> Internet Options -> Connections -> LAN Settings.

The Application Has Not Been Deployed
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Deploy the application. For more detail, see Deploying the
Application (page 66).

72 GETTING STARTED WITH TOMCAT

Java™ API for XML
Processing

Eric Armstrong

THE Java™ API for XML Processing (“JAXP”) is for processing XML data
using applications written in the Java programming language. JAXP leverages
the parser standards SAX (Simple API for XML Parsing) and DOM (Document
Object Model) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP also supports the XSLT (XML
Stylesheet Language Transformations) standard, giving you control over the pre-
sentation of the data and enabling you to convert the data to other XML docu-
ments or to other formats, such as HTML. JAXP also provides namespace
support, allowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which allows you to plug in an implementation of the SAX or DOM APIs. The
pluggability layer also allows you to plug in an XSL processor, letting you con-
trol how your XML data is displayed.

In This Chapter
The JAXP APIs 74
An Overview of the Packages 74
The Simple API for XML (SAX) APIs 75

The SAX Packages 78
The Document Object Model (DOM) APIs 78

The DOM Packages 80
73

Bios.html#ericArmstrong

74 JAVA™ API FOR XML PROCESSING
The XML Stylesheet Language for Transformation (XSLT) APIs 81
The XSLT Packages 82

Where Do You Go from Here? 82

The JAXP APIs
The main JAXP APIs are defined in the MDYD[�[PO�SDUVHUV package. That
package contains two vendor-neutral factory classes: 6$;3DUVHU)DFWRU\ and
'RFXPHQW%XLOGHU)DFWRU\ that give you a 6$;3DUVHU and a 'RFXPHQW%XLOGHU,
respectively. The 'RFXPHQW%XLOGHU, in turn, creates DOM-compliant 'RFXPHQW
object.

The factory APIs give you the ability to plug in an XML implementation offered
by another vendor without changing your source code. The implementation you
get depends on the setting of the MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\ and
MDYD[�[PO�SDUVHUV�'RFXPHQW%XLOGHU)DFWRU\ system properties. The default
values (unless overridden at runtime) point to the reference implementation.

The remainder of this section shows how the different JAXP APIs work when
you write an application.

An Overview of the Packages
The SAX and DOM APIs are defined by XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are:

MDYD[�[PO�SDUVHUV
The JAXP APIs, which provide a common interface for different vendors’
SAX and DOM parsers.

RUJ�Z�F�GRP
Defines the 'RFXPHQW class (a DOM), as well as classes for all of the compo-
nents of a DOM.

RUJ�[PO�VD[�
Defines the basic SAX APIs.

MDYD[�[PO�WUDQVIRUP
Defines the XSLT APIs that let you transform XML into other forms.

The “Simple API” for XML (SAX) is the event-driven, serial-access mechanism
that does element-by-element processing. The API for this level reads and writes
XML to a data repository or the Web. For server-side and high-performance

75
apps, you will want to fully understand this level. But for many applications, a
minimal understanding will suffice.

The DOM API is generally an easier API to use. It provides a relatively familiar
tree structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU and memory
intensive. For that reason, the SAX API will tend to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in MDYD[�[PO�WUDQVIRUP let you write XML
data to a file or convert it into other forms. And, as you’ll see in the XSLT sec-
tion, of this tutorial, you can even use it in conjunction with the SAX APIs to
convert legacy data to XML.

The Simple API for XML (SAX) APIs
The basic outline of the SAX parsing APIs are shown at right. To start the pro-
cess, an instance of the 6$;3DUVHU)DFWRU\ classed is used to generate an
instance of the parser.

76 JAVA™ API FOR XML PROCESSING
Figure 1 SAX APIs

The parser wraps a 6$;5HDGHU object. When the parser’s SDUVH�� method is
invoked, the reader invokes one of several callback methods implemented in the
application. Those methods are defined by the interfaces &RQWHQW+DQGOHU,
(UURU+DQGOHU, '7'+DQGOHU, and (QWLW\5HVROYHU.

Here is a summary of the key SAX APIs:

 6$;3DUVHU)DFWRU\
A 6$;3DUVHU)DFWRU\ object creates an instance of the parser determined by
the system property, MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\.

6$;3DUVHU
The 6$;3DUVHU interface defines several kinds of SDUVH�� methods. In gen-
eral, you pass an XML data source and a 'HIDXOW+DQGOHU object to the
parser, which processes the XML and invokes the appropriate methods in the
handler object.

6$;5HDGHU
The 6$;3DUVHU wraps a 6$;5HDGHU. Typically, you don’t care about that, but
every once in a while you need to get hold of it using 6$;3DUVHU’s JHW;0/�
5HDGHU��, so you can configure it. It is the 6$;5HDGHU which carries on the
conversation with the SAX event handlers you define.

77
'HIDXOW+DQGOHU
Not shown in the diagram, a 'HIDXOW+DQGOHU implements the &RQ�

WHQW+DQGOHU, (UURU+DQGOHU, '7'+DQGOHU, and (QWLW\5HVROYHU interfaces
(with null methods), so you can override only the ones you’re interested in.

&RQWHQW+DQGOHU
Methods like VWDUW'RFXPHQW, HQG'RFXPHQW, VWDUW(OHPHQW, and HQG(OH�
PHQW are invoked when an XML tag is recognized. This interface also
defines methods FKDUDFWHUV and SURFHVVLQJ,QVWUXFWLRQ, which are
invoked when the parser encounters the text in an XML element or an inline
processing instruction, respectively.

(UURU+DQGOHU
Methods HUURU, IDWDO(UURU, and ZDUQLQJ are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That’s one rea-
son you need to know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to recover from a valida-
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you’ll need to supply your own error handler to the parser.

'7'+DQGOHU
Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

(QWLW\5HVROYHU
The UHVROYH(QWLW\ method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is simply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by a URN—a public identifier, or name, that is unique in the Web space.
The public identifier may be specified in addition to the URL. The (QWLW\�
5HVROYHU can then use the public identifier instead of the URL to find the
document, for example to access a local copy of the document if one exists.

A typical application implements most of the &RQWHQW+DQGOHU methods, at a
minimum. Since the default implementations of the interfaces ignore all inputs
except for fatal errors, a robust implementation may want to implement the
(UURU+DQGOHU methods, as well.

78 JAVA™ API FOR XML PROCESSING
The SAX Packages
The SAX parser is defined in the following packages listed in Table 1.

The Document Object Model (DOM)
APIs

Figure 2 shows the JAXP APIs in action:

Table 1 SAX Packages

 Package Description

�RUJ�[PO�VD[
Defines the SAX interfaces. The name RUJ�[PO is the pack-
age prefix that was settled on by the group that defined the
SAX API.

�RUJ�[PO�VD[�H[W

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a docu-
ment type definitions (DTD) or to see the detailed syntax for a
file.

�RUJ�[PO�VD[�KHOSHUV

 Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null-methods
for all of the interfaces, so you only need to override the ones
you actually want to implement.

�MDYD[�[PO�SDUVHUV
Defines the 6$;3DUVHU)DFWRU\ class which returns the
6$;3DUVHU. Also defines exception classes for reporting
errors.

THE SAX PACKAGES 79
Figure 2 DOM APIs

You use the MDYD[�[PO�SDUVHUV�'RFXPHQW%XLOGHU)DFWRU\ class to get a Doc-
umentBuilder instance, and use that to produce a Document (a DOM) that con-
forms to the DOM specification. The builder you get, in fact, is determined by
the System property, MDYD[�[PO�SDUVHUV�'RFXPHQW%XLOGHU)DFWRU\, which
selects the factory implementation that is used to produce the builder. (The plat-
form’s default value can be overridden from the command line.)

You can also use the DocumentBuilder QHZ'RFXPHQW�� method to create an
empty Document that implements the RUJ�Z�F�GRP�'RFXPHQW interface. Alter-
natively, you can use one of the builder’s parse methods to create a 'RFXPHQW
from existing XML data. The result is a DOM tree like that shown in the dia-
gram.

Note: Although they are called objects, the entries in the DOM tree are actually
fairly low-level data structures. For example, under every element node (which cor-
responds to an XML element) there is a text node which contains the name of the
element tag! This issue will be explored at length in the DOM section of the tutorial,
but users who are expecting objects are usually surprised to find that invoking the
WH[W�� method on an element object returns nothing! For a truly object-oriented
tree, see the JDOM API at KWWS���ZZZ�MGRP�RUJ.

80 JAVA™ API FOR XML PROCESSING
The DOM Packages
The Document Object Model implementation is defined in the following pack-
ages:

Table 2 DOM Packages

 Package Description

�RUJ�Z�F�GRP�
Defines the DOM programming interfaces for XML (and, option-
ally, HTML) documents, as specified by the W3C.

�MDYD[�[PO�SDUVHUV

Defines the 'RFXPHQW%XLOGHU)DFWRU\ class and the 'RFX�
PHQW%XLOGHU class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the MDYD[�[PO�SDUVHUV system prop-
erty, which can be set from the command line or overridden when
invoking the QHZ�,QVWDQFH method. This package also defines
the 3DUVHU&RQILJXUDWLRQ([FHSWLRQ class for reporting
errors.

THE DOM PACKAGES 81
The XML Stylesheet Language for
Transformation (XSLT) APIs

Figure 3 shows the XSLT APIs in action.

Figure 3 XSLT APIs

A 7UDQVIRUPHU)DFWRU\ object is instantiated, and used to create a 7UDQV�
IRUPHU. The source object is the input to the transformation process. A source
object can be created from SAX reader, from a DOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, a DOM, or an output stream.

When the transformer is created, it may be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.

82 JAVA™ API FOR XML PROCESSING
The XSLT Packages
The XSLT APIs are defined in the following packages:

Compiling and Running the Programs
In the Java WSDP, the JAXP libraries are distributed in the directory
�-:6'3B+20(!�FRPPRQ�OLE. To compile and run the sample programs, you’ll
first need to install the JAXP libraries in the appropriate location. (The location
depends on which version of the JVM you are using.) See the JAXP release
notes at �-:6'3B+20(!�GRFV�MD[S�5HOHDVH1RWHV�KWPO for details.

Where Do You Go from Here?
At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step from here depends on what you want
to accomplish. You might want to go to:

Table 3 XSLT Packages

 Package Description

MDYD[�[PO�WUDQVIRUP�

Defines the 7UDQVIRUPHU)DFWRU\ and
7UDQVIRUPHU classes, which you use to get a
object capable of doing transformations. After
creating a transformer object, you invoke its
WUDQVIRUP�� method, providing it with an
input (source) and output (result).

MDYD[�[PO�WUDQVIRUP�GRP
Classes to create input (source) and output
(result) objects from a DOM.

MDYD[�[PO�WUDQVIRUP�VD[
Classes to create input (source) from a SAX
parser and output (result) objects from a SAX
event handler.

MDYD[�[PO�WUDQVIRUP�VWUHDP
Classes to create input (source) and output
(result) objects from an I/O stream.

THE XSLT PACKAGES 83
The XML Thread
If you want to learn more about XML, spending as little time as possible on
the Java APIs. You will see all of the XML sections in the normal course of
the tutorial. Follow this thread if you want to bypass the API programming
steps:

• Introduction to XML (page 31)

• Writing a Simple XML File (page 86)

• Substituting and Inserting Text (page 120)

• Creating a Document Type Definition (DTD) (page 124)

• Defining Attributes and Entities in the DTD (page 133)

• Referencing Binary Entities (page 140)

• Defining Parameter Entities and Conditional Sections (page 146)

Designing an XML Data Structure (page 53)
If you are creating XML data structures for an application and want some
tips on how to proceed. (This is the next step in the XML overview.)

Simple API for XML (page 85)
If the data structures have already been determined, and you are writing a
server application or an XML filter that needs to do the fastest possible pro-
cessing. This section also takes you step by step through the process of con-
structing an XML document.

Document Object Model (page 163)
If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objects to XML. This part
of the tutorial ends with a section on namespaces.

XML Stylesheet Language for Transformations (page 221)
If you need to transform XML tags into some other form, if you want to gen-
erate XML output, or if you want to convert legacy data structures to XML.

84 JAVA™ API FOR XML PROCESSING

Simple API for XML
Eric Armstrong

IN this chapter we focus on the Simple API for XML (SAX), an event-driven,
serial-access mechanism for accessing XML documents. This is the protocol that
most servlets and network-oriented programs will want to use to transmit and
receive XML documents, because it’s the fastest and least memory-intensive
mechanism that is currently available for dealing with XML documents.

The SAX protocol requires a lot more programming than the Document Object
Model (DOM). It’s an event-driven model (you provide the callback methods,
and the parser invokes them as it reads the XML data), which makes it harder to
visualize. Finally, you can’t “back up” to an earlier part of the document, or rear-
range it, any more than you can back up a serial data stream or rearrange charac-
ters you have read from that stream.

For those reasons, developers who are writing a user-oriented application that
displays an XML document and possibly modifies it will want to use the DOM
mechanism described in the next part of the tutorial, Document Object
Model (page 163).

However, even if you plan to do build DOM apps exclusively, there are several
important reasons for familiarizing yourself with the SAX model:

• Same Error Handling

When parsing a document for a DOM, the same kinds of exceptions are
generated, so the error handling for JAXP SAX and DOM apps are identi-
cal.

• Handling Validation Errors

By default, the specifications require that validation errors (which you’ll
be learning more about in this part of the tutorial) are ignored. If you want
85

Bios.html#ericArmstrong

86 SIMPLE API FOR XML
to throw an exception in the event of a validation error (and you probably
do) then you need to understand how the SAX error handling works.

• Converting Existing Data

As you’ll see in the DOM section of the tutorial, Sun’s reference imple-
mentation provides a mechanism you can use to convert an existing data
set to XML—however, taking advantage of that mechanism requires an
understanding the SAX model.

In This Chapter
Writing a Simple XML File 86
Echoing an XML File with the SAX Parser 91
Adding Additional Event Handlers 107
Handling Errors with the Nonvalidating Parser 111
Substituting and Inserting Text 120
Creating a Document Type Definition (DTD) 124
DTD’s Effect on the Nonvalidating Parser 129
Defining Attributes and Entities in the DTD 133
Referencing Binary Entities 140
Using the Validating Parser 142
Defining Parameter Entities and Conditional Sections 146
Parsing the Parameterized DTD 149
Handling Lexical Events 152
Using the DTDHandler and EntityResolver 159

Writing a Simple XML File
Let’s start out by writing up a simple version of the kind of XML data you could
use for a slide presentation. In this exercise, you’ll use your text editor to create
the data in order to become comfortable with the basic format of an XML file.
You’ll be using this file and extending it in later exercises.

Note: The examples in this chapter can be found in GRFV�WXWRULDO�H[DP�
SOHV�MD[S�VD[�VDPSOHV.

CREATING THE FILE 87
Creating the File
Using a standard text editor, create a file called VOLGH6DPSOH�[PO.

Note: Here is a version of it that already exists: VOLGH6DPSOH���[PO. (The brows-
able version is VOLGH6DPSOH���[PO�KWPO.) You can use this version to compare
your work, or just review it as you read this guide.

Writing the Declaration
Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters ��"�, which is the standard XML identifier
for a processor instruction. (You’ll see other processor instructions later on in
this tutorial.)

���"[PO�YHUVLRQ
���
�HQFRGLQJ
XWI��
"!�

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification, and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Java™ Encoding
Schemes (page 527).)

Since the document has not been specified as “standalone”, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as “standalone”, see The XML Prolog (page 35).

Adding a Comment
Comments are ignored by XML parsers. You never see them in fact, unless you
activate special settings in the parser. You’ll see how to do that later on in the
tutorial, when we discuss Handling Lexical Events (page 152). For now, add the
text highlighted below to put a comment into the file.

�"[PO�YHUVLRQ
���
�HQFRGLQJ
XWI��
"!�

�����$�6$03/(�VHW�RI�VOLGHV���!�

88 SIMPLE API FOR XML
Defining the Root Element
After the declaration, every XML file defines exactly one element, known as the
root element. Any other elements in the file are contained within that element.
Enter the text highlighted below to define the root element for this file, VOLGH�
VKRZ:

�"[PO�YHUVLRQ
���
�HQFRGLQJ
XWI��
"!�

�����$�6$03/(�VHW�RI�VOLGHV���!�

�VOLGHVKRZ!�

��VOLGHVKRZ!

Note: XML element names are case-sensitive. The end-tag must exactly match the
start-tag.

Adding Attributes to an Element
A slide presentation has a number of associated data items, none of which
require any structure. So it is natural to define them as attributes of the VOLGH�
VKRZ element. Add the text highlighted below to set up some attributes:

���
�VOLGHVKRZ�

title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
!

��VOLGHVKRZ!

When you create a name for a tag or an attribute, you can use hyphens (���),
underscores (�B�), colons (���), and periods (���) in addition to characters and
numbers. Unlike HTML, values for XML attributes are always in quotation
marks, and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided altogether, because they are used
when defining the namespace for an XML document.

ADDING NESTED ELEMENTS 89
Adding Nested Elements
XML allows for hierarchically structured data, which means that an element can
contain other elements. Add the text highlighted below to define a slide element
and a title element contained within it:

�VOLGHVKRZ�
���
!

�<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

��VOLGHVKRZ!

Here you have also added a type attribute to the slide. The idea of this attribute is
that slides could be earmarked for a mostly technical or mostly executive audi-
ence with W\SH �WHFK� or W\SH �H[HF�, or identified as suitable for both with
W\SH �DOO�.

More importantly, though, this example illustrates the difference between things
that are more usefully defined as elements (the title element) and things that are
more suitable as attributes (the type attribute). The visibility heuristic is prima-
rily at work here. The title is something the audience will see. So it is an element.
The type, on the other hand, is something that never gets presented, so it is an
attribute. Another way to think about that distinction is that an element is a con-
tainer, like a bottle. The type is a characteristic of the container (is it tall or short,
wide or narrow). The title is a characteristic of the contents (water, milk, or tea).
These are not hard and fast rules, of course, but they can help when you design
your own XML structures.

Adding HTML-Style Text
Since XML lets you define any tags you want, it makes sense to define a set of
tags that look like HTML. The XHTML standard does exactly that, in fact.
You’ll see more about that towards the end of the SAX tutorial. For now, type the

90 SIMPLE API FOR XML
text highlighted below to define a slide with a couple of list item entries that use
an HTML-style �HP! tag for emphasis (usually rendered as italicized text):

���
�����7,7/(�6/,'(���!
�VOLGH�W\SH �DOO�!

�WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV���WLWOH!
��VOLGH!

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item>Who buys WonderWidgets</item>

</slide>

��VOLGHVKRZ!

 We’ll see later that defining a title element conflicts with the XHTML element
that uses the same name. We’ll discuss the mechanism that produces the conflict
(the DTD) and several possible solutions when we cover Parsing the Parameter-
ized DTD (page 149).

Adding an Empty Element
One major difference between HTML and XML, though, is that all XML must
be well-formed -- which means that every tag must have an ending tag or be an
empty tag. You’re getting pretty comfortable with ending tags, by now. Add the
text highlighted below to define an empty list item element with no contents:

���
�����29(59,(:���!
�VOLGH�W\SH �DOO�!

�WLWOH!2YHUYLHZ��WLWOH!
�LWHP!:K\��HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW��LWHP!
<item/>
�LWHP!:KR��HP!EX\V��HP!�:RQGHU:LGJHWV��LWHP!

��VOLGH!

��VOLGHVKRZ!

Note that any element can be empty element. All it takes is ending the tag with
��!� instead of �!�. You could do the same thing by entering �LWHP!��LWHP!,
which is equivalent.

THE FINISHED PRODUCT 91
Note: Another factor that makes an XML file well-formed is proper nesting. So
�E!�L!VRPHBWH[W��L!��E! is well-formed, because the �L!�����L! sequence is
completely nested within the �E!����E! tag. This sequence, on the other hand, is
not well-formed: �E!�L!VRPHBWH[W��E!��L!.

The Finished Product
Here is the completed version of the XML file:

�"[PO�YHUVLRQ
���
�HQFRGLQJ
XWI��
"!

������$�6$03/(�VHW�RI�VOLGHV����!

�VOLGHVKRZ�
WLWOH �6DPSOH�6OLGH�6KRZ�
GDWH �'DWH�RI�SXEOLFDWLRQ�
DXWKRU �<RXUV�7UXO\�
!

�����7,7/(�6/,'(���!
�VOLGH�W\SH �DOO�!

�WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV���WLWOH!
��VOLGH!

�����29(59,(:���!
�VOLGH�W\SH �DOO�!

�WLWOH!2YHUYLHZ��WLWOH!
�LWHP!:K\��HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW��LWHP!
�LWHP�!
�LWHP!:KR��HP!EX\V��HP!�:RQGHU:LGJHWV��LWHP!

��VOLGH
��VOLGHVKRZ!

Now that you’ve created a file to work with, you’re ready to write a program to
echo it using the SAX parser. You’ll do that in the next section.

Echoing an XML File with the SAX
Parser

In real life, you are going to have little need to echo an XML file with a SAX
parser. Usually, you’ll want to process the data in some way in order to do some-

92 SIMPLE API FOR XML
thing useful with it. (If you want to echo it, it’s easier to build a DOM tree and
use that for output.) But echoing an XML structure is a great way to see the SAX
parser in action, and it can be useful for debugging.

In this exercise, you’ll echo SAX parser events to 6\VWHP�RXW. Consider it the
“Hello World” version of an XML-processing program. It shows you how to use
the SAX parser to get at the data, and then echoes it to show you what you’ve
got.

Note: The code discussed in this section is in (FKR���MDYD. The file it operates on
is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���[PO�KWPO.)

Creating the Skeleton
Start by creating a file named (FKR�MDYD and enter the skeleton for the applica-
tion:

SXEOLF�FODVV�(FKR
^

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

��� �`

`

Since we’re going to run it standalone, we need a main method. And we need
command-line arguments so we can tell the app which file to echo.

IMPORTING CLASSES 93
Importing Classes
Next, add the import statements for the classes the app will use:

LPSRUW�MDYD�LR�
�
LPSRUW�RUJ�[PO�VD[�
�
LPSRUW�RUJ�[PO�VD[�KHOSHUV�'HIDXOW+DQGOHU�
LPSRUW�MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\��
LPSRUW�MDYD[�[PO�SDUVHUV�3DUVHU&RQILJXUDWLRQ([FHSWLRQ�
LPSRUW�MDYD[�[PO�SDUVHUV�6$;3DUVHU�

SXEOLF�FODVV�(FKR
^

���

The classes in MDYD�LR, of course, are needed to do output. The RUJ�[PO�VD[
package defines all the interfaces we use for the SAX parser. The 6$;�
3DUVHU)DFWRU\ class creates the instance we use. It throws a 3DUVHU&RQILJX�
UDWLRQ([FHSWLRQ if it is unable to produce a parser that matches the specified
configuration of options. (You’ll see more about the configuration options later.)
The 6$;3DUVHU is what the factory returns for parsing, and the 'HIDXOW+DQGOHU
defines the class that will handle the SAX events that the parser generates.

Setting up for I/O
The first order of business is to process the command line argument, get the
name of the file to echo, and set up the output stream. Add the text highlighted
below to take care of those tasks and do a bit of additional housekeeping:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�

^
if (argv.length != 1) {

System.err.println("Usage: cmd filename");
System.exit(1);

94 SIMPLE API FOR XML
}
try {

// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

 } catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

`

static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character
encoding. We could also have chosen US-ASCII, or UTF-16, which the Java
platform also supports. For more information on these character sets, see Java™
Encoding Schemes (page 527).

Implementing the ContentHandler
Interface
The most important interface for our current purposes is the &RQWHQW+DQGOHU
interface. That interface requires a number of methods that the SAX parser
invokes in response to different parsing events. The major event handling meth-
ods are: VWDUW'RFXPHQW, HQG'RFXPHQW, VWDUW(OHPHQW, HQG(OHPHQW, and FKDU�
DFWHUV.

The easiest way to implement that interface is to extend the 'HIDXOW+DQGOHU
class, defined in the RUJ�[PO�VD[�KHOSHUV package. That class provides do-
nothing methods for all of the &RQWHQW+DQGOHU events. Enter the code high-
lighted below to extend that class:

SXEOLF�FODVV�(FKR�extends DefaultHandler
^

���
`

Note: 'HIDXOW+DQGOHU also defines do-nothing methods for the other major events,
defined in the '7'+DQGOHU, (QWLW\5HVROYHU, and (UURU+DQGOHU interfaces. You’ll
learn more about those methods as we go along.

SETTING UP THE PARSER 95
Each of these methods is required by the interface to throw a 6$;([FHSWLRQ. An
exception thrown here is sent back to the parser, which sends it on to the code
that invoked the parser. In the current program, that means it winds up back at
the 7KURZDEOH exception handler at the bottom of the PDLQ method.

When a start tag or end tag is encountered, the name of the tag is passed as a
String to the VWDUW(OHPHQW or HQG(OHPHQW method, as appropriate. When a start
tag is encountered, any attributes it defines are also passed in an $WWULEXWHV list.
Characters found within the element are passed as an array of characters, along
with the number of characters (OHQJWK) and an offset into the array that points to
the first character.

Setting up the Parser
Now (at last) you’re ready to set up the parser. Add the text highlighted below to
set it up and get it started:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
6\VWHP�HUU�SULQWOQ��8VDJH��FPG�ILOHQDPH���
6\VWHP�H[LW����

`

������ // Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo();

 // Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newInstance();
WU\�^

���6HW�XS�RXWSXW�VWUHDP
RXW� �QHZ�2XWSXW6WUHDP:ULWHU�6\VWHP�RXW���87)����

 // Parse the input
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(argv[0]), handler);

��������`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

`
6\VWHP�H[LW����

`

96 SIMPLE API FOR XML
With these lines of code, you created a 6$;3DUVHU)DFWRU\ instance, as deter-
mined by the setting of the MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\ system
property. You then got a parser from the factory and gave the parser an instance
of this class to handle the parsing events, telling it which input file to process.

Note: The MDYD[�[PO�SDUVHUV�6$;3DUVHU class is a wrapper that defines a number
of convenience methods. It wraps the (somewhat-less friendly)
RUJ�[PO�VD[�3DUVHU object. If needed, you can obtain that parser using the 6$;�
3DUVHU’s JHW3DUVHU�� method.

For now, you are simply catching any exception that the parser might throw.
You’ll learn more about error processing in a later section of the tutorial, Han-
dling Errors with the Nonvalidating Parser (page 111).

Writing the Output
The &RQWHQW+DQGOHU methods throw 6$;([FHSWLRQs but not ,2([FHSWLRQs,
which can occur while writing. The 6$;([FHSWLRQ can wrap another exception,
though, so it makes sense to do the output in a method that takes care of the
exception-handling details. Add the code highlighted below to define an HPLW
method that does that:

VWDWLF�SULYDWH�:ULWHU�RXW�

SULYDWH�YRLG�HPLW�6WULQJ�V�
WKURZV�6$;([FHSWLRQ
^

WU\�^
RXW�ZULWH�V��
RXW�IOXVK���

`�FDWFK��,2([FHSWLRQ�H��^
WKURZ�QHZ�6$;([FHSWLRQ��,�2�HUURU���H��

`
`
���

When emit is called, any I/O error is wrapped in 6$;([FHSWLRQ along with a
message that identifies it. That exception is then thrown back to the SAX parser.
You’ll learn more about SAX exceptions later on. For now, keep in mind that
HPLW is a small method that handles the string output. (You’ll see it called a lot in
the code ahead.)

SPACING THE OUTPUT 97
Spacing the Output
There is one last bit of infrastructure we need before doing some real processing.
Add the code highlighted below to define a QO�� method that writes the kind of
line-ending character used by the current system:

SULYDWH�YRLG�HPLW�6WULQJ�V��
���

`

private void nl()
throws SAXException
{

String lineEnd = System.getProperty("line.separator");
try {

out.write(lineEnd);
} catch (IOException e) {

throw new SAXException("I/O error", e);
}

`

Note: Although it seems like a bit of a nuisance, you will be invoking QO() many
times in the code ahead. Defining it now will simplify the code later on. It also pro-
vides a place to indent the output when we get to that section of the tutorial.

Handling Content Events
Finally, let’s write some code that actually processes the &RQWHQW+DQGOHU
events. Add the code highlighted below to handle the start-document and end-
document events:

VWDWLF�SULYDWH�:ULWHU�RXW�

public void startDocument()
throws SAXException
{

emit("<?xml version=’1.0’ encoding=’UTF-8’?>");
nl();

}

public void endDocument()
throws SAXException
{

98 SIMPLE API FOR XML
try {
nl();
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}

SULYDWH�YRLG�HPLW�6WULQJ�V�
���

Here, you are echoing an XML declaration when the parser encounters the start
of the document. Since you set up the 2XWSXW6WUHDP:ULWHU using the UTF-8
encoding, you include that specification as part of the declaration.

Note: However, the IO classes don’t understand the hyphenated encoding names,
so you specified “UTF8” rather than “UTF-8”.

At the end of the document, you simply put out a final newline and flush the out-
put stream. Not much going on there. Now for the interesting stuff. Add the code
highlighted below to process the start-element and end-element events:

SXEOLF�YRLG�VWDUW(OHPHQW�6WULQJ�QDPHVSDFH85,�
6WULQJ�V1DPH�����VLPSOH�QDPH��ORFDO1DPH�
6WULQJ�T1DPH�����TXDOLILHG�QDPH
$WWULEXWHV�DWWUV�

WKURZV�6$;([FHSWLRQ
^

6WULQJ�H1DPH� �V1DPH�����HOHPHQW�QDPH
LI�����HTXDOV�H1DPH���H1DPH� �T1DPH�����QDPHVSDFH$ZDUH� �

IDOVH
HPLW�´�´�H1DPH��
LI��DWWUV�� �QXOO��^

IRU��LQW�L� ����L���DWWUV�JHW/HQJWK����L����^
6WULQJ�D1DPH� �DWWUV�JHW/RFDO1DPH�L������$WWU�QDPH
LI��´´�HTXDOV�D1DPH���D1DPH� �DWWUV�JHW41DPH�L��
HPLW�����
HPLW�D1DPH�µ ?µ�DWWUD�JHWYDOXH�L��µ?µµ��

HANDLING CONTENT EVENTS 99
`
`
HPLW�´!µ��

``

SXEOLF�YRLG�HQG(OHPHQW�6WULQJ�QDPHVSDFH85,�
6WULQJ�V1DPH�����VLPSOH�QDPH
6WULQJ�T1DPH�����TXDOLILHG�QDPH
�

WKURZV�6$;([FHSWLRQ
^

HPLW������V1DPH��!���
`

SULYDWH�YRLG�HPLW�6WULQJ�V�
���

With this code, you echoed the element tags, including any attributes defined in
the start tag. Note that when the VWDUW(OHPHQW() method is invoked, the simple
name (“local name”) for elements and attributes could turn out to be the empty
string, if namespace processing was not enabled. The code handles that case by
using the qualified name whenever the simple name is the empty string.

To finish this version of the program, add the code highlighted below to echo the
characters the parser sees:

SXEOLF�YRLG�FKDUDFWHUV�FKDU�EXI>@��LQW�RIIVHW��LQW�OHQ�
WKURZV�6$;([FHSWLRQ
^

6WULQJ�V� �QHZ�6WULQJ�EXI��RIIVHW��OHQ��
HPLW�V��

`

SULYDWH�YRLG�HPLW�6WULQJ�V�
���

Congratulations! You’ve just written a SAX parser application. The next step is
to compile and run it.

Note: To be strictly accurate, the character handler should scan the buffer for
ampersand characters (’	
��and left-angle bracket characters (’<’) and replace them
with the strings "	DPS�" or "	OW�", as appropriate. You’ll find out more about that

100 SIMPLE API FOR XML
kind of processing when we discuss entity references in Substituting and Insert-
ing Text (page 120).

Compiling and Running the Program
In the Java WSDP, the JAXP libraries are distributed in the directory
�-:6'3B+20(!�FRPPRQ�OLE. To compile the program you created, you’ll first
need to install the JAXP JAR files in the appropriate location. (The names of the
JAR files and their location depends on which version of JAXP you are using.
See the Java XML release notes for details.) Then you can execute the following
command:

MDYDF��FS�MD[S�MDU�ILOHV�(FKR�MDYD

where MDYDF is a version 1.2 or later Java platform compiler.

To run the program, execute the command below:

MDYD��FS�MD[S�MDU�ILOHV�(FKR�VOLGH6DPSOH�[PO

Checking the Output
The program’s output as shown in (FKR�����. Here is part of it, showing some
of its weird-looking spacing:

���
�VOLGHVKRZ�WLWOH �6DPSOH�6OLGH�6KRZ��GDWH �'DWH�RI�SXEOLFDWLRQ��
DXWKRU �<RXUV�7UXO\�!

�VOLGH�W\SH �DOO�!
�WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV���WLWOH!

��VOLGH!
���

Looking at this output, a number of questions arise. Namely, where is the excess
vertical whitespace coming from? And why is it that the elements are indented
properly, when the code isn’t doing it? We’ll answer those questions in a
moment. First, though, there are a few points to note about the output:

• The comment defined at the top of the file

�������$�6$03/(�VHW�RI�VOLGHV���!

IDENTIFYING THE EVENTS 101
does not appear in the listing. Comments are ignored by definition, unless
you implement a /H[LFDO+DQGOHU. You’ll see more about that later on in
this tutorial.

• Element attributes are listed all together on a single line. If your window
isn’t really wide, you won’t see them all.

• The single-tag empty element you defined (�LWHP�!) is treated exactly the
same as a two-tag empty element (�LWHP!��LWHP!). It is, for all intents and
purposes, identical. (It’s just easier to type and consumes less space.)

Identifying the Events
This version of the echo program might be useful for displaying an XML file,
but it’s not telling you much about what’s going on in the parser. The next step is
to modify the program so that you see where the spaces and vertical lines are
coming from.

Note: The code discussed in this section is in (FKR���MDYD. The output it pro-
duces is shown in (FKR�����.

 Make the changes highlighted below to identify the events as they occur:

SXEOLF�YRLG�VWDUW'RFXPHQW��
WKURZV�6$;([FHSWLRQ
^

nl();
nl();
emit("START DOCUMENT");
nl();
HPLW���"[PO�YHUVLRQ
���
�HQFRGLQJ
87)��
"!���
QO���

`

SXEOLF�YRLG�HQG'RFXPHQW��
WKURZV�6$;([FHSWLRQ
^

nl(); emit("END DOCUMENT");
WU\�^
���

`

SXEOLF�YRLG�VWDUW(OHPHQW�����
WKURZV�6$;([FHSWLRQ

102 SIMPLE API FOR XML
^
nl(); emit("ELEMENT: ");
HPLW�����V1DPH��
LI��DWWUV�� �QXOO��^

IRU��LQW�L� ����L���DWWUV�JHW/HQJWK����L����^
HPLW������

HPLW�DWWUV�JHW1DPH�L��� ?���DWWUV�JHW9DOXH�L���?����
nl();
emit(" ATTR: ");
emit(attrs.getLocalName(i));
emit("\"");
emit(attrs.getValue(i));
emit("\"");

`
`
if (attrs.getLength() > 0) nl();
HPLW��!���

`

SXEOLF�YRLG�HQG(OHPHQW�����
WKURZV�6$;([FHSWLRQ
^

nl();
emit("END_ELM: ");
HPLW������V1DPH��!���

`

SXEOLF�YRLG�FKDUDFWHUV�FKDU�EXI>@��LQW�RIIVHW��LQW�/HQ�
WKURZV�6$;([FHSWLRQ
^�

nl(); emit("CHARS: |");
6WULQJ�V� �QHZ�6WULQJ�EXI��RIIVHW��/HQ��
HPLW�V��
emit("|");

`

Compile and run this version of the program to produce a more informative out-
put listing. The attributes are now shown one per line, which is nice. But, more
importantly, output lines like this one:

��&+$56��_

����_

show that the FKDUDFWHUV method is responsible for echoing both the spaces that
create the indentation and the multiple newlines that separate the attributes.

COMPRESSING THE OUTPUT 103
Note: The XML specification requires all input line separators to be normalized to
a single newline. The newline character is specified as in Java, C, and UNIX sys-
tems, but goes by the alias “linefeed” in Windows systems.

Compressing the Output
To make the output more readable, modify the program so that it only outputs
characters containing something other than whitespace.

Note: The code discussed in this section is in (FKR���MDYD.

Make the changes shown below to suppress output of characters that are all
whitespace:

SXEOLF�YRLG�FKDUDFWHUV�FKDU�EXI>@��LQW�RIIVHW��LQW�/HQ�
WKURZV�6$;([FHSWLRQ
^

QO����HPLW��&+$56��_���
nl(); emit("CHARS: ");
6WULQJ�V� �QHZ�6WULQJ�EXI��RIIVHW��/HQ��
HPLW�V��
HPLW��_���
if (!s.trim().equals("")) emit(s);

`

104 SIMPLE API FOR XML
If you run the program now, you will see that you have eliminated the indenta-
tion as well, because the indent space is part of the whitespace that precedes the
start of an element. Add the code highlighted below to manage the indentation:

VWDWLF�SULYDWH�:ULWHU�RXW�

private String indentString = " "; // Amount to indent
private int indentLevel = 0;

���

SXEOLF�YRLG�VWDUW(OHPHQW�����
WKURZV�6$;([FHSWLRQ
^

indentLevel++;
QO����HPLW��(/(0(17�����
���

`

SXEOLF�YRLG�HQG(OHPHQW�����
WKURZV�6$;([FHSWLRQ
^

QO����
HPLW��(1'B(/0�����
HPLW������V1DPH��!���
indentLevel--;

`
���
SULYDWH�YRLG�QO��
WKURZV�6$;([FHSWLRQ
^

���
WU\�^

RXW�ZULWH�OLQH(QG��
for (int i=0; i < indentLevel; i++) out.write(indentString);

��������`�FDWFK��,2([FHSWLRQ�H��^
����

`

This code sets up an indent string, keeps track of the current indent level, and
outputs the indent string whenever the QO method is called. If you set the indent
string to "", the output will be un-indented (Try it. You’ll see why it’s worth the
work to add the indentation.)

INSPECTING THE OUTPUT 105
You’ll be happy to know that you have reached the end of the “mechanical” code
you have to add to the Echo program. From here on, you’ll be doing things that
give you more insight into how the parser works. The steps you’ve taken so far,
though, have given you a lot of insight into how the parser sees the XML data it
processes. It’s also given you a helpful debugging tool you can use to see what
the parser sees.

Inspecting the Output
The complete output for this version of the program is shown in (FKR�����. Part
of that output is shown here:

(/(0(17���VOLGHVKRZ
���
&+$56��
&+$56��

(/(0(17���VOLGH
����
(1'B(/0����VOLGH!

&+$56��
&+$56����

Note that the FKDUDFWHUV method was invoked twice in a row. Inspecting the
source file VOLGH6DPSOH���[PO shows that there is a comment before the first
slide. The first call to FKDUDFWHUV comes before that comment. The second call
comes after. (Later on, you’ll see how to be notified when the parser encounters
a comment, although in most cases you won’t need such notifications.)

Note, too, that the FKDUDFWHUV method is invoked after the first slide element, as
well as before. When you are thinking in terms of hierarchically structured data,
that seems odd. After all, you intended for the VOLGHVKRZ element to contain
VOLGH elements, not text. Later on, you’ll see how to restrict the VOLGHVKRZ ele-
ment using a DTD. When you do that, the FKDUDFWHUV method will no longer be
invoked.

In the absence of a DTD, though, the parser must assume that any element it sees
contains text like that in the first item element of the overview slide:

�LWHP!:K\��HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW��LWHP!

106 SIMPLE API FOR XML
Here, the hierarchical structure looks like this:

(/(0(17���LWHP!
&+$56����:K\�

(/(0(17���HP!
&+$56����:RQGHU:LGJHWV
(1'B(/0����HP!

&+$56�����DUH�JUHDW
(1'B(/0����LWHP!

Documents and Data
In this example, it’s clear that there are characters intermixed with the hierarchi-
cal structure of the elements. The fact that text can surround elements (or be pre-
vented from doing so with a DTD or schema) helps to explain why you
sometimes hear talk about “XML data” and other times hear about “XML docu-
ments”. XML comfortably handles both structured data and text documents that
include markup. The only difference between the two is whether or not text is
allowed between the elements.

Note: In an upcoming section of this tutorial, you will work with the LJQRUDEOH�
:KLWHVSDFH method in the &RQWHQW+DQGOHU interface. This method can only be
invoked when a DTD is present. If a DTD specifies that VOLGHVKRZ does not contain
text, then all of the whitespace surrounding the VOLGH elements is by definition
ignorable. On the other hand, if VOLGHVKRZ can contain text (which must be
assumed to be true in the absence of a DTD), then the parser must assume that
spaces and lines it sees between the VOLGH elements are significant parts of the doc-
ument.

Adding Additional Event Handlers
Besides LJQRUDEOH:KLWHVSDFH, there are two other &RQWHQW+DQGOHU methods
that can find uses in even simple applications: VHW'RFXPHQW/RFDWRU and SUR�
FHVVLQJ,QVWUXFWLRQ. In this section of the tutorial, you’ll implement those two
event handlers.

IDENTIFYING THE DOCUMENT’S LOCATION 107
Identifying the Document’s Location
A locator is an object that contains the information necessary to find the docu-
ment. The /RFDWRU class encapsulates a system ID (URL) or a public identifier
(URN), or both. You would need that information if you wanted to find some-
thing relative to the current document—in the same way, for example, that an
HTML browser processes an KUHI �DQRWKHU)LOH� attribute in an anchor tag—
the browser uses the location of the current document to find DQRWKHU)LOH.

You could also use the locator to print out good diagnostic messages. In addition
to the document’s location and public identifier, the locator contains methods
that give the column and line number of the most recently-processed event. The
VHW'RFXPHQW/RFDWRU method is called only once at the beginning of the parse,
though. To get the current line or column number, you would save the locator
when VHW'RFXPHQW/RFDWRU is invoked and then use it in the other event-han-
dling methods.

Note: The code discussed in this section is in (FKR���MDYD. Its output is stored at
(FKR�����.

Add the method below to the Echo program to get the document locator and use
it to echo the document’s system ID.

���
SULYDWH�6WULQJ�LQGHQW6WULQJ� ������������$PRXQW�WR�LQGHQW
SULYDWH�LQW�LQGHQW/HYHO� ���

SXEOLF�YRLG�VHW'RFXPHQW/RFDWRU�/RFDWRU�O�
^

WU\�^
RXW�ZULWH��/2&$725���
RXW�ZULWH��6<6�,'������O�JHW6\VWHP,G�����
RXW�IOXVK���

`�FDWFK��,2([FHSWLRQ�H��^
���,JQRUH�HUURUV

`
`

SXEOLF�YRLG�VWDUW'RFXPHQW��
���

108 SIMPLE API FOR XML
Notes:

• This method, in contrast to every other &RQWHQW+DQGOHU method, does not
return a 6$;([FHSWLRQ. So, rather than using HPLW for output, this code
writes directly to 6\VWHP�RXW. (This method is generally expected to sim-
ply save the /RFDWRU for later use, rather than do the kind of processing
that generates an exception, as here.)

• The spelling of these methods is �,G�, not �,'�. So you have JHW6\V�
WHP,G and JHW3XEOLF,G.

When you compile and run the program on VOLGH6DPSOH���[PO, here is the sig-
nificant part of the output:

/2&$725
6<6�,'��ILOH�<path>����VDPSOHV�VOLGH6DPSOH���[PO

67$57�'2&80(17
�"[PO�YHUVLRQ
���
�HQFRGLQJ
87)��
"!
���

Here, it is apparent that VHW'RFXPHQW/RFDWRU is called before startDocument.
That can make a difference if you do any initialization in the event handling
code.

Handling Processing Instructions
It sometimes makes sense to code application-specific processing instructions in
the XML data. In this exercise, you’ll add a processing instruction to your
VOLGH6DPSOH�[PO file and then modify the Echo program to display it.

Note: The code discussed in this section is in (FKR���MDYD. The file it operates on
is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���[PO�KWPO.) The
output is stored at (FKR�����.

As you saw in Introduction to XML (page 31), the format for a processing
instruction is �"WDUJHW�GDWD"!, where “target” is the target application that is
expected to do the processing, and “data” is the instruction or information for it
to process. Add the text highlighted below to add a processing instruction for a

HANDLING PROCESSING INSTRUCTIONS 109
mythical slide presentation program that will query the user to find out which
slides to display (technical, executive-level, or all):

�VOLGHVKRZ�
���
!

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

�����7,7/(�6/,'(���!

Notes:

• The “data” portion of the processing instruction can contain spaces, or may
even be null. But there cannot be any space between the initial �" and the
target identifier.

• The data begins after the first space.

• Fully qualifying the target with the complete Web-unique package prefix
makes sense, so as to preclude any conflict with other programs that might
process the same data.

• For readability, it seems like a good idea to include a colon (:) after the
name of the application, like this:

�"P\�SUHVHQWDWLRQ�3URJUDP��48(5< �����"!

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, while the w3c spec allows
":" in a target name, some versions of IE5 consider it an error. For this tuto-
rial, then, we avoid using a colon in the target name.

110 SIMPLE API FOR XML
Now that you have a processing instruction to work with, add the code high-
lighted below to the Echo app:

SXEOLF�YRLG�FKDUDFWHUV�FKDU�EXI>@��LQW�RIIVHW��LQW�OHQ�
���
`

SXEOLF�YRLG�SURFHVVLQJ,QVWUXFWLRQ�6WULQJ�WDUJHW��6WULQJ�GDWD�
WKURZV�6$;([FHSWLRQ
^

QO����
HPLW��352&(66�����
HPLW���"��WDUJHW�����GDWD��"!���

`

SULYDWH�YRLG�HPLW�6WULQJ�V�
���

When your edits are complete, compile and run the program. The relevant part of
the output should look like this:

���
&+$56��
&+$56��
352&(66���"P\�SUHVHQWDWLRQ�3URJUDP�48(5< �H[HF��WHFK��DOO�"!
&+$56��
&+$56��
���

Now that you’ve had a chance to work with the processing instruction, you can
remove that instruction from the XML file. You won’t be needing it any more.

Summary
With the minor exception of LJQRUDEOH:KLWHVSDFH, you have used most of the
&RQWHQW+DQGOHU methods that you need to handle the most commonly useful
SAX events. You’ll see LJQRUDEOH:KLWHVSDFH a little later on. Next, though,
you’ll get deeper insight into how you handle errors in the SAX parsing process.

SUMMARY 111
Handling Errors with the Nonvalidating
Parser

This version of the Echo program uses the nonvalidating parser. So it can’t tell if
the XML document contains the right tags, or if those tags are in the right
sequence. In other words, it can’t tell you if the document is valid. It can, how-
ever, tell whether or not the document is well-formed.

In this section of the tutorial, you’ll modify the slideshow file to generate differ-
ent kinds of errors and see how the parser handles them. You’ll also find out
which error conditions are ignored, by default, and see how to handle them.

Introducing an Error
The parser can generate one of three kinds of errors: fatal error, error, and warn-
ing. In this exercise, you’ll make a simple modification to the XML file to intro-
duce a fatal error. Then you’ll see how it’s handled in the Echo app.

Note: The XML structure you’ll create in this exercise is in VOLGH6DPSOH%DG��[PO.
(The browsable version is VOLGH6DPSOH%DG��[PO�KWPO.) The output is in (FKR���
%DG�.

 One easy way to introduce a fatal error is to remove the final ��� from the
empty LWHP element to create a tag that does not have a corresponding end tag.
That constitutes a fatal error, because all XML documents must, by definition, be
well formed. Do the following:

1. Copy VOLGH6DPSOH�[PO to EDG6DPSOH�[PO.

2. Edit EDG6DPSOH�[PO and remove the character shown below:

���
�����29(59,(:���!
�VOLGH�W\SH �DOO�!

�WLWOH!2YHUYLHZ��WLWOH!
�LWHP!:K\��HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW��LWHP!
�LWHP/!
�LWHP!:KR��HP!EX\V��HP!�:RQGHU:LGJHWV��LWHP!

��VOLGH!
���

112 SIMPLE API FOR XML
to produce:

���
�LWHP!:K\��HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW��LWHP!
�LWHP!
�LWHP!:KR��HP!EX\V��HP!�:RQGHU:LGJHWV��LWHP!�
���

3. Run the Echo program on the new file.

The output you get now looks like this:

���
(/(0(17���LWHP!
&+$56����7KH�

(/(0(17���HP!
&+$56����2QO\
(1'B(/0����HP!

&+$56�����6HFWLRQ
(1'B(/0����LWHP!

&+$56��
(1'B(/0��

&+$56����org.xml.sax.SAXParseException: Expected "</item>"
to terminate element starting on line 20.

���
DW�MDYD[�[PO�SDUVHUV�6$;3DUVHU�SDUVH�6$;3DUVHU�MDYD�����
DW�(FKR���PDLQ�(FKR���MDYD����

When a fatal error occurs, the parser is unable to continue. So, if the application
does not generate an exception (which you’ll see how to do a moment), then the
default error-event handler generates one. The stack trace is generated by the
7KURZDEOH exception handler in your main method:

�������
`�FDWFK��7KURZDEOH�W��^

t.printStackTrace();
`

That stack trace is not too useful, though. Next, you’ll see how to generate better
diagnostics when an error occurs.

SUMMARY 113
Handling a SAXParseException
When the error was encountered, the parser generated a 6$;3DUVH([FHSWLRQ—a
subclass of 6$;([FHSWLRQ that identifies the file and location where the error
occurred.

Note: The code you’ll create in this exercise is in (FKR���MDYD. The output is in
(FKR���%DG�.

Add the code highlighted below to generate a better diagnostic message when
the exception occurs:

...
} catch (SAXParseException spe) {

// Error generated by the parser
System.out.println("* Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

`

Running the program now generates an error message which is a bit more help-
ful, like this:

�3DUVLQJ�HUURU��OLQH�����XUL�ILOH��SDWK!�VOLGH6DPSOH%DG��[PO
1H[W�FKDUDFWHU�PXVW�EH���

Note: Catching all throwables like this is not a good idea for production applica-
tions. We’re just doing it now so we can build up to full error handling gradually.

Handling a SAXException
A more general 6$;([FHSWLRQ instance may sometimes be generated by the
parser, but it more frequently occurs when an error originates in one of applica-
tion’s event handling methods. For example, the signature of the VWDUW'RFXPHQW

114 SIMPLE API FOR XML
method in the &RQWHQW+DQGOHU interface is defined as returning a 6$;([FHS�
WLRQ:

SXEOLF�YRLG�VWDUW'RFXPHQW���WKURZV�6$;([FHSWLRQ

All of the &RQWHQW+DQGOHU methods (except for VHW'RFXPHQW/RFDWRU) have
that signature declaration.

A 6$;([FHSWLRQ can be constructed using a message, another exception, or
both. So, for example, when (FKR�VWDUW'RFXPHQW outputs a string using the
HPLW method, any I/O exception that occurs is wrapped in a 6$;([FHSWLRQ and
sent back to the parser:

SULYDWH�YRLG�HPLW�6WULQJ�V�
WKURZV�6$;([FHSWLRQ
^

WU\�^
RXW�ZULWH�V��
RXW�IOXVK���

`�catch (IOException e)�^
throw new SAXException("I/O error", e);

`
`

Note: If you saved the /RFDWRU object when VHW'RFXPHQW/RFDWRU was invoked,
you could use it to generate a 6$;3DUVH([FHSWLRQ, identifying the document and
location, instead of generating a 6$;([FHSWLRQ.

When the parser delivers the exception back to the code that invoked the parser,
it makes sense to use the original exception to generate the stack trace. Add the
code highlighted below to do that:

������
`�FDWFK��6$;3DUVH([FHSWLRQ�HUU��^

6\VWHP�RXW�SULQWOQ��

�3DUVLQJ�HUURU��
�����OLQH�����HUU�JHW/LQH1XPEHU��
�����XUL�����HUU�JHW6\VWHP,G����

6\VWHP�RXW�SULQWOQ���������HUU�JHW0HVVDJH����

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

SUMMARY 115
x = sxe.getException();
x.printStackTrace();

`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

`

This code tests to see if the 6$;([FHSWLRQ is wrapping another exception. If so,
it generates a stack trace originating from where that exception occurred to make
it easier to pinpoint the code responsible for the error. If the exception contains
only a message, the code prints the stack trace starting from the location where
the exception was generated.

Improving the SAXParseException Handler
Since the 6$;3DUVH([FHSWLRQ can also wrap another exception, add the code
highlighted below to use it for the stack trace:

�������
`�FDWFK��6$;3DUVH([FHSWLRQ�HUU��^

6\VWHP�RXW�SULQWOQ��

�3DUVLQJ�HUURU��
�����OLQH�����HUU�JHW/LQH1XPEHU��
�����XUL�����HUU�JHW6\VWHP,G����

6\VWHP�RXW�SULQWOQ���������HUU�JHW0HVVDJH����

���8QSDFN�WKH�GHOLYHUHG�H[FHSWLRQ�WR�JHW�WKH�H[FHSWLRQ�LW�
FRQWDLQV

([FHSWLRQ��[� �VSH�
LI��VSH�JHW([FHSWLRQ���� �QXOO�

[� �VSH�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

`�FDWFK��6$;([FHSWLRQ�H��^
���(UURU�JHQHUDWHG�E\�WKLV�DSSOLFDWLRQ
����RU�D�SDUVHU�LQLWLDOL]DWLRQ�HUURU�
([FHSWLRQ [� �H�
LI��H�JHW([FHSWLRQ���� �QXOO�

[� �H�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

`

116 SIMPLE API FOR XML
The program is now ready to handle any SAX parsing exceptions it sees. You’ve
seen that the parser generates exceptions for fatal errors. But for nonfatal errors
and warnings, exceptions are never generated by the default error handler, and
no messages are displayed. Next, you’ll learn more about errors and warnings
and find out how to supply an error handler to process them.

Handling a ParserConfigurationException
Finally, recall that the 6$;3DUVHU)DFWRU\ class could throw an exception if it
were for unable to create a parser. Such an error might occur if the factory could
not find the class needed to create the parser (class not found error), was not per-
mitted to access it (illegal access exception), or could not instantiate it (instantia-
tion error).

Add the code highlighted below to handle such errors:

`�FDWFK��6$;([FHSWLRQ�H��^
([FHSWLRQ [� �H�
LI��H�JHW([FHSWLRQ���� �QXOO�

[� �H�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

} catch (ParserConfigurationException pce) {
// Parser with specified options can’t be built
pce.printStackTrace();

`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

This code, like the 6$;([FHSWLRQ handler, takes into account the possibility that
the reported exception might be wrapping another exception. (Admittedly, there
are quite a few error handlers here. But at least now you know the kinds of
exceptions that can occur.)

Note: A MDYD[�[PO�SDUVHUV�)DFWRU\&RQILJXUDWLRQ(UURU could also be thrown
if the factory class specified by the system property cannot be found or instantiated.
That is a non-trappable error, since the program is not expected to be able to recover
from it.

SUMMARY 117
Handling an IOException
Finally, while we’re at it, let’s stop intercepting all 7KURZDEOH objects and catch
the only remaining exceptions there is to catch, ,2([FHSWLRQV:

`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^
���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

`�FDWFK��7KURZDEOH�W��^
W�SULQW6WDFN7UDFH���

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

`

Understanding NonFatal Errors
In general, a nonfatal error occurs when an XML document fails a validity con-
straint. If the parser finds that the document is not valid (which means that it
contains an invalid tag or a tag in location that is disallowed), then an error event
is generated. In general, then, errors are generated by a validating parser, given a
DTD that tells it which tags are valid. There is one kind of error, though, that is
generated by the nonvalidating parser you have been working with so far. You’ll
experiment with that error next.

Note: The file you’ll create in this exercise is VOLGH6DPSOH%DG��[PO. (The brows-
able version is VOLGH6DPSOH%DG��[PO�KWPO.) The output is in (FKR���%DG�.

The SAX specification requires an error event to be generated if the XML docu-
ment uses a version of XML that the parser does not support. To generate such
an error, make the changes shown below to alter your XML file so it specifies
YHUVLRQ �����.

���"[PO�YHUVLRQ
����
�HQFRGLQJ
XWI��
"!

Now run your version of the Echo program on that file. What happens? (See
below for the answer.)

Answer: Nothing happens! By default, the error is ignored. The output from the
Echo program looks the same as if YHUVLRQ ����� had been properly specified.

118 SIMPLE API FOR XML
To do something else, you need to supply your own error handler. You’ll do that
next.

Handling Nonfatal Errors
A standard treatment for “nonfatal” errors is to treat them as if they were fatal.
After all, if a validation error occurs in a document you are processing, you prob-
ably don’t want to continue processing it. In this exercise, you’ll do exactly that.

Note: The code for the program you’ll create in this exercise is in (FKR���MDYD. The
output is in (FKR���%DG�.

To take over error handling, you override the 'HIDXOW+DQGOHU methods that
handle fatal errors, nonfatal errors, and warnings as part of the (UURU+DQGOHU
interface. The SAX parser delivers a 6$;3DUVH([FHSWLRQ to each of these meth-
ods, so generating an exception when an error occurs is as simple as throwing it
back.

Add the code highlighted below to override the handlers for errors:

SXEOLF�YRLG�SURFHVVLQJ,QVWUXFWLRQ�6WULQJ�WDUJHW��6WULQJ�GDWD�
WKURZV�6$;([FHSWLRQ
^

QO���
HPLW��352&(66�����
HPLW���"��WDUJHW�����GDWD��"!���

`

���WUHDW�YDOLGDWLRQ�HUURUV�DV�IDWDO
SXEOLF�YRLG�HUURU�6$;3DUVH([FHSWLRQ�H�
WKURZV�6$;3DUVH([FHSWLRQ
^

WKURZ�H�
`

Now when you run your app on the file with the faulty version number, you get
an exception, as shown here (but slightly reformatted for readability):

67$57�'2&80(17
�"[PO�YHUVLRQ
���
�HQFRGLQJ
87)��
"!

** Parsing error, line 1, uri file:/�SDWK!/slideSampleBad2.xml
XML version "1.0" is recognized, but not "1.2".

SUMMARY 119
org.xml.sax.SAXParseException: XML version "1.0" is recognized, but not "1.2".
���
DW�MDYD[�[PO�SDUVHUV�6$;3DUVHU�SDUVH�6$;3DUVHU�MDYD�����
DW�(FKR���PDLQ�(FKR���MDYD�����

Note: The error actually occurs after the VWDUW'RFXPHQW event has been generated.
The document header that the program “echoes” is the one it creates on the assump-
tion that everything is ok, rather than the one that is actually in the file.

Handling Warnings
Warnings, too, are ignored by default. Warnings are informative, and require a
DTD. For example, if an element is defined twice in a DTD, a warning is gener-
ated—it’s not illegal, and it doesn’t cause problems, but it’s something you
might like to know about since it might not have been intentional.

Add the code highlighted below to generate a message when a warning occurs:

���WUHDW�YDOLGDWLRQ�HUURUV�DV�IDWDO
SXEOLF�YRLG�HUURU�6$;3DUVH([FHSWLRQ�H�
WKURZV�6$;3DUVH([FHSWLRQ
^

WKURZ�H�
`

���GXPS�ZDUQLQJV�WRR
SXEOLF�YRLG�ZDUQLQJ�6$;3DUVH([FHSWLRQ�HUU�
WKURZV�6$;3DUVH([FHSWLRQ
^

6\VWHP�RXW�SULQWOQ��

�:DUQLQJ�
�����OLQH�����HUU�JHW/LQH1XPEHU��
�����XUL�����HUU�JHW6\VWHP,G����

6\VWHP�RXW�SULQWOQ���������HUU�JHW0HVVDJH����
`

Since there is no good way to generate a warning without a DTD, you won’t be
seeing any just yet. But when one does occur, you’re ready!

Note: By default, 'HIDXOW+DQGOHU throws an exception when a fatal error occurs.
You could override the IDWDO(UURU method to throw a different exception, if you
like. But if your code doesn’t, the reference implementation’s SAX parser will.

120 SIMPLE API FOR XML
Substituting and Inserting Text
The next thing we want to do with the parser is to customize it a bit, so you can
see how to get information it usually ignores. But before we can do that, you’re
going to need to learn a few more important XML concepts. In this section,
you’ll learn about:

• Handling Special Characters (���, �	�, and so on)

• Handling Text with XML-style syntax

Handling Special Characters
In XML, an entity is an XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

��	HQWLW\1DPH�

Later, when you learn how to write a DTD, you’ll see that you can define your
own entities, so that 	\RXU(QWLW\1DPH� expands to all the text you defined for
that entity. For now, though, we’ll focus on the predefined entities and character
references that don’t require any special definitions.

Predefined Entities
An entity reference like 	DPS� contains a name (in this case, “amp”) between the
start and end delimiters. The text it refers to (&) is substituted for the name, like
a macro in a C or C++ program. Table 1 shows the predefined entities for special
characters.

Table 1 Predefined Entities

 Character Reference

 & &

 < <

 > >

USING AN ENTITY REFERENCE IN AN XML DOCUMENT 121
Character References
A character reference like 	����� contains a hash mark (�) followed by a num-
ber. The number is the Unicode value for a single character, such as 65 for the
letter “A”, 147 for the left-curly quote, or 148 for the right-curly quote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

Using an Entity Reference in an XML
Document
Suppose you wanted to insert a line like this in your XML document:

�0DUNHW�6L]H���SUHGLFWHG

The problem with putting that line into an XML file directly is that when the
parser sees the left-angle bracket (<), it starts looking for a tag name, which
throws off the parse. To get around that problem, you put 	OW� in the file, instead
of ���.

Note: The results of the modifications below are contained in VOLGH6DPSOH���[PO.
(The browsable version is VOLGH6DPSOH���[PO�KWPO.) The results of processing it
are shown in (FKR�����.

 " "

 ’ '

Table 1 Predefined Entities

122 SIMPLE API FOR XML
If you are following the programming tutorial, add the text highlighted below to
your VOLGH6DPSOH�[PO file:

�����29(59,(:���!
�VOLGH�W\SH �DOO�!

�WLWOH!2YHUYLHZ��WLWOH!
���

��VOLGH!

�VOLGH�W\SH �H[HF�!
�WLWOH!)LQDQFLDO�)RUHFDVW��WLWOH!
�LWHP!0DUNHW�6L]H�	OW��SUHGLFWHG��LWHP!
�LWHP!$QWLFLSDWHG�3HQHWUDWLRQ��LWHP!
�LWHP!([SHFWHG�5HYHQXHV��LWHP!
�LWHP!3URILW�0DUJLQ���LWHP!

��VOLGH!

��VOLGHVKRZ!

When you run the Echo program on your XML file, you see the following out-
put:

(/(0(17���LWHP!
&+$56����0DUNHW�6L]H�
&+$56�����
&+$56�����SUHGLFWHG
(1'B(/0����LWHP!

The parser converted the reference into the entity it represents, and passed the
entity to the application.

Handling Text with XML-Style Syntax
When you are handling large blocks of XML or HTML that include many of the
special characters, it would be inconvenient to replace each of them with the
appropriate entity reference. For those situations, you can use a &'7 section.

Note: The results of the modifications below are contained in VOLGH6DPSOH���[PO.
(The browsable version is VOLGH6DPSOH���[PO�KWPO.) The results of processing it
are shown in (FKR�����.

HANDLING TEXT WITH XML-STYLE SYNTAX 123
A &'7 section works like �SUH!�����SUH! in HTML, only more so—all
whitespace in a &'7 section is significant, and characters in it are not inter-
preted as XML. A &'7 section starts with ��>&'7>�and ends with @@!. Add
the text highlighted below to your VOLGH6DPSOH�[PO file to define a &'7 sec-
tion for a fictitious technical slide:

����
�VOLGH�W\SH �WHFK�!

�WLWOH!+RZ�LW�:RUNV��WLWOH!
�LWHP!)LUVW�ZH�IR]]OH�WKH�IUREPRUWHQ��LWHP!
�LWHP!7KHQ�ZH�IUDPER]H�WKH�VWDWHQ��LWHP!
�LWHP!)LQDOO\��ZH�IUHQ]OH�WKH�IX]QDWHQ��LWHP!
�LWHP!��>&'7>'LDJUDP�

IUREPRUWHQ�����������������������������IX]QDWHQ
_� ��! A
_���! _ ��!� �IR]]OH
9������������� �_� ��!� �IUDPER]H�
6WDWHQ������!� �IUHQ]OH

��!
@@!��LWHP!

��VOLGH!
��VOLGHVKRZ!

When you run the Echo program on the new file, you see the following output:

�� (/(0(17���LWHP!
&+$56����'LDJUDP�

IUREPRUWHQ����������������������IX]QDWHQ
_��������������!�����A
���!�� ������!� �IR]]OH
9�� �_�����!� �IUDPER]H�
6WDWHQ������!� �IUHQ]OH

��!

(1'B(/0����LWHP!

You can see here that the text in the &'7 section arrived as one entirely unin-
terpreted character string.

124 SIMPLE API FOR XML
Handling CDATA and Other Characters
The existence of CDATA makes the proper echoing of XML a bit tricky. If the
text to be output is not in a CDATA section, then any angle brackets, amper-
sands, and other special characters in the text should be replaced with the appro-
priate entity reference. (Replacing left angle brackets and ampersands is most
important, other characters will be interpreted properly without misleading the
parser.)

But if the output text is in a CDATA section, then the substitutions should not
occur, to produce text like that in the example above. In a simple program like
our Echo application, it’s not a big deal. But many XML-filtering applications
will want to keep track of whether the text appears in a CDATA section, in order
to treat special characters properly.

One other area to watch for is attributes. The text of an attribute value could also
contain angle brackets and semicolons that need to be replaced by entity refer-
ences. (Attribute text can never be in a CDATA section, though, so there is never
any question about doing that substitution.)

Later in this tutorial, you will see how to use a /H[LFDO+DQGOHU to find out
whether or not you are processing a CDATA section. Next, though, you will see
how to define a DTD.

Creating a Document Type Definition
(DTD)

After the XML declaration, the document prolog can include a DTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid, and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it sees is sig-
nificant or ignorable.

Basic DTD Definitions
When you were parsing the slide show, for example, you saw that the FKDUDF�
WHUV method was invoked multiple times before and after comments and slide
elements. In those cases, the whitespace consisted of the line endings and inden-

BASIC DTD DEFINITIONS 125
tation surrounding the markup. The goal was to make the XML document read-
able—the whitespace was not in any way part of the document contents. To
begin learning about DTD definitions, let’s start by telling the parser where
whitespace is ignorable.

Note: The DTD defined in this section is contained in VOLGHVKRZ�D�GWG. (The
browsable version is VOLGHVKRZ�D�GWG�KWPO.)

Start by creating a file named VOLGHVKRZ�GWG. Enter an XML declaration and a
comment to identify the file, as shown below:

�"[PO�YHUVLRQ
���
�HQFRGLQJ
XWI��
"!

�����'7'�IRU�D�VLPSOH��VOLGH�VKRZ�����!

Next, add the text highlighted below to specify that a VOLGHVKRZ element con-
tains VOLGH elements and nothing else:

�����'7'�IRU�D�VLPSOH��VOLGH�VKRZ�����!

��(/(0(17�VOLGHVKRZ��VOLGH��!

As you can see, the DTD tag starts with �� followed by the tag name ((/(0(17).
After the tag name comes the name of the element that is being defined (VOLGH�
VKRZ) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a VOLGHVKRZ consists of one or
more VOLGH elements.

Without the plus sign, the definition would be saying that a VOLGHVKRZ consists
of a single VOLGH element. Here are the qualifiers you can add to an element def-
inition:

Table 2 DTD Element Qualifiers

 Qualifier Name Meaning

" Question Mark Optional (zero or one)

�
 Asterisk Zero or more

126 SIMPLE API FOR XML
You can include multiple elements inside the parentheses in a comma separated
list, and use a qualifier on each element to indicate how many instances of that
element may occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after
defining an LPDJH element (coming up shortly), you could declare that every
LPDJH element must be paired with a WLWOH element in a slide by specifying
��LPDJH�� WLWOH���. Here, the plus sign applies to the LPDJH�WLWOH pair to
indicate that one or more pairs of the specified items can occur.

Defining Text and Nested Elements
Now that you have told the parser something about where not to expect text, let’s
see how to tell it where text can occur. Add the text highlighted below to define
the VOLGH, WLWOH, LWHP, and OLVW elements:

��(/(0(17�VOLGHVKRZ��VOLGH��!
��(/(0(17�VOLGH��WLWOH��LWHP
�!
��(/(0(17�WLWOH���3&'7�!
��(/(0(17�LWHP���3&'7�_�LWHP�
�!

The first line you added says that a slide consists of a WLWOH followed by zero or
more LWHP elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (3&'7). That’s known as “text” in most parts
of the country, but in XML-speak it’s called “parsed character data”. (That dis-
tinguishes it from &'7 sections, which contain character data that is not
parsed.) The ��� that precedes 3&'7 indicates that what follows is a special
word, rather than an element name.

The last line introduces the vertical bar (_), which indicates an or condition. In
this case, either 3&'7 or an LWHP can occur. The asterisk at the end says that
either one can occur zero or more times in succession. The result of this specifi-
cation is known as a mixed-content model, because any number of LWHP ele-
ments can be interspersed with the text. Such models must always be defined
with �3&'7 specified first, some number of alternate items divided by vertical
bars (_), and an asterisk (
) at the end.

�� Plus Sign One or more

Table 2 DTD Element Qualifiers

LIMITATIONS OF DTDS 127
Limitations of DTDs
It would be nice if we could specify that an LWHP contains either text, or text fol-
lowed by one or more list items. But that kind of specification turns out to be
hard to achieve in a DTD. For example, you might be tempted to define an LWHP
like this:

��(/(0(17�LWHP���3&'7�_���3&'7��LWHP����!

That would certainly be accurate, but as soon as the parser sees #PCDATA and
the vertical bar, it requires the remaining definition to conform to the mixed-con-
tent model. This specification doesn’t, so you get can error that says: ,OOHJDO
PL[HG�FRQWHQW�PRGHO�IRU�
LWHP
��)RXQG�	�[�������� where the hex char-
acter 28 is the angle bracket the ends the definition.

Trying to double-define the item element doesn’t work, either. A specification
like this:

��(/(0(17�LWHP���3&'7��!
��(/(0(17�LWHP���3&'7��LWHP���!

produces a “duplicate definition” warning when the validating parser runs. The
second definition is, in fact, ignored. So it seems that defining a mixed content
model (which allows LWHP elements to be interspersed in text) is about as good
as we can do.

In addition to the limitations of the mixed content model mentioned above, there
is no way to further qualify the kind of text that can occur where 3&'7 has
been specified. Should it contain only numbers? Should be in a date format, or
possibly a monetary format? There is no way to say in the context of a DTD.

Finally, note that the DTD offers no sense of hierarchy. The definition for the
WLWOH element applies equally to a VOLGH title and to an LWHP title. When we
expand the DTD to allow HTML-style markup in addition to plain text, it would
make sense to restrict the size of an LWHP title compared to a VOLGH title, for
example. But the only way to do that would be to give one of them a different
name, such as “LWHP�WLWOH”. The bottom line is that the lack of hierarchy in the
DTD forces you to introduce a “hyphenation hierarchy” (or its equivalent) in
your namespace. All of these limitations are fundamental motivations behind the
development of schema-specification standards.

128 SIMPLE API FOR XML
Special Element Values in the DTD
Rather than specifying a parenthesized list of elements, the element definition
could use one of two special values: $1< or (037<. The $1< specification says
that the element may contain any other defined element, or 3&'7. Such a spec-
ification is usually used for the root element of a general-purpose XML docu-
ment such as you might create with a word processor. Textual elements could
occur in any order in such a document, so specifying $1< makes sense.

The (037< specification says that the element contains no contents. So the DTD
for e-mail messages that let you “flag” the message with �IODJ�! might have a
line like this in the DTD:

��(/(0(17�IODJ�(037<!

Referencing the DTD
In this case, the DTD definition is in a separate file from the XML document.
That means you have to reference it from the XML document, which makes the
DTD file part of the external subset of the full Document Type Definition (DTD)
for the XML file. As you’ll see later on, you can also include parts of the DTD
within the document. Such definitions constitute the local subset of the DTD.

Note: The XML written in this section is contained in VOLGH6DPSOH���[PO. (The
browsable version is VOLGH6DPSOH���[PO�KWPO.)

To reference the DTD file you just created, add the line highlighted below to
your VOLGH6DPSOH�[PO file:

������$�6$03/(�VHW�RI�VOLGHV����!

��'2&7<3(�VOLGHVKRZ�6<67(0��VOLGHVKRZ�GWG�!

�VOLGHVKRZ�

REFERENCING THE DTD 129
Again, the DTD tag starts with ����. In this case, the tag name, '2&7<3(, says
that the document is a VOLGHVKRZ, which means that the document consists of the
VOLGHVKRZ element and everything within it:

�VOLGHVKRZ!
���
��VOLGHVKRZ!

This tag defines the VOLGHVKRZ element as the root element for the document.
An XML document must have exactly one root element. This is where that ele-
ment is specified. In other words, this tag identifies the document content as a
VOLGHVKRZ.

The '2&7<3(tag occurs after the XML declaration and before the root element.
The 6<67(0 identifier specifies the location of the DTD file. Since it does not
start with a prefix like KWWS���or ILOH��, the path is relative to the location of
the XML document. Remember the VHW'RFXPHQW/RFDWRU method? The parser
is using that information to find the DTD file, just as your application would to
find a file relative to the XML document. A 38%/,& identifier could also be used
to specify the DTD file using a unique name—but the parser would have to be
able to resolve it

The '2&7<3(specification could also contain DTD definitions within the XML
document, rather than referring to an external DTD file. Such definitions would
be contained in square brackets, like this:

��'2&7<3(�VOLGHVKRZ�6<67(0��VOLGHVKRZ��GWG��>
...local subset definitions here...

]>

You’ll take advantage of that facility later on to define some entities that can be
used in the document.

DTD’s Effect on the Nonvalidating
Parser

In the last section, you defined a rudimentary document type and used it in your
XML file. In this section, you’ll use the Echo program to see how the data
appears to the SAX parser when the DTD is included.

130 SIMPLE API FOR XML
Note: The output shown in this section is contained in (FKR�����.

Running the Echo program on your latest version of VOLGH6DPSOH�[PO shows
that many of the superfluous calls to the FKDUDFWHUV method have now disap-
peared:

(/(0(17���VOLGHVKRZ
$775�����

!
352&(66�����

(/(0(17���VOLGH
$775�����

!
(/(0(17���WLWOH!
&+$56����:DNH�XS�WR����
(1'B(/0����WLWOH!

(1'B(/0����VOLGH!
(/(0(17���VOLGH

$775�����
!
���

It is evident here that the whitespace characters which were formerly being ech-
oed around the VOLGH elements are no longer appearing, because the DTD
declares that VOLGHVKRZ consists solely of VOLGH elements:

����(/(0(17�VOLGHVKRZ��VOLGH��!

Tracking Ignorable Whitespace
Now that the DTD is present, the parser is no longer the FKDUDFWHUV method
with whitespace that it knows to be irrelevant. From the standpoint of an applica-
tion that is only interested in processing the XML data, that is great. The applica-
tion is never bothered with whitespace that exists purely to make the XML file
readable.

On the other hand, if you were writing an application that was filtering an XML
data file, and you wanted to output an equally readable version of the file, then
that whitespace would no longer be irrelevant—it would be essential. To get
those characters, you need to add the LJQRUDEOH:KLWHVSDFH method to your
application. You’ll do that next.

TRACKING IGNORABLE WHITESPACE 131
Note: The code written in this section is contained in (FKR���MDYD. The output is
in (FKR�����.

To process the (generally) ignorable whitespace that the parser is seeing, add the
code highlighted below to implement the LJQRUDEOH:KLWHVSDFH event handler
in your version of the Echo program:

SXEOLF�YRLG�FKDUDFWHUV��FKDU�EXI>@��LQW�RIIVHW��LQW�OHQ�
����
`

SXEOLF�YRLG�LJQRUDEOH:KLWHVSDFH�FKDU�EXI>@��LQW�RIIVHW��LQW�
/HQ�
WKURZV�6$;([FHSWLRQ
^

QO����HPLW��,*125$%/(���
`

SXEOLF�YRLG�SURFHVVLQJ,QVWUXFWLRQ�6WULQJ�WDUJHW��6WULQJ�GDWD�

This code simply generates a message to let you know that ignorable whitespace
was seen.

Note: Again, not all parsers are created equal. The SAX specification does not
require this method to be invoked. The Java XML implementation does so when-
ever the DTD makes it possible.

When you run the Echo application now, your output looks like this:

(/(0(17���VOLGHVKRZ
$775�����

!
IGNORABLE
IGNORABLE
352&(66�����
IGNORABLE
IGNORABLE

(/(0(17���VOLGH
$775�����

!
IGNORABLE

(/(0(17���WLWOH!
&+$56����:DNH�XS�WR����

132 SIMPLE API FOR XML
(1'B(/0����WLWOH!
IGNORABLE
(1'B(/0����VOLGH!

IGNORABLE
IGNORABLE

(/(0(17���VOLGH
$775�����

!
���

Here, it is apparent that the ignorableWhitespace is being invoked before and
after comments and slide elements, where characters was being invoked before
there was a DTD.

Cleanup
Now that you have seen ignorable whitespace echoed, remove that code from
your version of the Echo program—you won’t be needing it any more in the
exercises ahead.

Note: That change has been made in (FKR���MDYD.

Documents and Data
Earlier, you learned that one reason you hear about XML documents, on the one
hand, and XML data, on the other, is that XML handles both comfortably,
depending on whether text is or is not allowed between elements in the structure.

In the sample file you have been working with, the VOLGHVKRZ element is an
example of a data element—it contains only subelements with no intervening
text. The LWHP element, on the other hand, might be termed a document element,
because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of
the title element to include HTML-style markup, which will turn it into a docu-
ment element as well.

EMPTY ELEMENTS, REVISITED 133
Empty Elements, Revisited
Now that you understand how certain instances of whitespace can be ignorable,
it is time revise the definition of an “empty” element. That definition can now be
expanded to include

���IRR!�����IRR!

where there is whitespace between the tags and the DTD defines that whitespace
as ignorable.

Defining Attributes and Entities in the
DTD

The DTD you’ve defined so far is fine for use with the nonvalidating parser. It
tells where text is expected and where it isn’t, which is all the nonvalidating
parser is going to pay attention to. But for use with the validating parser, the
DTD needs to specify the valid attributes for the different elements. You’ll do
that in this section, after which you’ll define one internal entity and one external
entity that you can reference in your XML file.

Defining Attributes in the DTD
Let’s start by defining the attributes for the elements in the slide presentation.

Note: The XML written in this section is contained in VOLGHVKRZ�E�GWG. (The
browsable version is VOLGHVKRZ�E�GWG�KWPO.)

Add the text highlighted below to define the attributes for the VOLGHVKRZ ele-
ment:

��(/(0(17�VOLGHVKRZ��VOLGH��!
<!ATTLIST slideshow

title CDATA #REQUIRED
date CDATA #IMPLIED
author CDATA "unknown"

>
��(/(0(17�VOLGH��WLWOH��LWHP
�!

134 SIMPLE API FOR XML
The DTD tag $77/,67 begins the series of attribute definitions. The name that
follows $77/,67 specifies the element for which the attributes are being defined.
In this case, the element is the VOLGHVKRZ element. (Note once again the lack of
hierarchy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas
and other separators are not allowed, so formatting the definitions as shown
above is helpful for readability. The first element in each line is the name of the
attribute: WLWOH, GDWH, or DXWKRU, in this case. The second element indicates the
type of the data: &'7 is character data—unparsed data, once again, in which a
left-angle bracket (<) will never be construed as part of an XML tag. Table 3 pre-
sents the valid choices for the attribute type.

*This is a rapidly obsolescing specification which will be discussed in greater
length towards the end of this section.

Table 3 Attribute Types

 Attribute Type Specifies...

�YDOXH��_�YDOXH��_����� A list of values separated by vertical bars. (Example below)

&'7 “Unparsed character data”. (For normal people, a text string.)

,' A name that no other ID attribute shares.

,'5() A reference to an ID defined elsewhere in the document.

,'5()6 A space-separated list containing one or more ID references.

(17,7< The name of an entity defined in the DTD.

(17,7,(6 A space-separated list of entities.

1072.(1
A valid XML name composed of letters, numbers, hyphens,
underscores, and colons.

1072.(16 A space-separated list of names.

127$7,21
The name of a DTD-specified notation, which describes a
non-XML data format, such as those used for image files.*

DEFINING ENTITIES IN THE DTD 135
When the attribute type consists of a parenthesized list of choices separated by
vertical bars, the attribute must use one of the specified values. For an example,
add the text highlighted below to the DTD:

��(/(0(17�VOLGH��WLWOH��LWHP
�!
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
��(/(0(17�WLWOH���3&'7�!
��(/(0(17�LWHP���3&'7�_�LWHP�
�!

This specification says that the VOLGH element’s W\SH attribute must be given as
W\SH �WHFK�, W\SH �H[HF�, or W\SH �DOO�. No other values are acceptable.
(DTD-aware XML editors can use such specifications to present a pop-up list of
choices.)

The last entry in the attribute specification determines the attributes default
value, if any, and tells whether or not the attribute is required. Table 4 shows the
possible choices.

Defining Entities in the DTD
So far, you’ve seen predefined entities like 	DPS� and you’ve seen that an
attribute can reference an entity. It’s time now for you to learn how to define
entities of your own.

Table 4 Attribute-Specification Parameters

 Specification Specifies...

��5(48,5(' The attribute value must be specified in the document.

��,03/,('
The value need not be specified in the document. If it isn’t, the
application will have a default value it uses.

 “defaultValue”
The default value to use, if a value is not specified in the doc-
ument.

 �),;(' “fixedValue”
The value to use. If the document specifies any value at all, it
must be the same.

136 SIMPLE API FOR XML
Note: The XML defined here is contained in VOLGH6DPSOH���[PO. (The browsable
version is VOLGH6DPSOH���[PO�KWPO.) The output is shown in (FKR�����.

Add the text highlighted below to the '2&7<3(tag in your XML file:

��'2&7<3(�VOLGHVKRZ�6<67(0��VOLGHVKRZ��GWG��>
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">

]!

The (17,7< tag name says that you are defining an entity. Next comes the name
of the entity and its definition. In this case, you are defining an entity named
“product” that will take the place of the product name. Later when the product
name changes (as it most certainly will), you will only have to change the name
one place, and all your slides will reflect the new value.

The last part is the substitution string that replaces the entity name whenever it is
referenced in the XML document. The substitution string is defined in quotes,
which are not included when the text is inserted into the document.

Just for good measure, we defined two versions, one singular and one plural, so
that when the marketing mavens come up with “Wally” for a product name, you
will be prepared to enter the plural as “Wallies” and have it substituted correctly.

Note: Truth be told, this is the kind of thing that really belongs in an external DTD.
That way, all your documents can reference the new name when it changes. But,
hey, this is an example...

ECHOING THE ENTITY REFERENCES 137
Now that you have the entities defined, the next step is to reference them in the
slide show. Make the changes highlighted below to do that:

�VOLGHVKRZ�
WLWOH �:RQGHU:LGJHW&product;�6OLGH�6KRZ��
���

�����7,7/(�6/,'(���!
�VOLGH�W\SH �DOO�!

�WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV&products;���WLWOH!
��VOLGH!

������29(59,(:���!
�VOLGH�W\SH �DOO�!

�WLWOH!2YHUYLHZ��WLWOH!
�LWHP!:K\��HP!:RQGHU:LGJHWV&products;��HP!�DUH�

JUHDW��LWHP!
�LWHP�!
�LWHP!:KR��HP!EX\V��HP!�:RQGHU:LGJHWV&products;��LWHP!

��VOLGH!

The points to notice here are that entities you define are referenced with the same
syntax (HQWLW\1DPH�) that you use for predefined entities, and that the entity
can be referenced in an attribute value as well as in an element’s contents.

Echoing the Entity References
When you run the Echo program on this version of the file, here is the kind of
thing you see:

(/(0(17���WLWOH!
&+$56����:DNH�XS�WR�
CHARS: WonderWidgets
&+$56�����
(1'B(/0����WLWOH!

Note that the existence of the entity reference generates an extra call to the FKDU�
DFWHUV method, and that the text you see is what results from the substitution.

138 SIMPLE API FOR XML
Additional Useful Entities
Here are several other examples for entity definitions that you might find useful
when you write an XML document:

��(17,7<�OGTXR���	������!������/HIW�'RXEOH�4XRWH���!�
��(17,7<�UGTXR���	������!������5LJKW�'RXEOH�4XRWH���!
��(17,7<�WUDGH���	������!������7UDGHPDUN�6\PERO��70����!
��(17,7<�UWUDGH��	������!������5HJLVWHUHG�7UDGHPDUN��5����!
��(17,7<�FRS\U���	������!������&RS\ULJKW�6\PERO���!�

Referencing External Entities
You can also use the 6<67(0 or 38%/,& identifier to name an entity that is
defined in an external file. You’ll do that now.

Note: The XML defined here is contained in VOLGH6DPSOH���[PO and in FRS\�
ULJKW�[PO. (The browsable versions are VOLGH6DPSOH���[PO�KWPO and FRS\�
ULJKW�[PO�KWPO.) The Echo output is shown in (FKR�����.

To reference an external entity, add the text highlighted below to the '2&7<3(
statement in your XML file:

��'2&7<3(�VOLGHVKRZ�6<67(0��VOLGHVKRZ�GWG��>
��(17,7<�SURGXFW���:RQGHU:LGJHW�!
��(17,7<�SURGXFWV��:RQGHU:LGJHWV�!
<!ENTITY copyright SYSTEM "copyright.xml">

@!

This definition references a copyright message contained in a file named FRS\�
ULJKW�[PO. Create that file and put some interesting text in it, perhaps some-
thing like this:

��������$�6$03/(�FRS\ULJKW����!

7KLV�LV�WKH�VWDQGDUG�FRS\ULJKW�PHVVDJH�WKDW�RXU�ODZ\HUV
PDNH�XV�SXW�HYHU\ZKHUH�VR�ZH�GRQ
W�KDYH�WR�VKHOO�RXW�D
PLOOLRQ�EXFNV�HYHU\�WLPH�VRPHRQH�VSLOOV�KRW�FRIIHH�LQ�WKHLU
ODS���

ECHOING THE EXTERNAL ENTITY 139
Finally, add the text highlighted below to your VOLGH6DPSOH�[PO file to refer-
ence the external entity:

�����7,7/(�6/,'(���!
���

��VOLGH!

�����&23<5,*+7�6/,'(���!
�VOLGH�W\SH �DOO�!

�LWHP!	FRS\ULJKW���LWHP!
��VOLGH!

You could also use an external entity declaration to access a servlet that produces
the current date using a definition something like this:

��(17,7<�FXUUHQW'DWH�6<67(0
�KWWS���ZZZ�H[DPSOH�FRP�VHUYOHW�&XUUHQW'DWH"IPW GG�000�

\\\\�!�

You would then reference that entity the same as any other entity:

��7RGD\
V�GDWH�LV�	FXUUHQW'DWH��

Echoing the External Entity
When you run the Echo program on your latest version of the slide presentation,
here is what you see:

���
(1'B(/0����VOLGH!
(/(0(17���VOLGH

$775��W\SH �DOO�
!

(/(0(17���LWHP!
&+$56��

7KLV�LV�WKH�VWDQGDUG�FRS\ULJKW�PHVVDJH�WKDW�RXU�ODZ\HUV
PDNH�XV�SXW�HYHU\ZKHUH�VR�ZH�GRQ
W�KDYH�WR�VKHOO�RXW�D
PLOOLRQ�EXFNV�HYHU\�WLPH�VRPHRQH�VSLOOV�KRW�FRIIHH�LQ�WKHLU
ODS���

(1'B(/0����LWHP!
(1'B(/0����VOLGH!
���

140 SIMPLE API FOR XML
Note that the newline which follows the comment in the file is echoed as a char-
acter, but that the comment itself is ignored. That is the reason that the copyright
message appears to start on the next line after the &+$56� label, instead of imme-
diately after the label—the first character echoed is actually the newline that fol-
lows the comment.

Summarizing Entities
An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity which contains XML (text and markup), and which is therefore parsed,
is known as a parsed entity. An entity which contains binary data (like images) is
known as an unparsed entity. (By its very nature, it must be external.) We’ll be
discussing references to unparsed entities in the next section of this tutorial.

Referencing Binary Entities
This section contains no programming exercises. Instead, it discusses the options
for referencing binary files like image files and multimedia data files.

Using a MIME Data Type
There are two ways to go about referencing an unparsed entity like a binary
image file. One is to use the DTD’s 127$7,21-specification mechanism. How-
ever, that mechanism is a complex, non-intuitive holdover that mostly exists for
compatibility with SGML documents. We will have occasion to discuss it in a bit
more depth when we look at the '7'+DQGOHU API, but suffice it for now to say
that the combination of the recently defined XML namespaces standard, in con-
junction with the MIME data types defined for electronic messaging attach-
ments, together provide a much more useful, understandable, and extensible
mechanism for referencing unparsed external entities.

Note: The XML described here is in VOLGHVKRZ�E�GWG. We won’t actually be echo-
ing any images. That’s beyond the scope of this tutorial’s Echo program. This sec-
tion is simply for understanding how such references can be made. It assumes that

USING A MIME DATA TYPE 141
the application which will be processing the XML data knows how to handle such
references.

To set up the slideshow to use image files, add the text highlighted below to your
VOLGHVKRZ�GWG file:

��(/(0(17�VOLGH��LPDJH"��WLWOH��LWHP
�!
��$77/,67�VOLGH�

W\SH����WHFK�_�H[HF�_�DOO���,03/,('
!
��(/(0(17�WLWOH���3&'7�!
��(/(0(17�LWHP���3&'7�_�LWHP�
�!
<!ELEMENT image EMPTY>
<!ATTLIST image

alt CDATA #IMPLIED
src CDATA #REQUIRED
type CDATA "image/gif"

>

These modifications declare LPDJH as an optional element in a VOLGH, define it as
empty element, and define the attributes it requires. The LPDJH tag is patterned
after the HTML 4.0 tag, LPJ, with the addition of an image-type specifier, W\SH.
(The LPJ tag is defined in the HTML 4.0 Specification.)

The LPDJH tag’s attributes are defined by the $77/,67 entry. The DOW attribute,
which defines alternate text to display in case the image can’t be found, accepts
character data (&'7). It has an “implied” value, which means that it is optional,
and that the program processing the data knows enough to substitute something
like “Image not found”. On the other hand, the VUF attribute, which names the
image to display, is required.

The W\SH attribute is intended for the specification of a MIME data type, as
defined at IWS���IWS�LVL�HGX�LQ�QRWHV�LDQD�DVVLJQPHQWV�PHGLD�W\SHV�.
It has a default value: LPDJH�JLI.

Note: It is understood here that the character data (&'7) used for the type attribute
will be one of the MIME data types. The two most common formats are:
LPDJH�JLI, and LPDJH�MSHJ. Given that fact, it might be nice to specify an attribute
list here, using something like:

type ("image/gif", "image/jpeg")

That won’t work, however, because attribute lists are restricted to name tokens. The
forward slash isn’t part of the valid set of name-token characters, so this declaration

142 SIMPLE API FOR XML
fails. Besides that, creating an attribute list in the DTD would limit the valid MIME
types to those defined today. Leaving it as &'7 leaves things more open ended,
so that the declaration will continue to be valid as additional types are defined.

In the document, a reference to an image named “intro-pic” might look some-
thing like this:

�LPDJH�VUF �LPDJH�LQWUR�SLF�JLI���DOW �,QWUR�3LF���
W\SH �LPDJH�JLI���!

The Alternative: Using Entity References
Using a MIME data type as an attribute of an element is a mechanism that is
flexible and expandable. To create an external (17,7< reference using the nota-
tion mechanism, you need DTD 127$7,21 elements for jpeg and gif data. Those
can of course be obtained from some central repository. But then you need to
define a different (17,7< element for each image you intend to reference! In
other words, adding a new image to your document always requires both a new
entity definition in the DTD and a reference to it in the document. Given the
anticipated ubiquity of the HTML 4.0 specification, the newer standard is to use
the MIME data types and a declaration like LPDJH, which assumes the applica-
tion knows how to process such elements.

Using the Validating Parser
By now, you have done a lot of experimenting with the nonvalidating parser. It’s
time to have a look at the validating parser and find out what happens when you
use it to parse the sample presentation.

Two things to understand about the validating parser at the outset are:

• The DTD is required.

• Since the DTD is present, the LJQRUDEOH:KLWHVSDFH method is invoked
whenever the DTD makes that possible.

Configuring the Factory
The first step is modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

CHANGING THE ENVIRONMENT VARIABLE 143
Note: The code in this section is contained in (FKR���MDYD.

To use the validating parser, make the changes highlighted below:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
���

`
���8VH�WKH�GHIDXOW��QRQ�YDOLGDWLQJ��SDUVHU
// Use the validating parser
6$;3DUVHU)DFWRU\�IDFWRU\� �6$;3DUVHU)DFWRU\�QHZ,QVWDQFH���
factory.setValidating(true);
WU\�^

���

Here, you configured the factory so that it will produce a validating parser when
QHZ6$;3DUVHU is invoked. You can also configure it to return a namespace-
aware parser using VHW1DPHVSDFH$ZDUH�WUXH�. The reference implementation
supports any combination of configuration options. If the combination of.

Changing the Environment Variable
If no other factory class is specified, the default 6$;3DUVHU)DFWRU\ class is
used. To use a different manufacturer’s parser, you can change the value of the
environment variable that points to it. You can do that from the command line,
like this:

MDYD��'MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\ \RXU)DFWRU\+HUH����

The factory name you specify must be a fully qualified class name (all package
prefixes included). For more information, see the documentation in the QHZ,Q�
VWDQFH�� method of the 6$;3DUVHU)DFWRU\ class.

Experimenting with Validation Errors
To see what happens when the XML document does not specify a DTD, remove
the '2&7<3(statement from the XML file and run the Echo program on it.

144 SIMPLE API FOR XML
Note: The output shown here is contained in (FKR�����.

The result you see looks like this:

�"[PO�YHUVLRQ
���
�HQFRGLQJ
87)��
"!

�:DUQLQJ��OLQH����XUL�ILOH�����

9DOLG�GRFXPHQWV�PXVW�KDYH�D���'2&7<3(�GHFODUDWLRQ�

�3DUVLQJ�HUURU��OLQH����XUL�ILOH�����

(OHPHQW�W\SH��VOLGHVKRZ��LV�QRW�GHFODUHG�

So now you know that a DTD is a requirement for a valid document. That makes
sense. (Note, though, that the lack of a type declaration only generates a warn-
ing, as specified in the standard. On the other hand, any attempt to actually parse
the document is immediately greeted with an error! Oh well...)

So what happens when you run the parser on your current version of the slide
presentation, with the DTD specified?

Note: The output shown here is contained in (FKR�����.

This time, the parser gives the following error message:

��

�3DUVLQJ�HUURU��OLQH�����XUL�ILOH����
(OHPHQW��VOLGH��GRHV�QRW�DOORZ��LWHP��KHUH�

This error occurs because the definition of the VOLGH element requires a WLWOH.
That element is not optional, and the copyright slide does not have one. To fix
the problem, add the question mark highlighted below to make WLWOH an
optional element:

��(/(0(17�VOLGH��LPDJH"��WLWOH"��LWHP
�!

Now what happens when you run the program?

Note: You could also remove the copyright slide, which produces the same result
shown below, as reflected in Echo10-06.

ERROR HANDLING IN THE VALIDATING PARSER 145
The answer is that everything runs fine, until the parser runs into the �HP! tag
contained in the overview slide. Since that tag was not defined in the DTD, the
attempt to validate the document fails. The output looks like this:

�����
(/(0(17���WLWOH!
&+$56����2YHUYLHZ
(1'B(/0����WLWOH!
(/(0(17���LWHP!
&+$56����:K\�** Parsing error, line 24��XUL�ILOH����

Element "item" does not allow "em" -- (#PCDATA|item)
RUJ�[PO�VD[�6$;3DUVH([FHSWLRQ��(OHPHQW��LWHP��GRHV�QRW�DOORZ�
�HP�������3&'7_LWHP�

DW�FRP�VXQ�[PO�SDUVHU�3DUVHU�HUURU�3DUVHU�MDYD������
���

The error message identifies the part of the DTD that caused validation to fail. In
this case it is the line that defines an LWHP element as ��3&'7�_�LWHP�.

 Exercise: Make a copy of the file and remove all occurrences of �HP! from
it. Can the file be validated now? (In the next section, you’ll learn how to
define parameter entries so that we can use XHTML in the elements we are
defining as part of the slide presentation.)

Error Handling in the Validating Parser
It is important to recognize that the only reason an exception is thrown when the
file fails validation is as a result of the error-handling code you entered in the
early stages of this tutorial. That code is reproduced below:

SXEOLF�YRLG�HUURU�6$;3DUVH([FHSWLRQ�H�
WKURZV�6$;3DUVH([FHSWLRQ
^

throw e;
`

If that exception is not thrown, the validation errors are simply ignored.

Exercise: Try commenting out the line that throws the exception. What hap-
pens when you run the parser now?

In general, a SAX parsing error is a validation error, although we have seen that
it can also be generated if the file specifies a version of XML that the parser is
not prepared to handle. The thing to remember is that your application will not

146 SIMPLE API FOR XML
generate a validation exception unless you supply an error handler like the one
above.

Defining Parameter Entities and
Conditional Sections

Just as a general entity lets you reuse XML data in multiple places, a parameter
entity lets you reuse parts of a DTD in multiple places. In this section of the tuto-
rial, you’ll see how to define and use parameter entities. You’ll also see how to
use parameter entities with conditional sections in a DTD.

Creating and Referencing a Parameter
Entity
Recall that the existing version of the slide presentation could not be validated
because the document used �HP! tags, and those are not part of the DTD. In gen-
eral, we’d like to use a whole variety of HTML-style tags in the text of a slide,
not just one or two, so it makes more sense to use an existing DTD for XHTML
than it does to define all the tags we might ever need. A parameter entity is
intended for exactly that kind of purpose.

Note: The DTD specifications shown here are contained in VOLGHVKRZ��GWG. The
XML file that references it is VOLGH6DPSOH���[PO. (The browsable versions are
VOLGHVKRZ��GWG�KWPO and VOLGH6DPSOH���[PO�KWPO.)

Open your DTD file for the slide presentation and add the text highlighted below
to define a parameter entity that references an external DTD file:

��(/(0(17�VOLGH��LPDJH"��WLWOH"��LWHP
�!
��$77/,67�VOLGH�

���
!

��(17,7<���[KWPO�6<67(0��[KWPO�GWG�!
�[KWPO�

��(/(0(17�WLWOH����

CREATING AND REFERENCING A PARAMETER ENTITY 147
Here, you used an ��(17,7<! tag to define a parameter entity, just as for a gen-
eral entity, but using a somewhat different syntax. You included a percent sign
(%) before the entity name when you defined the entity, and you used the percent
sign instead of an ampersand when you referenced it.

Also, note that there are always two steps for using a parameter entity. The first
is to define the entity name. The second is to reference the entity name, which
actually does the work of including the external definitions in the current DTD.
Since the URI for an external entity could contain slashes (/) or other characters
that are not valid in an XML name, the definition step allows a valid XML name
to be associated with an actual document. (This same technique is used in the
definition of namespaces, and anywhere else that XML constructs need to refer-
ence external documents.)

 Notes:

• The DTD file referenced by this definition is [KWPO�GWG. You can either
copy that file to your system or modify the 6<67(0 identifier in the
��(17,7<! tag to point to the correct URL.

• This file is a small subset of the XHTML specification, loosely modeled
after the Modularized XHTML draft, which aims at breaking up the DTD
for XHTML into bite-sized chunks, which can then be combined to create
different XHTML subsets for different purposes. When work on the mod-
ularized XHTML draft has been completed, this version of the DTD
should be replaced with something better. For now, this version will suffice
for our purposes.

The whole point of using an XHTML-based DTD was to gain access to an entity
it defines that covers HTML-style tags like �HP! and �E!. Looking through
[KWPO�GWG reveals the following entity, which does exactly what we want:

����(17,7<���LQOLQH���3&'7_HP_E_D_LPJ_EU�!�

This entity is a simpler version of those defined in the Modularized XHTML
draft. It defines the HTML-style tags we are most likely to want to use -- empha-
sis, bold, and break, plus a couple of others for images and anchors that we may
or may not use in a slide presentation. To use the LQOLQH entity, make the
changes highlighted below in your DTD file:

��(/(0(17�WLWOH���3&'7��inline��
!
��(/(0(17�LWHP���3&'7��inline��_�LWHP�
�!

148 SIMPLE API FOR XML
These changes replaced the simple �3&'7 item with the LQOLQH entity. It is
important to notice that �3&'7 is first in the LQOLQH entity, and that inline is
first wherever we use it. That is required by XML’s definition of a mixed-content
model. To be in accord with that model, you also had to add an asterisk at the end
of the WLWOH definition. (In the next two sections, you’ll see that our definition of
the WLWOH element actually conflicts with a version defined in [KWPO�GWG, and
see different ways to resolve the problem.)

Note: The Modularized XHTML DTD defines both LQOLQH and ,QOLQH entities,
and does so somewhat differently. Rather than specifying �3&'7_HP_E_D_LPJ_%U,
their definitions are more like ��3&'7_HP_E_D_LPJ_%U�
. Using one of those def-
initions, therefore, looks more like this:

��(/(0(17�WLWOH��,QOLQH��!

Conditional Sections
Before we proceed with the next programming exercise, it is worth mentioning
the use of parameter entities to control conditional sections. Although you can-
not conditionalize the content of an XML document, you can define conditional
sections in a DTD that become part of the DTD only if you specify LQFOXGH. If
you specify LJQRUH, on the other hand, then the conditional section is not
included.

Suppose, for example, that you wanted to use slightly different versions of a
DTD, depending on whether you were treating the document as an XML docu-
ment or as a SGML document. You could do that with DTD definitions like the
following:

VRPH([WHUQDO�GWG��
��>�,1&/8'(�>

����;0/�RQO\�GHILQLWLRQV
@@!
��>�IGNORE�>

����6*0/�RQO\�GHILQLWLRQV
@@!
����FRPPRQ�GHILQLWLRQV�

The conditional sections are introduced by ���>�, followed by the ,1&/8'(or
,*125(keyword and another �>�. After that comes the contents of the condi-
tional section, followed by the terminator: �@@!�. In this case, the XML defini-

CONDITIONAL SECTIONS 149
tions are included, and the SGML definitions are excluded. That’s fine for XML
documents, but you can’t use the DTD for SGML documents. You could change
the keywords, of course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the ,1&/8'(
and ,*125(keywords:

VRPH([WHUQDO�GWG��
��>�%XML;�>

����;0/�RQO\�GHILQLWLRQV
@@!
��>�%SGML;�>

����6*0/�RQO\�GHILQLWLRQV
@@!
����FRPPRQ�GHILQLWLRQV�

Then each document that uses the DTD can set up the appropriate entity defini-
tions:

��'2&7<3(�IRR�6<67(0��VRPH([WHUQDO�GWG��>
<!ENTITY % XML "INCLUDE" >
<!ENTITY % SGML "IGNORE" >

@!
�IRR!

���
��IRR!�

This procedure puts each document in control of the DTD. It also replaces the
,1&/8'(and ,*125(keywords with variable names that more accurately reflect
the purpose of the conditional section, producing a more readable, self-docu-
menting version of the DTD.

Parsing the Parameterized DTD
This section uses the Echo program to see what happens when you reference
[KWPO�GWG in VOLGHVKRZ�GWG. It also covers the kinds of warnings that are gen-
erated by the SAX parser when a DTD is present.

Note: The output described in this section is contained in (FKR�����.

150 SIMPLE API FOR XML
When you try to echo the slide presentation, you find that it now contains a new
error. The relevant part of the output is shown here (formatted for readability):

�"[PO�YHUVLRQ
���
�HQFRGLQJ
87)��
"!

�3DUVLQJ�HUURU��OLQH�����

XUL�ILOH�����VOLGHVKRZ�GWG
(OHPHQW��WLWOH��ZDV�DOUHDG\�GHFODUHG�
RUJ�[PO�VD[�6$;3DUVH([FHSWLRQ�����

It seems that [KWPO�GWG defines a WLWOH element which is entirely different from
the WLWOH element defined in the slideshow DTD. Because there is no hierarchy
in the DTD, these two definitions conflict.

Note: The Modularized XHTML DTD also defines a WLWOH element that is intended
to be the document title, so we can’t avoid the conflict by changing [KWPO�GWG—
the problem would only come back to haunt us later.

You could also use XML namespaces to resolve the conflict, or use one of the
more hierarchical schema proposals described in Schema Standards (page 45).
For now, though, let’s simply rename the WLWOH element in VOLGHVKRZ�GWG.

Note: The XML shown here is contained in VOLGHVKRZ��GWG and
VOLGH6DPSOH���[PO, which references FRS\ULJKW�[PO and [KWPO�GWG. (The
browsable versions are VOLGHVKRZ��GWG�KWPO, VOLGH6DPSOH���[PO�KWPO, FRS\�
ULJKW�[PO�KWPO, and [KWPO�GWG�KWPO.) The results of processing are shown in
(FKR�����.

To keep the two title elements separate, we’ll resort to a “hyphenation hierar-
chy”. Make the changes highlighted below to change the name of the WLWOH ele-
ment in VOLGHVKRZ�GWG to VOLGH�WLWOH:

��(/(0(17�VOLGH��LPDJH"��slide�WLWOH"��LWHP
�!
��$77/,67�VOLGH�

W\SH����WHFK�_�H[HF�_�DOO���,03/,('
!

�����'HILQHV�WKH��LQOLQH��GHFODUDWLRQ���!
��(17,7<���[KWPO�6<67(0��[KWPO�GWG�!
�[KWPO�

��(/(0(17�slide�WLWOH���LQOLQH��
!

DTD WARNINGS 151
The next step is to modify the XML file to use the new element name. To do that,
make the changes highlighted below:

���
�VOLGH�W\SH �DOO�!
�slide-WLWOH!:DNH�XS�WR�������slide-WLWOH!
��VOLGH!

���

�����29(59,(:���!
�VOLGH�W\SH �DOO�!
�slide-WLWOH!2YHUYLHZ��slide-WLWOH!
�LWHP!���

Now run the Echo program on this version of the slide presentation. It should run
to completion and display output like that shown in (FKR�����.

Congratulations! You have now read a fully validated XML document. The
changes you made had the effect of putting your DTD’s WLWOH element into a
slideshow “namespace” that you artificially constructed by hyphenating the
name. Now the WLWOH element in the “slideshow namespace” (VOLGH�WLWOH,
really) no longer conflicts with the WLWOH element in [KWPO�GWG. In the next sec-
tion of the tutorial, you’ll see how to do that without renaming the definition. To
finish off this section, we’ll take a look at the kinds of warnings that the validat-
ing parser can produce when processing the DTD.

DTD Warnings
As mentioned earlier in this tutorial, warnings are generated only when the SAX
parser is processing a DTD. Some warnings are generated only by the validating
parser. The nonvalidating parser’s main goal is operate as rapidly as possible, but
it too generates some warnings. (The explanations that follow tell which does
what.)

The XML specification suggests that warnings should be generated as result of:

• Providing additional declarations for entities, attributes, or notations.
(Such declarations are ignored. Only the first is used. Also, note that dupli-
cate definitions of elements always produce a fatal error when validating,
as you saw earlier.)

• Referencing an undeclared element type.

152 SIMPLE API FOR XML
(A validity error occurs only if the undeclared type is actually used in the
XML document. A warning results when the undeclared element is refer-
enced in the DTD.)

• Declaring attributes for undeclared element types.

The Java XML SAX parser also emits warnings in other cases, such as:

• No <!DOCTYPE ...> when validating.

• Referencing an undefined parameter entity when not validating.

(When validating, an error results. Although nonvalidating parsers are not
required to read parameter entities, the Java XML parser does so. Since it
is not a requirement, the Java XML parser generates a warning, rather
than an error.)

• Certain cases where the character-encoding declaration does not look
right.

At this point, you have digested many XML concepts, including DTDs, external
entities. You have also learned your way around the SAX parser. The remainder
of the SAX tutorial covers advanced topics that you will only need to understand
if you are writing SAX-based applications. If your primary goal is to write
DOM-based apps, you can skip ahead to Document Object Model (page 163).

Handling Lexical Events
You saw earlier that if you are writing text out as XML, you need to know if you
are in a &'7 section. If you are, then angle brackets (<) and ampersands (&)
should be output unchanged. But if you’re not in a &'7 section, they should be
replaced by the predefined entities 	OW� and 	DPS�. But how do you know if
you’re processing a &'7 section?

Then again, if you are filtering XML in some way, you would want to pass com-
ments along. Normally the parser ignores comments. How can you get com-
ments so that you can echo them?

Finally, there are the parsed entity definitions. If an XML-filtering app sees
	P\(QWLW\� it needs to echo the same string—not the text that is inserted in its
place. How do you go about doing that?

This section of the tutorial answers those questions. It shows you how to use
RUJ�[PO�VD[�H[W�/H[LFDO+DQGOHU to identify comments, &'7 sections, and ref-
erences to parsed entities.

HOW THE LEXICALHANDLER WORKS 153
Comments, &'7 tags, and references to parsed entities constitute lexical infor-
mation—that is, information that concerns the text of the XML itself, rather than
the XML’s information content. Most applications, of course, are concerned only
with the content of an XML document. Such apps will not use the /H[LFDO(Y�
HQW/LVWHQHU API. But apps that output XML text will find it invaluable.

Note: Lexical event handling is a optional parser feature. Parser implementations
are not required to support it. (The reference implementation does so.) This discus-
sion assumes that the parser you are using does so, as well.

How the LexicalHandler Works
To be informed when the SAX parser sees lexical information, you configure the
;PO5HDGHU that underlies the parser with a /H[LFDO+DQGOHU. The /H[LFDO+DQ�
GOHU interface defines these even-handling methods:

FRPPHQW�6WULQJ�FRPPHQW�
Passes comments to the application.

VWDUW&'7����HQG&'7��
Tells when a &'7 section is starting and ending, which tells your applica-
tion what kind of characters to expect the next time FKDUDFWHUV�� is called.

VWDUW(QWLW\�6WULQJ�QDPH���HQG(QWLW\�6WULQJ�QDPH�
Gives the name of a parsed entity.

VWDUW'7'�6WULQJ�QDPH��6WULQJ�SXEOLF,G��6WULQJ�V\VWHP,G���HQG'7'��
Tells when a DTD is being processed, and identifies it.

Working with a LexicalHandler
In the remainder of this section, you’ll convert the Echo app into a lexical han-
dler and play with its features.

Note: The code shown in this section is in (FKR���MDYD. The output is shown in
(FKR�����.

154 SIMPLE API FOR XML
To start, add the code highlighted below to implement the /H[LFDO+DQGOHU
interface and add the appropriate methods.

import org.xml.sax.ext.LexicalHandler;

SXEOLF�FODVV�(FKR�H[WHQGV�+DQGOHU%DVH
implements LexicalHandler

^�
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�

^
���
���8VH�DQ�LQVWDQFH�RI�RXUVHOYHV�DV�WKH�6$;�HYHQW�

KDQGOHU
'HIDXOW+DQGOHU�KDQGOHU� �QHZ�(FKR�����
Echo handler = new Echo();
���

At this point, the Echo class extends one class and implements an additional
interface. You changed the class of the handler variable accordingly, so you can
use the same instance as either a DefaultHandler or a LexicalHandler, as appro-
priate.

Next, add the code highlighted below to get the ;0/5HDGHU that the parser dele-
gates to, and configure it to send lexical events to your lexical handler:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

���
WU\�^

���
���3DUVH�WKH�LQSXW
6$;3DUVHU�VD[3DUVHU� �IDFWRU\�QHZ6$;3DUVHU���
XMLReader xmlReader = saxParser.getXMLReader();
xmlReader.setProperty(

"http://xml.org/sax/properties/lexical-handler",
handler
);

VD[3DUVHU�SDUVH��QHZ�)LOH�DUJY>�@���KDQGOHU��
`�FDWFK��6$;3DUVH([FHSWLRQ�VSH��^

���

Here, you configured the ;0/5HDGHU using the VHW3URSHUW\�� method defined
in the XMLReader class. The property name, defined as part of the SAX stan-
dard, is the URL, KWWS���[PO�RUJ�VD[�SURSHUWLHV�OH[LFDO�KDQGOHU.

WORKING WITH A LEXICALHANDLER 155
Finally, add the code highlighted below to define the appropriate methods that
implement the interface.

SXEOLF�YRLG�SURFHVVLQJ,QVWUXFWLRQ�6WULQJ�WDUJHW��6WULQJ�GDWD�
���

`

SXEOLF�YRLG�FRPPHQW�FKDU>@�FK��LQW�VWDUW��LQW�OHQJWK�WKURZV�
6$;([FHSWLRQ

^
`

SXEOLF�YRLG�VWDUW&'7��
WKURZV�6$;([FHSWLRQ
^
`

SXEOLF�YRLG�HQG&'7��
WKURZV�6$;([FHSWLRQ
^
`

SXEOLF�YRLG�VWDUW(QWLW\�6WULQJ�QDPH�
WKURZV�6$;([FHSWLRQ
^
`

SXEOLF�YRLG�HQG(QWLW\�6WULQJ�QDPH�
WKURZV�6$;([FHSWLRQ
^
`

SXEOLF�YRLG�VWDUW'7'�6WULQJ�QDPH��6WULQJ�SXEOLF,G��6WULQJ�
V\VWHP,G�
WKURZV�6$;([FHSWLRQ
^�
`�

SXEOLF�YRLG�HQG'7'��
WKURZV�6$;([FHSWLRQ
^�
`

SULYDWH�YRLG�HPLW�6WULQJ�V�
���

156 SIMPLE API FOR XML
You have now turned the (FKR class into a lexical handler. In the next section,
you’ll start experimenting with lexical events.

Echoing Comments
The next step is to do something with one of the new methods. Add the code
highlighted below to echo comments in the XML file:

SXEOLF�YRLG�FRPPHQW�FKDU>@�FK��LQW�VWDUW��LQW�OHQJWK�
WKURZV�6$;([FHSWLRQ

^
String text = new String(ch, start, length);
nl(); emit("COMMENT: "+text);

`

When you compile the Echo program and run it on your XML file, the result
looks something like this:

&200(17����$�6$03/(�VHW�RI�VOLGHV�
&200(17���)25�:$//<���:$//,(6�
&200(17��

'7'�IRU�D�VLPSOH��VOLGH�VKRZ��

&200(17���'HILQHV�WKH��LQOLQH��GHFODUDWLRQ�
&200(17������

The line endings in the comments are passed as part of the comment string, once
again normalized to newlines (). You can also see that comments in the DTD are
echoed along with comments from the file. (That can pose problems when you
want to echo only comments that are in the data file. To get around that problem,
you can use the VWDUW'7' and HQG'7' methods.)

Echoing Other Lexical Information
To finish up this section, you’ll exercise the remaining /H[LFDO+DQGOHU meth-
ods.

Note: The code shown in this section is in (FKR���MDYD. The file it operates on is
VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���[PO�KWPO.) The
results of processing are in (FKR�����.

WORKING WITH A LEXICALHANDLER 157
Make the changes highlighted below to remove the comment echo (you don’t
need that any more) and echo the other events:

SXEOLF�YRLG�FRPPHQW�FKDU>@�FK��LQW�VWDUW��LQW�OHQJWK�
WKURZV�6$;([FHSWLRQ
^

6WULQJ�WH[W� �QHZ�6WULQJ�FK��VWDUW��OHQJWK��
QO����HPLW��&200(17����WH[W��

`

SXEOLF�YRLG�VWDUW&'7��
WKURZV�6$;([FHSWLRQ
^

nl(); emit("START CDATA SECTION");
`

SXEOLF�YRLG�HQG&'7��
WKURZV�6$;([FHSWLRQ
^

nl(); emit("END CDATA SECTION");
`

SXEOLF�YRLG�VWDUW(QWLW\�6WULQJ�QDPH�
WKURZV�6$;([FHSWLRQ
^

nl(); emit("START ENTITY: "+name);
`

SXEOLF�YRLG�HQG(QWLW\�6WULQJ�QDPH�
WKURZV�6$;([FHSWLRQ
^

nl(); emit("END ENTITY: "+name);
`

SXEOLF�YRLG�VWDUW'7'�6WULQJ�QDPH��6WULQJ�SXEOLF,G��6WULQJ�
V\VWHP,G�
WKURZV�6$;([FHSWLRQ
^�

158 SIMPLE API FOR XML
QO����HPLW��67$57�'7'����QDPH
������������SXEOLF,G ����SXEOLF,G
������������V\VWHP,G ����V\VWHP,G���

`

SXEOLF�YRLG�HQG'7'��
WKURZV�6$;([FHSWLRQ
^�

QO����HPLW��(1'�'7'����
`

Here is what you see when the DTD is processed:

67$57�'7'��VOLGHVKRZ
SXEOLF,G QXOO
V\VWHP,G ILOH�������VDPSOHV�VOLGHVKRZ��GWG

(1'�'7'

Note: To see events that occur while the DTD is being processed, use
RUJ�[PO�VD[�H[W�'HFO+DQGOHU.

Here is what happens when the internally defined SURGXFWV entity is processed
with the latest version of the program:

(/(0(17���VOLGH�WLWOH!

&+$56����:DNH�XS�WR�
67$57�(17,7<��SURGXFWV
&+$56����:RQGHU:LGJHWV
(1'�(17,7<��SURGXFWV��,1&/8'(' WUXH
&+$56�����
(1'B(/0����VOLGH�WLWOH!�

And here is the result of processing the external copyright entity:

START ENTITY: copyright
&+$56��

7KLV�LV�WKH�VWDQGDUG�FRS\ULJKW�PHVVDJH����
END ENTITY: copyright

THE DTDHANDLER API 159
Finally, you get output like this for the CDATA section:

START CDATA SECTION

&+$56����'LDJUDP�

���������IUREPRUWHQ���������������IX]QDWHQ

���_��������������!��������A

���_���!�������������������_�����!� �IR]]OH

���9�����������������������_�����!� �IUDPER]H����

VWDWHQ���������������������������!� �IUHQ]OH

��������������!

END CDATA SECTION

In summary, the LexicalHandler gives you the event-notifications you need to
produce an accurate reflection of the original XML text.

Using the DTDHandler and
EntityResolver

In this section of the tutorial, we’ll carry on a short discussion of the two remain-
ing SAX event handlers: '7'+DQGOHU and (QWLW\5HVROYHU. The '7'+DQGOHU is
invoked when the DTD encounters an unparsed entity or a notation declaration.
The (QWLW\5HVROYHU comes into play when a URN (public ID) must be resolved
to a URL (system ID).

The DTDHandler API
In the section Referencing Binary Entities (page 140) you saw a method for ref-
erencing a file that contains binary data, like an image file, using MIME data
types. That is the simplest, most extensible mechanism to use. For compatibility
with older SGML-style data, though, it is also possible to define an unparsed
entity.

160 SIMPLE API FOR XML
The 1'7 keyword defines an unparsed entity, like this:

����(17,7<�P\(QWLW\�6<67(0����85/����NDATA gif!

The 1'7 keyword says that the data in this entity is not parsable XML data, but
is instead data that uses some other notation. In this case, the notation is named
“gif”. The DTD must then include a declaration for that notation, which would
look something like this:

����NOTATION gif�6<67(0����85/���!

When the parser sees an unparsed entity or a notation declaration, it does nothing
with the information except to pass it along to the application using the '7'+DQ�
GOHU interface. That interface defines two methods:

notationDecl�6WULQJ�QDPH��6WULQJ�SXEOLF,G��6WULQJ�V\VWHP,G��

unparsedEntityDecl�6WULQJ�QDPH��6WULQJ�SXEOLF,G��
6WULQJ�V\VWHP,G��6WULQJ�QRWDWLRQ1DPH��

The QRWDWLRQ'HFO method is passed the name of the notation and either the
public or system identifier, or both, depending on which is declared in the DTD.
The XQSDUVHG(QWLW\'HFO method is passed the name of the entity, the appropri-
ate identifiers, and the name of the notation it uses.

Note: The DTDHandler interface is implemented by the 'HIDXOW+DQGOHU class.

Notations can also be used in attribute declarations. For example, the following
declaration requires notations for the GIF and PNG image-file formats:

��(17,7<�LPDJH�(037<!
��$77/,67�LPDJH�

���
W\SH NOTATION (gif | png) "gif"

!

Here, the W\SH is declared as being either JLI, or SQJ. The default, if neither is
specified, is JLI.

Whether the notation reference is used to describe an unparsed entity or an
attribute, it is up to the application to do the appropriate processing. The parser
knows nothing at all about the semantics of the notations. It only passes on the
declarations.

THE ENTITYRESOLVER API 161
The EntityResolver API
The (QWLW\5HVROYHU API lets you convert a public ID (URN) into a system ID
(URL). Your application may need to do that, for example, to convert something
like KUHI �XUQ��VRPH1DPH� into �KWWS���VRPH85/�.

The (QWLW\5HVROYHU interface defines a single method:

��resolveEntity�6WULQJ�SXEOLF,G��6WULQJ�V\VWHP,G�

This method returns an ,QSXW6RXUFH object, which can be used to access the
entity’s contents. Converting an URL into an ,QSXW6RXUFH is easy enough. But
the URL that is passed as the system ID will be the location of the original docu-
ment which is, as likely as not, somewhere out on the Web. To access a local
copy, if there is one, you must maintain a catalog somewhere on the system that
maps names (public IDs) into local URLs.

162 SIMPLE API FOR XML

Document Object
Model

Eric Armstrong

IN the SAX chapter, you wrote an XML file that contains slides for a presenta-
tion. You then used the SAX API to echo the XML to your display.

In this chapter, you’ll use the Document Object Model (DOM) to build a small
SlideShow application. You’ll start by constructing a DOM and inspecting it,
then see how to write a DOM as an XML structure, display it in a GUI, and
manipulate the tree structure.

A Document Object Model is a garden-variety tree structure, where each node
contains one of the components from an XML structure. The two most common
types of nodes are element nodes and text nodes. Using DOM functions lets you
create nodes, remove nodes, change their contents, and traverse the node hierar-
chy.

In this chapter, you’ll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a user-friendly -7UHH,
and explore the syntax of namespaces. You’ll also create a DOM from scratch,
and see how to use some of the implementation-specific features in Sun’s JAXP
reference implementation to convert an existing data set to XML.

Note: The examples in this chapter can be found in GRFV�WXWRULDO�H[DP�
SOHV�MD[S�GRP�VDPSOHV.
163

Bios.html#ericArmstrong

164 DOCUMENT OBJECT MODEL
In This Chapter
Reading XML Data into a DOM 164
Displaying a DOM Hierarchy 171
Examining the Structure of a DOM 187
Constructing a User-Friendly JTree from a DOM 195
Creating and Manipulating a DOM 209
Using Namespaces 215

Reading XML Data into a DOM
In this section of the tutorial, you’ll construct a Document Object Model (DOM)
by reading in an existing XML file. In the following sections, you’ll see how to
display the XML in a Swing tree component and practice manipulating the
DOM.

Note: In the next part of the tutorial, XML Stylesheet Language for
Transformations (page 221), you’ll see how to write out a DOM as an XML file.
(You’ll also see how to convert an existing data file into XML with relative ease.)

Creating the Program
The Document Object Model (DOM) provides APIs that let you create nodes,
modify them, delete and rearrange them. So it is relatively easy to create a DOM,
as you’ll see in later in section 5 of this tutorial, Creating and Manipulating a
DOM (page 209).

Before you try to create a DOM, however, it is helpful to understand how a
DOM is structured. This series of exercises will make DOM internals visible by
displaying them in a Swing -7UHH.

Create the Skeleton
Now that you’ve had a quick overview of how to create a DOM, let’s build a
simple program to read an XML document into a DOM then write it back out
again.

CREATING THE PROGRAM 165
Note: The code discussed in this section is in 'RP(FKR���MDYD. The file it operates
on is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���[PO�KWPO.)

Start with a normal basic logic for an app, and check to make sure that an argu-
ment has been supplied on the command line:

SXEOLF�FODVV�'RP(FKR�^
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
6\VWHP�HUU�SULQWOQ��8VDJH��MDYD�'RP(FKR�

ILOHQDPH���
6\VWHP�H[LW����

`
`���PDLQ

`���'RP(FKR

Import the Required Classes
In this section, you’re going to see all the classes individually named. That’s so
you can see where each class comes from when you want to reference the API
documentation. In your own apps, you may well want to replace import state-
ments like those below with the shorter form: MDYD[�[PO�SDUVHUV�
.

Add these lines to import the JAXP APIs you’ll be using:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

Add these lines for the exceptions that can be thrown when the XML document
is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.IOException;

166 DOCUMENT OBJECT MODEL
Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

Note: A '20([FHSWLRQ is only thrown when traversing or manipulating a DOM.
Errors that occur during parsing are reporting using a different mechanism that is
covered below.

Declare the DOM
The RUJ�Z�F�GRP�'RFXPHQW class is the W3C name for a Document Object
Model (DOM). Whether you parse an XML document or create one, a Docu-
ment instance will result. We’ll want to reference that object from another
method later on in the tutorial, so define it as a global object here:

SXEOLF�FODVV�'RP(FKR
^�

static Document document;

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

It needs to be VWDWLF, because you’re going to generate its contents from the
PDLQ method in a few minutes.

Handle Errors
Next, put in the error handling logic. This code is very similar to the logic you
saw in Handling Errors with the Nonvalidating Parser (page 111) in the SAX
tutorial, so we won’t go into it in detail here. The major point worth noting is that
a JAXP-conformant document builder is required to report SAX exceptions
when it has trouble parsing the XML document. The DOM parser does not have
to actually use a SAX parser internally, but since the SAX standard was already
there, it seemed to make sense to use it for reporting errors. As a result, the error-
handling code for DOM and SAX applications are very similar:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
���

CREATING THE PROGRAM 167
`

try {

} catch (SAXException sxe) {
// Error generated during parsing
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

�`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^
���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

�`�FDWFK��,2([FHSWLRQ�LRH��^
���,�2�HUURU
LRH�SULQW6WDFN7UDFH���

`
`���PDLQ�

The major difference between this code and the SAX error-handling code is that
the DOM parser does not throw 6$;3DUVH([FHSWLRQs, but only 6$;([FHSWLRQs.

Instantiate the Factory
Next, add the code highlighted below to obtain an instance of a factory that can
give us a document builder:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
���

`
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
WU\�^

168 DOCUMENT OBJECT MODEL
Get a Parser and Parse the File
Now, add the code highlighted below to get a instance of a builder, and use it to
parse the specified file:

WU\�^
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));

`�FDWFK��6$;3DUVH([FHSWLRQ�VSH��^

Save This File!
By now, you should be getting the idea that every JAXP application starts
pretty much the same way. You’re right! Save this version of the file as a
template. You’ll use it later on as the basis for XSLT transformation app.

Run the Program
Throughout most of the DOM tutorial, you’ll be using the sample slideshows
you created in the SAX section. In particular, you’ll use VOLGH6DPSOH���[PO, a
simple XML file with nothing much in it, and VOLGH6DPSOH���[PO, a more com-
plex example that includes a DTD, processing instructions, entity references, and
a CDATA section.

For instructions on how to compile and run your program, see Compiling and
Running the Program and Run the Program, from the SAX tutorial. Substitute
“DomEcho” for “Echo” as the name of the program, and you’re ready to roll.

For now, just run the program on VOLGH6DPSOH���[PO. If it ran without error,
you have successfully parsed an XML document and constructed a DOM. Con-
gratulations!

Note: You’ll have to take my word for it, for the moment, because at this point you
don’t have any way to display the results. But that is feature is coming shortly...

Additional Information
Now that you have successfully read in a DOM, there are one or two more things
you need to know in order to use 'RFXPHQW%XLOGHU effectively. Namely, you
need to know about:

• -Configuring the Factory

ADDITIONAL INFORMATION 169
• -Handling Validation Errors

Configuring the Factory
By default, the factory returns a nonvalidating parser that knows nothing about
namespaces. To get a validating parser, and/or one that understands namespaces,
you configure the factory to set either or both of those options using the com-
mand(s) highlighted below:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
���

`
'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\�

'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���
factory.setValidating(true);
factory.setNamespaceAware(true);
WU\�^

���

Note: JAXP-conformant parsers are not required to support all combinations of
those options, even though the reference parser does. If you specify an invalid com-
bination of options, the factory generates a 3DUVHU&RQILJXUDWLRQ([FHSWLRQ when
you attempt to obtain a parser instance.

You’ll be learning more about how to use namespaces in the last section of the
DOM tutorial, Using Namespaces (page 215). To complete this section, though,
you’ll want to learn something about...

Handling Validation Errors
Remember when you were wading through the SAX tutorial, and all you really
wanted to do was construct a DOM? Well, here’s when that information begins
to pay off.

Recall that the default response to a validation error, as dictated by the SAX
standard, is to do nothing. The JAXP standard requires throwing SAX excep-
tions, so you exactly the same error handling mechanisms as you used for a SAX
app. In particular, you need to use the 'RFXPHQW%XLOGHU’s VHW(UURU+DQGOHU

170 DOCUMENT OBJECT MODEL
method to supply it with an object that implements the SAX (UURU+DQGOHU
interface.

Note: 'RFXPHQW%XLOGHU also has a VHW(QWLW\5HVROYHU method you can use

The code below uses an anonymous inner class adapter to provide that
(UURU+DQGOHU. The highlighted code is the part that makes sure validation errors
generate an exception.

EXLOGHU�VHW(UURU+DQGOHU�
QHZ�RUJ�[PO�VD[�(UURU+DQGOHU���^

���LJQRUH�IDWDO�HUURUV��DQ�H[FHSWLRQ�LV�JXDUDQWHHG�
SXEOLF�YRLG�IDWDO(UURU�6$;3DUVH([FHSWLRQ�H[FHSWLRQ�
WKURZV�6$;([FHSWLRQ�^
`
// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

����GXPS�ZDUQLQJV�WRR
SXEOLF�YRLG�ZDUQLQJ�6$;3DUVH([FHSWLRQ�HUU�
WKURZV�6$;3DUVH([FHSWLRQ
^

6\VWHP�RXW�SULQWOQ��

�:DUQLQJ�
�����OLQH�����HUU�JHW/LQH1XPEHU��
�����XUL�����HUU�JHW6\VWHP,G����

6\VWHP�RXW�SULQWOQ���������HUU�JHW0HVVDJH����
`

���

This code uses an anonymous inner class to generate an instance of an object that
implements the (UURU+DQGOHU interface. Since it has no class name, it’s “anony-
mous”. You can think of it as an “ErrorHandler” instance, although technically
it’s a no-name instance that implements the specified interface. The code is sub-
stantially the same as that described the Handling Errors with the Nonvalidating
Parser (page 111) section of the SAX tutorial. For a more background on valida-
tion issues, refer to Using the Validating Parser (page 142) in that part of the
tutorial.

LOOKING AHEAD 171
Looking Ahead
In the next section, you’ll display the DOM structure in a JTree and begin
explore its structure. For example, you’ll see how entity references and CDATA
sections appear in the DOM. And perhaps most importantly, you’ll see how text
nodes (which contain the actual data) reside under element nodes in a DOM.

Displaying a DOM Hierarchy
To create a Document Object Hierarchy (DOM) or manipulate one, it helps to
have a clear idea of how nodes in a DOM are structured. In this section of the
tutorial, you’ll expose the internal structure of a DOM.

Echoing Tree Nodes
What you need at this point is a way to expose the nodes in a DOM so can see
what it contains. To do that, you’ll convert a DOM into a -7UHH0RGHO and dis-
play the full DOM in a -7UHH. It’s going to take a bit of work, but the end result
will be a diagnostic tool you can use in the future, as well as something you can
use to learn about DOM structure now.

Convert DomEcho to a GUI App
Since the DOM is a tree, and the Swing -7UHH component is all about displaying
trees, it makes sense to stuff the DOM into a -7UHH, so you can look it. The first
step in that process is to hack up the 'RP(FKR program so it becomes a GUI
application.

Note: The code discussed in this section is in 'RP(FKR���MDYD.

172 DOCUMENT OBJECT MODEL
Add Import Statements
Start by importing the GUI components you’re going to need to set up the appli-
cation and display a -7UHH:

���*8,�FRPSRQHQWV�DQG�OD\RXWV
LPSRUW�MDYD[�VZLQJ�-)UDPH�
LPSRUW�MDYD[�VZLQJ�-3DQHO�
LPSRUW�MDYD[�VZLQJ�-6FUROO3DQH�
LPSRUW�MDYD[�VZLQJ�-7UHH��

Later on in the DOM tutorial, we’ll going to tailor the DOM display to generate
a user-friendly version of the -7UHH display. When the user selects an element in
that tree, you’ll be displaying subelements in an adjacent editor pane. So, while
we’re doing the setup work here, import the components you need to set up a
divided view (-6SOLW3DQH) and to display the text of the subelements (-(GLWRU�
3DQH):

LPSRUW�MDYD[�VZLQJ�-6SOLW3DQH�
LPSRUW�MDYD[�VZLQJ�-(GLWRU3DQH��

Add a few support classes you’re going to need to get this thing off the ground:

���*8,�VXSSRUW�FODVVHV
LPSRUW�MDYD�DZW�%RUGHU/D\RXW�
LPSRUW�MDYD�DZW�'LPHQVLRQ�
LPSRUW�MDYD�DZW�7RRONLW�
LPSRUW�MDYD�DZW�HYHQW�:LQGRZ(YHQW�
LPSRUW�MDYD�DZW�HYHQW�:LQGRZ$GDSWHU��

Finally, import some classes to make a fancy border:

���)RU�FUHDWLQJ�ERUGHUV
LPSRUW�MDYD[�VZLQJ�ERUGHU�(PSW\%RUGHU�
LPSRUW�MDYD[�VZLQJ�ERUGHU�%HYHO%RUGHU�
LPSRUW�MDYD[�VZLQJ�ERUGHU�&RPSRXQG%RUGHU��

(These are optional. You can skip them and the code that depends on them if you
want to simplify things.)

CONVERT DOMECHO TO A GUI APP 173
Create the GUI Framework
The next step is to convert the app into a GUI application. To do that, the static
main method will create an instance of the main class, which will have become a
GUI pane.

Start by converting the class into a GUI pane by extending the Swing -3DQHO
class:

SXEOLF�FODVV�'RP(FKR���H[WHQGV�-3DQHO
^

���*OREDO�YDOXH�VR�LW�FDQ�EH�UHI
G�E\�WKH�WUHH�DGDSWHU
VWDWLF�'RFXPHQW�GRFXPHQW��
���

While you’re there, define a few constants you’ll use to control window sizes:

SXEOLF�FODVV�'RP(FKR���H[WHQGV�-3DQHO
^

���*OREDO�YDOXH�VR�LW�FDQ�EH�UHI
G�E\�WKH�WUHH�DGDSWHU
VWDWLF�'RFXPHQW�GRFXPHQW��

����VWDWLF�ILQDO�LQW�ZLQGRZ+HLJKW� �����
VWDWLF�ILQDO�LQW�OHIW:LGWK� �����
VWDWLF�ILQDO�LQW�ULJKW:LGWK� �����
VWDWLF�ILQDO�LQW�ZLQGRZ:LGWK� �OHIW:LGWK���ULJKW:LGWK��

Now, in the main method, invoke a method that will create the outer frame that
the GUI pane will sit in:

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

���
'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\����
WU\�^

'RFXPHQW%XLOGHU�EXLOGHU� �IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�SDUVH��QHZ�)LOH�DUJY>�@����
PDNH)UDPH���

�� �`�FDWFK��6$;3DUVH([FHSWLRQ�VSH��^
���

174 DOCUMENT OBJECT MODEL
Next, you’ll need to define the PDNH)UDPH method itself. It contains the standard
code to create a frame, handle the exit condition gracefully, give it an instance of
the main panel, size it, locate it on the screen, and make it visible:

����
`����PDLQ

SXEOLF�VWDWLF�YRLG�PDNH)UDPH��
^

���6HW�XS�D�*8,�IUDPHZRUN
-)UDPH�IUDPH� �QHZ�-)UDPH��'20�(FKR���
IUDPH�DGG:LQGRZ/LVWHQHU�QHZ�:LQGRZ$GDSWHU���^

SXEOLF�YRLG�ZLQGRZ&ORVLQJ�:LQGRZ(YHQW�H��
^6\VWHP�H[LW����`

`��

�������6HW�XS�WKH�WUHH��WKH�YLHZV��DQG�GLVSOD\�LW�DOO
ILQDO�'RP(FKR���HFKR3DQHO� �QHZ�'RP(FKR�����
IUDPH�JHW&RQWHQW3DQH���DGG��&HQWHU���HFKR3DQHO���
IUDPH�SDFN���
'LPHQVLRQ�VFUHHQ6L]H� �

7RRONLW�JHW'HIDXOW7RRONLW���JHW6FUHHQ6L]H���
LQW�Z� �ZLQGRZ:LGWK������
LQW�K� �ZLQGRZ+HLJKW������
IUDPH�VHW/RFDWLRQ�VFUHHQ6L]H�ZLGWK�����Z����

VFUHHQ6L]H�KHLJKW�����K����
IUDPH�VHW6L]H�Z��K��
IUDPH�VHW9LVLEOH�WUXH�

`����PDNH)UDPH

Add the Display Components
The only thing left in the effort to convert the program to a GUI app is create the
class constructor and make it create the panel’s contents. Here is the constructor:

SXEOLF�FODVV�'RP(FKR���H[WHQGV�-3DQH
^

���
VWDWLF�ILQDO�LQW�ZLQGRZ:LGWK� �OHIW:LGWK���ULJKW:LGWK��

SXEOLF�'RP(FKR����
^
`����&RQVWUXFWRU

CONVERT DOMECHO TO A GUI APP 175
Here, you make use of the border classes you imported earlier to make a regal
border (optional):

SXEOLF�'RP(FKR����
^

���0DNH�D�QLFH�ERUGHU
(PSW\%RUGHU�HE� �QHZ�(PSW\%RUGHU����������
%HYHO%RUGHU�EE� �QHZ�%HYHO%RUGHU�%HYHO%RUGHU�/2:(5('��
&RPSRXQG%RUGHU�FE� �QHZ�&RPSRXQG%RUGHU�HE�EE��
WKLV�VHW%RUGHU�QHZ�&RPSRXQG%RUGHU�FE�HE���

`����&RQVWUXFWRU

Next, create an empty tree and put it a -6FUROO3DQH so users can see its contents
as it gets large:

SXEOLF�'RP(FKR���
^

���

���6HW�XS�WKH�WUHH
-7UHH�WUHH� �QHZ�-7UHH���

������%XLOG�OHIW�VLGH�YLHZ
-6FUROO3DQH�WUHH9LHZ� �QHZ�-6FUROO3DQH�WUHH��
WUHH9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��OHIW:LGWK��ZLQGRZ+HLJKW����

`����&RQVWUXFWRU

Now create a non-editable -(GLW3DQH that will eventually hold the contents
pointed to by selected -7UHH nodes:

SXEOLF�'RP(FKR���
^

����

�� ���%XLOG�ULJKW�VLGH�YLHZ
-(GLWRU3DQH�KWPO3DQH� �QHZ�-(GLWRU3DQH��WH[W�KWPO������
KWPO3DQH�VHW(GLWDEOH�IDOVH��
-6FUROO3DQH�KWPO9LHZ� �QHZ�-6FUROO3DQH�KWPO3DQH��
KWPO9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ULJKW:LGWK��ZLQGRZ+HLJKW����

`�����&RQVWUXFWRU

176 DOCUMENT OBJECT MODEL
With the left-side -7UHH and the right-side -(GLWRU3DQH constructed, create a
-6SOLW3DQH to hold them:

SXEOLF�'RP(FKR����
^

����

�� ����%XLOG�VSOLW�SDQH�YLHZ
-6SOLW3DQH�VSOLW3DQH� �QHZ�-6SOLW3DQH��

-6SOLW3DQH�+25,=217$/B63/,7�
WUHH9LHZ��KWPO9LHZ���

VSOLW3DQH�VHW&RQWLQXRXV/D\RXW��WUXH���
VSOLW3DQH�VHW'LYLGHU/RFDWLRQ��OHIW:LGWK���
VSOLW3DQH�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ZLQGRZ:LGWK�������ZLQGRZ+HLJKW�������

`�����&RQVWUXFWRU

With this code, you set up the -6SOLW3DQH so with a vertical divider. That pro-
duces a “horizontal split” between the tree and the editor pane. (More of a hori-
zontal layout, really.) You also set the location of the divider so that the tree got
the width it prefers, with the remainder of the window width allocated to the edi-
tor pane.

 Finally, specify the layout for the panel and add the split pane:

SXEOLF�'RP(FKR����
^

���
���$GG�*8,�FRPSRQHQWV
WKLV�VHW/D\RXW�QHZ�%RUGHU/D\RXW����
WKLV�DGG��&HQWHU���VSOLW3DQH���

`����&RQVWUXFWRU�

Congratulations! The program is now a GUI app. You can run it now to see what
the general layout will look like on screen. For reference, here is the completed
constructor:

SXEOLF�'RP(FKR����
^

���0DNH�D�QLFH�ERUGHU
(PSW\%RUGHU�HE� �QHZ�(PSW\%RUGHU����������
%HYHO%RUGHU�EE� �QHZ�%HYHO%RUGHU�%HYHO%RUGHU�/2:(5('��
&RPSRXQG%RUGHU�&%� �QHZ�&RPSRXQG%RUGHU�HE�EE��
WKLV�VHW%RUGHU�QHZ�&RPSRXQG%RUGHU�&%�HE���
���6HW�XS�WKH�WUHH

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 177
-7UHH�WUHH� �QHZ�-7UHH���
���%XLOG�OHIW�VLGH�YLHZ
-6FUROO3DQH�WUHH9LHZ� �QHZ�-6FUROO3DQH�WUHH��
WUHH9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��OHIW:LGWK��ZLQGRZ+HLJKW����
���%XLOG�ULJKW�VLGH�YLHZ
-(GLWRU3DQH�KWPO3DQH� �QHZ�-(GLWRU3DQH��WH[W�KWPO������
KWPO3DQH�VHW(GLWDEOH�IDOVH��
-6FUROO3DQH�KWPO9LHZ� �QHZ�-6FUROO3DQH�KWPO3DQH��
KWPO9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ULJKW:LGWK��ZLQGRZ+HLJKW����
���%XLOG�VSOLW�SDQH�YLHZ
-6SOLW3DQH�VSOLW3DQH� �QHZ�-6SOLW3DQH�

-6SOLW3DQH�+25,=217$/B63/,7�
WUHH9LHZ��KWPO9LHZ��

VSOLW3DQH�VHW&RQWLQXRXV/D\RXW��WUXH���
VSOLW3DQH�VHW'LYLGHU/RFDWLRQ��OHIW:LGWK���
VSOLW3DQH�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ZLQGRZ:LGWK�������ZLQGRZ+HLJKW�������
���$GG�*8,�FRPSRQHQWV
WKLV�VHW/D\RXW�QHZ�%RUGHU/D\RXW����
WKLV�DGG��&HQWHU���VSOLW3DQH���

`����&RQVWUXFWRU�

Create Adapters to Display the DOM in a
JTree
Now that you have a GUI framework to display a -7UHH in, the next step is get
the -7UHH to display the DOM. But a JTree wants to display a 7UHH0RGHO. A
DOM is a tree, but it’s not a 7UHH0RGHO. So you’ll need to create an adapter class
that makes the DOM look like a 7UHH0RGHO to a -7UHH.

Now, when the 7UHH0RGHO passes nodes to the -7UHH, -7UHH uses the WR6WULQJ
function of those nodes to get the text to display in the tree. The standard
WR6WULQJ function isn’t going to be very pretty, so you’ll need to wrap the DOM
nodes in an $GDSWHU1RGH that returns the text we want. What the 7UHH0RGHO
gives to the -7UHH, then, will in fact be $GDSWHU1RGH objects that wrap DOM
nodes.

Note: The classes that follow are defined as inner classes. If you are coding for the
1.1 platform, you will need to define these class as external classes.

178 DOCUMENT OBJECT MODEL
Define the AdapterNode Class
Start by importing the tree, event, and utility classes you’re going to need to
make this work:

���)RU�FUHDWLQJ�D�7UHH0RGHO
LPSRUW�MDYD[�VZLQJ�WUHH�
�
LPSRUW�MDYD[�VZLQJ�HYHQW�
�
LPSRUW�MDYD�XWLO�
�

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^��

Moving back down to the end of the program, define a set of strings for the node
element types:

�����������
`����PDNH)UDPH

���$Q�DUUD\�RI�QDPHV�IRU�'20�QRGH�W\SHV
����$UUD\�LQGH[HV� �QRGH7\SH���YDOXHV��
VWDWLF�ILQDO�6WULQJ>@�W\SH1DPH� �^

�QRQH��
�(OHPHQW��
�$WWU��
�7H[W��
�&'7��
�(QWLW\5HI��
�(QWLW\��
�3URF,QVWU��
�&RPPHQW��
�'RFXPHQW��
�'RF7\SH��
�'RF)UDJPHQW��
�1RWDWLRQ��

`�

} // DomEcho

These are the strings that will be displayed in the -7UHH. The specification of
these nodes types can be found in the Document Object Model (DOM) Level 2
Core Specification at KWWS���ZZZ�Z��RUJ�75������5(&�'20�/HYHO���&RUH�
��������, under the specification for Node. That table is reproduced below, with
the headings modified for clarity, and with the QRGH7\SH() column added:

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 179
Table 1: Node Types

 Node nodeName() nodeValue() attributes
nodeT
ype()

 Attr
name of
attribute

value of
attribute

null 2

 CDATASection #cdata-section
content of the
CDATA Sec-
tion

null 4

 Comment #comment
content of the
comment

null 8

 Document #document null null 9

 DocumentFragment
#document-
fragment

null null 11

 DocumentType
document type
name

null null 10

 Element tag name null
NamedNo-
deMap

 1

 Entity entity name null null 6

 EntityReference
name of entity
referenced

null null 5

 Notation notation name null null 12

 ProcessingInstruction target
entire content
excluding
the target

null 7

 Text #text
content of the
text node

null 3

180 DOCUMENT OBJECT MODEL
Suggestion:
Print this table and keep it handy. You need it when working with the DOM,
because all of these types are intermixed in a DOM tree. So your code is for-
ever asking, “Is this the kind of node I’m interested in?”.

Next, define the $GDSWHU1RGH wrapper for DOM nodes:

VWDWLF�ILQDO�6WULQJ>@�W\SH1DPH� �^
���

`�

SXEOLF�FODVV�$GDSWHU1RGH�
^�

RUJ�Z�F�GRP�1RGH�GRP1RGH�

���&RQVWUXFW�DQ�$GDSWHU�QRGH�IURP�D�'20�QRGH
SXEOLF�$GDSWHU1RGH�RUJ�Z�F�GRP�1RGH�QRGH��^

GRP1RGH� �QRGH�
`

���5HWXUQ�D�VWULQJ�WKDW�LGHQWLILHV�WKLV�QRGH�LQ�WKH�WUHH
���

�5HIHU�WR�WDEOH�DW�WRS�RI�RUJ�Z�F�GRP�1RGH�

SXEOLF�6WULQJ�WR6WULQJ���^

6WULQJ�V� �W\SH1DPH>GRP1RGH�JHW1RGH7\SH��@�
6WULQJ�QRGH1DPH� �GRP1RGH�JHW1RGH1DPH���
LI����QRGH1DPH�VWDUWV:LWK�������^

V�� ��������QRGH1DPH�
`
LI��GRP1RGH�JHW1RGH9DOXH���� �QXOO��^

LI��V�VWDUWV:LWK��3URF,QVWU����
V�� �������

HOVH�
V�� ������

���7ULP�WKH�YDOXH�WR�JHW�ULG�RI�1/
V�DW�WKH�IURQW
6WULQJ�W� �GRP1RGH�JHW1RGH9DOXH���WULP���
LQW�[� �W�LQGH[2I����
LI��[�! ����W� �W�VXEVWULQJ����[��
V�� �W�

`
UHWXUQ�V�

`
`����$GDSWHU1RGH

`����'RP(FKR�

This class declares a variable to hold the DOM node, and requires it to be speci-
fied as a constructor argument. It then defines the WR6WULQJ operation, which

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 181
returns the node type from the 6WULQJ array, and then adds to that additional
information from the node, to further identify it.

As you can see in the table of node types in RUJ�Z�F�GRP�1RGH, every node has
a type, and name, and a value, which may or may not be empty. In those cases
where the node name starts with ´�µ, that field duplicates the node type, so there
is in point in including it. That explains the lines that read:

LI����QRGH1DPH�VWDUWV:LWK�������^
V�� ��������QRGH1DPH�

`�

The remainder of the WR6WULQJ method deserves a couple of notes, as well. For
instance, these lines:

LI��V�VWDUWV:LWK��3URF,QVWU����
V�� �������

HOVH�
V�� ������

Merely provide a little “syntactic sugar”. The type field for a Processing Instruc-
tions end with a colon (:) anyway, so those codes keep from doubling the colon.

The other interesting lines are:

6WULQJ�W� �GRP1RGH�JHW1RGH9DOXH���WULP���
LQW�[� �W�LQGH[2I����
LI��[�! ����W� �W�VXEVWULQJ����[��
V�� �W�

Those lines trim the value field down to the first newline (linefeed) character in
the field. If you leave those lines out, you will see some funny characters (square
boxes, typically) in the -7UHH.

Note: Recall that XML stipulates that all line endings are normalized to newlines,
regardless of the system the data comes from. That makes programming quite a bit
simpler.

Wrapping a 'RP1RGH and returning the desired string are the $GDSWHU1RGH’s
major functions. But since the 7UHH0RGHO adapter will need to answer questions
like “How many children does this node have?” and satisfy commands like
“Give me this node’s Nth child”, it will be helpful to define a few additional util-

182 DOCUMENT OBJECT MODEL
ity methods. (The adapter could always access the DOM node and get that infor-
mation for itself, but this way things are more encapsulated.)

Add the code highlighted below to return the index of a specified child, the child
that corresponds to a given index, and the count of child nodes:

SXEOLF�FODVV�$GDSWHU1RGH�
^�

���
SXEOLF�6WULQJ�WR6WULQJ���^

���
`

SXEOLF�LQW�LQGH[�$GDSWHU1RGH�FKLOG��^
��6\VWHP�HUU�SULQWOQ��/RRNLQJ�IRU�LQGH[�RI�����FKLOG��
LQW�FRXQW� �FKLOG&RXQW���
IRU��LQW�L ���L�FRXQW��L����^

$GDSWHU1RGH�Q� �WKLV�FKLOG�L��
LI��FKLOG� �Q��UHWXUQ�L�

`
UHWXUQ��������6KRXOG�QHYHU�JHW�KHUH�

`

SXEOLF�$GDSWHU1RGH�FKLOG�LQW�VHDUFK,QGH[��^
��1RWH��-7UHH�LQGH[�LV�]HUR�EDVHG��
RUJ�Z�F�GRP�1RGH�QRGH�

GRP1RGH�JHW&KLOG1RGHV���LWHP�VHDUFK,QGH[��
UHWXUQ�QHZ�$GDSWHU1RGH�QRGH���

`

SXEOLF�LQW�FKLOG&RXQW���^
UHWXUQ�GRP1RGH�JHW&KLOG1RGHV���JHW/HQJWK����

`
`����$GDSWHU1RGH

`����'RP(FKR

Note: During development, it was only after I started writing the 7UHH0RGHO adapter
that I realized these were needed, and went back to add them. In just a moment,
you’ll see why.

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 183
Define the TreeModel Adapter
Now, at last, you are ready to write the 7UHH0RGHO adapter. One of the really nice
things about the -7UHH model is the relative ease with which you convert an
existing tree for display. One of the reasons for that is the clear separation
between the displayable view, which -7UHH uses, and the modifiable view, which
the application uses. For more on that separation, see Understanding the Tree-
Model at KWWS���MDYD�VXQ�FRP�SURGXFWV�MIF�WVF�DUWL�
FOHV�MWUHH�LQGH[�KWPO. For now, the important point is that to satisfy the
7UHH0RGHO interface we only need to (a) provide methods to access and report on
children and (b) register the appropriate -7UHH listener, so it knows to update its
view when the underlying model changes.

Add the code highlighted below to create the 7UHH0RGHO adapter and specify the
child-processing methods:

���

`����$GDSWHU1RGH

���7KLV�DGDSWHU�FRQYHUWV�WKH�FXUUHQW�'RFXPHQW��D�'20��LQWR�
���D�-7UHH�PRGHO��
SXEOLF�FODVV�'RP7R7UHH0RGHO$GDSWHU�LPSOHPHQWV�
MDYD[�VZLQJ�WUHH�7UHH0RGHO�
^

���%DVLF�7UHH0RGHO�RSHUDWLRQV
SXEOLF�2EMHFW��JHW5RRW���^
��6\VWHP�HUU�SULQWOQ��5HWXUQLQJ�URRW�����GRFXPHQW��
UHWXUQ�QHZ�$GDSWHU1RGH�GRFXPHQW��

`

SXEOLF�ERROHDQ�LV/HDI�2EMHFW�D1RGH��^
���'HWHUPLQHV�ZKHWKHU�WKH�LFRQ�VKRZV�XS�WR�WKH�OHIW�
���5HWXUQ�WUXH�IRU�DQ\�QRGH�ZLWK�QR�FKLOGUHQ
$GDSWHU1RGH�QRGH� ��$GDSWHU1RGH��D1RGH�
LI��QRGH�FKLOG&RXQW���!����UHWXUQ�IDOVH�
UHWXUQ�WUXH�

`
SXEOLF�LQW�����JHW&KLOG&RXQW�2EMHFW�SDUHQW��

$GDSWHU1RGH�QRGH� ��$GDSWHU1RGH��SDUHQW�
UHWXUQ�QRGH�FKLOG&RXQW���

`
SXEOLF�2EMHFW��JHW&KLOG�2EMHFW�SDUHQW��LQW�LQGH[��^
$GDSWHU1RGH�QRGH� ��$GDSWHU1RGH��SDUHQW�
UHWXUQ�QRGH�FKLOG�LQGH[��
`

184 DOCUMENT OBJECT MODEL
SXEOLF�LQW�����JHW,QGH[2I&KLOG�2EMHFW�SDUHQW��2EMHFW�FKLOG��^
$GDSWHU1RGH�QRGH� ��$GDSWHU1RGH��SDUHQW�
UHWXUQ�QRGH�LQGH[��$GDSWHU1RGH��FKLOG��

`
SXEOLF�YRLG����YDOXH)RU3DWK&KDQJHG�7UHH3DWK�SDWK��2EMHFW�
QHZ9DOXH��^

���1XOO��:H�ZRQ
W�EH�PDNLQJ�FKDQJHV�LQ�WKH�*8,
���,I�ZH�GLG��ZH�ZRXOG�HQVXUH�WKH�QHZ�YDOXH�ZDV�UHDOO\�QHZ
���DQG�WKHQ�ILUH�D�7UHH1RGHV&KDQJHG�HYHQW�

`
`����'RP7R7UHH0RGHO$GDSWHU
`����'RP(FKR��

In this code, the JHW5RRW method returns the root node of the DOM, wrapped as
an $GDSWHU1RGH object. From here on, all nodes returned by the adapter will be
$GDSWHU1RGHV that wrap DOM nodes. By the same token, whenever the -7UHH
asks for the child of a given parent, the number of children that parent has, etc.,
the -7UHH will be passing us an $GDSWHU1RGH. We know that, because we control
every node the -7UHH sees, starting with the root node.

-7UHH uses the LV/HDI method to determine whether or not to display a clickable
expand/contract icon to the left of the node, so that method returns true only if
the node has children. In this method, we see the cast from the generic object
-7UHH sends us to the $GDSWHU1RGH object we know it has to be. We know it is
sending us an adapter object, but the interface, to be general, defines objects, so
we have to do the casts.

The next three methods return the number of children for a given node, the child
that lives at a given index, and the index of a given child, respectively. That’s all
pretty straightforward.

The last method is invoked when the user changes a value stored in the -7UHH. In
this app, we won’t support that. But if we did, the app would have to make the
change to the underlying model and then inform any listeners that a change had
occurred. (The -7UHH might not be the only listener. In many an application it
isn’t, in fact.)

To inform listeners that a change occurred, you’ll need the ability to register
them. That brings us to the last two methods required to implement the 7UHH�
0RGHO interface. Add the code highlighted below to define them:

SXEOLF�FODVV�'RP7R7UHH0RGHO$GDSWHU����
^

���
SXEOLF�YRLG����YDOXH)RU3DWK&KDQJHG�7UHH3DWK�SDWK��2EMHFW�

QHZ9DOXH��^

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 185
���
`
SULYDWH�9HFWRU�OLVWHQHU/LVW� �QHZ�9HFWRU���
SXEOLF�YRLG�DGG7UHH0RGHO/LVWHQHU�

7UHH0RGHO/LVWHQHU�OLVWHQHU���^
LI���OLVWHQHU�� �QXOO�		���OLVWHQHU/LVW�FRQWDLQV�

OLVWHQHU�����^
OLVWHQHU/LVW�DGG(OHPHQW��OLVWHQHU���
`

`
SXEOLF�YRLG�UHPRYH7UHH0RGHO/LVWHQHU��7UHH0RGHO/LVWHQHU
OLVWHQHU���^
LI���OLVWHQHU�� �QXOO���^

OLVWHQHU/LVW�UHPRYH(OHPHQW��OLVWHQHU���
`

`
`����'RP7R7UHH0RGHO$GDSWHU

Since this app won’t be making changes to the tree, these methods will go
unused, for now. However, they’ll be there in the future, when you need them.

Note: This example uses 9HFWRU so it will work with 1.1 apps. If coding for 1.2 or
later, though, I’d use the excellent collections framework instead:

���SULYDWH�/LQNHG/LVW�OLVWHQHU/LVW� �QHZ�/LQNHG/LVW���

The operations on the /LVW are then DGG and UHPRYH. To iterate over the list, as in
the operations below, you would use:

,WHUDWRU�LW� �OLVWHQHU/LVW�LWHUDWRU���
ZKLOH���LW�KDV1H[W�����^

7UHH0RGHO/LVWHQHU�OLVWHQHU� ��7UHH0RGHO/LVWHQHU��LW�QH[W���
����

`

Here, too, are some optional methods you won’t be using in this app. At this
point, though, you have constructed a reasonable template for a TreeModel
adapter. In the interests of completeness, you might want to add the code high-

186 DOCUMENT OBJECT MODEL
lighted below. You can then invoke them whenever you need to notify -7UHH lis-
teners of a change:

SXEOLF�YRLG�UHPRYH7UHH0RGHO/LVWHQHU��7UHH0RGHO/LVWHQHU�
OLVWHQHU���^

���
`�
SXEOLF�YRLG�ILUH7UHH1RGHV&KDQJHG��7UHH0RGHO(YHQW�H���^

(QXPHUDWLRQ�OLVWHQHUV� �OLVWHQHU/LVW�HOHPHQWV���
ZKLOH���OLVWHQHUV�KDV0RUH(OHPHQWV�����^

7UHH0RGHO/LVWHQHU�OLVWHQHU� ��7UHH0RGHO/LVWHQHU��
OLVWHQHUV�QH[W(OHPHQW���

OLVWHQHU�WUHH1RGHV&KDQJHG��H���
`

`�
SXEOLF�YRLG�ILUH7UHH1RGHV,QVHUWHG��7UHH0RGHO(YHQW�H���^

(QXPHUDWLRQ�OLVWHQHUV� �OLVWHQHU/LVW�HOHPHQWV���
ZKLOH���OLVWHQHUV�KDV0RUH(OHPHQWV�����^

7UHH0RGHO/LVWHQHU�OLVWHQHU� ��7UHH0RGHO/LVWHQHU��
OLVWHQHUV�QH[W(OHPHQW���

OLVWHQHU�WUHH1RGHV,QVHUWHG��H���
`

`�
SXEOLF�YRLG�ILUH7UHH1RGHV5HPRYHG��7UHH0RGHO(YHQW�H���^

(QXPHUDWLRQ�OLVWHQHUV� �OLVWHQHU/LVW�HOHPHQWV���
ZKLOH���OLVWHQHUV�KDV0RUH(OHPHQWV�����^

7UHH0RGHO/LVWHQHU�OLVWHQHU� ��7UHH0RGHO/LVWHQHU��
OLVWHQHUV�QH[W(OHPHQW���

OLVWHQHU�WUHH1RGHV5HPRYHG��H���
`

`�
SXEOLF�YRLG�ILUH7UHH6WUXFWXUH&KDQJHG��7UHH0RGHO(YHQW�H���^

(QXPHUDWLRQ�OLVWHQHUV� �OLVWHQHU/LVW�HOHPHQWV���
ZKLOH���OLVWHQHUV�KDV0RUH(OHPHQWV�����^

7UHH0RGHO/LVWHQHU�OLVWHQHU� ��7UHH0RGHO/LVWHQHU��
OLVWHQHUV�QH[W(OHPHQW���

OLVWHQHU�WUHH6WUXFWXUH&KDQJHG��H���
`

`
`����'RP7R7UHH0RGHO$GDSWHU

Note: These methods are taken from the 7UHH0RGHO6XSSRUW class described in
Understanding the TreeModel. That architecture was produced by Tom Santos and
Steve Wilson, and is a lot more elegant than the quick hack going on here. It seemed
worthwhile to put them here, though, so they would be immediately at hand when
and if they’re needed.

FINISHING UP 187
Finishing Up
At this point, you are basically done. All you need to do is jump back to the con-
structor and add the code to construct an adapter and deliver it to the -7UHH as
the 7UHH0RGHO:

���6HW�XS�WKH�WUHH
-7UHH�WUHH� �QHZ�-7UHH�QHZ�'RP7R7UHH0RGHO$GDSWHU�����

You can now compile and run the code on an XML file. In the next section, you
will do that, and explore the DOM structures that result.

Examining the Structure of a DOM
In this section, you’ll use the GUI-fied 'RP(FKR app you created in the last sec-
tion to visually examine a DOM. You’ll see what nodes make up the DOM, and
how they are arranged. With the understanding you acquire, you’ll be well pre-
pared to construct and modify Document Object Model structures in the future.

Displaying A Simple Tree
We’ll start out by displaying a simple file, so you get an idea of basic DOM
structure. Then we’ll look at the structure that results when you include some of
the more advanced XML elements.

Note: The code used to create the figures in this section is in 'RP(FKR���MDYD. The
file displayed is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���
[PO�KWPO.)

188 DOCUMENT OBJECT MODEL
Figure 1 shows the tree you see when you run the DomEcho program on the first
XML file you created in the DOM tutorial.

Figure 1 Figure 1: Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element W\SH. After
that comes the element QDPH, if any, and then the element YDOXH. This view
shows three element types: 'RFXPHQW, &RPPHQW, and (OHPHQW. There is only
'RFXPHQW type for the whole tree—that is the root node. The &RPPHQW node dis-
plays the YDOXH attribute, while the (OHPHQW node displays the element QDPH,
“slideshow”.

Compare the Table 1: with the code in the AdapterNode’s WR6WULQJ method to
see whether the name or value is being displayed for a particular node. If you
need to make it more clear, modify the program to indicate which property is
being displayed (for example, with N: name, V: value).

DISPLAYING A SIMPLE TREE 189
Expanding the slideshow element brings up the display shown in Figure 2.

Figure 2 Element Node Expanded, No Attribute Nodes Showing

Here, you can see the 7H[W nodes and &RPPHQW nodes that are interspersed
between Slide elements. The empty 7H[W nodes exist because there is no DTD to
tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be (OHPHQW and 7H[W nodes.)

Important!
Text nodes exist under element nodes in a DOM, and data is always stored in
text nodes. Perhaps the most common error in DOM processing is to navigate to
an element node and expect it to contain the data that is stored in the XML file.
Not so! Even the simplest element node has a text node under it. For example,
given �VL]H!����VL]H!, there is an element node (VL]H), and a text node under
it which contains the actual data (��).

Notably absent from this picture are the $WWULEXWH nodes. An inspection of the
table in RUJ�Z�F�GRP�1RGH shows that there is indeed an Attribute node type.
But they are not included as children in the DOM hierarchy. They are instead
obtained via the Node interface JHW$WWULEXWHV method.

190 DOCUMENT OBJECT MODEL
Note: The display of the text nodes is the reason for including the lines below in the
AdapterNode’s WR6WULQJ method. If your remove them, you’ll see the funny char-
acters (typically square blocks) that are generated by the newline characters that are
in the text.

6WULQJ�W� �GRP1RGH�JHW1RGH9DOXH���WULP���
LQW�[� �W�LQGH[2I����
LI��[�! ����W� �W�VXEVWULQJ����[��
V�� �W��

Displaying a More Complex Tree
Here, you’ll display the example XML file you created at the end of the SAX
tutorial, to see how entity references, processing instructions, and CDATA sec-
tions appear in the DOM.

Note: The file displayed in this section is VOLGH6DPSOH���[PO. The
VOLGH6DPSOH���[PO file references VOLGHVKRZ��GWG which, in turn, references
FRS\ULJKW�[PO and a (very simplistic) [KWPO�GWG� (The browsable versions are
VOLGH6DPSOH���[PO�KWPO, VOLGHVKRZ��GWG�KWPO�� FRS\ULJKW�[PO�KWPO, and
[KWPO�GWG�KWPO.)

DISPLAYING A MORE COMPLEX TREE 191
Figure 3 shows the result of running the 'RP(FKR app on VOLGH6DPSOH���[PO,
which includes a '2&7<3(entry that identifies the document’s DTD.

Figure 3 DocType Node Displayed

The 'RF7\SH interface is actually an extension of Z�F�RUJ�GRP�1RGH. It defines
a JHW(QWLWLHV method that you would use to obtain (QWLW\ nodes—the nodes
that define entities like the SURGXFW entity, which has the value “WonderWid-
gets”. Like $WWULEXWH nodes, (QWLW\ nodes do not appear as children of DOM
nodes.

192 DOCUMENT OBJECT MODEL
When you expand the VOLGHVKRZ node, you get the display shown in Figure 4.

Figure 4 Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do
appear in the tree. The QDPH property contains the target-specification, which
identifies the app that the instruction is directed to. The YDOXH property contains
the text of the instruction.

Note that empty text nodes are also shown here, even though the DTD specifies
that a VOLGHVKRZ can contain VOLGH elements only, never text. Logically, then,
you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated LJQRUDEOH:KLWHVSDFH
events, rather than FKDUDFWHU events.)

The empty text elements are included because by default, 'RFXPHQW%XLOGHU cre-
ates a DOM that includes all the lexical information necessary to reconstruct the
original document, in it’s original form. That includes comment nodes as well as
text nodes. There is as yet no standard mechanism for eliminating such lexical
information in the DOM so you are left with the logical structure.

DISPLAYING A MORE COMPLEX TREE 193
Moving down to the second VOLGH element and opening the LWHP element under
it brings up the display shown in Figure 5.

Figure 5 Entity Reference Node Displayed

Here, the Entity Reference node is highlighted. Note that the entity reference
contains multiple nodes under it. This example shows only comment and a text
nodes, but the entity could conceivable contain other element nodes, as well.

194 DOCUMENT OBJECT MODEL
Moving down to the last LWHP element under the last VOLGH brings up the display
shown in Figure 6.

Figure 6 CDATA Node Displayed

Here, the &'7 node is highlighted. Note that there are no nodes under it. Since
a &'7 section is entirely uninterpreted, all of its contents are contained in the
node’s YDOXH property.

Finishing Up
At this point, you have seen most of the nodes you will ever encounter in a DOM
tree. There are one or two more that we’ll mention in the next section, but you
now know what you need to know to create or modify a DOM structure. In the
next section, you’ll see how to convert a DOM into a -7UHH that is suitable for an
interactive GUI. Or, if you prefer, you can skip ahead to the 5th section of the
DOM tutorial, Creating and Manipulating a DOM (page 209), where you’ll learn
how to create a DOM from scratch.

COMPRESSING THE TREE VIEW 195
Constructing a User-Friendly JTree from
a DOM

Now that you know what a DOM looks like internally, you’ll be better prepared
to modify a DOM or construct one from scratch. Before going on to that, though,
this section presents some modifications to the -7UHH0RGHO that let you produce
a more user-friendly version of the -7UHH suitable for use in a GUI.

Compressing the Tree View
Displaying the DOM in tree form is all very well for experimenting and to learn
how a DOM works. But it’s not the kind of “friendly” display that most users
want to see in a -7UHH. However, it turns out that very few modifications are
needed to turn the 7UHH0RGHO adapter into something that will present a user-
friendly display. In this section, you’ll make those modifications.

Note: The code discussed in this section is in 'RP(FKR���MDYD. The file it operates
on is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���[PO�KWPO.)

Make the Operation Selectable
When you modify the adapter, you’re going to compress the view of the DOM,
eliminating all but the nodes you really want to display. Start by defining a bool-
ean variable that controls whether you want the compressed or uncompressed
view of the DOM:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

VWDWLF�'RFXPHQW�GRFXPHQW��
�Boolean compress = true;
�VWDWLF�ILQDO�LQW�ZLQGRZ+HLJKW� �����
����

196 DOCUMENT OBJECT MODEL
Identify “Tree” Nodes

The next step is to identify the nodes you want to show up in the tree. To do that,
go to the area where you defined the names of all the element types (in the W\SH�
1DPH array), and add the code highlighted below:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���

SXEOLF�VWDWLF�YRLG�PDNH)UDPH���^
���

`
���$Q�DUUD\�RI�QDPHV�IRU�'20�QRGH�W\SH
VWDWLF�6WULQJ>@�W\SH1DPH� �^

���
`�
final int ELEMENT_TYPE = 1;
// The list of elements to display in the tree
static String[] treeElementNames = {

"slideshow",
"slide",
"title", // For slideshow #1
"slide-title", // For slideshow #10
"item",

};
Boolean treeElement(String elementName) {

for (int i=0; i<treeElementNames.length; i++) {
if (elementName.equals(treeElementNames[i]))

return true;
}
return false;

}�

With this code, you set up a constant you can use to identify the (/(0(17 node
type, declared the names of the elements you want in the tree, and created a
method tells whether or not a given element name is a “tree element”. Since
VOLGH6DPSOH���[PO has WLWOH elements and VOLGH6DPSOH���[PO has VOLGH�
WLWOH elements, you set up the contents of this arrays so it would work with
either data file.

Note: The mechanism you are creating here depends on the fact that structure nodes
like VOLGHVKRZ and VOLGH never contain text, while text usually does appear in con-
tent nodes like LWHP. Although those “content” nodes may contain subelements in
VOLGH6KRZ���[PO, the DTD constrains those subelements to be XHTML nodes.

COMPRESSING THE TREE VIEW 197
Because they are XHTML nodes (an XML version of HTML that is constrained to
be well-formed), the entire substructure under an LWHP node can be combined into
a single string and displayed in the KWPO3DQH that makes up the other half of the
application window. In the second part of this section, you’ll do that concatenation,
displaying the text and XHTML as content in the KWPO3DQH.

Control Node Visibility
The next step is to modify the $GDSWHU1RGH·V FKLOG&RXQW function so that it
only counts “tree element” nodes—nodes which are designated as displayable in
the -7UHH. Make the modifications highlighted below to do that:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
SXEOLF�FODVV�$GDSWHU1RGH�
^�

���
SXEOLF�$GDSWHU1RGH�FKLOG�LQW�VHDUFK,QGH[��^

����
`
SXEOLF�LQW�FKLOG&RXQW���^

if (!compress) {
// Indent this
UHWXUQ�GRP1RGH�JHW&KLOG1RGHV���JHW/HQJWK����

}
int count = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++) {
org.w3c.dom.Node node =

domNode.getChildNodes().item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName()))
{

++count;
}

}
return count;

`
`����$GDSWHU1RGH

The only tricky part about this code is checking to make sure the node is an ele-
ment node before comparing the node. The DocType node makes that necessary,
because it has the same name, “slideshow”, as the VOLGHVKRZ element.

198 DOCUMENT OBJECT MODEL
Control Child Access
Finally, you need to modify the $GDSWHU1RGH·V FKLOG function to return the Nth
item from the list of displayable nodes, rather than the Nth item from all nodes in
the list. Add the code highlighted below to do that:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
SXEOLF�FODVV�$GDSWHU1RGH�
^�

���
SXEOLF�LQW�LQGH[�$GDSWHU1RGH�FKLOG��^

���
`
SXEOLF�$GDSWHU1RGH�FKLOG�LQW�VHDUFK,QGH[��^
��1RWH��-7UHH�LQGH[�LV�]HUR�EDVHG��
RUJ�Z�F�GRP�1RGH�QRGH�

GRP1RGH�JHW&KLOG1RGHV��,WHP�VHDUFK,QGH[��
if (compress) {

// Return Nth displayable node
int elementNodeIndex = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++) {
node = domNode.getChildNodes()Item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName())
&& elementNodeIndex++ == searchIndex) {

break;
}

}
}
UHWXUQ�QHZ�$GDSWHU1RGH�QRGH���

`����FKLOG
`�����$GDSWHU1RGH

There’s nothing special going on here. It’s a slightly modified version the same
logic you used when returning the child count.

Check the Results
When you compile and run this version of the app on VOLGH6DPSOH���[PO, and
then expand the nodes in the tree, you see the results shown in Figure 7. The only
nodes remaining in the tree are the high-level “structure” nodes.

COMPRESSING THE TREE VIEW 199
Figure 7 Tree View with a Collapsed Hierarchy

Extra Credit
The way the app stands now, the information that tells the app how to compress
the tree for display is “hard-coded”. Here are some ways you could consider
extending the app:

Use a Command-Line Argument
Whether you compress or don’t compress the tree could be determined by a
command line argument, rather than being a hard-coded Boolean variable.
On the other hand, the list the list of elements that goes into the tree is still
hard coded, so maybe that option doesn’t make much sense, unless...

Read the treeElement list from a file
If you read the list of elements to include in the tree from an external file,
that would make the whole app command driven. That would be good. But
wouldn’t it be really nice to derive that information from the DTD or
schema, instead? So you might want to consider...

Automatically Build the List
Watch out, though! As things stand right now, there are no standard DTD
parsers! If you use a DTD, then, you’ll need to write your parser to make
sense out of its somewhat arcane syntax. You’ll probably have better luck if
you use a schema, instead of a DTD. The nice thing about schemas is that

200 DOCUMENT OBJECT MODEL
use XML syntax, so you can use an XML parser to read the schema the same
way you use any other file.

As you analyze the schema, note that the -7UHH-displayable structure nodes
are those that have no text, while the content nodes may contain text and,
optionally, XHTML subnodes. That distinction works for this example, and
will likely work for a large body of real-world applications. It’s pretty easy
to construct cases that will create a problem, though, so you’ll have to be on
the lookout for schema/DTD specifications that embed non-XHTML ele-
ments in text-capable nodes, and take the appropriate action.

Acting on Tree Selections
Now that the tree is being displayed properly, the next step is to concatenate the
subtrees under selected nodes to display them in the KWPO3DQH. While you’re at
it, you’ll use the concatenated text to put node-identifying information back in
the -7UHH.

Note: The code discussed in this section is in 'RP(FKR���MDYD.

Identify Node Types
When you concatenate the sub nodes under an element, the processing you do is
going to depend on the type of node. So the first thing to is to define constants
for the remaining node types. Add the code highlighted below to do that:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
���$Q�DUUD\�RI�QDPHV�IRU�'20�QRGH�W\SHV
VWDWLF�6WULQJ>@�W\SH1DPH� �^

���
`�
VWDWLF�ILQDO�LQW�(/(0(17B7<3(� �����
static final int ATTR_TYPE = 2;
static final int TEXT_TYPE = 3;
static final int CDATA_TYPE = 4;
static final int ENTITYREF_TYPE = 5;
static final int ENTITY_TYPE = 6;
static final int PROCINSTR_TYPE = 7;
static final int COMMENT_TYPE = 8;

ACTING ON TREE SELECTIONS 201
static final int DOCUMENT_TYPE = 9;
static final int DOCTYPE_TYPE = 10;
static final int DOCFRAG_TYPE = 11;
static final int NOTATION_TYPE = 12;�

Concatenate Subnodes to Define Element
Content
Next, you need to define add the method that concatenates the text and subnodes
for an element and returns it as the element’s “content”. To define the FRQWHQW
method, you’ll need to add the big chunk of code highlighted below, but this is
the last big chunk of code in the DOM tutorial!.

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
SXEOLF�FODVV�$GDSWHU1RGH�
^�

���
SXEOLF�6WULQJ�WR6WULQJ���^
���
`
public String content() {

String s = "";
org.w3c.dom.NodeList nodeList =

domNode.getChildNodes();
for (int i=0; i<nodeList.getLength(); i++) {

org.w3c.dom.Node node = nodeList.item(i);
int type = node.getNodeType();
AdapterNode adpNode = new AdapterNode(node);
if (type == ELEMENT_TYPE) {

if (treeElement(node.getNodeName()))
continue;

s += "<" + node.getNodeName() + ">";
s += adpNode.content();
s += "</" + node.getNodeName() + ">";

} else if (type == TEXT_TYPE) {
s += node.getNodeValue();

} else if (type == ENTITYREF_TYPE) {
// The content is in the TEXT node under it
s += adpNode.content();

} else if (type == CDATA_TYPE) {�
StringBuffer sb = new StringBuffer(

node.getNodeValue());
for (int j=0; j<sb.length(); j++) {

if (sb.charAt(j) == ’<’) {

202 DOCUMENT OBJECT MODEL
sb.setCharAt(j, ’&’);
sb.insert(j+1, "lt;");
j += 3;

} else if (sb.charAt(j) == ’&’) {
sb.setCharAt(j, ’&’);
sb.insert(j+1, "amp;");
j += 4;

}
}
s += "<pre>" + sb + "</pre>";

}
}
return s;

}
���

`����$GDSWHU1RGH

This is not the most efficient code anyone ever wrote, but it works and will do
fine for our purposes. In this code, you are recognizing and dealing with the fol-
lowing data types:

Element
For elements with names like the XHTML “em” node, you return the node’s
content sandwiched between the appropriate �HP! and ��HP! tags. However,
when processing the content for the VOLGHVKRZ element, for example, you
don’t include tags for the VOLGH elements it contains so, when returning a
node’s content, you skip any subelements that are themselves displayed in
the tree.

Text
No surprise here. For a text node, you simply return the node’s YDOXH.

Entity Reference
Unlike &'7 nodes, Entity References can contain multiple subelements.
So the strategy here is to return the concatenation of those subelements.

CDATA
Like a text node, you return the node’s YDOXH. However, since the text in this
case may contain angle brackets and ampersands, you need to convert them
to a form that displays properly in an HTML pane. Unlike the XML CDATA
tag, the HTML �SUH! tag does not prevent the parsing of character-format
tags, break tags and the like. So you have to convert left-angle brackets (�)
and ampersands () to get them to display properly.

On the other hand, there are quite a few node types you are not processing with
the code above. It’s worth a moment to examine them and understand why:

ACTING ON TREE SELECTIONS 203
Attribute
These nodes do not appear in the DOM, but are obtained by invoking
JHW$WWULEXWHV on element nodes.

Entity
These nodes also do not appear in the DOM. They are obtained by invoking
JHW(QWLWLHV on 'RF7\SH nodes.

Processing Instruction
These nodes don’t contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document
This is the root node for the DOM. There’s no data to display for that.

DocType
The 'RF7\SH node contains the DTD specification, with or without external
pointers. It only appears under the root node, and has no data to display in
the tree.

Document Fragment
This node is equivalent to a document node. It’s a root node that the DOM
specification intends for holding intermediate results during cut/paste opera-
tions, for example. Like a document node, there’s no data to display.

Notation
We’re just flat out ignoring this one. These nodes are used to include binary
data in the DOM. As discussed earlier in Referencing Binary Entities and
Using the DTDHandler and EntityResolver (page 159), the MIME types (in
conjunction with namespaces) make a better mechanism for that.

Display the Content in the JTree
With the content-concatenation out of the way, only a few small programming
steps remain. The first is to modify WR6WULQJ so that it uses the node’s content
for identifying information. Add the code highlighted below to do that:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
SXEOLF�FODVV�$GDSWHU1RGH�
^�

���
SXEOLF�6WULQJ�WR6WULQJ���^

���

204 DOCUMENT OBJECT MODEL
LI����QRGH1DPH�VWDUWV:LWK�������^
V�� ��������QRGH1DPH�

`
if (compress) {

String t = content().trim();
int x = t.indexOf(");
if (x >= 0) t = t.substring(0, x);
s += " " + t;
return s;

}
LI��GRP1RGH�JHW1RGH9DOXH���� �QXOO��^

���
`
UHWXUQ�V�

`�

Wire the JTree to the JEditorPane
Returning now to the app’s constructor, create a tree selection listener and use to
wire the -7UHH to the -(GLWRU3DQH:

SXEOLF�FODVV�'RP(FKR�H[WHQGV�-3DQHO
^

���
SXEOLF�'RP(FKR��
^

���
���%XLOG�ULJKW�VLGH�YLHZ
-(GLWRU3DQH�KWPO3DQH� �QHZ�-(GLWRU3DQH��WH[W�KWPO������
KWPO3DQH�VHW(GLWDEOH�IDOVH��
-6FUROO3DQH�KWPO9LHZ� �QHZ�-6FUROO3DQH�KWPO3DQH��
KWPO9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ULJKW:LGWK��ZLQGRZ+HLJKW����
�tree.addTreeSelectionListener(

new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e)
{

TreePath p = e.getNewLeadSelectionPath();
if (p != null) {

AdapterNode adpNode =
(AdapterNode)

p.getLastPathComponent();
htmlPane.setText(adpNode.content());

}
}

}
);�

ACTING ON TREE SELECTIONS 205
Now, when a -7UHH node is selected, it’s contents are delivered to the KWPO3DQH.

Note: The 7UHH6HOHFWLRQ/LVWHQHU in this example is created using an anonymous
inner-class adapter. If you are programming for the 1.1 version of the platform,
you’ll need to define an external class for this purpose.

If you compile this version of the app, you’ll discover immediately that the KWP�
O3DQH needs to be specified as ILQDO to be referenced in an inner class, so add
the keyword highlighted below:

SXEOLF�'RP(FKR����
^

���
���%XLOG�ULJKW�VLGH�YLHZ
final -(GLWRU3DQH�KWPO3DQH� �QHZ

-(GLWRU3DQH��WH[W�KWPO������
KWPO3DQH�VHW(GLWDEOH�IDOVH��
-6FUROO3DQH�KWPO9LHZ� �QHZ�-6FUROO3DQH�KWPO3DQH��
KWPO9LHZ�VHW3UHIHUUHG6L]H��

QHZ�'LPHQVLRQ��ULJKW:LGWK��ZLQGRZ+HLJKW����

Run the App
When you compile the app and run it on VOLGH6DPSOH���[PO (the browsable
version is VOLGH6DPSOH���[PO�KWPO), you get a display like that shown in Fig-

206 DOCUMENT OBJECT MODEL
ure 8. Expanding the hierarchy shows that the -7UHH now includes identifying
text for a node whenever possible.

Figure 8 Collapsed Hierarchy Showing Text in Nodes

ACTING ON TREE SELECTIONS 207
Selecting an item that includes XHTML subelements produces a display like that
shown in Figure 9:

Figure 9 Node with �HP! Tag Selected

Selecting a node that contains an entity reference causes the entity text to be
included, as shown in Figure 10:

Figure 10 Node with Entity Reference Selected

208 DOCUMENT OBJECT MODEL
Finally, selecting a node that includes a &'7 section produces results like those
shown in Figure 11:

Figure 11 Node with &'7 Component Selected

Extra Credit
Now that you have the app working, here are some ways you might think about
extending it in the future:

Use Title Text to Identify Slides
Special case the VOLGH element so that the contents of the WLWOH node is used
as the identifying text. When selected, convert the title node’s contents to a
centered +� tag, and ignore the WLWOH element when constructing the tree.

Convert Item Elements to Lists
Remove LWHP elements from the -7UHH and convert them to HTML lists
using �XO!, �OL!, ��XO! tags, including them in the slide’s content when the
slide is selected.

HANDLING MODIFICATIONS 209
Handling Modifications
A full discussion of the mechanisms for modifying the -7UHH·V underlying data
model is beyond the scope of this tutorial. However, a few words on the subject
are in order.

Most importantly, note that if you allow the user to modifying the structure by
manipulating the -7UHH, you have take the compression into account when you
figure out where to apply the change. For example, if you are displaying text in
the tree and the user modifies that, the changes would have to be applied to text
subelements, and perhaps require a rearrangement of the XHTML subtree.

When you make those changes, you’ll need to understand more about the inter-
actions between a -7UHH, it’s 7UHH0RGHO, and an underlying data model. That
subject is covered in depth in the Swing Connection article, Understanding the
TreeModel.

Finishing Up
You now understand pretty much what there is know about the structure of a
DOM, and you know how to adapt a DOM to create a user-friendly display in a
-7UHH. It has taken quite a bit of coding, but in return you have obtained valuable
tools for exposing a DOM’s structure and a template for GUI apps. In the next
section, you’ll make a couple of minor modifications to the code that turn the
app into a vehicle for experimentation, and then experiment with building and
manipulating a DOM.

Creating and Manipulating a DOM
By now, you understand the structure of the nodes that make up a DOM. A DOM
is actually very easy to create. This section of the DOM tutorial is going to take
much less work than anything you’ve see up to now. All the foregoing work,
however, generated the basic understanding that will make this section a piece of
cake.

Obtaining a DOM from the Factory
In this version of the application, you’re still going to create a document builder
factory, but this time you’re going to tell it create a new DOM instead of parsing

210 DOCUMENT OBJECT MODEL
an existing XML document. You’ll keep all the existing functionality intact,
however, and add the new functionality in such a way that you can “flick a
switch” to get back the parsing behavior.

Note: The code discussed in this section is in 'RP(FKR���MDYD.

Modify the Code
Start by turning off the compression feature. As you work with the DOM in this
section, you’re going to want to see all the nodes:

SXEOLF�FODVV�'RP(FKR����H[WHQGV�-3DQHO
^

���
ERROHDQ�FRPSUHVV� �WUXH�
boolean compress = false;

Next, you need to create a EXLOG'RP method that creates the GRFXPHQW object.
The easiest way to do that is to create the method and then copy the DOM-con-
struction section from the PDLQ method to create the EXLOG'RP. The modifica-
tions shown below show you the changes you need to make to make that code
suitable for the EXLOG'RP method.

SXEOLF�FODVV�'RP(FKR����H[WHQGV�-3DQHO
^

���
SXEOLF�VWDWLF�YRLG�PDNH)UDPH���^

���
`
public static void buildDom()
{

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = factory.newDocumentBuilder();
GRFXPHQW� �EXLOGHU�SDUVH��QHZ�)LOH�DUJY>�@����
document = builder.newDocument();�����&UHDWH�IURP�ZKROH�

FORWK
�`�FDWFK��6$;([FHSWLRQ�V[H��^

���
�`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^

���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

OBTAINING A DOM FROM THE FACTORY 211
�`�FDWFK��,2([FHSWLRQ�LRH��^
���

`
`

In this code, you replaced the line that does the parsing with one that creates a
DOM. Then, since the code is no longer parsing an existing file, you removed
exceptions which are no longer thrown: 6$;([FHSWLRQ and ,2([FHSWLRQ.

And since you are going to be working with (OHPHQW objects, add the statement
to import that class at the top of the program:

LPSRUW�RUJ�Z�F�GRP�'RFXPHQW�
LPSRUW�RUJ�Z�F�GRP�'20([FHSWLRQ�
import org.w3c.dom.Element;

Create Element and Text Nodes
Now, for your first experiment, add the 'RFXPHQW operations to create a root
node and several children:

SXEOLF�FODVV�'RP(FKR����H[WHQGV�-3DQHO
^

���
SXEOLF�VWDWLF�YRLG�EXLOG'RP��
^

'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\�
'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���

WU\�^
'RFXPHQW%XLOGHU�EXLOGHU�

IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�QHZ'RFXPHQW�����
���&UHDWH�IURP�ZKROH�FORWK
�Element root =

(Element)
document.createElement("rootElement");

document.appendChild(root);
root.appendChild(

document.createTextNode("Some"));
root.appendChild(

document.createTextNode(" "));
root.appendChild(

document.createTextNode("text"));
`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^

212 DOCUMENT OBJECT MODEL
���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

`
`

Finally, modify the argument-list checking code at the top of the PDLQ method so
you invoke EXLOG'RP and PDNH)UDPH instead of generating an error, as shown
below:

SXEOLF�FODVV�'RP(FKR����H[WHQGV�-3DQHO
^

���
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
6\VWHP�HUU�SULQWOQ��8VDJH��MDYD�'RP(FKR�

ILOHQDPH���
6\VWHP�H[LW����
buildDom();
makeFrame();
return;

`�

That’s all there is to it! Now, if you supply an argument the specified file is
parsed and, if you don’t, the experimental code that builds a DOM is executed.

Run the App
Compile and run the program with no arguments produces the result shown in
Figure 12:

NORMALIZING THE DOM 213
Figure 12 Element Node and Text Nodes Created

 Normalizing the DOM
In this experiment, you’ll manipulate the DOM you created by normalizing it
after it has been constructed.

Note: The code discussed in this section is in 'RP(FKR���MDYD.

Add the code highlighted below to normalize the DOM:.

SXEOLF�VWDWLF�YRLG�EXLOG'RP��
^

'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\� �
'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���

WU\�^
���
URRW�DSSHQG&KLOG��GRFXPHQW�FUHDWH7H[W1RGH��6RPH�����
URRW�DSSHQG&KLOG��GRFXPHQW�FUHDWH7H[W1RGH�����������
URRW�DSSHQG&KLOG��GRFXPHQW�FUHDWH7H[W1RGH��WH[W�����
document.getDocumentElement().normalize();

`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^
���

214 DOCUMENT OBJECT MODEL
In this code, JHW'RFXPHQW(OHPHQW returns the document’s root node, and the
QRUPDOL]H operation manipulates the tree under it.

When you compile and run the app now, the result looks like Figure 13:

Figure 13 Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single
node. The normalize operation is one that you will typically want to use after
making modifications to a DOM, to ensure that the resulting DOM is as compact
as possible.

Note: Now that you have this program to experiment with, see what happens to
other combinations of &'7, entity references, and text nodes when you normalize
the tree.

Other Operations
To complete this section, we’ll take a quick look at some of the other operations
you might want to apply to a DOM, including:

• -Traversing nodes

• -Creating attributes

FINISHING UP 215
• -Removing nodes

Traversing Nodes
The RUJ�Z�F�GRP�1RGH interface defines a number of methods you can use to
traverse nodes, including JHW)LUVW&KLOG, JHW/DVW&KLOG, JHW1H[W6LEOLQJ,
JHW3UHYLRXV6LEOLQJ, and JHW3DUHQW1RGH. Those operations are sufficient to
get from anywhere in the tree to any other location in the tree.

Creating Attributes
The RUJ�Z�F�GRP�(OHPHQW interface, which extends Node, defines a VHW$W�
WULEXWH operation, which adds an attribute to that node. (A better name from the
Java platform standpoint would have been DGG$WWULEXWH, since the attribute is
not a property of the class, and since a new object is created.)

You can also use the 'RFXPHQW’s FUHDWH$WWULEXWH operation to create an
instance of $WWULEXWH, and use an overloaded version of VHW$WWULEXWH to add
that.

Removing and Changing Nodes
To remove a node, you use its parent 1RGH’s UHPRYH&KLOG method. To change it,
you can either use the parent node’s UHSODFH&KLOG operation or the node’s VHW�
1RGH9DOXH operation.

Finishing Up
Congratulations! You’ve learned how a DOM is structured and how to manipu-
late it. And you now have a DomEcho application that you can use to display a
DOM’s structure, condense it down to GUI-compatible dimensions, and experi-
ment with to see how various operations affect the structure. Have fun with it!

Using Namespaces
As you saw previously, one way or another it is necessary to resolve the conflict
between the WLWOH element defined in VOLGHVKRZ�GWG and the one defined in
[KWPO�GWG. In the previous exercise, you hyphenated the name in order to put it

216 DOCUMENT OBJECT MODEL
into a different “namespace”. In this section, you’ll see how to use the XML
namespace standard to do the same thing without renaming the element.

Note: At this point in time, the Java XML parsers do not support namespaces. This
section is for information only.

The primary goal of the namespace specification is to let the document author
tell the parser which DTD to use when parsing a given element. The parser can
then consult the appropriate DTD for an element definition. Of course, it is also
important to keep the parser from aborting when a “duplicate” definition is
found, and yet still generate an error if the document references an element like
WLWOH without qualifying it (identifying the DTD to use for the definition).

Note: Namespaces apply to attributes as well as to elements. In this section, we con-
sider only elements. For more information on attributes, consult the namespace
specification at KWWS���ZZZ�Z��RUJ�75�5(&�[PO�QDPHV�.

Defining a Namespace
To define a namespace that an element belongs to, it is necessary to add an
attribute to the element’s definition, where the attribute name is [POQV (“xml
namespace”). For example, you could do that in VOLGHVKRZ�GWG by adding an
entry like the following in the WLWOH element’s attribute-list definition:

��(/(0(17�WLWOH���LQOLQH��
!
<!ATTLIST title

xmlns CDATA #FIXED "http://www.example.com/slideshow"
>

Declaring the attribute as),;(' has several important features:

• It prevents the document from specifying any non-matching value for the
[POQV attribute (as described in Defining Attributes in the DTD).

• The element defined in this DTD is made unique (because the parser
understands the [POQV attribute), so it does not conflict with an element
that has the same name in another DTD. That allows multiple DTDs to use
the same element name without generating a parser error.

• When a document specifies the [POQV attribute for a tag, the document
selects the element definition with a matching attribute.

REFERENCING A NAMESPACE 217
To be thorough, every element name in your DTD would get the exact same
attribute, with the same value. (Here, though, we’re only concerned about the
WLWOH element.) Note, too, that you are using a &'7 string to supply the URI.
In this case, we’ve specified an URL. But you could also specify a URN, possi-
bly by specifying a prefix like XUQ� instead of KWWS�. (URNs are currently being
researched. They’re not seeing a lot of action at the moment, but that could
change in the future.)

Referencing a Namespace
When a document uses an element name that exists in only one of the�GWG files
it references, the name does not need to be qualified. But when an element name
that has multiple definitions is used, some sort of qualification is a necessity.

Note: In point of fact, an element name is always qualified by it’s default
namespace, as defined by name of the DTD file it resides in. As long as there as is
only one definition for the name, the qualification is implicit.

You qualify a reference to an element name by specifying the [POQV attribute, as
shown here:

�WLWOH�[POQV �KWWS���ZZZ�H[DPSOH�FRP�VOLGHVKRZ�!
2YHUYLHZ

��WLWOH!

The specified namespace applies to that element, and to any elements contained
within it.

Defining a Namespace Prefix
When you only need one namespace reference, it’s not such a big deal. But when
you need to make the same reference several times, adding [POQV attributes
becomes unwieldy. It also makes it harder to change the name of the namespace
at a later date.

218 DOCUMENT OBJECT MODEL
The alternative is to define a namespace prefix, which as simple as specifying
xmlns, a colon (:) and the prefix name before the attribute value, as shown here:

�VO�VOLGHVKRZ�[POQV�6/
KWWS��ZZZ�H[DPSOH�FRP�VOLGHVKRZ

���!

���
��6/�VOLGHVKRZ!

This definition sets up 6/ as a prefix that can be used to qualify the current ele-
ment name and any element within it. Since the prefix can be used on any of the
contained elements, it makes the most sense to define it on the XML document’s
root element, as shown here.

Note: The namespace URI can contain characters which are not valid in an XML
name, so it cannot be used as a prefix directly. The prefix definition associates an
XML name with the URI, which allows the prefix name to be used instead. It also
makes it easier to change references to the URI in the future.

When the prefix is used to qualify an element name, the end-tag also includes the
prefix, as highlighted here:

�6/�VOLGHVKRZ�[POQV�6/
KWWS��ZZZ�H[DPSOH�FRP�VOLGHVKRZ

���!

���
�VOLGH!

�SL:title!2YHUYLHZ�SL:title!
��VOLGH!
���

��SL:VOLGHVKRZ!

Finally, note that multiple prefixes can be defined in the same element, as shown
here:

�6/�VOLGHVKRZ�[POQV�6/
KWWS��ZZZ�H[DPSOH�FRP�VOLGHVKRZ

xmlns:xhtml=’urn:...’!

����
��6/�VOLGHVKRZ!

With this kind of arrangement, all of the prefix definitions are together in one
place, and you can use them anywhere they are needed in the document. This
example also suggests the use of URN to define the [KWPO prefix, instead of an
URL. That definition would conceivably allow the app to reference a local copy

DEFINING A NAMESPACE PREFIX 219
of the XHTML DTD or some mirrored version, with a potentially beneficial
impact on performance.

220 DOCUMENT OBJECT MODEL

XML Stylesheet
Language for

Transformations
Eric Armstrong

THE XML Stylesheet Language for Transformations (XSLT) defines mecha-
nisms for addressing XML data (XPath) and for specifying transformations on
the data, in order to convert it into other forms. In this chapter, you’ll learn how
to use XSLT to write out a DOM as an XML file. You’ll also see how to generate
a DOM from an arbitrary data file in order to convert it to XML. Finally, you’ll
use XSLT to convert XML data into a different form, unlocking the mysteries of
the XPath addressing mechanism along the way.

In this chapter, you’ll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a user-friendly JTree, and
explore the syntax of namespaces. You’ll also create a DOM from scratch, and
see how to use some of the implementation-specific features in Sun’s JAXP ref-
erence implementation to convert an existing data set to XML.

Note: The examples in this chapter can be found in GRFV�WXWRULDO�H[DP�
SOHV�MD[S�[VOW�VDPSOHV.

In This Chapter
Introducing XSLT and XPath 222
Writing Out a DOM as an XML File 232
221

Bios.html#ericArmstrong

222 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Generating XML from an Arbitrary Data Structure 238
Transforming XML Data with XSLT 252
Concatenating XSLT Transformations with a Filter Chain 278

Introducing XSLT and XPath
The XML Stylesheet Language (XSL) has three major subcomponents:

XSL-FO
The “flow object” standard. By far the largest subcomponent, this standard
gives mechanisms for describing font sizes, page layouts, and how informa-
tion “flows” from one page to another. This subcomponent is not covered by
JAXP, nor is it included in this tutorial.

XSLT
This the transformation language, which lets you transform XML into some
other format. For example, you might use XSLT to produce HTML, or a dif-
ferent XML structure. You could even use it to produce plain text or to put
the information in some other document format. (And as you’ll see in Gener-
ating XML from an Arbitrary Data Structure, a clever application can press
it into service to manipulate non-XML data, as well.)

XPath
At bottom, XSLT is a language that lets you specify what sorts of things to
do when a particular element is encountered. But to write a program for dif-
ferent parts of an XML data structure, you need to be able to specify the part
of the structure you are talking about at any given time. XPath is that specifi-
cation language. It is an addressing mechanism that lets you specify a path to
an element so, for example, �DUWLFOH!�WLWOH! can be distinguished from
�SHUVRQ!�WLWOH!. That way, you can describe different kinds of transla-
tions for the different �WLWOH! elements.

The remainder of this section describes the XSLT package structure, and dis-
cusses the XPath addressing mechanism in a bit more depth.

The XSLT Packages
There XSLT packages break down as follows:

MDYD[�[PO�WUDQVIRUP
This package defines the factory class you use to get a 7UDQVIRUPHU object.
You then configure the transformer with input (Source) and output (Result)

HOW XPATH WORKS 223
objects, and invoke its WUDQVIRUP�� method to make the transformation
happen. The source and result objects are created using classes from one of
the other three packages.

MDYD[�[PO�WUDQVIRUP�GRP
Defines the '206RXUFH and '205HVXOW classes that let you use a DOM as an
input to or output from a transformation.

MDYD[�[PO�WUDQVIRUP�VD[
Defines the 6$;6RXUFH and 6$;5HVXOW classes that let you use a SAX event
generator as input to a transformation, or deliver SAX events as output to a
SAX event processor.

MDYD[�[PO�WUDQVIRUP�VWUHDP
Defines the 6WUHDP6RXUFH and 6WUHDP5HVXOW classes that let you use an I/O
stream as an input to or output from a transformation.

How XPath Works
The XPath specification is the foundation for a variety of specifications, includ-
ing XSLT and linking/addressing specifications like XPointer. So an understand-
ing of XPath is fundamental to a lot of advanced XML usage. This section
provides a thorough introduction to XSLT, so you can refer to as needed later on.

Note: In this tutorial, you won’t actually use XPath until you get to the last page of
this section, Transforming XML Data with XSLT (page 252). So, if you like,
you can skip this section and go on ahead to the next page, Writing Out a DOM
as an XML File (page 232). (When you get to the last page, there will be a note
that refers you back here, so you don’t forget!)

In general, an XPath expression specifies a pattern that selects a set of XML
nodes. XSLT templates then use those patterns when applying transformations.
(XPointer, on the other hand, adds mechanisms for defining a point or a range,
so that XPath expressions can be used for addressing.)

224 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The nodes in an XPath expression refer to more than just elements. They also
refer to text and attributes, among other things. In fact, the XPath specification
defines an abstract document model that defines seven different kinds of nodes:

• root

• element

• text

• attribute

• comment

• processing instruction

• namespace

Note: The root element of the XML data is modeled by an element node. The XPath
root node contains the document’s root element, as well as other information relat-
ing to the document.

The data model is described in the last section of the XPath Specification, Sec-
tion 5. (Like many specifications, it is frequently helpful to start reading near the
end! Frequently, many of the important terms and underlying assumptions are
documented there. That sequence has often been the “magic key” that unlocks
the contents of a W3C specification.)

In this abstract model, syntactic distinctions disappear, and you are left with a
normalized view of the data. In a text node, for example, it makes no difference
whether the text was defined in a CDATA section, or if it included entity refer-
ences;. The text node will consist of normalized data, as it exists after all parsing
is complete. So the text will contain a � character, regardless of whether an entity
reference like 	OW� or a CDATA section was used to include it. (Similarly for the
	 character.)

In this section of the tutorial, we’ll deal mostly with element nodes and text
nodes. For the other addressing mechanisms, see the XPath Specification.

Basic XPath Addressing
An XML document is a tree-structured (hierarchical) collection of nodes. Like a
hierarchical directory structure, it is useful to specify a path that points a particu-

http://www.w3.org/TR/xpath

HOW XPATH WORKS 225
lar node in the hierarchy. (Hence the name of the specification: XPath). In fact,
much of the notation of directory paths is carried over intact:

• The forward slash � is used as a path separator.

• An absolute path from the root of the document starts with a /.

• A relative path from a given location starts with anything else.

• A double period �� indicates the parent of the current node.

• A single period � indicates the current node.

In an xHTML document, for example, the path �K��K�� would indicate an h2
element under an h1. (Recall that in XML, element names are case sensitive, so
this kind of specification works much better in xHTML than it would in HTML.)

 In a pattern-matching specification like XSLT, the specification �K��K� selects
all h2 elements that lie under an h1 element. To select a specific h2 element,
square brackets >@ are used for indexing (like those used for arrays). The path
�K�>�@�K�>�@ would therefore select the fifth h2 element under the fourth h1
element.

Note: In xHTML, all element names are in lowercase. But as a matter of style,
uppercase names are easier to read and easier to write about. (Although they are
admittedly harder to write.) For the remainder of XPATH tutorial, then, and for the
section on using XSLT transforms, all XML element names will be in uppercase.
(Attribute names, on the other hand, will remain in lowercase.)

As you’ve seen, a name in XPath specification refers to an element. To refer to
attribute, you prefix it’s name with an # sign. For example, #W\SH refers to the
W\SH attribute of an element. Assuming you have an XML document with OLVW
elements, for example, the expression OLVW�#W\SH selects the W\SH attribute of
the OLVW element.

Note: (Since the expression does not begin with /, the reference specifies a list node
relative to the current context—whatever position in the document that happens to
be.)

Basic XPath Expressions
The full range of XPath expressions takes advantage of the wildcards, operators,
and functions that XPath defines. You’ll be learning more about those shortly.

226 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Here, we’ll take a look at a couple of the most common XPath expressions, sim-
ply to introduce the concept.

The expression #W\SH �XQRUGHUHG� specifies an attribute named type whose
value is “unordered”. So an expression like /,67�#W\SH specifies the W\SH
DWWULEXWH of a /,67 element.

But now for something a little different! In XPath, the square-bracket notation
(>@) normally associated with indexing is extended to specify selection-criteria.
For example, the expression /,67>#W\SH �XQRUGHUHG�@ selects all /,67 ele-
ments whose W\SH value is “unordered”.

Similar expressions exist for elements, where each element has an associated
string-value. (You’ll see how the string-value is determined for a complicated
element in a little while. For now, we’ll stick with super-simple elements that
have a single text string.)

Suppose you model what’s going on in your organization with an XML structure
that consists of 352-(&7 elements and $&7,9,7< elements that have a text string
with the project name, multiple 3(5621 elements to list the people involved and,
optionally, a 67$786 element that records the projects status. Here are some more
examples that use the extended square-bracket notation:

• �352-(&7>� �0\3URMHFW�@ selects a 352-(&7 named "MyProject".

• �352-(&7>67$786@—selects all projects that have a 67$786 child element.

• �352-(&7>67$786 �&ULWLFDO�@³selects all projects that have a STATUS
child element with the string-value “Critical”.

Combining Index Addresses
The XPath specification defines quite a few addressing mechanisms, and they
can be combined in many different ways. As a result, XPath delivers a lot of
expressive power for a relatively simple specification. This section illustrates
two more interesting combinations:

• /,67>#W\SH �RUGHUHG�@>�@—selects all LIST elements of type
“ordered”, and returns the third.

• /,67>�@>#W\SH �RUGHUHG�@—selects the third LIST element, but only if
it is of “ordered” type.

HOW XPATH WORKS 227
Note: Many more combinations of address operators are listed in section 2.5 of the
XPath Specification. This is arguably the most useful section of the spec for defin-
ing an XSLT transform.

Wildcards
By definition, an unqualified XPath expression selects a set of XML nodes that
matches that specified pattern. For example, �+($' matches all top-level +($'
entries, while �+($'>�@ matches only the first. Table 1 lists the wildcards that
can be used in XPath expressions to broaden the scope of the pattern matching.

In the project database example, for instance, �
�3(5621>� �)UHG�@ matches
any 352-(&7 or $&7,9,7< element that includes Fred.

Extended-Path Addressing
So far, all of the patterns we’ve seen have specified an exact number of levels in
the hierarchy. For example,��+($' specifies any +($' element at the first level in
the hierarchy, while �
�
 specifies any element at the second level in the hierar-
chy. To specify an indeterminate level in the hierarchy, use a double forward
slash (��). For example, the XPath expression ��3$5$ selects all SDUDJUDSK ele-
ments in a document, wherever they may be found.

The �� pattern can also be used within a path. So the expression
�+($'�/,67��3$5$ indicates all paragraph elements in a subtree that begins
from �+($'�/,67.

Table 1 XPath Wildcards

� matches any element node (not attributes or text)

QRGH��
matches all nodes of any kind: element nodes, text nodes, attribute
nodes, processing instruction nodes, namespace nodes, and comment
nodes.

#
 matches all attribute nodes

http://www.w3.org/TR/xpath

228 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
XPath Data Types and Operators
XPath expressions yield either a set of nodes,: a string, a boolean (true/false
value), or a number. Table 2 lists the operations that can be applied in an Xpath
expressions.

Finally, expressions can be grouped in parentheses, so you don’t have to worry
about operator precedence. (Which, for those of you who are good at such
things, is roughly the same as that shown in the table.)

String-Value of an Element
Before going on, it’s worthwhile to understand how the string-value of more
complex element is determined. We’ll do that now.

The string-value of an element is the concatenation of all descendent text nodes,
no matter how deep. So, for a “mixed-model” XML data element like this:

�3$5$!7KLVBSDUDJUDSKBFRQWDLQVBDB�%!EROG��%!BZRUG��3$5$!

The string-value of �3$5$! is “This paragraph contains a bold word”. In particu-
lar, note that �%! is a child of �3$5$! and that the text contained in all children is
concatenated to form the string-value.

Also, it is worth understanding that the text in the abstract data model defined by
XPath is fully normalized. So whether the XML structure contains the entity ref-
erence "	OW�" or "<" in a CDATA section, the element’s string-value will contain

Table 2 XPath Operators

|
Alternative. So 3$5$_/,67 selects all 3$5$ and /,67 ele-
ments.

 or, and Returns the or/and of two boolean values.

 =, != Equal or not equal, for booleans, strings, and numbers.

 <, >, <=, >=
Less than, greater than, less than or equal to, greater than or
equal to—for numbers.

 +, -, *, div, mod
Add, subtract, multiply, floating-point divide, and modulus
(remainder) operations (e.g. 6 mod 4 = 2)

HOW XPATH WORKS 229
the “<“ character. Therefore, when generating HTML or XML with an XSLT
stylesheet, occurrences of "<" will have to be converted to 	OW� or enclosed in a
CDATA section. Similarly, occurrence of "&" will need to be converted to
	DPS�.

XPath Functions
This section ends with an overview of the XPath functions. You can use XPath
functions to select a collection of nodes in the same way that you would use an
element-specification. Other functions return a string, a number, or a boolean
value. For example, the expression �352-(&7�WH[W�� gets the string-value of
project nodes.

Many functions depend on the current context. In the example above, the context
for each invocation of the WH[W�� function is the 352-(&7 node that is currently
selected.

There are many XPath functions—too many to describe in detail here. This sec-
tion provides a quick listing that shows the available XPath functions, along with
a summary of what they do.

Note: Skim the list of functions to get an idea of what’s there. For more information,
see Section 4 of the XPath Specification.

Node-set functions
Many XPath expressions select a set of nodes. In essence, they return a node-set.
One function does that, too.

• LG�����—returns the node with the specified id.

(Elements only have an ID when the document has a DTD, which specifies
which attribute has the ,' type.)

230 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Positional functions
These functions return positionally-based numeric values.

• ODVW��—returns the index of the last element. Ex: �+($'>ODVW��@ selects
the last +($' element.

• SRVLWLRQ��—returns the index position. Ex: �+($'>SRVLWLRQ����� ��@
selects the first five +($' elements

• FRXQW�����—returns the count of elements. Ex: �+($'>FRXQW�+($'� �@
selects all +($' elements that have no subheads.

String functions
These functions operate on or return strings.

• FRQFDW�VWULQJ��VWULQJ������—concatenates the string values

• VWDUWV�ZLWK�VWULQJ��� VWULQJ��—returns true if string1 starts with
string2

• FRQWDLQV�VWULQJ���VWULQJ��—returns true if string1 contains string2

• VXEVWULQJ�EHIRUH�VWULQJ��� VWULQJ��—returns the start of string1
before string2 occurs in it

• VXEVWULQJ�DIWHU�VWULQJ��� VWULQJ��—returns the remainder of
string1 after string2 occurs in it

• VXEVWULQJ�VWULQJ��LG[�—returns the substring from the index position
to the end, where the index of the first char = 1

• VXEVWULQJ�VWULQJ��LG[��OHQ�—returns the substring from the index
position, of the specified length

• VWULQJ�OHQJWK��—returns the size of the context-node’s string-value

• VWULQJ�OHQJWK�VWULQJ�—returns the size of the specified string

• QRUPDOL]H�VSDFH��—returns the normalized string-value of the current
node (no leading or trailing whitespace, and sequences of whitespace
characters converted to a single space)

• QRUPDOL]H�VSDFH�VWULQJ�—returns the normalized string-value of the
specified string

• WUDQVODWH�VWULQJ���VWULQJ���VWULQJ��—converts string1, replacing
occurrences of characters in string2 with the corresponding character from
string3

HOW XPATH WORKS 231
Note: XPath defines 3 ways to get the text of an element: WH[W��, VWULQJ�REMHFW�,
and the string-value implied by an element name in an expression like this:
�352-(&7>3(5621 �)UHG�@.

Boolean functions
These functions operate on or return boolean values:

• QRW�����—negates the specified boolean value

• WUXH��—returns true

• IDOVH��—returns false

• ODQJ�VWULQJ�—returns true if the language of the context node (specified
by [PO�/DQJ attributes) is the same as (or a sublanguage of) the specified
language. Ex: /DQJ��HQ�� is true for
�3$5$B[PO�/DQJ �HQ�!�����3$5$!

Numeric functions
These functions operate on or return numeric values.

• VXP�����—returns the sum of the numeric value of each node in the spec-
ified node-set

• IORRU�1�—returns the largest integer that is not greater than N

• FHLOLQJ�1�—returns the smallest integer that is greater than N

• URXQG�1�—returns the integer that is closest to N

Conversion functions
These functions convert one data type to another.

• VWULQJ�����—returns the string value of a number, boolean, or node-set

• ERROHDQ�����—returns the boolean-equivalent for a number, string, or
node-set

(a non-zero number, a non-empty node-set, and a non-empty string are all true)

• QXPEHU�����—returns the numeric value of a boolean, string, or node-set

(true is 1, false is 0, a string containing a number becomes that number, the
string-value of a node-set is converted to a number)

232 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Namespace functions
These functions let you determine the namespace-characteristics of a node.

• ORFDO�QDPH��—returns the name of the current node, minus the
namespace-extension

• ORFDO�QDPH�����—returns the name of the first node in the specified
node set, minus the namespace-extension

• QDPHVSDFH�XUL��—returns the namespace URI from the current node

• QDPHVSDFH�XUL�����—returns the namespace URI from the first node in
the specified node set

• QDPH��—returns the expanded name (URI + local name) of the current
node

• QDPH�����—returns the expanded name (URI + local name) of the first
node in the specified node set

Summary
XPath operators, functions, wildcards, and node-addressing mechanisms can be
combined in wide variety of ways. The introduction you’ve had so far should
give you a good head start at specifying the pattern you need for any particular
purpose.

Writing Out a DOM as an XML File
Once you have constructed a DOM, either by parsing an XML file or building it
programmatically, you frequently want to save it as XML. This section shows
you how to do that using the XSLT transform package.

Using that package, you’ll create a transformer object to wire a 'RP6RXUFH to a
6WUHDP5HVXOW. You’ll then invoke the transformer’s WUDQVIRUP�� method to do
the job!

Reading the XML
The first step is to create a DOM in memory by parsing an XML file. By now,
you should be getting pretty comfortable with the process!

READING THE XML 233
Note: The code discussed in this section is in 7UDQVIRUPDWLRQ$SS���MDYD.

The code below provides a basic template to start from. (It should be familiar.
It’s basically the same code you wrote at the start of the DOM tutorial. If you
saved it then, that version should be pretty much the equivalent of what you see
below.)

LPSRUW�MDYD[�[PO�SDUVHUV�'RFXPHQW%XLOGHU��
LPSRUW�MDYD[�[PO�SDUVHUV�'RFXPHQW%XLOGHU)DFWRU\��
LPSRUW�MDYD[�[PO�SDUVHUV�)DFWRU\&RQILJXUDWLRQ(UURU��
LPSRUW�MDYD[�[PO�SDUVHUV�3DUVHU&RQILJXUDWLRQ([FHSWLRQ�

LPSRUW�RUJ�[PO�VD[�6$;([FHSWLRQ��
LPSRUW�RUJ�[PO�VD[�6$;3DUVH([FHSWLRQ��
LPSRUW�RUJ�Z�F�GRP�'RFXPHQW�
LPSRUW�RUJ�Z�F�GRP�'20([FHSWLRQ�
LPSRUW�MDYD�LR�
�
SXEOLF�FODVV�7UDQVIRUPDWLRQ$SS�
^

VWDWLF�'RFXPHQW�GRFXPHQW��
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
6\VWHP�HUU�SULQWOQ���8VDJH��MDYD�7UDQVIRUPDWLRQ$SS�

ILOHQDPH���
6\VWHP�H[LW�����

`
'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\�

'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���
��IDFWRU\�VHW1DPHVSDFH$ZDUH�WUXH��
��IDFWRU\�VHW9DOLGDWLQJ�WUXH�����
�WU\�^

)LOH�I� �QHZ�)LOH�DUJY>�@��
'RFXPHQW%XLOGHU�EXLOGHU� �

IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�SDUVH�I��

�`�FDWFK��6$;([FHSWLRQ�V[H��^
���(UURU�JHQHUDWHG�E\�WKLV�DSSOLFDWLRQ
����RU�D�SDUVHU�LQLWLDOL]DWLRQ�HUURU�
([FHSWLRQ��[� �V[H�
LI��V[H�JHW([FHSWLRQ���� �QXOO�

[� �V[H�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

�`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^
���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

234 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
�`�FDWFK��,2([FHSWLRQ�LRH��^
���,�2�HUURU
LRH�SULQW6WDFN7UDFH���

`
`����PDLQ�
`

Creating a Transformer
The next step is to create a transformer you can use to transmit the XML to Sys-
tem.out.

Note: The code discussed in this section is in 7UDQVIRUPDWLRQ$SS���MDYD. The file
it runs on is VOLGH6DPSOH���[PO. (The browsable version is VOLGH6DPSOH���
[PO�KWPO.) The output is in 7UDQVIRUPDWLRQ/RJ��.

 Start by adding the import statements highlighted below:

LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU)DFWRU\�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU([FHSWLRQ�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU&RQILJXUDWLRQ([FHSWLRQ�

LPSRUW�MDYD[�[PO�WUDQVIRUP�GRP�'206RXUFH��

LPSRUW�MDYD[�[PO�WUDQVIRUP�VWUHDP�6WUHDP5HVXOW��

LPSRUW�MDYD�LR�
�

Here, you’ve added a series of classes which should be now be forming a stan-
dard pattern: an entity (7UDQVIRUPHU), the factory to create it (7UDQVIRUPHU)DF�
WRU\), and the exceptions that can be generated by each. Since a transformation
always has a source and a result, you then imported the classes necessary to use
a DOM as a source ('RP6RXUFH), and an output stream for the result (6WUHDP5H�
VXOW).

Next, add the code to carry out the transformation:

WU\�^
)LOH�I� �QHZ�)LOH�DUJY>�@��
'RFXPHQW%XLOGHU�EXLOGHU� �IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�SDUVH�I��

CREATING A TRANSFORMER 235
�// Use a Transformer for output
TransformerFactory tFactory =

TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();

�DOMSource source = new DOMSource(document);
�StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you created a transformer object, used the DOM to construct a source
object, and used 6\VWHP�RXW to construct a result object. You then told the trans-
former to operate on the source object and output to the result object.

Note: In this case, the “transformer” isn’t actually changing anything. In XSLT ter-
minology, you are using the identity transform, which means that the “transforma-
tion” generates a copy of the source, unchanged.

Finally, add the code highlighted below to catch the new errors that can be gener-
ated:

} catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.println(" " + tce.getMessage());

�// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)

x = tce.getException();
x.printStackTrace();

} catch (TransformerException te) {
// Error generated by the parser
System.out.println ("* Transformation error");
System.out.println(" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
x.printStackTrace();

`�FDWFK��6$;([FHSWLRQ�V[H��^
���

236 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Notes:

• 7UDQVIRUPHU([FHSWLRQV are thrown by the transformer object.

• 7UDQVIRUPHU&RQILJXUDWLRQ([FHSWLRQV are thrown by the factory.

Addendum:

Astute reader Malcolm Gorman points out that, as it is currently written, the
transformation app won’t preserve the XML document’s '2&7<3(setting. He
proposes the following code to remedy the omission:

6WULQJ�V\VWHP9DOXH� ��QHZ�
)LOH�GRFXPHQW�JHW'RFW\SH���JHW6\VWHP,G�����JHW1DPH����
WUDQVIRUPHU�VHW2XWSXW3URSHUW\�2XWSXW.H\V�'2&7<3(B6<67(0�

V\VWHP9DOXH���

Writing the XML
For instructions on how to compile and run the program, see Compiling and
Running the Program (page 100) from the SAX tutorial. (Substitute “Transfor-
mationApp” for “Echo” as the name of the program.). When you run the pro-
gram on VOLGH6DPSOH���[PO, this is the output you see:

�"[PO�YHUVLRQ ������HQFRGLQJ �87)���"!
������$�6$03/(�VHW�RI�VOLGHV����!
�VOLGHVKRZ�WLWOH �6DPSOH�6OLGH�6KRZ��GDWH �'DWH�RI�SXEOLFDWLRQ��
DXWKRU �<RXUV�7UXO\�!
�����������7,7/(�6/,'(���!
�������VOLGH�W\SH �DOO�!

��WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV���WLWOH!
��������VOLGH!
�����������29(59,(:���!
�������VOLGH�W\SH �DOO�!
�����������WLWOH!2YHUYLHZ��WLWOH!
�����������LWHP!:K\�

�HP!:RQGHU:LGJHWV��HP!�DUH�JUHDW
���LWHP!

�����������LWHP��!
�����������LWHP!:KR�
�������HP!EX\V��HP!�:RQGHU:LGJHWV
������LWHP!
��������VOLGH!
��VOLGHVKRZ!�

WRITING OUT A SUBTREE OF THE DOM 237
Note: See Additional Information to find out more about configuring the factory
and handling validation errors.

Writing Out a Subtree of the DOM
It is also possible to operate on a subtree of a DOM. In this section of the tutorial,
you’ll experiment with that option.

Note: The code discussed in this section is in 7UDQVIRUPDWLRQ$SS���MDYD. The
output is in 7UDQVIRUPDWLRQ/RJ��.

The only difference in the process is that now you will create a '206RXUFH using
a node in the DOM, rather than the entire DOM. The first step will be to import
the classes you need to get the node you want. Add the code highlighted below
to do that:

import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;�

The next step is to find a good node for the experiment. Add the code high-
lighted below to select the first �VOLGH! element:

WU\�^
)LOH�I� �QHZ�)LOH�DUJY>�@��
'RFXPHQW%XLOGHU�EXLOGHU� �IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�SDUVH�I��

// Get the first <slide> element in the DOM
NodeList list = document.getElementsByTagName("slide");
Node node = list.item(0);

Finally, make the changes shown below to construct a source object that consists
of the subtree rooted at that node:

'206RXUFH�VRXUFH� �QHZ�'206RXUFH�GRFXPHQW��
DOMSource source = new DOMSource(node);
6WUHDP5HVXOW�UHVXOW� �QHZ�6WUHDP5HVXOW�6\VWHP�RXW��
WUDQVIRUPHU�WUDQVIRUP�VRXUFH��UHVXOW��

238 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Now run the app. Your output should look like this:

�"[PO�YHUVLRQ ������HQFRGLQJ �87)���"!
�VOLGH�W\SH �DOO�!

�WLWOH!:DNH�XS�WR�:RQGHU:LGJHWV���WLWOH!
��VOLGH!

Clean Up
Because it will be easiest to do now, make the changes shown below to back out
the additions you made in this section. (7UDQVIRUPDWLRQ$SS���MDYD contains
these changes.)

,PSRUW�RUJ�Z�F�GRP�'20([FHSWLRQ�
LPSRUW�RUJ�Z�F�GRP�1RGH�
LPSRUW�RUJ�Z�F�GRP�1RGH/LVW��
���

WU\�^
���
���*HW�WKH�ILUVW��VOLGH!�HOHPHQW�LQ�WKH�'20
1RGH/LVW�OLVW� �GRFXPHQW�JHW(OHPHQWV%\7DJ1DPH��VOLGH���
1RGH�QRGH� �OLVW�LWHP����
���
'206RXUFH�VRXUFH� �QHZ�'206RXUFH�QRGH��
6WUHDP5HVXOW�UHVXOW� �QHZ�6WUHDP5HVXOW�6\VWHP�RXW��
WUDQVIRUPHU�WUDQVIRUP�VRXUFH��UHVXOW��

Summary
At this point, you’ve seen how to use a transformer to write out a DOM, and how
to use a subtree of a DOM as the source object in a transformation. In the next
section, you’ll see how to use a transformer to create XML from any data struc-
ture you are capable of parsing.

Generating XML from an Arbitrary Data
Structure

In this section, you’ll use an XSLT transformer to converting an arbitrary data
structure to XML.

CREATING A SIMPLE FILE 239
In general outline, then, you’re going to:

1. Modify an existing program that reads the data and modify it to generate
SAX events. (Whether that is a real parser or simply a data filter of some
kind is irrelevant for the moment.)

2. You’ll then use the SAX “parser” to construct a 6$;6RXUFH for the trans-
formation.

3. You’ll use the same 6WUHDP5HVXOW object you created in the last exercise,
so you can see the results. (But note that you could just as easily create a
DOMResult object to create a DOM in memory.)

4. You’ll wire the source to the result, using the XSLT transformer object to
make the conversion.

For starters, you need a data set you want to convert and some program which is
capable of reading the data. In the next two sections, you’ll create a simple data
file and a program that reads it.

Creating a Simple File
We’ll start by creating a data set for an address book. You can duplicate the pro-
cess, if you like, or simply make use of the data stored in PersonalAddress-
Book.ldif.

The file shown below was produced by creating a new address book in Netscape
messenger, giving it some dummy data (one address card) and then exporting it
in LDIF format. Figure 1 shows the address book entry that was created.

240 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Figure 1 Address Book Entry

Exporting the address book produces a file like the one shown below. The parts
of the file that we care about are shown in bold.

GQ��FQ)UHG�)OLQVWRQH�PDLO IUHG#EDUQH\V�KRXVH
PRGLI\WLPHVWDPS����������������=
FQ��)UHG�)OLQVWRQH
[PR]LOODQLFNQDPH��)UHG
PDLO��)UHG#EDUQH\V�KRXVH
[PR]LOODXVHKWPOPDLO��758(
JLYHQQDPH��)UHG
VQ��)OLQVWRQH
WHOHSKRQHQXPEHU������4XDUU\
KRPHSKRQH������%HGURFN/DQH
IDFVLPLOHWHOHSKRQHQXPEHU������6TXDZN
SDJHUSKRQH������SDJHU

CREATING A SIMPLE PARSER 241
FHOOSKRQH������FHOO
[PR]LOODDQ\SKRQH������4XDUU\
REMHFWFODVV��WRS
REMHFWFODVV��SHUVRQ

Note that each line of the file contains a variable name, a colon, and a space fol-
lowed by a value for the variable. The “sn” variable contains the person’s sur-
name (last name) and, for some reason, the variable “cn” contains the
DisplayName field from the address book entry.

Note: LDIF stands for LDAP Data Interchange Format, according to the Netscape
pages. And LDAP, turn, stands for Lightweight Directory Access Protocol. I prefer
to think of LDIF as the “Line Delimited Interchange Format”, since that is pretty
much what it is.

Creating a Simple Parser
The next step is to create a program that parses the data. Again, you can follow
the process to write your own if you like, or simply make a copy of the program
so you can use it to do the XSLT-related exercises that follow.

Note: The code discussed in this section is in $GGUHVV%RRN5HDGHU���MDYD. The
output is in $GGUHVV%RRN5HDGHU/RJ��.

The text for the program is shown below. It’s an absurdly simple program that
doesn’t even loop for multiple entries because, after all, it’s just a demo!

LPSRUW�MDYD�LR�
�

SXEOLF�FODVV�$GGUHVV%RRN5HDGHU���
^��

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

���&KHFN�WKH�DUJXPHQWV
LI��DUJY�OHQJWK�� ����^

6\VWHP�HUU�SULQWOQ��
�8VDJH��MDYD�$GGUHVV%RRN5HDGHU�ILOHQDPH���

6\VWHP�H[LW�����
`
6WULQJ�ILOHQDPH� �DUJY>�@�

242 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
)LOH�I� �QHZ�)LOH�ILOHQDPH��
$GGUHVV%RRN5HDGHU���UHDGHU� �QHZ�$GGUHVV%RRN5HDGHU�����
UHDGHU�SDUVH�I��

`

�

�3DUVH�WKH�LQSXW�
�
SXEOLF�YRLG�SDUVH�)LOH�I��
^

WU\�^
���*HW�DQ�HIILFLHQW�UHDGHU�IRU�WKH�ILOH
)LOH5HDGHU�U� �QHZ�)LOH5HDGHU�I��
%XIIHUHG5HDGHU�EU� �QHZ�%XIIHUHG5HDGHU�U��

����5HDG�WKH�ILOH�DQG�GLVSOD\�LW
V�FRQWHQWV�
6WULQJ�OLQH� �EU�UHDG/LQH���
ZKLOH��QXOO�� ��OLQH� �EU�UHDG/LQH�����^

LI��OLQH�VWDUWV:LWK��[PR]LOODQLFNQDPH�����
EUHDN�

`
RXWSXW��QLFNQDPH����[PR]LOODQLFNQDPH���OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��HPDLO�������PDLO���������������OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��KWPO��������[PR]LOODXVHKWPOPDLO���OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��ILUVWQDPH���JLYHQQDPH����������OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��ODVWQDPH����VQ�����������������OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��ZRUN��������WHOHSKRQHQXPEHU����OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��KRPH��������KRPHSKRQH����������OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��ID[���������IDFVLPLOHWHOHSKRQHQXPEHU��

OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��SDJHU�������SDJHUSKRQH���������OLQH��
OLQH� �EU�UHDG/LQH���
RXWSXW��FHOO��������FHOOSKRQH����������OLQH��

`
FDWFK��([FHSWLRQ�H��^

H�SULQW6WDFN7UDFH���
`

`�

YRLG�RXWSXW�6WULQJ�QDPH��6WULQJ�SUHIL[��6WULQJ�OLQH��
^

CREATING A SIMPLE PARSER 243
LQW�VWDUW,QGH[� �SUHIL[�OHQJWK���������
���� OHQJWK�RI�����
6WULQJ�WH[W� �OLQH�VXEVWULQJ�VWDUW,QGH[��
6\VWHP�RXW�SULQWOQ�QDPH����������WH[W���

`�
`

This program contains 3 methods:

main
The main method gets the name of the file from the command line, creates
an instance of the parser, and sets it to work parsing the file. This method
will be going away when we convert the program into a SAX parser. (That’s
one reason for putting the parsing code into a separate method.)

parse
This method operates on the File object sent to it by the main routine. As you
can see, its about as simple as it can get! The only nod to efficiency is the use
of a %XIIHUHG5HDGHU, which can become important when you start operat-
ing on large files.

output
The output method contains the smarts about the structure of a line. Starting
from the right It takes 3 arguments. The first argument gives the method a
name to display, so we can output “html” as a variable name, instead of
“xmozillausehtmlmail”. The second argument gives the variable name
stored in the file (xmozillausehtmlmail). The third argument gives the line
containing the data. The routine then strips off the variable name from the
start of the line and outputs the desired name, plus the data.

Running this program on the address book file produces this output:

QLFNQDPH��)UHG
HPDLO��)UHG#EDUQH\V�KRXVH
KWPO��758(
ILUVWQDPH��)UHG
ODVWQDPH��)OLQWVWRQH
ZRUN������4XDUU\
KRPH������%HGURFN/DQH
ID[������6TXDZN
SDJHU������SDJHU
FHOO������FHOO

I think we can all agree that’s a bit more readable!

244 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Modifying the Parser to Generate SAX
Events
The next step is to modify the parser to generate SAX events, so you can use it as
the basis for a 6$;6RXUFH object in an XSLT WUDQVIRUP.

Note: The code discussed in this section is in $GGUHVV%RRN5HDGHU���MDYD.

 Start by extending importing the additional classes you’re going to need:

LPSRUW�MDYD�LR�
�

LPSRUW�RUJ�[PO�VD[�
�
,PSRUW�RUJ�[PO�VD[�KHOSHUV�$WWULEXWHV,PSO�

Next, modify the application so that it extends ;PO5HDGHU. That converts the app
into a parser that generates the appropriate SAX events.

SXEOLF�FODVV�$GGUHVV%RRN5HDGHU���
implements XMLReader

^��

Now, remove the PDLQ method. You won’t be needing that any more.

SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

���&KHFN�WKH�DUJXPHQWV
LI��DUJY�OHQJWK�� ����^

6\VWHP�HUU�SULQWOQ���8VDJH��-DYD�$GGUHVV%RRN5HDGHU�
ILOHQDPH���

6\VWHP�H[LW�����
`
6WULQJ�ILOHQDPH� �DUJY>�@�
)LOH�I� �QHZ�)LOH�ILOHQDPH��
$GGUHVV%RRN5HDGHU���UHDGHU� �QHZ�$GGUHVV%RRN5HDGHU�����
UHDGHU�SDUVH�I��

`

MODIFYING THE PARSER TO GENERATE SAX EVENTS 245
Add some global variables that will come in handy in a few minutes:

&RQWHQW+DQGOHU�KDQGOHU�

���:H
UH�QRW�GRLQJ�QDPHVSDFHV��DQG�ZH�KDYH�QR
���DWWULEXWHV�RQ�RXU�HOHPHQWV��
6WULQJ�QVX� ���������1DPHVSDFH85,
$WWULEXWHV�DWWV� �QHZ�$WWULEXWHV,PSO���
6WULQJ�URRW(OHPHQW� ��DGGUHVVERRN��

6WULQJ�LQGHQW� �����������IRU�UHDGDELOLW\�

The SAX &RQWHQW+DQGOHU is the thing that is going to get the SAX events the
parser generates. To make the app into an ;PO5HDGHU, you’ll be defining a VHW�
&RQWHQW+DQGOHU method. The KDQGOHU variable will hold the result of that con-
figuration step.

And, when the parser generates SAX element events, it will need to supply
namespace and attribute information. Since this is a simple application, you’re
defining null values for both of those.

You’re also defining a root element for the data structure (addressbook), and set-
ting up an indent string to improve the readability of the output.

Next, modify the parse method so that it takes an ,QSXW6RXUFH as an argument,
rather than a)LOH, and account for the exceptions it can generate:

SXEOLF�YRLG�SDUVH�)LOH�I�InputSource input)�
throws IOException, SAXException

Now make the changes shown below to get the reader encapsulated by the
,QSXW6RXUFH object:

WU\�^
���*HW�DQ�HIILFLHQW�UHDGHU�IRU�WKH�ILOH
)LOH5HDGHU�U� �QHZ�)LOH5HDGHU�I��
java.io.Reader r = input.getCharacterStream();
%XIIHUHG5HDGHU�%U� �QHZ�%XIIHUHG5HDGHU�U��

Note: In the next section, you’ll create the input source object and what you put in
it will, in fact, be a buffered reader. But the $GGUHVV%RRN5HDGHU could be used
by someone else, somewhere down the line. This step makes sure that the process-
ing will be efficient, regardless of the reader you are given.

246 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The next step is to modify the SDUVH method to generate SAX events for the start
of the document and the root element. Add the code highlighted below to do
that:

�

�3DUVH�WKH�LQSXW�
�
SXEOLF�YRLG�SDUVH�,QSXW6RXUFH�LQSXW��
���
^

WU\�^
���
���5HDG�WKH�ILOH�DQG�GLVSOD\�LW
V�FRQWHQWV�
6WULQJ�OLQH� �EU�UHDG/LQH���
ZKLOH��QXOO�� ��OLQH� �EU�UHDG/LQH�����^

LI��OLQH�VWDUWV:LWK��[PR]LOODQLFNQDPH������EUHDN�
`
 if (handler==null) {

throw new SAXException("No content handler");
}
handler.startDocument();
handler.startElement(nsu, rootElement,

rootElement, atts);
RXWSXW��QLFNQDPH����[PR]LOODQLFNQDPH���OLQH��
���
RXWSXW��FHOO��������FHOOSKRQH����������OLQH��
handler.ignorableWhitespace(".toCharArray(),

0, // start index
1 // length
);

handler.endElement(nsu, rootElement, rootElement);
handler.endDocument();

`
FDWFK��([FHSWLRQ�H��^
���

Here, you first checked to make sure that the parser was properly configured
with a &RQWHQW+DQGOHU. (For this app, we don’t care about anything else.) You
then generated the events for the start of the document and the root element, and
finished by sending the end-event for the root element and the end-event for the
document.

A couple of items are noteworthy, at this point:

• We haven’t bothered to send the VHW'RFXPHQW/RFDWRU event, since that is
optional. Were it important, that event would be sent immediately before
the VWDUW'RFXPHQW event.

MODIFYING THE PARSER TO GENERATE SAX EVENTS 247
• We’ve generated an LJQRUDEOH:KLWHVSDFH event before the end of the
root element. This, too, is optional, but it drastically improves readability
of the output, as you’ll see in a few moments. (In this case, the whitespace
consists of a single newline, which is sent the same way that FKDUDFWHUV
method are sent: as a character array, a starting index, and a length.)

Now that SAX events are being generated for the document and the root ele-
ment, the next step is to modify the RXWSXW method to generate the appropriate
element events for each data item. Make the changes shown below to do that:

YRLG�RXWSXW�6WULQJ�QDPH��6WULQJ�SUHIL[��6WULQJ�OLQH��
WKURZV�6$;([FHSWLRQ�
^

LQW�VWDUW,QGH[� �SUHIL[�OHQJWK������������ OHQJWK�RI�����
6WULQJ�WH[W� �OLQH�VXEVWULQJ�VWDUW,QGH[��
6\VWHP�RXW�SULQWOQ�QDPH����������WH[W��

int textLength = line.length() - startIndex;
handler.ignorableWhitespace(indent.toCharArray(),

0, // start index
indent.length()
);

handler.startElement(nsu, name, name /*"qName"*/, atts);
handler.characters(line.toCharArray(),

startIndex,
textLength);

handler.endElement(nsu, name, name);
`

Since the &RQWHQW+DQGOHU methods can send 6$;([FHSWLRQV back to the parser,
the parser has to be prepared to deal with them. In this case, we don’t expect any,
so we’ll simply allow the app to fall on its sword and die if any occur.

You then calculate the length of the data, and once again generate some ignor-
able whitespace for readability. In this case, there is only one level of data, so we
can use a fixed indent string. (If the data were more structured, we would have to
calculate how much space to indent, depending on the nesting of the data.)

Note: The indent string makes no difference to the data, but will make the output a
lot easier to read. Once everything is working, try generating the result without that
string! All of the elements will wind up concatenated end to end, like this:
�DGGUHVVERRN!�QLFNQDPH!)UHG��QLFNQDPH!�HPDLO!���

248 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Next, add the method that configures the parser with the &RQWHQW+DQGOHU that is
to receive the events it generates:

�

�$OORZ�DQ�DSSOLFDWLRQ�WR�UHJLVWHU�D�FRQWHQW�HYHQW�KDQGOHU��
�
SXEOLF�YRLG�VHW&RQWHQW+DQGOHU�&RQWHQW+DQGOHU�KDQGOHU��^

WKLV�KDQGOHU� �KDQGOHU�
`�

�

�5HWXUQ�WKH�FXUUHQW�FRQWHQW�KDQGOHU��
�
SXEOLF�&RQWHQW+DQGOHU�JHW&RQWHQW+DQGOHU���^

UHWXUQ�WKLV�KDQGOHU�
`�

There are several more methods that must be implemented in order to satisfy the
XmlReader interface. For the purpose of this exercise, we’ll generate null meth-
ods for all of them. For a production application, though, you may want to con-
sider implementing the error handler methods to produce a more robust app. For
now, though, add the code highlighted below to generate null methods for them:

�

�$OORZ�DQ�DSSOLFDWLRQ�WR�UHJLVWHU�DQ�HUURU�HYHQW�KDQGOHU��
�
SXEOLF�YRLG�VHW(UURU+DQGOHU�(UURU+DQGOHU�KDQGOHU�
^�`

�

�5HWXUQ�WKH�FXUUHQW�HUURU�KDQGOHU��
�
SXEOLF�(UURU+DQGOHU�JHW(UURU+DQGOHU��
^�UHWXUQ�QXOO��`

MODIFYING THE PARSER TO GENERATE SAX EVENTS 249
Finally, add the code highlighted below to generate null methods for the remain-
der of the XmlReader interface. (Most of them are of value to a real SAX parser,
but have little bearing on a data-conversion application like this one.)

�

�3DUVH�DQ�;0/�GRFXPHQW�IURP�D�V\VWHP�LGHQWLILHU��85,���
�
SXEOLF�YRLG�SDUVH�6WULQJ�V\VWHP,G�
WKURZV�,2([FHSWLRQ��6$;([FHSWLRQ�
^�`

��

�5HWXUQ�WKH�FXUUHQW�'7'�KDQGOHU��
�
SXEOLF�'7'+DQGOHU�JHW'7'+DQGOHU��
^�UHWXUQ�QXOO��`

�

�5HWXUQ�WKH�FXUUHQW�HQWLW\�UHVROYHU��
�
SXEOLF�(QWLW\5HVROYHU�JHW(QWLW\5HVROYHU��
^�UHWXUQ�QXOO��`

�

�$OORZ�DQ�DSSOLFDWLRQ�WR�UHJLVWHU�DQ�HQWLW\�UHVROYHU��
�
SXEOLF�YRLG�VHW(QWLW\5HVROYHU�(QWLW\5HVROYHU�UHVROYHU�
^�`

�

�$OORZ�DQ�DSSOLFDWLRQ�WR�UHJLVWHU�D�'7'�HYHQW�KDQGOHU��
�
SXEOLF�YRLG�VHW'7'+DQGOHU�'7'+DQGOHU�KDQGOHU�
^�`

�

�/RRN�XS�WKH�YDOXH�RI�D�SURSHUW\��
�
SXEOLF�2EMHFW�JHW3URSHUW\�MDYD�ODQJ�6WULQJ�QDPH�
^�UHWXUQ�QXOO��`

�

�6HW�WKH�YDOXH�RI�D�SURSHUW\��
�
SXEOLF�YRLG�VHW3URSHUW\�MDYD�ODQJ�6WULQJ�QDPH��
MDYD�ODQJ�2EMHFW�YDOXH�
^�`�

�

�6HW�WKH�VWDWH�RI�D�IHDWXUH��
�
SXEOLF�YRLG�VHW)HDWXUH�MDYD�ODQJ�6WULQJ�QDPH��ERROHDQ�YDOXH�
^�`

�

�/RRN�XS�WKH�YDOXH�RI�D�IHDWXUH��
�
SXEOLF�ERROHDQ�JHW)HDWXUH�MDYD�ODQJ�6WULQJ�QDPH�
^�UHWXUQ�IDOVH��`��

Congratulations! You now have a parser you can use to generate SAX events. In
the next section, you’ll use it to construct a SAX source object that will let you
transform the data into XML.

250 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Using the Parser as a SAXSource
Given a SAX parser to use as an event source, you can (quite easily!) construct a
transformer to produce a result. In this section, you’ll modify the 7UDQVIRUPHU�
$SS you’ve been working with to produce a stream output result, although you
could just as easily produce a DOM result.

Note: The code discussed in this section is in 7UDQVIRUPDWLRQ$SS���MDYD. The
results of running it are in 7UDQVIRUPDWLRQ/RJ��.

Important!

Be sure to shift gears! Put the $GGUHVV%RRN5HDGHU aside and open up the
7UDQVIRUPDWLRQ$SS. The work you do in this section affects the 7UDQVIRUPD�
WLRQ$SS!

Start by making the changes shown below to import the classes you’ll need to
construct a 6$;6RXUFH object. (You won’t be needing the DOM classes at this
point, so they are discarded here, although leaving them in doesn’t do any harm.)

LPSRUW�RUJ�[PO�VD[�6$;([FHSWLRQ��
LPSRUW�RUJ�[PO�VD[�6$;3DUVH([FHSWLRQ��
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
LPSRUW�RUJ�Z�F�GRP�'RFXPHQW�
LPSRUW�RUJ�Z�F�GRP�'20([FHSWLRQ�
���
LPSRUW�MDYD[�[PO�WUDQVIRUP�GRP�'206RXUFH��
import javax.xml.transform.sax.SAXSource;
LPSRUW�MDYD[�[PO�WUDQVIRUP�VWUHDP�6WUHDP5HVXOW��

Next, remove a few other holdovers from our DOM-processing days, and add
the code to create an instance of the AddressBookReader:

SXEOLF�FODVV�7UDQVIRUPDWLRQ$SS�
^

���*OREDO�YDOXH�VR�LW�FDQ�EH�UHI
G�E\�WKH�WUHH�DGDSWHU
VWDWLF�'RFXPHQW�GRFXPHQW��

�SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJY>@�
^

���
'RFXPHQW%XLOGHU)DFWRU\�IDFWRU\�

'RFXPHQW%XLOGHU)DFWRU\�QHZ,QVWDQFH���

USING THE PARSER AS A SAXSOURCE 251
��IDFWRU\�VHW1DPHVSDFH$ZDUH�WUXH��
��IDFWRU\�VHW9DOLGDWLQJ�WUXH���

// Create the sax "parser".
AddressBookReader saxReader = new AddressBookReader();

�WU\�^
)LOH�I� �QHZ�)LOH�DUJY>�@��
'RFXPHQW%XLOGHU�EXLOGHU� �

IDFWRU\�QHZ'RFXPHQW%XLOGHU���
GRFXPHQW� �EXLOGHU�SDUVH�I��

Guess what! You’re almost done. Just a couple of steps to go. Add the code high-
lighted below to construct a SAXSource object:

���8VH�D�7UDQVIRUPHU�IRU�RXWSXW
���
7UDQVIRUPHU�WUDQVIRUPHU� �W)DFWRU\�QHZ7UDQVIRUPHU���

// Use the parser as a SAX source for input
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
InputSource inputSource = new InputSource(br);
SAXSource source = new SAXSource(saxReader, inputSource);

6WUHDP5HVXOW�UHVXOW� �QHZ�6WUHDP5HVXOW�6\VWHP�RXW��
WUDQVIRUPHU�WUDQVIRUP�VRXUFH��UHVXOW��

Here, you constructed a buffered reader (as mentioned earlier) and encapsulated
it in an input source object. You then created a 6$;6RXUFH object, passing it the
reader and the ,QSXW6RXUFH object, and passed that to the transformer.

When the app runs, the transformer will configure itself as the &RQWHQW+DQGOHU
for the SAX parser (the $GGUHVV%RRN5HDGHU and tell the parser to operate on the
LQSXW6RXUFH object. Events generated by the parser will then go to the trans-
former, which will do the appropriate thing and pass the data on to the result
object.

Finally, remove the exceptions you no longer need to worry about, since the
7UDQVIRUPDWLRQ$SS no longer generates them:

`�FDWFK��6$;([FHSWLRQ�V[H��^
���(UURU�JHQHUDWHG�E\�WKLV�DSSOLFDWLRQ
����RU�D�SDUVHU�LQLWLDOL]DWLRQ�HUURU�
([FHSWLRQ��[� �V[H�
LI��V[H�JHW([FHSWLRQ���� �QXOO�

[� �V[H�JHW([FHSWLRQ���

252 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
[�SULQW6WDFN7UDFH���

`�FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^
���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

`�FDWFK��,2([FHSWLRQ�LRH��^

You’re done! You have no created a transformer which will use a 6$;6RXUFH as
input, and produce a 6WUHDP5HVXOW as output.

Doing the Conversion
Now run the app on the address book file. Your output should look like this:

�"[PO�YHUVLRQ ������HQFRGLQJ �87)���"!
�DGGUHVVERRN!

�QLFNQDPH!)UHG��QLFNQDPH!
�HPDLO!IUHG#EDUQH\V�KRXVH��HPDLO!
�KWPO!758(��KWPO!
�ILUVWQDPH!)UHG��ILUVWQDPH!
�ODVWQDPH!)OLQWVWRQH��ODVWQDPH!
�ZRUN!����4XDUU\��ZRUN!
�KRPH!����%HGURFN/DQH��KRPH!
�ID[!����6TXDZN��ID[!
�SDJHU!����SDJHU��SDJHU!
�FHOO!����FHOO��FHOO!

��DGGUHVVERRN!

You have now successfully converted an existing data structure to XML. And it
wasn’t even that hard. Congratulations!

Transforming XML Data with XSLT
The XML Stylesheet Language for Transformations (XSLT) can be used for
many purposes. For example, you could generate PDF or postscript from the
XML data. But generally, XSLT is used to generated formatted HTML output, or
to create an alternative XML representation of the data.

In this section of the tutorial, you’ll use an XSLT transform to translate XML
input data to HTML output.

DEFINING AN ULTRA-SIMPLE ARTICLE DOCUMENT TYPE253
Note: The XSLT specification is very large and quite complex. Rather thick books
have been written on the subject. So this tutorial can only scratch the surface. It will
give you enough a background to get started, so you can undertake simple XSLT
processing tasks. It should also give you a head start when you investigate XSLT
further.

Defining an Ultra-Simple article
Document Type
We’ll start by defining a super simple document type that could be used for writ-
ing articles. Our �DUWLFOH! documents will contain these structure tags:

• �7,7/(! -- The title of the article.

• �6(&7! -- A section. (Consists of a heading and a body.)

• �3$5$! -- A paragraph.

• �/,67! -- A list.

• �,7(0! -- An entry in a list.

• �127(! -- An aside, which will be offset from the main text.

The slightly unusual aspect of this structure is that we won’t create a separate
element tag for a section heading. Such elements are commonly created to dis-
tinguish the heading text (and any tags it contains) from the body of the section
(that is, any structure elements underneath the heading).

Instead, we’ll allow the heading to merge seamlessly into the body of a section.
That arrangement adds some complexity to the stylesheet, but that will give us a
chance to explore XSLT’s template-selection mechanisms. It also matches our
intuitive expectations about document structure, where the text of a heading is
directly followed by structure elements, which can simplify outline-oriented
editing.

Note: However, that structure is not easily validated, because XML’s mixed-content
model allows text anywhere in a section, whereas we want to confine text and inline
elements so that they only appear before the first structure element in the body of
the section. The assertion-based validator (Schematron) can do it, but most other
schema mechanisms can’t. So we’ll dispense with defining a DTD for the document
type.

254 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
In this structure, sections can be nested. The depth of the nesting will determine
what kind of HTML formatting to use for the section heading (for example, h1
or h2.) That’s also useful with outline-oriented editing, because it lets you can
move sections around at will without having to worry about changing the head-
ing tag -- or any of the other section headings that are affected by the move.

For lists, we’ll use a W\SH attribute to specify whether the list entries are XQRU�
GHUHG (bulleted), DOSKD (enumerated with lower case letters), $/3+$ (enumer-
ated with uppercase letters, or QXPEHUHG.

We’ll also allow for some inline tags that change the appearance of the text:

• �%! -- bold

• �,! -- italics

• �8! -- underline

• �'()! -- definition

• �/,1.! -- link to a URL

Note: An inline tag does not generate a line break, so a style change caused by an
inline tag does not affect the flow of text on the page (although it will affect the
appearance of that text). A structure tag, on the other hand, demarcates a new seg-
ment of text, so at a minimum it always generates a line break, in addition to other
format changes.

The �'()! tag will help make things interesting. That tag will used for terms that
are defined in the text. Such terms will be displayed in italics, the way they ordi-
narily are in a document. But using a special tag in the XML will allow an index
program to one day find such definitions and add them to the index, along with
keywords in headings. In the Note above, for example, the definitions of inline
tags and structure tags could have been marked with �'()! tags, for future
indexing.

Finally, the /,1. tag serves two purposes. First, it will let us create a link to a
URL without having to put the URL in twice -- so we can code
�OLQN!KWWS�������OLQN! instead of �D� KUHI �KWWS������!KWWS�������D!.
Of course, we’ll also want to allow a form that looks like �OLQN� WDU�
JHW �����!���QDPH�����OLQN!. That leads to the second reason for the �OLQN!
tag—it will give us an opportunity to play with conditional expressions in XSLT.

Note: As one college professor said, the trick to defining a research project is to find
something that is “large enough to be feasible... but small enough to be feasible”.

CREATING A TEST DOCUMENT 255
Although the article structure is exceedingly simple (consisting of only 11 tags), it
raises enough interesting problems to keep us busy exploring XSLT for a while!
Along the way, we’ll get a good view of it’s basic capabilities. But there will still be
large areas of the spec that are left untouched. The last part of this tutorial will point
out the major things we missed, to give you some sense of what sorts of features
await you in the specification!

Creating a Test Document
Here, you’ll create a simple test document using nested �6(&7! elements, a few
�3$5$! elements, a �127(! element, a �/,1.!, and a �/,67� W\SH �XQRU�
GHUHG�!. The idea is to create a document with one of everything, so we can
explore the more interesting translation mechanisms.

Note: The sample data described here is contained in DUWLFOH��[PO. (The brows-
able version is DUWLFOH��[PO�KWPO.)

To make the test document, create a file called DUWLFOH�[PO and enter the XML
data shown below.

�"[PO�YHUVLRQ �����"!
�$57,&/(!

�7,7/(!$�6DPSOH�$UWLFOH��7,7/(!
�6(&7!7KH�)LUVW�0DMRU�6HFWLRQ

�3$5$!7KLV�VHFWLRQ�ZLOO�LQWURGXFH�D�VXEVHFWLRQ���3$5$!
�6(&7!7KH�6XEVHFWLRQ�+HDGLQJ

�3$5$!7KLV�LV�WKH�WH[W�RI�WKH�VXEVHFWLRQ�
��3$5$!

��6(&7!
��6(&7!

��$57,&/(!

 Note that in the XML file, the subsection is totally contained within the major
section. (Unlike HTML, for example, where headings, do no contain the body of
a section.) The result is an outline structure that is harder to edit in plain-text
form, like this. But much easier to edit with an outline-oriented editor.

Someday, given an tree-oriented XML editor that understands inline tags like
�%! and �,!, it should be possible to edit an article of this kind in outline form,
without requiring a complicated stylesheet. (Thereby allowing the writer to focus

256 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
on the structure of the article, leaving layout until much later in the process.) In
such an editor, the article-fragment above would look something like this:

<ARTICLE>
<TITLE>$�6DPSOH�$UWLFOH�
<SECT>7KH�)LUVW�0DMRU��6HFWLRQ�

<PARA>7KLV�VHFWLRQ��ZLOO�LQWURGXFH�D�VXEVHFWLRQ�
<SECT>7KH�6XEKHDGLQJ�

<PARA>7KLV��LV�WKH�WH[W�RI�WKH�VXEVHFWLRQ��1RWH�
WKDW����

At the moment, tree-structured editors exist, but they treat inline tags like �%!
and �,! the same way that they treat other structure tags, which can make the
“outline” a bit difficult to read. But hopefully, that situation will improve one
day. Meanwhile, we’ll press on...

Writing an XSLT Transform
In this part of the tutorial, you’ll begin writing an XSLT transform that will con-
vert the XML article and render it in HTML.

Note: The transform described in this section is contained in DUWLFOH�D�[VO. (The
browsable version is DUWLFOH�D�[VO�KWPO.)

Start by creating a normal XML document:

�"[PO�YHUVLRQ ������HQFRGLQJ �,62��������"!

Then add the lines shown below to create an XSL stylesheet:

�"[PO�YHUVLRQ ������HQFRGLQJ �,62��������"!
�[VO�VW\OHVKHHW�

[POQV�[VO �KWWS���ZZZ�Z��RUJ������;6/�7UDQVIRUP��
YHUVLRQ �����
!

��[VO�VW\OHVKHHW!

PROCESSING THE BASIC STRUCTURE ELEMENTS 257
Now, set it up to produce HTML-compatible output:

�[VO�VW\OHVKHHW�
���
!
<xsl:output method="html"/>

����

��[VO�VW\OHVKHHW!

We’ll get into the detailed reasons for that entry later on in this section. But for
now, note that if you want to output anything besides well-formed XML, then
you’ll need an �[VO�RXWSXW! tag like the one shown, specifying either ´WH[Wµ
or ´KWPOµ. (The default value is ´[POµ.)

Note: When you specify XML output, you can add the LQGHQW attribute to produce
nicely indented XML output. The specification looks like this:
�[VO�RXWSXWBPHWKRG �[PO�BLQGHQW �\HV��!.

Processing the Basic Structure Elements
You’ll start filling in the stylesheet by processing the elements that go into creat-
ing a table of contents -- the root element, the title element, and headings. You’ll
also process the 3$5$ element defined in the test document.

Note: If on first reading you skipped the section of this tutorial that discusses the
XPath addressing mechanisms, now is a good time to go back and review that sec-
tion!

Begin by adding the main instruction that processes the root element:

�[VO�VW\OHVKHHW����
<xsl:template match="/">

<html><body>
<xsl:apply-templates/>

</body></html>
</xsl:template>

��[VO�VW\OHVKHHW!

258 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The XSL commands are shown in bold. (Note that they are defined in the �[VO�
namespace.) The instruction �[VO�DSSO\�WHPSODWHV! processes the children of
the current node. In the case, the current node is the root node.

Despite its simplicity,. this example illustrates a number of important ideas, so
it’s worth understanding thoroughly. The first concept is that a stylesheet con-
tains a number of templates, defined with the <xsl:template> tag. Each template
contains a PDWFK attribute, which selects the elements that the template will be
applied to, using the XPath addressing mechanisms.

Within the template, tags that do not start with the [VO� namespace prefix are
simply copied. The newlines and whitespace that follow them are also copied,
which helps to format make the resulting output readable.

Note: When a newline is not present, whitespace generally seems to be ignored. To
include whitespace in the output in such cases, or to include other text, you can use
the �[VO�WH[W! tag. Basically, an XSLT stylesheet expects to process tags. So
everything it sees needs to be either an �[VO���! tag, some other tag, or whitespace.

 In this case, the non-xsl tags are HTML tags (shown in red, for readability). So
when the root tag is matched, XSLT outputs the HTML start-tags, processes any
templates that apply to children of the root, and then outputs the HTML end-
tags.

Process the <TITLE> Element
Next, add a template to process the article title:

�[VO�WHPSODWH�PDWFK ��$57,&/(�7,7/(�!
�K��DOLJQ �FHQWHU�!��[VO�DSSO\�WHPSODWHV�!���K�!

��[VO�WHPSODWH!

��[VO�VW\OHVKHHW!

In this case, you specified a complete path to the TITLE element, and output
some HTML to make the text of the title into a large, centered heading. In this
case, the apply-templates tag ensures that if the title contains any inline tags like
italics, links, or underlining, they will be processed as well.

More importantly, the apply-templates instruction causes the text of the title to be
processed. Like the DOM data model, the XSLT data model is based on the con-
cept of text nodes hanging off of element nodes (which, in turn, can hang off

PROCESSING THE BASIC STRUCTURE ELEMENTS 259
other element nodes, and so on). That hierarchical structure constitutes the
source tree. There is also a result tree, which contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the
result of XSLT operations, it is helpful to understand the structure of those trees,
and their contents. (For more on this subject, see the sidebar on The XSLT/XPath
Data Model (page 277) later in this section.)

Process Headings
To continue processing the basic structure elements, add a template to process
the top-level headings:

<xsl:template match="/ARTICLE/SECT">
<h1>�<xsl:apply-templates select="text()|B|I|U|DEF|LINK"/>�</h1>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

��[VO�VW\OHVKHHW!

Here, you’ve specified the path to the topmost 6(&7 elements. But this time,
you’ve applied templates in two stages, using the VHOHFW attribute. For the first
stage, you selected text nodes using the XPath WH[W�� function, as well as inline
tags like bold and italics. (The vertical pipe (|) is used to match multiple items --
text, or a bold tag, or an italics tag, etc.) In the second stage, you selected the
other structure elements contained in the file, for sections, paragraphs, lists, and
notes.

Using the select tags let you put the text and inline elements between the
�K�!�����K�! tags, while making sure that all of the structure tags in the section
are processed afterwards. In other words, you made sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, which
is important for HTML output.

In general, the select clause lets you apply all templates to a selected subset of
the information available at the current context. As another example, this tem-
plate selects all attributes of the current node:

�[VO�DSSO\�WHPSODWHV�VHOHFW �#
��!��DWWULEXWHV!

260 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Next, add the virtually identical template to process the second-level headings:

<xsl:template match="/ARTICLE/SECT/SECT">
<h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

��[VO�VW\OHVKHHW!

Generate a Runtime Message
You could add templates for deeper headings, too, but at some point you have to
stop, if only because HTML only goes down to 5 levels. But for this example,
you’ll stop at two levels of section headings. But if the XML input happens to
contain a 3rd level, you’ll want to deliver an error message to the user. This sec-
tion shows you how to do that.

Note: We could continue processing SECT elements that are further down, by
selecting them with the expression �6(&7�6(&7��6(&7. The �� selects any SECT
elements, at any “depth”, as defined by XPath addressing mechanism. But we’ll
take the opportunity to play with messaging, instead.

Add the following template to generate an error when a section is encountered
that is nested too deep:

<xsl:template match="/ARTICLE/SECT/SECT/SECT">
<xsl:message terminate="yes">Error: Sections can only be nested 2 deep
.</xsl:message>

��[VO�WHPSODWH!

��[VO�VW\OHVKHHW!

The WHUPLQDWH �\HV� clause causes the transformation process to stop after the
message is generated. Without it, processing could still go on with everything in
that section being ignored.

Extra-Credit Exercise:

Expand the stylesheet to handle sections nested up to 5 sections deep, generating
<h1>...<h5> tags. Generate an error on any section nested 6 levels deep.

WRITING THE BASIC PROGRAM 261
Finally, finish up the stylesheet by adding a template to process the 3$5$ tag:

�[VO�WHPSODWH�PDWFK �3$5$�!
�S!�[VO�DSSO\�WHPSODWHV�!��S!

��[VO�WHPSODWH!

��[VO�VW\OHVKHHW!

Nothing unusual here. Just another template like the ones you’re used to.

Writing the Basic Program
In this part of the tutorial, you’ll modify the program that used XSLT to echo an
XML file unchanged, and modify it so that it uses your stylesheet.

Note: The code shown in this section is contained in 6W\OL]HU�MDYD. The result is
the HTML code shown in VW\OL]HU�D�W[W. (The displayable version is
VW\OL]HU�D�KWPO.)

Start by copying 7UDQVIRUPDWLRQ$SS��, which parses an XML file and writes
to System.out. Save it as 6W\OL]HU�MDYD.

Next, modify occurrences of the class name and the usage-section of the pro-
gram:

SXEOLF�FODVV�7UDQVIRUPDWLRQ$SSStylizer�
^

LI��DUJY�OHQJWK�� �� 2��^
6\VWHP�HUU�SULQWOQ���8VDJH��MDYD�

7UDQVIRUPDWLRQ$SSStylizer�VW\OHVKHHW
ILOHQDPH���

6\VWHP�H[LW�����
`
���

262 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Then modify the program to use the stylesheet when creating the 7UDQVIRUPHU
object.

���
LPSRUW�MDYD[�[PO�WUDQVIRUP�GRP�'206RXUFH��
import javax.xml.transform.stream.StreamSource;
LPSRUW�MDYD[�[PO�WUDQVIRUP�VWUHDP�6WUHDP5HVXOW��
���

SXEOLF�FODVV�6W\OL]HU�
^

���
SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ�DUJY>@�
^

���
WU\�^

)LOH�I� �QHZ�)LOH�DUY>�@��
File stylesheet = new File(argv[0]);
File datafile = new File(argv[1]);

'RFXPHQW%XLOGHU�EXLOGHU�
IDFWRU\�QHZ'RFXPHQW%XLOGHU���

GRFXPHQW� �EXLOGHU�SDUVH�I�datafile��
���
StreamSource stylesource = new StreamSource(stylesheet);
7UDQVIRUPHU�WUDQVIRUPHU�

)DFWRU\�QHZ7UDQVIRUPHU�stylesource��
���

This code uses the file to create a 6WUHDP6RXUFH object, and then passes the
source object to the factory class to get the transformer.

Note: You can simplify the code somewhat by eliminating the DOMSource class
entirely. Instead of creating a DOMSource object for the XML file, create a Stream-
Source object for it, as well as for the stylesheet. (Take it on for extra credit!)

TRIMMING THE WHITESPACE 263
Now compile and run the program using DUWLFOH�D�[VO on DUWLFOH��[PO. The
results should look like this:

�KWPO!
�ERG\!

�K��DOLJQ �FHQWHU�!$�6DPSOH�$UWLFOH��K�!

�K�!7KH�)LUVW�0DMRU�6HFWLRQ

��������������K�!

�S!7KLV�VHFWLRQ�ZLOO�LQWURGXFH�D�VXEVHFWLRQ���S!
�K�!7KH�6XEVHFWLRQ�+HDGLQJ

��������������K�!

�S!7KLV�LV�WKH�WH[W�RI�WKH�VXEVHFWLRQ�

���������S!

��ERG\!
��KWPO!

At this point, there is quite a bit of excess whitespace in the output. You’ll see
how to eliminate most of it in the next section.

Trimming the Whitespace
If you recall, when you took a look at the structure of a DOM, there were many
text nodes that contained nothing but ignorable whitespace. Most of the excess
whitespace in the output came from them. Fortunately, XSL gives you a way to
eliminate them. (For more about the node structure, see the sidebar: The
XSLT/XPath Data Model (page 277).)

Note: The stylesheet described here is DUWLFOH�E�[VO. The result is the HTML
code shown in VW\OL]HU�E�W[W. (The displayable versions are DUWLFOH�E�
[VO�KWPO and VW\OL]HU�E�KWPO.)

264 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
To do remove some of the excess whitespace, add the line highlighted below to
the stylesheet.

�[VO�VW\OHVKHHW����
!
�[VO�RXWSXW�PHWKRG �KWPO��!�
<xsl:strip-space elements="SECT"/>
���

This instruction tells XSL to remove any text nodes under 6(&7 elements that
contain nothing but whitespace. Nodes that contain text other than whitespace
will not be affected, and other kinds of nodes are not affected.

Now, when you run the program, the result looks like this:

�KWPO!
�ERG\!

�K��DOLJQ �FHQWHU�!$�6DPSOH�$UWLFOH��K�!

�K�!7KH�)LUVW�0DMRU�6HFWLRQ
��K�!

�S!7KLV�VHFWLRQ�ZLOO�LQWURGXFH�D�VXEVHFWLRQ���S!
�K�!7KH�6XEVHFWLRQ�+HDGLQJ

��K�!
�S!7KLV�LV�WKH�WH[W�RI�WKH�VXEVHFWLRQ�

��S!

��ERG\!
��KWPO!

That’s quite an improvement. There are still newline characters and white space
after the headings, but those come from the way the XML is written:

�6(&7!7KH�)LUVW�0DMRU�6HFWLRQ
____�3$5$!7KLV�VHFWLRQ�ZLOO�LQWURGXFH�D�VXEVHFWLRQ���3$5$!
AAAA

Here, you can see that the section heading ends with a newline and indentation
space, before the 3$5$ entry starts. That’s not a big worry, because the browsers
that will process the HTML routinely compress and ignore the excess space. But
we there is still one more formatting at our disposal.

TRIMMING THE WHITESPACE 265
Note: The stylesheet described here is DUWLFOH�F�[VO. The result is the HTML
code shown in VW\OL]HU�F�W[W. (The displayable versions are DUWLFOH�F�
[VO�KWPO and VW\OL]HU�F�KWPO.)

To get rid of that last little bit of whitespace, add this template to the stylesheet:

<xsl:template match="text()">
<xsl:value-of select="normalize-space()"/>

</xsl:template>

��[VO�VW\OHVKHHW!

The output now looks like this:

�KWPO!
�ERG\!
�K��DOLJQ �FHQWHU�!$�6DPSOH�$UWLFOH��K�!
�K�!7KH�)LUVW�0DMRU�6HFWLRQ��K�!
�S!7KLV�VHFWLRQ�ZLOO�LQWURGXFH�D�VXEVHFWLRQ���S!
�K�!7KH�6XEVHFWLRQ�+HDGLQJ��K�!
�S!7KLV�LV�WKH�WH[W�RI�WKH�VXEVHFWLRQ���S!
��ERG\!
��KWPO!

That is quite a bit better. Of course, it would be nicer if it were indented, but that
turns out to be somewhat harder than expected! Here are some possible avenues
of attack, along with the difficulties:

Indent option
Unfortunately, the LQGHQW �\HV� option that can be applied to XML output
is not available for HTML output. Even if that option were available, it
wouldn’t help, because HTML elements are rarely nested! Although HTML
source is frequently indented to show the implied structure, the HTML tags
themselves are not nested in a way that creates a real structure.

Indent variables
The �[VO�WH[W! function lets you add any text you want, including
whitespace. So, it could conceivably be used to output indentation space.
The problem is to vary the amount of indentation space. XSLT variables
seem like a good idea, but they don’t work here. The reason is that when you
assign a value to a variable in a template, the value is only known within that
template (statically, at compile time value). Even if the variable is defined
globally, the assigned value is not stored in a way that lets it be dynamically
known by other templates at runtime. Once �DSSO\�WHPSODWHV�! invokes

266 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
other templates, they are unaware of any variable settings made in other tem-
plates.

Parameterized templates
Using a “parameterized template” is another way to modify a template’s
behavior. But determining the amount of indentation space to pass as the
parameter remains the crux of the problem!

At the moment, then, there does not appear to be any good way to control the
indentation of HTML-formatted output. Typically, that fact is of little conse-
quence, since the data will usually be manipulated in its XML form, while the
HTML version is only used for display a browser. It’s only inconvenient in a
tutorial like this, where it would be nice to see the structure you’re creating! But
when you click on the link to VW\OL]HU�F�KWPO, you see the results you expect.

Processing the Remaining Structure
Elements
In this section, you’ll process the LIST and NOTE elements that add additional
structure to an article.

Note: The sample document described in this section is DUWLFOH��[PO, the
stylesheet used to manipulate it is DUWLFOH��[VO. The result is the HTML code
shown in VW\OL]HU��W[W. (The displayable versions are DUWLFOH��[PO�KWPO,
DUWLFOH��[VO�KWPO, and VW\OL]HU��KWPO.)

Start by adding some test data to the sample document:

�"[PO�YHUVLRQ �����"!
�$57,&/(!

�7,7/(!$�6DPSOH�$UWLFOH��7,7/(!
�6(&7!7KH�)LUVW�0DMRU�6HFWLRQ

���
��6(&7!
<SECT>The Second Major Section

�3$5$!7KLV�VHFWLRQ�DGGV�D�/,67�DQG�D�127(�
�3$5$!+HUH�LV�WKH�/,67�

�/,67�W\SH �RUGHUHG�!
�,7(0!3HDUV��,7(0!
�,7(0!*UDSHV��,7(0!

��/,67!
��3$5$!
�3$5$!$QG�KHUH�LV�WKH�127(�

PROCESSING THE REMAINING STRUCTURE ELEMENTS 267
�127(!'RQ
W�IRUJHW�WR�JR�WR�WKH�KDUGZDUH�VWRUH�RQ�
\RXU

ZD\�WR�WKH�JURFHU\�
��127(!

��3$5$!
��6(&7!�

��$57,&/(!��

Note: Although the list and note in the XML file are contained in their respective
paragraphs, it really makes no difference whether they are contained or not—the
generated HTML will be the same, either way. But having them contained will
make them easier to deal with in an outline-oriented editor.

Modify <PARA> handling
Next, modify the 3$5$ template to account for the fact that we are now allowing
some of the structure elements to be embedded with a paragraph:

�[VO�WHPSODWH�PDWFK �3$5$�!
�S!�[VO�DSSO\�WHPSODWHV�!��S!
<p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </p>
<xsl:apply-templates select="PARA|LIST|NOTE"/>

��[VO�WHPSODWH!

This modification uses the same technique you used for section headings. The
only difference is that 6(&7 elements are not expected within a paragraph.

Process <LIST> and <ITEM> elements
Now you’re ready to add a template to process /,67 elements:

<xsl:template match="LIST">
<xsl:if test="@type=’ordered’">

<xsl:apply-templates/>

</xsl:if>
<xsl:if test="@type=’unordered’">

<xsl:apply-templates/>

268 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
</xsl:if>
</xsl:template>

��[VO�VW\OHVKHHW!

The �[VO�LI! tag uses the WHVW �� attribute to specify a boolean condition. In
this case, the value of the W\SH attribute is tested, and the list that is generated
changes depending on whether the value is RUGHUHG or XQRUGHUHG.

The two important things to note for this example are:

• There is no HOVH clause, nor is there a UHWXUQ or H[LW statement, so it takes
two �[VO�LI! tags to cover the two options. (Or the �[VO�FKRRVH! tag
could have been used, which provides case-statement functionality.)

• Single quotes are required around the attribute values. Otherwise, the
XSLT processor attempts to interpret the word RUGHUHG as an XPath func-
tion, instead of as a string.

Now finish up /,67 processing by handling ,7(0 elements. Nothing spectacular
here.

<xsl:template match="ITEM">
<xsl:apply-templates/>

</xsl:template>

��[VO�VW\OHVKHHW!

Ordering Templates in a Stylesheet
By now, you should have the idea that templates are independent of one another,
so it doesn’t generally matter where they occur in a file. So from here on, we’ll
just show the template you need to add. (For the sake of comparison, they’re
always added at the end of the example stylesheet.)

Order does make a difference when two templates can apply to the same node, In
that case, the one that is defined last is the one that is found and processed. For
example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify a template pattern that looks like this: ��/,67��/,67. In that
template, you would use the HTML option to generate an alphabetic enumera-
tion, instead of a numeric one.

PROCESSING THE REMAINING STRUCTURE ELEMENTS 269
But such an element could also be identified by the pattern ��/,67. To make sure
the proper processing is done, the template that specifies ��/,67 would have to
appear before the template the specifies ��/,67��/,67.

Process <NOTE> Elements
The last remaining structure element is the 127(element. Add the template
shown below to handle that.

�[VO�WHPSODWH�PDWFK �127(�!
�EORFNTXRWH!�E!1RWH���E!�EU�!

�[VO�DSSO\�WHPSODWHV�!
��S!��EORFNTXRWH!

��[VO�WHPSODWH!

This code brings up an interesting issue that results from the inclusion of the
�EU�! tag. To be well-formed XML, the tag must be specified in the stylesheet as
�EU�!, but that tag is not recognized by many browsers. And while most brows-
ers recognize the sequence �EU!��EU!, they all treat it like a paragraph break,
instead of a single line break.

In other words, the transformation must generate a �EU! tag, but the stylesheet
must specify �EU�!. That brings us to the major reason for that special output tag
we added early in the stylesheet:

�[VO�VW\OHVKHHW�����!
<xsl:output method="html"/>
���

��[VO�VW\OHVKHHW!

That output specification converts empty tags like �EU�! to their HTML form,
�EU!� on output. That conversion is important, because most browsers do not
recognize the empty-tags. Here is a list of the affected tags:

Table 3 Empty Tags

��DUHD
��EDVH
��EDVHIRQW
��EU
��FRO

��IUDPH
��KU
��LPJ
��LQSXW

��LVLQGH[
��OLQN
��PHWD
��SDUDP

270 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Summarizing:

By default, XSLT produces well-formed XML on output. And since an XSL
stylesheet is well-formed XML to start with, you cannot easily put a tag like
�EU! in the middle of it. The "�[VO�RXWSXW�PHWKRG �KWPO��!" solves the prob-
lem, so you can code �EU�! in the stylesheet, but get �EU! in the output.

The other major reason for specifying �[VO�RXWSXW�PHWKRG �KWPO��!�is that,
like the specification �[VO�RXWSXW� PHWKRG �WH[W��!, generated text is not
escaped. For example, if the stylesheet includes the 	OW� entity reference, it will
appear as the "<" character in the generated text. When XML is generated, on the
other hand, the 	OW� entity reference in the stylesheet would be unchanged, so it
would appear as 	OW� in the generated text.

Note: If you actually want < to be generated as part of the HTML output, you’ll
need to encode it as 	DPS�OW�—that sequence becomes < on output, because
only the 	DPS� is converted to an 	 character.

Run the Program
Here is the HTML that is generated for the second section when you run the pro-
gram now:

���
�K�!7KH�6HFRQG�0DMRU�6HFWLRQ��K�!
�S!7KLV�VHFWLRQ�DGGV�D�/,67�DQG�D�127(���S!
�S!+HUH�LV�WKH�/,67���S!
�RO!
�OL!3HDUV��OL!
�OL!*UDSHV��OL!
��RO!
�S!$QG�KHUH�LV�WKH�127(���S!
�EORFNTXRWH!
�E!1RWH���E!
�EU!'RQ
W�IRUJHW�WR�JR�WR�WKH�KDUGZDUH�VWRUH�RQ�\RXU�ZD\�WR�WKH�
JURFHU\�
��EORFNTXRWH!

PROCESS INLINE (CONTENT) ELEMENTS 271
Process Inline (Content) Elements
The only remaining tags in the $57,&/(type are the inline tags -- the ones that
don’t create a line break in the output, but which instead are integrated into the
stream of text they are part of.

 Inline elements are different from structure elements, in that they are part of the
content of a tag. If you think of an element as a node in a document tree, then
each node has both content and structure. The content is composed of the text
and inline tags it contains. The structure consists of the other elements (structure
elements) under the tag.

Note: The sample document described in this section is DUWLFOH��[PO, the
stylesheet used to manipulate it is DUWLFOH��[VO. The result is the HTML code
shown in VW\OL]HU��W[W. (The browser-displayable versions are DUWLFOH��
[PO�KWPO, DUWLFOH��[VO�KWPO, and VW\OL]HU��KWPO.)

Start by adding one more bit of test data to the sample document:

�"[PO�YHUVLRQ �����"!
�$57,&/(!

�7,7/(!$�6DPSOH�$UWLFOH��7,7/(!
�6(&7!7KH�)LUVW�0DMRU�6HFWLRQ

���
��6(&7!
�6(&7!7KH�6HFRQG�0DMRU�6HFWLRQ

���
��6(&7!�
<SECT>The <I>Third</I> Major Section

<PARA>In addition to the inline tag in the heading, this section
defines the term <DEF>inline</DEF>, which literally means
"no line break". It also adds a simple link to the main page
for the Java platform (<LINK>http://java.sun.com</LINK>),
as well as a link to the
<LINK target="http://java.sun.com/xml">XML</LINK> page.

</PARA>
</SECT>

��$57,&/(!

272 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Now, process the inline �'()! elements in paragraphs, renaming them to HTML
italics tags:

<xsl:template match="DEF">
�L!��[VO�DSSO\�WHPSODWHV�!���L!�

</xsl:template>�

Next, comment out the text-node normalization. It has served its purpose, and
new we’re to the point that we need to preserve spaces important:

<!--
�[VO�WHPSODWH�PDWFK �WH[W���!

�[VO�YDOXH�RI�VHOHFW �QRUPDOL]H�VSDFH����!
��[VO�WHPSODWH!

��!

This modification keeps us from losing spaces before tags like �,! and �'()!.
(Try the program without this modification to see the result.)

Now, process basic inline HTML elements like , <I>, <U> for bold, italics,
and underlining.

�[VO�WHPSODWH�PDWFK �%_,_8�!
�[VO�HOHPHQW�QDPH �^QDPH��`�!

�[VO�DSSO\�WHPSODWHV�!
��[VO�HOHPHQW!�

��[VO�WHPSODWH!

The �[VO�HOHPHQW! tag lets you compute the element you want to generate.
Here, you generate the appropriate the inline tag using the name of the current
element. In particular, note the use of curly braces (^`) in the QDPH ���� expres-
sion. Those curly braces cause the text inside the quotes to be processed as an
XPath expression, instead of being interpreted as a literal string. Here, they cause
the XPath QDPH�� function to return the name of the current node.

Curly braces are recognized anywhere that an “attribute value template” can
occur. (Attribute value templates are defined in section 7.6.2 of the specification,
and they appear several places in the template definitions.). In such expressions,
curly braces can also be used to refer to the value of an attribute, ^#IRR`, or to
the content of an element ^IRR`.

Note: You can also generate attributes using �[VO�DWWULEXWH!. For more informa-
tion see Section 7.1.3 of the XSLT Specification.

PROCESS INLINE (CONTENT) ELEMENTS 273
The last remaining element is the /,1. tag. The easiest way to process that tag
will be to set up a named-template that we can drive with a parameter:

�[VO�WHPSODWH�QDPH �KWP/LQN�!
�[VO�SDUDP�QDPH �GHVW��VHOHFW �81'(),1('��!�
�[VO�HOHPHQW�QDPH �D�!

�[VO�DWWULEXWH�QDPH �KUHI�!
�[VO�YDOXH�RI�VHOHFW ��GHVW��!

��[VO�DWWULEXWH!
�[VO�DSSO\�WHPSODWHV�!�

��[VO�HOHPHQW!�
��[VO�WHPSODWH!

The major difference in this template is that, instead of specifying a PDWFK
clause, you gave the template a name with the QDPH="" clause. So this template
only gets executed when you invoke it.

Within the template, you also specified a parameter named “dest”, using the
�[VO�SDUDP! tag. For a bit of error checking, you used the VHOHFW clause to give
that parameter a default value of “81'(),1('”. To reference the variable in the
�[VO�YDOXH�RI! tag, you specified ´�GHVWµ.

Note: Recall that an entry in quotes is interpreted as an expression, unless it is fur-
ther enclosed in single quotes. That’s why the single quotes were needed earlier, in
�#W\SH
RUGHUHG
�—to make sure that RUGHUHG was interpreted as a string.

The �[VO�HOHPHQW! tag generates an element. Previously, we have been able to
simply specify the element we want by coding something like �KWPO!. But here
you are dynamically generating the content of the HTML anchor (�D!) in the
body of the �[VO�HOHPHQW! tag. And you are dynamically generating the KUHI
attribute of the anchor using the �[VO�DWWULEXWH! tag.

The last important part of the template is the �DSSO\�WHPSODWHV! tag, which
inserts the text from the text node under the /,1. element. (Without it, there
would be no text in the generated HTML link.)

Next, add the template for the /,1. tag, and call the named template from within
it:

�[VO�WHPSODWH�PDWFK �/,1.�!
�[VO�LI�WHVW �#WDUJHW�!

����7DUJHW�DWWULEXWH�VSHFLILHG���!
�[VO�FDOO�WHPSODWH�QDPH �KWP/LQN�!

274 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
�[VO�ZLWK�SDUDP�QDPH �GHVW��VHOHFW �#WDUJHW��!�
��[VO�FDOO�WHPSODWH!

��[VO�LI!
��[VO�WHPSODWH!

�[VO�WHPSODWH�QDPH �KWP/LQN�!
���

The WHVW �#WDUJHW� clause returns true if the WDUJHW attribute exists in the
/,1. tag. So this if-statement generates HTML links when the text of the link
and the target defined for it are different.

The �[VO�FDOO�WHPSODWH! tag invokes the named template, while �[VO�ZLWK�
SDUDP! specifies a parameter using the QDPH clause, and its value using the
VHOHFW clause.

As the very last step in the stylesheet construction process, add the if-clause
shown below to process /,1. tags that do not have a WDUJHW attribute.

�[VO�WHPSODWH�PDWFK �/,1.�!
�[VO�LI�WHVW �#WDUJHW�!

���
��[VO�LI!

<xsl:if test="not(@target)">
<xsl:call-template name="htmLink">

<xsl:with-param name="dest">
<xsl:apply-templates/>

</xsl:with-param>
</xsl:call-template>

</xsl:if>
��[VO�WHPSODWH!

The QRW����� clause inverts the previous test (there is no else clause, remem-
ber?). So this part of the template is interpreted when the WDUJHW attribute is not
specified. This time, the parameter value comes not from a select clause, but
from the contents of the �[VO�ZLWK�SDUDP! element.

Note: Just to make it explicit: variables (which we’ll mention a bit later) and param-
eters can have their value specified either by a VHOHFW clause, which lets you use
XPath expressions, or by the content of the element, which lets you use XSLT tags.

PRINTING THE HTML 275
The content of the parameter, in this case, is generated by the �[VO�DSSO\�WHP�
SODWHV�! tag, which inserts the contents of the text node under the /,1. ele-
ment.

Run the Program
When you run the program now, the results should look like this:

���
�K�!7KH��,!7KLUG��,!�0DMRU�6HFWLRQ

��K�!
�S!,Q�DGGLWLRQ�WR�WKH�LQOLQH�WDJ�LQ�WKH�KHDGLQJ��WKLV�VHFWLRQ

GHILQHV�WKH�WHUP��L!LQOLQH��L!��ZKLFK�OLWHUDOO\�PHDQV
�QR�OLQH�EUHDN���,W�DOVR�DGGV�D�VLPSOH�OLQN�WR�WKH�PDLQ�

SDJH�
IRU�WKH�-DYD�SODWIRUP���D�

KUHI �KWWS���MDYD�VXQ�FRP�!KWWS���MDYD�VXQ�FRP��D!���
DV�ZHOO�DV�D�OLQN�WR�WKH�
�D�KUHI �KWWS���MDYD�VXQ�FRP�[PO�!;0/��D!�SDJH�

��S!

Awesome! You have now converted a rather complex XML file to HTML. (As
seemingly simple as it was, it still provided a lot of opportunity for exploration.)

Printing the HTML
You have now converted an XML file to HTML. One day, someone will produce
an HTML-aware printing engine that you’ll be able to find and use through the
Java Printing Service (JPS) API. At that point, you’ll have ability to print an
arbitrary XML file as formatted data—all you’ll have to do is set up a stylesheet!

What Else Can XSLT Do?
As lengthy as this section of the tutorial has been, it has still only scratched the
surface of XSLT’s capabilities. Many additional possibilities await you in the
XSLT Specification. Here are a few of the things to look for:

import (Section 2.6.2) and include (Section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The
LQFOXGH statement simply inserts any definitions from the included file. The

276 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
LPSRUW statement lets you override definitions in the imported file with defi-
nitions in your own stylesheet.

for-each loops (Section 8)
Loop over a collection of items and process each one, in turn.

choose (case-statement) for conditional processing (Section 9.2)
Branch to one of multiple processing paths depending on an input value.

generating numbers (Section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric
literals. XSLT provides three numbering modes:

• single: Numbers items under a single heading, like an “ordered list” in
HTML.

• multiple: Produces multi-level numbering like “A.1.3”.

• any: Consecutively numbers items wherever they appear, like the foot-
notes in a chapter.

formatting numbers (Section 12.3)
Control enumeration formatting, so you get numerics (IRUPDW ���), upper-
case alphabetics (IRUPDW �$�), lowercase alphabetics (IRUPDW �D�), or
compound numbers, like “A.1”, as well as numbers and currency amounts
suited for a specific international locale.

sorting output (Section 10)
Produce output in some desired sorting order.

mode-based templates (Section 5.7)
Lets you process an element multiple times, each time in a different “mode”.
You add a PRGH attribute to templates, and then specify �DSSO\�WHPSODWHV
PRGH �����! to apply only the templates with a matching mode. Combined
with the �DSSO\�WHPSODWHV�VHOHFW �����! to slice and dice the input pro-
cessing, creating a matrix of elements to process and the templates to apply
to them.

variables (Section 11)
Variables, like parameters, let you control a template’s behavior. But they are
not as valuable as you might think. The value of a variable is only known
within the scope of the current template or <xsl:if> clause (for example) in
which it is defined. You can’t pass a value from one template to another, or
even from an enclosed part of a template to another part of the same tem-
plate.

These statements are true even for a “global” variable. You can change its
value in a template, but the change only applies to that template. And when
the expression used to define the global variable is evaluated, that evaluation

WHAT ELSE CAN XSLT DO? 277
takes place in the context of the structure’s root node. In other words, global
variables are essentially runtime constants. Those constants can be useful to
change the behavior of a template, especially when coupled with LQFOXGH
and LPSRUW statements. But variables are not a general-purpose data-man-
agement mechanism.

The XSLT/XPath Data Model
Like the DOM, the XSL/XPath data model consists of a tree containing a variety
of nodes. Under any given element node, there are text nodes, attribute nodes,
element nodes, comment nodes, and processing instruction nodes.

Once an XPath expression establishes a context, other expressions produce val-
ues that are relative to that context. For example, the expression ��/,67 estab-
lishes a context consisting of a LIST node. Within the XSLT template that
processes such nodes, the expression #W\SH refers to the element’s type attribute.
(Similarly, the expression #
 refers to all of the element’s attributes.)

The Trouble with Variables
It is awfully tempting to create a single template and set a variable for the desti-
nation of the link, rather than going to the trouble of setting up a parameterized
template and calling it two different ways. The idea would be to set the variable
to a default value (say, the text of the /,1. tag) and then, if WDUJHW attribute
exists, set the destination variable to the value of the WDUJHW attribute.

That would be a darn good idea—if it worked. But once again, the issue is that
variables are only known in the scope within which they are defined. So when
you code an �[VO�LI! to change the value of the variable, the value is only
known within the context of the �[VO�LI! tag. Once ��[VO�LI! is encountered,
any change to the variable’s setting is lost.

A similarly tempting idea is the possibility of replacing the
WH[W��_%_,_8_'()_/,1. specification with a variable (�LQOLQH). But since the
value of the variable is determined by where it is defined, the value of a global
LQOLQH variable consists of text nodes, �%! nodes, etc. that happen to exist at the
root level. In other words, the value of such a variable, in this case, is null.

278 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Next...
The final page of the XSLT tutorial will show you how to concatenate multiple
transformations together in a filter chain.

Concatenating XSLT Transformations
with a Filter Chain

It is sometimes useful to create a “filter chain” of XSLT transformations, so that
the output of one transformation becomes the input of the next. This section of
the tutorial shows you how to do that.

Writing the Program
Start by writing a program to do the filtering. This example will show the full
source code, but you can use one of the programs you’ve been working on as a
basis, to make things easier.

Note: The code described here is contained in)LOWHU&KDLQ�MDYD.

The sample program includes the import statements that identify the package
locations for each class:

LPSRUW�MDYD[�[PO�SDUVHUV�)DFWRU\&RQILJXUDWLRQ(UURU�
LPSRUW�MDYD[�[PO�SDUVHUV�3DUVHU&RQILJXUDWLRQ([FHSWLRQ�
LPSRUW�MDYD[�[PO�SDUVHUV�6$;3DUVHU�
LPSRUW�MDYD[�[PO�SDUVHUV�6$;3DUVHU)DFWRU\�

LPSRUW�RUJ�[PO�VD[�6$;([FHSWLRQ�
LPSRUW�RUJ�[PO�VD[�6$;3DUVH([FHSWLRQ�
LPSRUW�RUJ�[PO�VD[�,QSXW6RXUFH�
LPSRUW�RUJ�[PO�VD[�;0/5HDGHU�
LPSRUW�RUJ�[PO�VD[�;0/)LOWHU�

LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU([FHSWLRQ�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU)DFWRU\�
LPSRUW�MDYD[�[PO�WUDQVIRUP�7UDQVIRUPHU&RQILJXUDWLRQ([FHSWLRQ�

LPSRUW�MDYD[�[PO�WUDQVIRUP�VD[�6$;7UDQVIRUPHU)DFWRU\�

WRITING THE PROGRAM 279
LPSRUW�MDYD[�[PO�WUDQVIRUP�VD[�6$;6RXUFH�
LPSRUW�MDYD[�[PO�WUDQVIRUP�VD[�6$;5HVXOW�

LPSRUW�MDYD[�[PO�WUDQVIRUP�VWUHDP�6WUHDP6RXUFH�
LPSRUW�MDYD[�[PO�WUDQVIRUP�VWUHDP�6WUHDP5HVXOW�

LPSRUW�MDYD�LR�
�

The program also includes the standard error handlers you’re used to. They’re
listed here, just so they are all gathered together in one place:

`
FDWFK��7UDQVIRUPHU&RQILJXUDWLRQ([FHSWLRQ�WFH��^

���(UURU�JHQHUDWHG�E\�WKH�SDUVHU
6\VWHP�RXW�SULQWOQ���
�7UDQVIRUPHU�)DFWRU\�HUURU���
6\VWHP�RXW�SULQWOQ���������WFH�JHW0HVVDJH�����

���8VH�WKH�FRQWDLQHG�H[FHSWLRQ��LI�DQ\
7KURZDEOH�[� �WFH�
LI��WFH�JHW([FHSWLRQ���� �QXOO�

[� �WFH�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

`
FDWFK��7UDQVIRUPHU([FHSWLRQ�WH��^

���(UURU�JHQHUDWHG�E\�WKH�SDUVHU
6\VWHP�RXW�SULQWOQ���
�7UDQVIRUPDWLRQ�HUURU���
6\VWHP�RXW�SULQWOQ���������WH�JHW0HVVDJH�����

���8VH�WKH�FRQWDLQHG�H[FHSWLRQ��LI�DQ\
7KURZDEOH�[� �WH�
LI��WH�JHW([FHSWLRQ���� �QXOO�

[� �WH�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

`
FDWFK��6$;([FHSWLRQ�V[H��^

���(UURU�JHQHUDWHG�E\�WKLV�DSSOLFDWLRQ
����RU�D�SDUVHU�LQLWLDOL]DWLRQ�HUURU�
([FHSWLRQ��[� �V[H�
LI��V[H�JHW([FHSWLRQ���� �QXOO�

[� �V[H�JHW([FHSWLRQ���
[�SULQW6WDFN7UDFH���

`
FDWFK��3DUVHU&RQILJXUDWLRQ([FHSWLRQ�SFH��^

���3DUVHU�ZLWK�VSHFLILHG�RSWLRQV�FDQ
W�EH�EXLOW
SFH�SULQW6WDFN7UDFH���

`

280 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
FDWFK��,2([FHSWLRQ�LRH��^
���,�2�HUURU
LRH�SULQW6WDFN7UDFH���

`

In between the import statements and the error handling, the core of the program
consists of the code shown below.

SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ�DUJY>@�
^

LI��DUJY�OHQJWK�� ����^
6\VWHP�HUU�SULQWOQ���8VDJH��MDYD�)LOWHU&KDLQ�

VW\OHVKHHW��VW\OHVKHHW��[POILOH���
6\VWHP�H[LW�����

`

�WU\�^
���5HDG�WKH�DUJXPHQWV
)LOH�VW\OHVKHHW�� �QHZ�)LOH�DUJY>�@��
)LOH�VW\OHVKHHW�� �QHZ�)LOH�DUJY>�@��
)LOH�GDWDILOH���� �QHZ�)LOH�DUJY>�@��

����6HW�XS�WKH�LQSXW�VWUHDP
%XIIHUHG,QSXW6WUHDP�ELV� �QHZ

%XIIHUHG,QSXW6WUHDP�QHZ)LOH,QSXW6WUHDP�GDWDILOH���
,QSXW6RXUFH�LQSXW� �QHZ�,QSXW6RXUFH�ELV��

����6HW�XS�WR�UHDG�WKH�LQSXW�ILOH�
6$;3DUVHU)DFWRU\�VSI� �6$;3DUVHU)DFWRU\�QHZ,QVWDQFH���
6$;3DUVHU�SDUVHU� �VSI�QHZ6$;3DUVHU���
;0/5HDGHU�UHDGHU� �SDUVHU�JHW;0/5HDGHU���

����&UHDWH�WKH�ILOWHUV�(see Note #1)
6$;7UDQVIRUPHU)DFWRU\�VWI�

�6$;7UDQVIRUPHU)DFWRU\�
7UDQVIRUPHU)DFWRU\�QHZ,QVWDQFH���

;0/)LOWHU�ILOWHU�� �VWI�QHZ;0/)LOWHU�
QHZ�6WUHDP6RXUFH�VW\OHVKHHW����

;0/)LOWHU�ILOWHU�� �VWI�QHZ;0/)LOWHU�
QHZ�6WUHDP6RXUFH�VW\OHVKHHW����

���:LUH�WKH�RXWSXW�RI�WKH�UHDGHU�WR�ILOWHU��(see Note #2)
���DQG�WKH�RXWSXW�RI�ILOWHU��WR�ILOWHU�
ILOWHU��VHW3DUHQW�UHDGHU��
ILOWHU��VHW3DUHQW�ILOWHU���

����6HW�XS�WKH�RXWSXW�VWUHDP

UNDERSTANDING HOW IT WORKS 281
6WUHDP5HVXOW�UHVXOW� �QHZ�6WUHDP5HVXOW�6\VWHP�RXW��

���6HW�XS�WKH�WUDQVIRUPHU�WR�SURFHVV�WKH�6$;�HYHQWV�JHQHUDWHG
���E\�WKH�ODVW�ILOWHU�LQ�WKH�FKDLQ

7UDQVIRUPHU�WUDQVIRUPHU� �VWI�QHZ7UDQVIRUPHU���
6$;6RXUFH�WUDQVIRUP6RXUFH� �QHZ�6$;6RXUFH�

ILOWHU���LQSXW��
WUDQVIRUPHU�WUDQVIRUP�WUDQVIRUP6RXUFH��UHVXOW��

`�FDWFK�������^
���

Notes

1. This weird bit of code is explained by the fact that 6$;7UDQVIRUPHU)DF�
WRU\ extends 7UDQVIRUPHU)DFWRU\, adding methods to obtain filter
objects. The QHZ,QVWDQFH�� method is a static method defined in 7UDQV�
IRUPHU)DFWRU\, which (naturally enough) returns a 7UDQVIRUPHU)DFWRU\
object. In reality, though, it returns a 6$;7UDQVIRUPHU)DFWRU\. So, to get
at the extra methods defined by 6$;7UDQVIRUPHU)DFWRU\, the return value
must be cast to the actual type.

2. An XMLFilter object is both a SAX reader and a SAX content handler. As
a SAX reader, it generates SAX events to whatever object has registered to
receive them. As a content handler, it consumes SAX events generated by
it’s “parent” object -- which is, of necessity, a SAX reader, as well. (Calling
the event generator a “parent” must make sense when looking at the inter-
nal architecture. From the external perspective, the name doesn’t appear to
be particularly fitting.) The fact that filters both generate and consume
SAX events allows them to be chained together.

Understanding How it Works
The code listed above shows you how to set up the transformation. Figure 2
should help you get a better feel for what’s happening when it executes.

282 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Figure 2 Operation of chained filters

When you create the transformer, you pass it at a 6$;6RXUFH object, which
encapsulates a reader (in this case, ILOWHU�) and an input stream. You also pass
it a pointer to the result stream, where it directs its output. The diagram shows
what happens when you invoke WUDQVIRUP�� on the transformer. Here is an
explanation of the steps:

1. The transformer sets up an internal object as the content handler for
ILOWHU�, and tells it to parse the input source.

2. ILOWHU�, in turn, sets itself up as the content handler for ILOWHU�, and tells
it to parse the input source.

3. Continuing to pass the buck, ILOWHU� asks the SDUVHU object to please
parse the input source.

4. The SDUVHU does so, generating SAX events which it passes to ILOWHU�.

5. ILOWHU�, acting in its capacity as a content handler, processes the events
and does its transformations. Then, acting in its capacity as a SAX reader
(XMLReader), it sends SAX events to ILOWHU�.

6. ILOWHU� does the same, sending its events to the transformer’s content
handler, which generates the output stream.

TESTING THE PROGRAM 283
Testing the Program
To try out the program, you’ll create an XML file based on a tiny fraction of the
XML DocBook format, and convert it to the $57,&/(format defined here. Then
you’ll apply the $57,&/(stylesheet to generate an HTML version.

Note: This example processes VPDOO�GRFERRN�DUWLFOH�[PO using GRFERRN7R$U�
WLFOH�[VO, and DUWLFOH�F�[VO. The result is the HTML code shown in ILOWHU�
RXW�W[W. (The browser-displayable versions are VPDOO�GRFERRN�DUWLFOH�
[PO�KWPO, GRFERRN7R$UWLFOH�[VO�KWPO, DUWLFOH�F�[VO�KWPO, and ILOWHU�
RXW�KWPO.) See the O’Reilly Web pages for a good description of the DocBook arti-
cle format.

Start by creating a small article that uses a minute subset of the XML DocBook
format:

�"[PO�YHUVLRQ �����"!
�$UWLFOH!

�$UW+HDGHU!
�7LWOH!7LWOH�RI�P\��'RFERRN��DUWLFOH��7LWOH!

��$UW+HDGHU!
�6HFW�!

�7LWOH!7LWOH�RI�6HFWLRQ�����7LWOH!
�3DUD!7KLV�LV�D�SDUDJUDSK���3DUD!

��6HFW�!
��$UWLFOH!

Next, create a stylesheet to convert it into the $57,&/(format:

�[VO�VW\OHVKHHW�
[POQV�[VO �KWWS���ZZZ�Z��RUJ������;6/�7UDQVIRUP��
YHUVLRQ �����
!
�[VO�RXWSXW�PHWKRG �[PO��!�(see Note #1)

��[VO�WHPSODWH�PDWFK ���!
�$57,&/(!

�[VO�DSSO\�WHPSODWHV�!
��$57,&/(!

��[VO�WHPSODWH!

������/RZHU�OHYHO�WLWOHV�VWULS�RXW�WKH�HOHPHQW�WDJ���!�(see
Note #2)

284 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
�����7RS�OHYHO�WLWOH���!
�[VO�WHPSODWH�PDWFK ��$UWLFOH�$UW+HDGHU�7LWOH�!�(see Note #3)

�7,7/(!��[VO�DSSO\�WHPSODWHV�!���7,7/(!
��[VO�WHPSODWH!

��[VO�WHPSODWH�PDWFK ���6HFW��!�(see Note #4)
�6(&7!�[VO�DSSO\�WHPSODWHV�!��6(&7!

��[VO�WHPSODWH!

��[VO�WHPSODWH�PDWFK �3DUD�!�
�3$5$!�[VO�DSSO\�WHPSODWHV�!��3$5$!�(see Note #5)

��[VO�WHPSODWH!

��[VO�VW\OHVKHHW!

Notes:

1. This time, the stylesheet is generating XML output.

2. The element below matches the main title. For section titles, the tag gets
stripped. (Since no template conversion governs those title elements, they
are ignored. The text nodes they contain, however, are still echoed as a
result of XSLT’s built in template rules. More on that below.)

3. The title from the DocBook article header becomes the $57,&/(title.

4. Numbered section tags are converted to plain 6(&7 tags.

5. Carries out a case conversion, so 3DUD becomes 3$5$.

Although it hasn’t been mentioned explicitly, XSLT defines a number of built-in
(default) template rules. The complete set is listed in Section 5.8 of the spec.
Mainly, they provide for the automatic copying of text and attribute nodes, and
for skipping comments and processing instructions. They also dictate that inner
elements are processed, even when their containing tags that don’t have tem-
plates. That is the reason that the text node in the section title is processed, even
though the section title is not covered by any template.

Now, run the)LOWHU&KDLQ program, passing it the stylesheet above, the $57,�
&/(stylesheet, and the small DocBook file, in that order. The result should like
this:

�KWPO!
�ERG\!
�K��DOLJQ �FHQWHU�!7LWOH�RI�P\��'RFERRN��DUWLFOH��K�!
�K�!7LWOH�RI�6HFWLRQ�����K�!
�S!7KLV�LV�D�SDUDJUDSK���S!
��ERG\!
��KWPO!

CONCLUSION 285
Conclusion
Congratulations! You have completed the XSLT tutorial! There is a lot you do
with XML and XSLT, and you are now prepared to explore the many exciting
possibilities that await.

286 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Java™ API for XML
Messaging

Maydene Fisher

THE Java™ API for XML Messaging (“JAXM”) makes it possible for devel-
opers to do XML messaging using the Java™ platform. This document will help
you learn how to use JAXM.

For more information on JAXM, see the JAXM documentation included with
the Java Web Services Developer Pack (“Java WSDP”) at

�JWSDP_HOME!�GRFV�MD[P�LQGH[�KWPO

The Java WSDP includes the following material related to JAXM:

• The API specification (Javadoc™ documentation) for JAXM

• The JAXM 1.0.1 EA1 Reference Implementation (RI)

• Various documents about the RI

• Sample applications that can be run with the JAXM RI

This document gives instructions for running the RI as a way to help you get
started. You may prefer to go through both the overview and tutorial before run-
ning the samples to make it easier to understand what the RI is doing, or you
may prefer to explore the RI first. The overview gives some of the conceptual
background behind the JAXM API to help you understand why certain things are
done the way they are. The tutorial shows you how to use the basic JAXM API,
giving examples and explanations of the more commonly used features. Finally,
the code examples show how to build an application that you can run.
287

288 JAVA™ API FOR XML MESSAGING
In This Chapter
Overview of JAXM 288

Messages 288
Connections 291
Messaging Providers 293

Running the Samples 295
The Sample Programs 296
The Provider Administration Tool 297

Tutorial 299
Client without a Messaging Provider 299
Client with a Messaging Provider 306
Adding Attachments 312

Code Examples 315
Request.java 316
MyUddiPing.java 318

Overview of JAXM
This overview presents a high level view of how JAXM messaging works and
explains concepts in general terms. Its goal is to give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at JAXM from three perspectives:

• Messages

• Connections

• Messaging providers

Messages
JAXM messages follow SOAP standards. That is, they conform to the Simple
Object Access Protocol (SOAP) 1.1 and SOAP with Attachments specifications,
which prescribe the format for messages and also specify some things that are
required, optional, or not allowed. With the JAXM API, you can create XML
messages that conform to these SOAP specifications simply by making Java API
calls.

MESSAGES 289
The Structure of an XML Document

Note: For more complete information on XML documents, see Understanding
XML (page 31) and Java™ API for XML Processing (page 73).

An XML document has a hierarchical structure with elements, subelements, sub-
subelements, and so on. You will notice that many of the JAXM classes and
interfaces represent XML elements in a SOAP message and have the word ele-
ment or SOAP or both in their names.

An element is also referred to as a node. Accordingly, the JAXM API has the
interface 1RGH, which is the base class for all the classes and interfaces that rep-
resent XML elements in a SOAP message. There are also methods such as
62$3(OHPHQW�DGG7H[W1RGH, 1RGH�GHWDFK1RGH, and 1RGH�JHW9DOXH, which
you will see how to use in the tutorial section.

What Is in a Message?
The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments
The following outline shows the very high level structure of a JAXM message
with no attachments. Except for the SOAP header, all the parts listed are
required.

I. SOAP message

A. SOAP part

1. SOAP envelope

a. SOAP header (optional)

b. SOAP body

The JAXM API provides the 62$30HVVDJH class to represent a SOAP message,
62$33DUW to represent the SOAP part, 62$3(QYHORSH to represent the SOAP
envelope, and so on.

When you create a new 62$30HVVDJH object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new 62$30HVVDJH

290 JAVA™ API FOR XML MESSAGING
object has a 62$33DUW object that contains a 62$3(QYHORSH object. The 62$3(Q�
YHORSH object in turn automatically contains an empty 62$3+HDGHU object fol-
lowed by an empty 62$3%RG\ object. If you do not need the 62$3+HDGHU object,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

Messages with Attachments
A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part may contain only XML content; as a result, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So, if for example, you want your message to contain an image file or plain
text, your message must have an attachment part for it. Note than an attachment
part can contain any kind of content, so it can contain data in XML format as
well.

The following outline shows the high-level structure of a SOAP message that
has two attachments, one containing plain text and one containing an image.

I. SOAP message

A. SOAP part

1. SOAP envelope

a. SOAP header (optional)

b. SOAP body

B. Attachment part (content is plain text)

C. Attachment part (content is an image file)

JAXM provides the $WWDFKPHQW3DUW class to represent the attachment part of a
SOAP message.

A 62$30HVVDJH object automatically has a 62$33DUW object and its required sub-
elements, but because $WWDFKPHQW3DUW objects are optional, you have to create
and add them yourself.

The tutorial section will walk you through creating and populating messages
with and without attachment parts.

Another way to look at JAXM messaging is from the perspective of whether or
not a messaging provider is used, which is discussed at the end of the section
Messaging Providers (page 293).

CONNECTIONS 291
Connections
All JAXM messages are sent and received over a connection. The connection
can go directly to a particular destination or to a messaging provider. (A messag-
ing provider is a service that handles the transmission and routing of messages
and provides features not available when you use a connection that goes directly
to its ultimate destination. Messaging providers are explained in more detail
later.)

The JAXM API supplies the following class and interface to represent these two
kinds of connections:

1. 62$3&RQQHFWLRQ — a connection from the sender directly to the receiver
(a point-to-point connection)

2. 3URYLGHU&RQQHFWLRQ — a connection to a messaging provider

SOAPConnection
A 62$3&RQQHFWLRQ object, which represents a point-to-point connection, is sim-
ple to create and use. One reason is that you do not have to do any configuration
to use a 62$3&RQQHFWLRQ object because it does not need to run in a servlet con-
tainer (like Tomcat) or a J2EE container. It is the only kind of connection avail-
able to a client that does not use a messaging provider.

The following code fragment creates a 62$3&RQQHFWLRQ object and then, after
creating and populating the message, uses the connection to send the message.
The parameter request is the message being sent; endpoint represents where it is
being sent.

62$3&RQQHFWLRQ)DFWRU\�IDFWRU\�
62$3&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

62$3&RQQHFWLRQ�FRQ� �IDFWRU\�FUHDWH&RQQHFWLRQ���

��������FUHDWH�D�UHTXHVW�PHVVDJH�DQG�JLYH�LW�FRQWHQW

62$30HVVDJH�UHVSRQVH� �FRQ�FDOO�UHTXHVW��HQGSRLQW��

When a 62$3&RQQHFWLRQ object is used, the only way to send a message is with
the method FDOO, which transmits its message and then blocks until it receives a
reply. Because the method FDOO requires that a response be returned to it, this
type of messaging is referred to as request-response messaging.

292 JAVA™ API FOR XML MESSAGING
A Web service implemented for request-response messaging must return a
response to any message it receives. As stated in the previous section, a request-
response message will always be sent using the 62$3&RQQHFWLRQ�FDOO method,
which requires that a message be returned to unblock it. Most often, the message
being sent is a request, and the message that is returned is the response.

When the message is an update, the response is an acknowledgement that the
update was received. Such an acknowledgement implies that the update was suc-
cessful. Some messages may not require any response at all. The service that
gets such a message is still required to send back a response because one is
needed to unblock the FDOO method. In this case, the response is not related to
the content of the message; it is simply a message to unblock the FDOO method.

Unlike a client with no messaging provider, which is limited to using only a
62$3&RQQHFWLRQ object, a client that uses a messaging provider is free to use a
62$3&RQQHFWLRQ object or a 3URYLGHU&RQQHFWLRQ object. It is expected that
3URYLGHU&RQQHFWLRQ objects will be used most of the time.

ProviderConnection
A 3URYLGHU&RQQHFWLRQ object represents a connection to a messaging provider.
(The next section explains more about messaging providers.) When you send a
message via a 3URYLGHU&RQQHFWLRQ object, the message goes to the messaging
provider. The messaging provider forwards the message, following the mes-
sage’s routing instructions, until the message gets to the ultimate recipient’s mes-
saging provider, which in turn forwards the message to the ultimate recipient.

When an application is using a 3URYLGHU&RQQHFWLRQ object, it must use the
method 3URYLGHU&RQQHFWLRQ�VHQG to send a message. This method transmits
the message one way and returns immediately, without having to block until it
gets a response. The messaging provider that receives the message will forward
it to the intended destination and return the response, if any, at a later time. The
interval between sending a request and getting the response may be very short,
or it may be measured in days. In this style of messaging, the original message is
sent as a one-way message, and any response is sent subsequently as a one-way
message. Not surprisingly, this style of messaging is referred to as one-way mes-
saging.

MESSAGING PROVIDERS 293
Messaging Providers
A messaging provider is a service that handles the transmission and routing of
messages. It works behind the scenes to keep track of messages and see that they
are sent to the proper destination or destinations.

Transparency
One of the great features of a messaging provider is that you are not even aware
of it. You just write your JAXM application, and the right things happen. For
example, when you are using a messaging provider and send a message by call-
ing the 3URYLGHU&RQQHFWLRQ.VHQG method, the messaging provider receives the
message and works with other parts of the communications infrastructure to per-
form various tasks, depending on what the message’s header contains and how
the messaging provider itself has been implemented. The result is that the mes-
sage arrives at its final destination without your being aware of any of the details
involved in accomplishing the delivery.

Profiles
JAXM offers the ability to plug in additional protocols that are built on top of
SOAP. A JAXM provider implementation is not required to implement features
beyond what the SOAP 1.1 and SOAP with Attachments specifications require,
but it is free to incorporate other standard protocols, called profiles, that are
implemented on top of SOAP. For example, the “ebXML Routing, Transport,
and Packaging V1.0—Message Service Specification” defines levels of service
that are not included in the two SOAP specifications. A messaging provider that
is implemented to include ebXML capabilities on top of SOAP capabilities is
said to support an ebXML profile. A messaging provider may support multiple
profiles, but an application can use only one at a time and must have a prior
agreement with each of the parties to whom it sends messages about what profile
is being used.

Profiles affect a message’s headers. For example, depending on the profile, a
new 62$30HVVDJH object will come with certain headers already set. Also a pro-
file implementation may provide API that makes it easier to create a header and
set its content. The JAXM RI includes APIs for both the ebXML and SOAP-RP
profiles. The Javadoc documentation for these profiles is at
�-:6'3B+20(!�GRFV�MD[P�SURILOHV�LQGH[�KWPO. (You will find links to the
Javadoc documentation for the JAXM API at �-:6'3B+20(!�DSL�LQGH[�KWPO.)

294 JAVA™ API FOR XML MESSAGING
Continuously Active
A messaging provider works continuously. A JAXM client may make a connec-
tion with its provider, send one or more messages, and then close the connection.
The provider will store the message and then send it. Depending on how the pro-
vider has been configured, it will resend a message that was not successfully
delivered until it is successfully delivered or until the limit for the number of
resends is reached. Also, the provider will stay in a waiting state, ready to
receive any messages that are intended for the client. The provider will store
incoming messages so that when the client connects with the provider again, the
provider will be able to forward the messages. In addition, the provider generates
error messages as needed and maintains a log where messages and their related
error messages are stored.

Intermediate Destinations
When a messaging provider is used, a message can be sent to one or more inter-
mediate destinations before going to the final recipient. These intermediate desti-
nations, called actors, are specified in the message’s 62$3+HDGHU object. For
example, assume that a message is an incoming Purchase Order. The header
might route the message to the order input desk, the order confirmation desk, the
shipping desk, and the billing department. Each of these destinations is an actor
that will take the appropriate action, remove the header information relevant to
it, and send the message to the next actor. The default actor is the final destina-
tion, so if no actors are specified, the message is routed to the final recipient.

The attribute actor is used to specify an intermediate recipient. A related attribute
is mustUnderstand, which, when its value is WUXH, means that an actor must under-
stand what it is supposed to do and carry it out successfully. A 62$3+HDGHU
object uses the method DGG$WWULEXWH to add these attributes, and the 62$3+HDG�
HU(OHPHQW interface provides methods for setting and getting the values of these
attributes.

When to Use a Messaging Provider
A JAXM client may or may not use a messaging provider. Generally speaking, if
you just want to be a consumer of web services, you do not need a messaging

MESSAGING PROVIDERS 295
provider. The following list shows some of the advantages of not using a mes-
saging provider:

• The application can be written using the J2SE platform

• The application is not required to be deployed in a container such as Tom-
cat or a J2EE container

• No configuration is required

The limitations of not using a messaging provider are the following:

• The client can send only request-response messages

• The client can act in the client role only

It follows that if you want to provide a web service, meaning that you must be
able to get and save requests that are sent to you at any time, you must use a mes-
saging provider. You will also need to run in a container, which provides the
messaging infrastructure used by the provider. A messaging provider gives you
the flexibility to assume both the client and service roles, and it also lets you
send one-way messages. In addition, if your messaging provider supports a pro-
tocol such as ebXML or SOAP-RP on top of SOAP, you can take advantage of
the additional quality of service features that it provides.

Messaging with and without a Provider
JAXM clients can be categorized according to whether or not they use a messag-
ing provider. Those that do not use a messaging provider can be further divided
into those that run in a container and those that do not. A JAXM client that does
not use a messaging provider and also does not run in a container is called a stan-
dalone client.

Running the Samples
The JAXM Reference Implementation (RI) is an implementation of the JAXM
API plus an implementation of a messaging provider. The RI also includes basic
implementations of ebXML and SOAP-RP profiles, which run on top of SOAP.
When an enterprise shops for a messaging provider, one of the main consider-
ations is which profiles the messaging provider supports.

The RI also provides some simple examples of JAXM applications that you can
run and also a Provider Administration tool that makes it easy to configure the
messaging provider.

296 JAVA™ API FOR XML MESSAGING
Before you can run the samples that run in a container or use the Provider
Administration tool, you need to start up Tomcat. These are the steps to follow:

1. type the following at the command line:

Unix:

FG��-:6'3B+20(�ELQ
VWDUWXS�VK

Windows:

FG��-:6'3B+20(�?ELQ
VWDUWXS�EDW

2. Open a browser window and set it to

KWWS���ORFDOKRVW������LQGH[�KWPO

3. On the page that comes up, click on one of the sample programs listed.
Then follow the instructions in the new window that comes up.

The Sample Programs
The sample programs illustrate various kinds of applications you can write with
the JAXM API. Once Tomcat is running, you can run the following sample pro-
grams provided with the RI simply by setting your browser to the appropriate
URL and following the instructions on the Web page that comes up.

• Simple — A simple example of sending and receiving a message using the
local messaging provider

• Translator — A simple translation service that translates text into different
languages

• JAXM Tags — An example that uses JSP tags to generate and consume a
SOAP message

• Remote — An example of a round trip message that uses a JAXM messag-
ing provider that supports the basic ebXML profile to send and receive a
message

• SOAP-RP — An example of a round trip message that uses a JAXM mes-
saging provider that supports the basic SOAP-RP profile to send and
receive a message

THE PROVIDER ADMINISTRATION TOOL 297
There are two other sample programs, MD[P�XGGLSLQJ and MD[P�VWDQGDORQH,
that do not run in Tomcat. To run them, go to the �-:6'3B+20(!�VDPSOHV�MD[P
directory, where you will find the directories XGGLSLQJ and VWDQGDORQH. Each
directory contains a 5($'0(file that explains what to do.

The last part of the JAXM tutorial modifies the code in 8GGL3LQJ�MDYD and also
explains in detail how to run it. You might find it more convenient to wait until
you have reached that section before trying to run the MD[P�XGGLSLQJ and MD[P�
VWDQGDORQH samples.

The preceding list presented the sample applications according to what they do.
You can also look at the sample applications as examples of the three possible
types of JAXM clients:

• Those that do not use a messaging provider and also do not run in a
container
These are called standalone applications. The samples MD[P�VWDQGDORQH
and MD[P�XGGLSLQJ are examples of standalone clients.

• Those that do not use a messaging provider and run in a container
The samples Simple, Translator, and JAXM Tags are examples of this
type. Simple differs from the other two in that it uses a local provider,
which should not be confused with a messaging provider. The local pro-
vider is simply a mechanism for returning the reply to a message that was
sent using the method 62$3&RQQHFWLRQ�FDOO.

• Those that use a messaging provider and run in a container
The samples Remote and SOAP-RP are examples of this type. The JAXM
RI includes an implementation of a messaging provider and also imple-
mentations of two profiles that operate on top of SOAP. Remote uses the
implementation of an ebXML profile, and SOAP-RP uses the implemen-
tation of a SOAP-RP profile.

The Provider Administration Tool
The same LQGH[�KWPO page with links to the samples has a link to the Provider
Administration tool. This tool requires a user name and password for authentica-
tion, which you will have to set up before you can use the tool. All that is
involved in the setup is simply opening the file WRPFDW�XVHUV�[PO and uncom-
menting the element for SURYLGHUDGPLQ. Here are the steps to follow:

1. Open the file <-:6'3B+20(!�FRQI�WRPFDW�XVHUV�[PO in your favorite
editor

298 JAVA™ API FOR XML MESSAGING
2. Delete the comment tags (“<!--”) and (“-->”) that are before and after the
following element

�XVHUV�QDPH µMD[P�SURYLGHUDGPLQµ�SDVVZRUG µFKDQJHPHµ
UROH µSURYLGHUµ�!

3. If Tomcat is running, you will need to shut it down and start it up again.
This is so that Tomcat will see the revised version of WRPFDW�XVHUV�[PO.
Here are the instructions for shutting Tomcat down and then starting it up
again:

Unix:

FG��-:6'3B+20(�ELQ
VKXWGRZQ�VK
VWDUWXS�VK

Windows:

FG��-:6'3B+20(�?ELQ
VKXWGRZQ�EDW
VWDUWXS�EDW

4. Set your browser window to

KWWS���ORFDOKRVW������LQGH[�KWPO

5. Click on the link “JAXM Provider Administration Tool”. A window will
come up with text boxes for your login name and password.
Use the name and password in the file WRPFDW�XVHUV�[PO, which are

XVHU�QDPH��MD[P�SURYLGHUDGPLQ
SDVVZRUG��FKDQJHPH

When the Provider Administration tool comes up, follow the instructions it
gives. This tool is normally used by System Administrators, but others may use
it as well. Exploring this tool gives you more of an idea of what a messaging pro-

CLIENT WITHOUT A MESSAGING PROVIDER 299
vider needs to know. For example, some typical ways to change the provider
properties are:

• To add, modify, or delete an endpoint

• To change the retry interval (the amount of time the provider will wait
before trying to send a message again)

• To change the number of retries (the number of times the provider will try
to send a message)

• To change the directory where the provider logs messages

Tutorial
This section will walk you through the basics of sending a SOAP message using
the JAXM API. At the end of this chapter, you will know how to do the follow-
ing:

• Get a connection

• Create a message

• Add content to a message

• Send the message

• Retrieve the content in a message and an attachment

First, we’ll walk through the steps in sending a request-response message for a
client that does not use a messaging provider. Then we’ll do a walkthrough of a
client that uses a messaging provider sending a one-way message. Both types of
client may add attachments to a message, so adding attachments is covered last
as a separate topic.

Client without a Messaging Provider
An application that does not use a messaging provider is limited to operating in a
client role and can send only request-response messages. Though limited, it can
make use of Web services that are implemented to do request-response messag-
ing.

300 JAVA™ API FOR XML MESSAGING
Getting a SOAPConnection Object
The first thing any JAXM client needs to do is get a connection, either a 62$3�
&RQQHFWLRQ object or a 3URYLGHU&RQQHFWLRQ object. The overview section dis-
cusses these two types of connections and how they are used.

A client that does not use a messaging provider has only one choice for creating
a connection, which is to create a 62$3&RQQHFWLRQ object. This kind of connec-
tion is a point-to-point connection, meaning that it goes directly from the sender
to the URL that the sender specifies.

The first step is to obtain a 62$3&RQQHFWLRQ)DFWRU\ object that you can use to
create your connection. The JAXM API makes this easy by providing the 62$3�
&RQQHFWLRQ)DFWRU\ class with a default implementation. You can get an
instance of this implementation with the following line of code.

62$3&RQQHFWLRQ)DFWRU\�VF)DFWRU\� �
62$3&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

Notice that because QHZ,QVWDQFH is a static method, you will always use the
class name 62$3&RQQHFWLRQ)DFWRU\ when you invoke its QHZ,QVWDQFH
method.

Now you can use scFactory to create a 62$3&RQQHFWLRQ object.

62$3&RQQHFWLRQ�FRQ� �VF)DFWRU\�FUHDWH&RQQHFWLRQ���

You will use con later to send the message that is created in the next part.

Creating a Message
The next step is to create a message, which you do using a 0HVVDJH)DFWRU\
object. If you are a standalone client, you can use the default implementation of
the 0HVVDJH)DFWRU\ class that the JAXM API provides. The following code
fragment illustrates getting an instance of this default message factory and then
using it to create a message.

0HVVDJH)DFWRU\�IDFWRU\� �0HVVDJH)DFWRU\�QHZ,QVWDQFH���
62$30HVVDJH�PHVVDJH� �IDFWRU\�FUHDWH0HVVDJH���

As is true of the QHZ,QVWDQFH method for 62$3&RQQHFWLRQ)DFWRU\, the QHZ,Q�
VWDQFH method for 0HVVDJH)DFWRU\ is static, so you invoke it by calling 0HV�
VDJH)DFWRU\�QHZ,QVWDQFH. Note that it is possible to write your own

CLIENT WITHOUT A MESSAGING PROVIDER 301
implementation of a message factory and plug it in via system properties, but the
default message factory will almost always be the one that is used.

The other way to get a 0HVVDJH)DFWRU\ object is to retrieve it from a naming
service where it has been registered. This way is available only to applications
that use a messaging provider, and it will be covered later.

Parts of a Message
A 62$30HVVDJH object is required to have certain elements, and the JAXM API
simplifies things for you by returning a new 62$30HVVDJH object that already
contains these elements. So message, which was created in the preceding line of
code, has the following:

I. A 62$33DUW object that contains

A. A 62$3(QYHORSH object that contains

 1. An empty 62$3+HDGHU object

 2. An empty 62$3%RG\ object

The 62$3+HDGHU object, though optional, is included for convenience because
most messages will use it. The 62$3%RG\ object can hold the content of the mes-
sage and can also contain fault messages that contain status information or
details about a problem with the message.

Accessing Elements of a Message
The next step in creating a message is to access its parts so that content can be
added. The 62$30HVVDJH object message, created in the previous code fragment,
is where to start. It contains a 62$33DUW object, so you use message to retrieve it.

62$33DUW�VRDS3DUW� �PHVVDJH�JHW62$33DUW���

Next you can use soapPart to retrieve the 62$3(QYHORSH object that it contains.

62$3(QYHORSH�HQYHORSH� �VRDS3DUW�JHW(QYHORSH���

You can now use envelope to retrieve its empty 62$3+HDGHU and 62$3%RG\
objects.

62$3+HDGHU�KHDGHU� �HQYHORSH�JHW+HDGHU���
62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���

302 JAVA™ API FOR XML MESSAGING
Our example of a standalone client does not use a SOAP header, so you will
need to delete it. Because all 62$3(OHPHQW objects, including 62$3+HDGHU
objects, are derived from the 1RGH interface, you use the method 1RGH�GHWDFK�
1RGH to delete header.

KHDGHU�GHWDFK1RGH���

Adding Content to the Body
To add content to the body, you need to create a 62$3%RG\(OHPHQW object to hold
the content. When you create any new element, you also need to create an asso-
ciated 1DPH object to identify it. 1DPH objects are created using 62$3(QYHORSH
methods, so you can use envelope from the previous code fragment to create the
1DPH object for your new element.

1DPH objects associated with 62$3%RG\ and 62$3+HDGHU objects must be fully
qualified; that is, they must be created with a local name, a prefix for the
namespace being used, and a URI for the namespace. Specifying a namespace
for an element makes clear which one is meant if there is more than one element
with the same local name.

The code fragment that follows retrieves the 62$3%RG\ object body from envelope,
creates a 1DPH object for the element to be added, and adds a new 62$3%RG\(OH�
PHQW object to body.

62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���
1DPH�ERG\1DPH� �HQYHORSH�FUHDWH1DPH�´*HW/DVW7UDGH3ULFHµ�

´Pµ��´KWWS���ZRPEDW�]WUDGH�FRPµ��
62$3%RG\(OHPHQW�JOWS� �ERG\�DGG%RG\(OHPHQW�ERG\1DPH��

At this point, body contains a 62$3%RG\(OHPHQW object identified by the 1DPH
object bodyName, but there is still no content in gltp. Assuming that you want to
get a quote for the stock of Sun Microsystems, Inc., you need to create a child
element for the symbol using the method DGG&KLOG(OHPHQW. Then you need to
give it the stock symbol using the method DGG7H[W1RGH. The 1DPH object for the
new 62$3(OHPHQW object symbol is initialized with only a local name, which is
allowed for child elements.

1DPH�QDPH� �HQYHORSH�FUHDWH1DPH��V\PERO���
62$3(OHPHQW�V\PERO� �JOWS�DGG&KLOG(OHPHQW�QDPH��
V\PERO�DGG7H[W1RGH�´681:µ��

You might recall that the headers and content in a 62$33DUW object must be in
XML format. The JAXM API takes care of this for you, building the appropriate

CLIENT WITHOUT A MESSAGING PROVIDER 303
XML constructs automatically when you call methods such as DGG%RG\(OHPHQW,
DGG&KLOG(OHPHQW, and DGG7H[W1RGH. Note that you can call the method
DGG7H[W1RGH only on an element such as bodyElement or any child elements that
are added to it. You cannot call DGG7H[W1RGH on a 62$3+HDGHU or 62$3%RG\
object.

The content that you have just added to your 62$3%RG\ object will look like the
following when it is sent over the wire:

�62$3�(19�(QYHORSH
[POQV�62$3�(19 �KWWS���VFKHPDV�[POVRDS�RUJ�VRDS�HQYHORSH��

�62$3�(19�%RG\!
�P�*HW/DVW7UDGH3ULFH�[POQV�P

�KWWS���ZRPEDW�]WUDGH�FRP�!
�V\PERO!681:��V\PERO!

��P�*HW/DVW7UDGH3ULFH!
��62$3�(19�%RG\!

��62$3�(19�(QYHORSH!

Let’s examine this XML excerpt line by line to see how it relates to your JAXM
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

JAXM code:

62$33DUW�VRDS3DUW� �PHVVDJH�JHW62$33DUW���
62$3(QYHORSH�HQYHORSH� �VRDS3DUW�JHW(QYHORSH���

XML it produces:

�62$3�(19�(QYHORSH
[POQV�62$3�(19 �KWWS���VFKHPDV�[POVRDS�RUJ�VRDS�HQYHORSH��

�������������LQWHUYHQLQJ�HOHPHQWV�RPLWWHG�
��62$3�(19�(QYHORSH!

The outermost element in this XML example is the SOAP envelope element,
indicated by 62$3�(19�(QYHORSH. (QYHORSH is the name of the element, and
62$3�(19 is the namespace prefix. The interface 62$3(QYHORSH represents a
SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line has an attribute for the SOAP envelope element. [POQV stands

304 JAVA™ API FOR XML MESSAGING
for "XML namespace," and its value is the URI of the namespace associated
with (QYHORSH. This attribute is automatically included for you.

JAXM code:

62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���

XML it produces:

�62$3�(19�%RG\!
�����������

��62$3�(19�%RG\!

These two lines mark the beginning and end of the SOAP body, represented in
JAXM by a 62$3%RG\ object.

JAXM code:

1DPH�ERG\1DPH� �HQYHORSH�FUHDWH1DPH��*HW/DVW7UDGH3ULFH��
�P����KWWS���ZRPEDW�]WUDGH�FRP���

62$3%RG\(OHPHQW�JOWS� �ERG\�DGG%RG\(OHPHQW�ERG\1DPH��

XML it produces:

�P�*HW/DVW7UDGH3ULFH�[POQV�P
�KWWS���ZRPEDW�]WUDGH�FRP�!

�������
��P�*HW/DVW7UDGH3ULFH!

These lines are what the 62$3%RG\(OHPHQW gltp in your code represents. "Get-
LastTradePrice" is its local name, "m" is its namespace prefix, and
"http://wombat.ztrade.com" is its namespace URI.

JAXM code:

1DPH�QDPH� �HQYHORSH�FUHDWH1DPH��V\PERO���
62$3(OHPHQW�V\PERO� �JOWS�DGG&KLOG(OHPHQW�QDPH��
V\PERO�DGG7H[W1RGH��681:���

XML it produces:

�V\PERO!681:��V\PERO!

The 6WULQJ �681:� is the message content that your recipient, the stock quote
service, receives.

CLIENT WITHOUT A MESSAGING PROVIDER 305
Sending a Message
A standalone client uses a 62$3&RQQHFWLRQ object and must therefore use the
62$3&RQQHFWLRQ method FDOO to send a message. This method takes two argu-
ments, the message being sent and the destination to which the message should
go. This message is going to the stock quote service indicated by the 85/(QG�
SRLQW object endpoint.

85/(QGSRLQW�HQGSRLQW� �QHZ�85/(QGSRLQW�
´KWWS���ZRPEDW�]WUDGH�FRP�TXRWHVµ��

62$30HVVDJH�UHVSRQVH� �FRQ�FDOO�PHVVDJH��HQGSRLQW��

Your message sent the stock symbol SUNW; the 62$30HVVDJH object response

should contain the last stock price for Sun Microsystems, which you will retrieve
in the next section.

A connection uses a fair amount of resources, so it is a good idea to close a con-
nection as soon as you are through using it.

FRQ�FORVH���

Getting the Content of a Message
The initial steps for retrieving a message’s content are the same as those for giv-
ing content to a message: You first access the 62$3%RG\ object, using the mes-
sage to get the envelope and the envelope to get the body. Then you access its
62$3%RG\(OHPHQW object because that is the element to which content was added
in the example. (In a later section you will see how to add content directly to the
62$3%RG\ object, in which case you would not need to access the 62$3%RG\(OH�
PHQW object for adding content or for retrieving it.) To get the content, which was
added with the method 1RGH�DGG7H[W1RGH, you call the method
1RGH�JHW9DOXH. Note that JHW9DOXH returns the value of the immediate child of
the element that calls the method. Therefore, in the following code fragment,
JHW9DOXH is called on bodyElement, the element on which the method DGG7H[W�
1RGH was called.

In order to access bodyElement, you need to call the method JHW&KLOG(OHPHQW on
body. Passing bodyName to JHW&KLOG(OHPHQW returns a MDYD�XWLO�,WHUDWRU
object that contains all of the child elements identified by the 1DPH object
bodyName. You already know that there is only one, so just calling the method
QH[W on it will return the 62$3%RG\(OHPHQW you want. Note that the method

306 JAVA™ API FOR XML MESSAGING
,WHUDWRU�QH[W returns a Java 2EMHFW, so it is necessary to cast the 2EMHFW it
returns to a 62$3%RG\(OHPHQW object before assigning it to the variable
bodyElement.

62$33DUW�VS� �UHVSRQVH�JHW62$33DUW���
62$3(QYHORS�HQY� �VS�JHW(QYHORSH���
62$3%RG\�VE� �VS�JHW%RG\���
MDYD�XWLO�,WHUDWRU�LW� �VE�JHW&KLOG(OHPHQWV�ERG\1DPH��
62$3%RG\(OHPHQW�ERG\(OHPHQW� ��62$3%RG\(OHPHQW�LW�QH[W���
6WULQJ�ODVW3ULFH� �ERG\(OHPHQW�JHW9DOXH���
6\VWHP�RXW�SULQW��7KH�ODVW�SULFH�IRU�681:�LV�����
6\VWHP�RXW�SULQWOQ�ODVW3ULFH��

If there were more than one element with the name bodyName, you would have
had to use a ZKLOH loop using the method ,WHUDWRU�KDV1H[W to make sure that
you got all of them.

ZKLOH��LW�KDV1H[W����^
62$3%RG\(OHPHQW�ERG\(OHPHQW� ��62$3%RG\(OHPHQW�LW�QH[W���
6WULQJ�ODVW3ULFH� �ERG\(OHPHQW�JHW9DOXH���
6\VWHP�RXW�SULQW��7KH�ODVW�SULFH�IRU�681:�LV�����
6\VWHP�RXW�SULQWOQ�ODVW3ULFH��

`

At this point, you have seen how to send a request-response message as a standa-
lone client. You have also seen how to get the content from the response. The
next part shows you how to send a message using a messaging provider.

Client with a Messaging Provider
Using a messaging provider gives you more flexibility than a standalone client
has because it can take advantage of the additional functionality that a messaging
provider can offer.

Getting a ProviderConnection Object
Whereas a 62$3&RQQHFWLRQ object is a point-to-point connection directly to a
particular URL, a 3URYLGHU&RQQHFWLRQ object is a connection to a messaging
provider. With this kind of connection, all messages that you send or receive go
through the messaging provider.

CLIENT WITH A MESSAGING PROVIDER 307
As with getting a 62$3&RQQHFWLRQ object, the first step is to get a connection
factory, but in this case, it is a 3URYLGHU&RQQHFWLRQ)DFWRU\ object. You can
obtain a 3URYLGHU&RQQHFWLRQ)DFWRU\ object by retrieving it from a naming
service. This is possible when your application is using a messaging provider
and is deployed in a servlet or J2EE container. With a 3URYLGHU&RQQHFWLRQ�
)DFWRU\�object, you can create a connection to a particular messaging provider
and thus be able to use the capabilities of a profile that the messaging provider
supports.

To get a 3URYLGHU&RQQHFWLRQ)DFWRU\ object, you first supply the logical name
of your messaging provider to the container at deployment time. This is the
name associated with your messaging provider that has been registered with a
naming service based on the Java Naming and Directory Interface™ ("JNDI").
You can then do a lookup using this name to obtain a 3URYLGHU&RQQHFWLRQ)DF�
WRU\ object that will create connections to your messaging provider. For exam-
ple, if the name registered for your messaging provider is “ProviderABC”, you
can do a lookup on “ProviderABC” to get a 3URYLGHU&RQQHFWLRQ)DFWRU\
object and use it to create a connection to your messaging provider. This is what
is done in the following code fragment. The first two lines use methods from the
JNDI API to retrieve the 3URYLGHU&RQQHFWLRQ)DFWRU\ object, and the last line
uses a method from the JAXM API to create the connection to the messaging
provider. Note that because the JNDI method ORRNXS returns a Java 2EMHFW, you
must convert it to a 3URYLGHU&RQQHFWLRQ)DFWRU\ object before assigning it to
the variable pcFactory.

&RQWH[W�FW[� �QHZ�,QLWLDO&RQWH[W����
3URYLGHU&RQQHFWLRQ)DFWRU\�SF)DFWRU\�

�3URYLGHU&RQQHFWLRQ)DFWRU\�FW[�ORRNXS��3URYLGHU$%&���

3URYLGHU&RQQHFWLRQ�SF&RQ� �SF)DFWRU\�FUHDWH&RQQHFWLRQ���

You will use pcCon, which represents a connection to your messaging provider, to
get information about your messaging provider and to send the message you will
create in the next section.

Creating a Message
You create all JAXM messages by getting a 0HVVDJH)DFWRU\ object and using it
to create the 62$30HVVDJH object. For the standalone client example, you simply
used the default 0HVVDJH)DFWRU\ object obtained via the method 0HVVDJH)DF�
WRU\�QHZ,QVWDQFH. However, when you are using a messaging provider, you
obtain the 0HVVDJH)DFWRU\ object in a different way.

308 JAVA™ API FOR XML MESSAGING
Getting a MessageFactory
If you are using a messaging provider, you create a 0HVVDJH)DFWRU\ object by
using the method 3URYLGHU&RQQHFWLRQ�FUHDWH0HVVDJH)DFWRU\. In addition,
you pass it a 6WULQJ indicating the profile you want to use. To find out which
profiles your messaging provider supports, you need to get a 3URYLGHU0HWD'DWD
object with information about your provider. This is done by calling the method
JHW0HWD'DWD on the connection to your provider. Then you need to call the
method JHW6XSSRUWHG3URILOHV to get an array of the profiles your messaging
provider supports. Supposing that you want to use the ebXML profile, you need
to see if any of the profiles in the array matches "ebxml". If there is a match, that
profile is assigned to the variable profile, which can then be passed to the method
FUHDWH0HVVDJH)DFWRU\.

3URYLGHU0HWD'DWD�PHWD'DWD� �SF&RQ�JHW0HWD'DWD���
6WULQJ>@�VXSSRUWHG3URILOHV� �PHWD'DWD�JHW6XSSRUWHG3URILOHV���
6WULQJ�SURILOH� �QXOO�

IRU��LQW�L ���L���VXSSRUWHG3URILOHV�OHQJWK��L����^
LI��VXSSRUWHG3URILOHV>L@�HTXDOV��HE[PO����^

SURILOH� �VXSSRUWHG3URILOHV>L@�
EUHDN�

`
`

0HVVDJH)DFWRU\�IDFWRU\� �SF&RQ�FUHDWH0HVVDJH)DFWRU\�SURILOH��

You can now use factory to create a 62$30HVVDJH object that conforms to the
ebXML profile. This example uses the minimal ebXML profile used in the
JAXM RI. Note that the following line of code uses the class (E;0/0(VVDJH�
,PSO, which is defined in the JAXM RI and is not part of the JAXM API.

(E;0/0HVVDJH,PSO�PHVVDJH� ��(E;0/0HVVDJH,PSO�IDFWRU\�
FUHDWH0HVVDJH���

For this profile, you need to indicate the (QGSRLQW objects for the sender and the
receiver. This information will appear in the message’s header, and the messag-
ing provider will use it to determine where to send the message. The following
lines of code use the methods VHW6HQGHU and VHW5HFHLYHU, which are provided
by the ebXML profile implemented in the JAXM RI. These methods not only
create a 62$3+HDGHU object but also give it content. You can use these methods

CLIENT WITH A MESSAGING PROVIDER 309
because your 62$30HVVDJH object is an (E;0/0HVVDJH,PSO object, giving you
access to the methods defined in (E;0/0HVVDJH,PSO.

PHVVDJH�VHW6HQGHU�QHZ�3DUW\��KWWS���JUDQG�SURGXFWV�FRP����
PHVVDJH�VHW5HFHLYHU�QHZ�3DUW\��KWWS���ZKL]�JL]PRV�FRP����

If you are not using a profile or you want to set content for a header not covered
by your profile’s implementation, you need to follow the steps shown in the next
section.

Adding Content to the Header
To add content to the header, you need to create a 62$3+HDGHU(OHPHQW object.
As with all new elements, it must have an associated 1DPH object, which you cre-
ate using the message’s 62$3(QYHORSH object.

The following code fragment retrieves the 62$3+HDGHU object from envelope and
adds a new 62$3+HDGHU(OHPHQW object to it.

62$3+HDGHU�KHDGHU� �HQYHORSH�JHW+HDGHU���
1DPH�KHDGHU1DPH� �HQYHORSH�FUHDWH1DPH��3XUFKDVH�2UGHU��

�32����KWWS���ZZZ�VRQDWD�FRP�RUGHU���
62$3+HDGHU(OHPHQW�KHDGHU(OHPHQW�

KHDGHU�DGG+HDGHU(OHPHQW�KHDGHU1DPH��

At this point, header contains the 62$3+HDGHU(OHPHQW object headerElement identi-
fied by the 1DPH object headerName. Note that the DGG+HDGHU(OHPHQW method
both creates headerElement and adds it to header.

Now that you have identified headerElement with headerName and added it to header,
the next step is to add content to headerElement, which the next line of code does
with the method DGG7H[W1RGH.

KHDGHU(OHPHQW�DGG7H[W1RGH��RUGHU���

Now you have the 62$3+HDGHU object header that contains a 62$3+HDGHU(OHPHQW
object whose content is "order".

Adding Content to the SOAP Body
The process for adding content to the 62$3%RG\ object is the same for clients
using a messaging provider as it is for standalone clients. This is also the same as
the process for adding content to the 62$3+HDGHU object. You access the 62$3�
%RG\ object, add a 62$3%RG\(OHPHQW object to it, and add text to the 62$3�

310 JAVA™ API FOR XML MESSAGING
%RG\(OHPHQW object. It is possible to add additional 62$3%RG\(OHPHQW objects,
and it is possible to add subelements to the 62$3%RG\(OHPHQW objects with the
method DGG&KLOG(OHPHQW. For each element or child element, you add content
with the method DGG7H[W1RGH.

The section on the standalone client demonstrated adding one 62$3%RG\(OHPHQW
object, adding a child element, and giving it some text. The following example
shows adding more than one 62$3%RG\(OHPHQW and adding text to each of them.

The code first creates the 62$3%RG\(OHPHQW object purchaseLineItems, which has a
fully-qualified namespace associated with it. That is, the 1DPH object for it has a
local name, a namespace prefix, and a namespace URI. As you saw earlier, a
62$3%RG\(OHPHQW object is required to have a fully-qualified namespace, but
child elements added to it may have 1DPH objects with only the local name.

62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���
1DPH�ERG\1DPH� �HQYHORSH�FUHDWH1DPH��3XUFKDVH/LQH,WHPV����32��

�KWWS���VRQDWD�IUXLWVJDORUH�FRP���
62$3%RG\(OHPHQW�SXUFKDVH/LQH,WHPV�

ERG\�DGG%RG\(OHPHQW�ERG\1DPH��

1DPH�FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��2UGHU���
62$3(OHPHQW�RUGHU�

SXUFKDVH/LQH,WHPV�DGG&KLOG(OHPHQW�FKLOG1DPH��

FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��3URGXFW���
62$3(OHPHQW�SURGXFW� �RUGHU�DGG&KLOG(OHPHQW�FKLOG1DPH��
SURGXFW�DGG7H[W1RGH��$SSOH���

FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��3ULFH���
62$3(OHPHQW�SULFH� �RUGHU�DGG&KLOG(OHPHQW�FKLOG1DPH��
SULFH�DGG7H[W1RGH���������

FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��2UGHU���
62$3(OHPHQW�RUGHU��

SXUFKDVH/LQH,WHPV�DGG&KLOG(OHPHQW�FKLOG1DPH��

FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��3URGXFW���
62$3(OHPHQW�SURGXFW�� �RUGHU��DGG&KLOG(OHPHQW�FKLOG1DPH��
SURGXFW��DGG7H[W1RGH��3HDFK���

FKLOG1DPH� �HQYHORSH�FUHDWH1DPH��3ULFH���
62$3(OHPHQW�SULFH�� �RUGHU��DGG&KLOG(OHPHQW�FKLOG1DPH��
SULFH��DGG7H[W1RGH���������

CLIENT WITH A MESSAGING PROVIDER 311
The JAXM code in the preceding example produces the following XML in the
SOAP body:

�32�3XUFKDVH/LQH,WHPV
[POQV�32 �KWWS���ZZZ�VRQDWD�IUXLWVJDORUH�RUGHU�!

�2UGHU!
�3URGXFW!$SSOH��3URGXFW!
�3ULFH!������3ULFH!

��2UGHU!

�2UGHU!
�3URGXFW!3HDFK��3URGXFW!
�3ULFH!������3ULFH!

��2UGHU!
��32�3XUFKDVH/LQH,WHPV!

Adding Content to the SOAPPart Object
If the content you want to send is in a file, JAXM provides an easy way to add it
directly to the 62$33DUW object. This means that you do not access the 62$3%RG\
object and build the XML content yourself, as you did in the previous section.

To add a file directly to the 62$33DUW object, you use a MDYD[�[PO�WUDQV�
IRUP�6RXUFH object from JAXP (the Java™ API for XML Processing). There
are three types of 6RXUFH objects: 6$;6RXUFH, '206RXUFH, and 6WUHDP6RXUFH. A
6WUHDP6RXUFH object holds content as an XML document. 6$;6RXUFH and '20�
6RXUFH objects hold content along with the instructions for transforming the con-
tent into an XML document.

The following code fragment uses JAXP API to build a '206RXUFH object that is
passed to the 62$33DUW�VHW&RQWHQW method. The first two lines of code get a
'RFXPHQW%XLOGHU)DFWRU\ object and use it to create the 'RFXPHQW%XLOGHU
object builder. Then builder parses the content file to produce a 'RFXPHQW object,
which is used to initialize a new '206RXUFH object.

'RFXPHQW%XLOGHU)DFWRU\�GE)DFWRU\� �'RFXPHQW%XLOGHU)DFWRU\�
QHZ,QVWDQFH���

'RFXPHQW%XLOGHU�EXLOGHU� �GE)DFWRU\�QHZ'RFXPHQW%XLOGHU���
'RFXPHQW�GRF� �EXLOGHU�SDUVH��ILOH����PXVLF�RUGHU�VRDS�[PO���
'206RXUFH�GRP6RXUFH� �QHZ�'206RXUFH�GRF��

The following two lines of code access the 62$33DUW object and set the new
'206RXUFH object as its content. The method 62$33DUW�VHW&RQWHQW not only

312 JAVA™ API FOR XML MESSAGING
sets content for the 62$3%RG\ object but also sets the appropriate header for the
62$3+HDGHU object.

62$33DUW�VRDS3DUW� �HQYHORSH�JHW62$33DUW���
VRDS3DUW�VHW&RQWHQW�GRP6RXUFH��

You will see other ways to add content to a message in the section on $WWDFK�
PHQW3DUW objects. One big difference to keep in mind is that a 62$33DUW object
must contain only XML data, whereas an $WWDFKPHQW3DUW object may contain
any type of content.

Sending the Message
When the connection is a 3URYLGHU&RQQHFWLRQ object, messages have to be sent
using the method 3URYLGHU&RQQHFWLRQ�VHQG. This method sends the message
passed to it and returns immediately. Unlike the 62$3&RQQHFWLRQ method FDOO,
it does not have to block until it receives a response, which leaves the application
free to do other things.

The VHQG method takes only one argument, the message to be sent. It does not
need to be given the destination because the messaging provider can use infor-
mation in the header to figure out where the message needs to go.

SF&RQ�VHQG�PHVVDJH��
SF&RQ�FORVH���

Adding Attachments
Adding $WWDFKPHQW3DUW objects to a message is the same for all clients,
whether they use a messaging provider or not. As noted in earlier sections, you
can put any type of content, including XML, in an $WWDFKPHQW3DUW object. And
because the SOAP part can contain only XML content, you must use an $WWDFK�
PHQW3DUW object for any content that is not in XML format.

Creating an AttachmentPart Object and
Adding Content
The 62$30HVVDJH object creates an $WWDFKPHQW3DUW object, and the message
also has to add the attachment to itself after content has been added. The 62$3�
0HVVDJH class has three methods for creating an $WWDFKPHQW3DUW object.

ADDING ATTACHMENTS 313
The first method creates an attachment with no content. In this case, an $WWDFK�
PHQW3DUW method is used later to add content to the attachment.

$WWDFKPHQW3DUW�DWWDFKPHQW� �PHVVDJH�FUHDWH$WWDFKPHQW3DUW���

You add content to attachment with the $WWDFKPHQW3DUW method VHW&RQWHQW.
This method takes two parameters, a Java 2EMHFW for the content, and a 6WULQJ
object that gives the content type. Content in the 62$3%RG\ part of a message
automatically has a Content-Type header with the value "text/xml" because the
content has to be an XML document. In contrast, the type of content in an
$WWDFKPHQW3DUW object has to be specified because it can be any type.

Each $WWDFKPHQW3DUW object has one or more headers associated with it. When
you specify a type to the method VHW&RQWHQW, that type is used for the header
Content-Type. Content-Type is the only header that is required. You may set
other optional headers, such as Content-Id and Content-Location. For conve-
nience, JAXM provides JHW and VHW methods for the headers Content-Type,
Content-Id, and Content-Location. These headers can be helpful in accessing a
particular attachment when a message has multiple attachments. For example, to
access the attachments that have particular headers, you call the 62$30HVVDJH
method JHW$WWDFKPHQWV and pass it the header or headers you are interested in.

The following code fragment shows one of the ways to use the method VHW&RQ�
WHQW. The Java 2EMHFW being added is a 6WULQJ, which contains plain text, so
the second argument has to be “text/plain”. The code also sets a content identi-
fier, which can be used to identify this $WWDFKPHQW3DUW object. After you have
added content to attachment, you need to add attachment to the 62$30HVVDJH object,
which is done in the last line.

6WULQJ�VWULQJ&RQWHQW� ��8SGDWH�DGGUHVV�IRU�6XQQ\�6NLHV�����
�,QF���WR����8SEHDW�6WUHHW��3OHDVDQW�*URYH��&$��������

DWWDFKPHQW�VHW&RQWHQW�VWULQJ&RQWHQW���WH[W�SODLQ���
DWWDFKPHQW�VHW&RQWHQW,G��XSGDWHBDGGUHVV���

PHVVDJH�DGG$WWDFKPHQW3DUW�DWWDFKPHQW��

The variable attachment now represents an $WWDFKPHQW3DUW object that contains
the 6WULQJ stringContent and has a header that contains the 6WULQJ “text/plain”. It
also has a Content-Id header with “update_address” as its value. And now
attachment is part of message.

Let’s say you also want to attach a jpeg image showing how beautiful the new
location is. In this case, the second argument passed to VHW&RQWHQW must be

314 JAVA™ API FOR XML MESSAGING
"image/jpeg" to match the content being added. The code for adding an image
might look like the following. For the first attachment, the 2EMHFW passed to the
method VHW&RQWHQW was a 6WULQJ. In this case, it is a stream.

$WWDFKPHQW3DUW�DWWDFKPHQW�� �PHVVDJH�FUHDWH$WWDFKPHQW3DUW���

E\WH>@�MSHJ'DWD� �������
%\WH$UUD\,QSXW6WUHDP�VWUHDP� �QHZ�%\WH$UUD\,QSXW6WUHDP�

MSHJ'DWD��

DWWDFKPHQW��VHW&RQWHQW�VWUHDP���LPDJH�MSHJ���

PHVVDJH�DGG$WWDFKPHQW3DUW�DWWDFKPHQW��

The other two 62$30HVVDJH�FUHDWH$WWDFKPHQW methods create an $WWDFK�
PHQW3DUW object complete with content. One is very similar to the $WWDFKPHQW�
3DUW�VHW&RQWHQW method in that it takes the same parameters and does
essentially the same thing. It takes a Java 2EMHFW containing the content and a
6WULQJ giving the content type. As with $WWDFKPHQW3DUW�VHW&RQWHQW, the
2EMHFW may be a 6WULQJ, a stream, a MDYD[�[PO�WUDQVIRUP�6RXUFH, or a
MDYD[�DFWLYDWLRQ�'DWD+DQGOHU object. You have already seen an example of
using a 6RXUFH object as content. The next example will show how to use a
'DWD+DQGOHU object for content.

The other method for creating an $WWDFKPHQW3DUW object with content takes a
'DWD+DQGOHU object, which is part of the JavaBeans™ Activation Framework
(JAF). Using a 'DWD+DQGOHU object is fairly straightforward. First you create a
MDYD�QHW�85/�object for the file you want to add as content. Then you create a
'DWD+DQGOHU object initialized with the URL object and pass it to the method
FUHDWH$WWDFKPHQW3DUW.

85/�XUO� �QHZ�85/��KWWS���JUHDWSURGXFWV�FRP�JL]PRV�LPJ�MSJ���
'DWD+DQGOHU�GK� �QHZ�'DWD+DQGOHU�XUO��
$WWDFKPHQW3DUW�DWWDFKPHQW� �PHVVDJH�FUHDWH$WWDFKPHQW3DUW�GK��
DWWDFKPHQW�VHW&RQWHQW,G��J\URBLPDJH���

PHVVDJH�DGG$WWDFKPHQW3DUW�DWWDFKPHQW��

You might note two things about the previous code fragment. First, it sets a
header for Content-ID with the method VHW&RQWHQW,G. This method takes a
6WULQJ that can be whatever you like to identify the attachment. Second, unlike
the other methods for setting content, this one does not take a 6WULQJ for the
Content-Type. This method takes care of setting the Content-Type header for

ADDING ATTACHMENTS 315
you, which is possible because one of the things a 'DWD+DQGOHU object does is
determine the data type of the file it contains.

Accessing an AttachmentPart Object
If you receive a message with attachments or want to change an attachment to a
message you are building, you will need to access the attachments. When it is
given no argument, the method 62$30HVVDJH�JHW$WWDFKPHQWV returns a
MDYD�XWLO�,WHUDWRU object over all the $WWDFKPHQW3DUW objects in a message.
The following code prints out the content of each $WWDFKPHQW3DUW object in the
62$30HVVDJH object message.

MDYD�XWLO�,WHUDWRU�LW� �PHVVDJH�JHW$WWDFKPHQWV���
ZKLOH��LW�KDV1H[W����^

$WWDFKPHQW3DUW�DWWDFKPHQW� �LW�QH[W���
2EMHFW�FRQWHQW� �DWWDFKPHQW�JHW&RQWHQW���
6WULQJ�LG� �DWWDFKPHQW�JHW&RQWHQW,G���
6\VWHP�RXW�SULQW��$WWDFKPHQW�����LG�����FRQWDLQV������

FRQWHQW��
6\VWHP�RXW�SULQWOQ�����

`

Summary
You have now used the basic JAXM API and seen how to create and send SOAP
messages as a standalone client and as a client using a messaging provider. You
have added content to a SOAP header and a SOAP body and also created attach-
ments and given them content. In addition, you have seen how to retrieve the
content from the SOAP part and from attachments.

Congratulations on learning how to use the basic JAXM API.

Code Examples
The first part of this tutorial used code fragments to walk you through the basics
of using the JAXM API. This section puts some of the code fragments you cre-
ated into the program 5HTXHVW�MDYD and also creates the application 0\8GGL3�
LQJ�MDYD, which you can run.

316 JAVA™ API FOR XML MESSAGING
Note: �-:6'3B+20(! is the directory where you unpacked the Java Web Services
Developer Pack. The code examples use the Unix form �-:6'3B+20(; for Win-
dows, substitute the equivalent form �-:6'3B+20(�.

Request.java
The class 5HTXHVW�MDYD is shown here and is also included in the
�-:6'3B+20(!�GRFV�WXWRULDO�H[DPSOHV�MD[P directory. It is based on the
message you built as an example of a standalone client sending a request-

REQUEST.JAVA 317
response message. In addition to putting all the code together, it adds LPSRUW
statements, a PDLQ method, and a WU\/FDWFK block with exception handling.

LPSRUW�MDYD[�[PO�VRDS�
�
LPSRUW�MDYD[�[PO�PHVVDJLQJ�
�
LPSRUW�MDYD�LR�
�
LPSRUW�MDYD�XWLO�
�

SXEOLF�FODVV�5HTXHVW�^
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV�^

WU\�^
62$3&RQQHFWLRQ)DFWRU\�VF)DFWRU\�

62$3&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���
62$3&RQQHFWLRQ�FRQ� �VF)DFWRU\�FUHDWH&RQQHFWLRQ���

0HVVDJH)DFWRU\�IDFWRU\�
0HVVDJH)DFWRU\�QHZ,QVWDQFH���

62$30HVVDJH�PHVVDJH� �IDFWRU\�FUHDWH0HVVDJH���

62$33DUW�VRDS3DUW� �PHVVDJH�JHW62$33DUW���
62$3(QYHORSH�HQYHORSH� �VRDS3DUW�JHW(QYHORSH���
62$3+HDGHU�KHDGHU� �HQYHORSH�JHW+HDGHU���
62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���
KHDGHU�GHWDFK1RGH���

1DPH�ERG\1DPH� �HQYHORSH�FUHDWH1DPH�
�*HW/DVW7UDGH3ULFH����P��
�KWWS���ZRPEDWV�]WUDGH�FRP���

62$3%RG\(OHPHQW�JOWS�
ERG\�DGG%RG\(OHPHQW�ERG\1DPH��

1DPH�QDPH� �HQYHORSH�FUHDWH1DPH��V\PERO���
62$3(OHPHQW�V\PERO� �JOWS�DGG&KLOG(OHPHQW�QDPH��
V\PERO�DGG7H[W1RGH��681:���

85/(QGSRLQW�HQGSRLQW� �QHZ�85/(QGSRLQW�
�KWWS���ZRPEDW�]WUDGH�FRP�TXRWHV���

62$30HVVDJH�UHVSRQVH� �FRQ�FDOO�PHVVDJH�
HQGSRLQW��

FRQ�FORVH���

62$33DUW�VS� �UHVSRQVH�JHW62$33DUW���
62$3(QYHORSH�VH� �VS�JHW(QYHORSH���
62$3%RG\�VE� �VH�JHW%RG\���

,WHUDWRU�LW� �VE�JHW&KLOG(OHPHQWV�ERG\1DPH��

318 JAVA™ API FOR XML MESSAGING
62$3%RG\(OHPHQW�ERG\(OHPHQW�
�62$3%RG\(OHPHQW�LW�QH[W���

6WULQJ�ODVW3ULFH� �ERG\(OHPHQW�JHW9DOXH���

6\VWHP�RXW�SULQW��7KH�ODVW�SULFH�IRU�681:�LV����
6\VWHP�RXW�SULQWOQ�ODVW3ULFH��

`�FDWFK��([FHSWLRQ�H[��^
H[�SULQW6WDFN7UDFH���

`
`

`

In order for 5HTXHVW�MDYD to be runnable, the 85/(QGSRLQW object in it has to be
a valid existing site, which is not true in this case. However, the application in
the next section is one that you can run.

MyUddiPing.java
The sample program 8GGL3LQJ�MDYD is another example of a standalone appli-
cation. A Universal Description, Discovery and Integration (UDDI) service is a
business registry and repository from which you can get information about busi-
nesses that have registered themselves with the registry. In this case, the 8GGL3�
LQJ application is not actually accessing a UDDI service registry but rather a test
(demo) version. Because of this, the number of businesses you can get informa-
tion about is limited. Nevertheless, 8GGL3LQJ demonstrates a request being sent
and a response being received. The application prints out the complete message
that is returned, that is, the complete XML document as it looks when it comes
over the wire. Later in this section you will see how to rewrite 8GGL3LQJ�MDYD
so that in addition to printing out the entire XML document, it also prints out just
the text content of the response. This makes it much easier to see the information
you want.

In order to get a better idea of how to run the 8GGL3LQJ example, take a look at
the directory �-:6'3B+20(!�VDPSOHV�MD[P�XGGLSLQJ. This directory contains
the subdirectory VUF and the files UXQ�VK, XGGL�SURSHUWLHV, 8GGL3LQJ�FODVV,
and 5($'0(. The 5($'0(file tells you what you need to do to run the application,
which is explained more fully here.

The 5($'0(file directs you to modify the file EXLOG�SURSHUWLHV, which con-
tains the URL of the destination (the UDDI test registry) and the proxy host and
proxy port of the sender. You will need to modify this file so that it has your
proxy host and your proxy port. If you are in the XGGLSLQJ directory when you

MYUDDIPING.JAVA 319
call the UXQ�VK� script, the information in the UXQ script should be correct
already.

The UXQ�VK script calls the MDYD command on 8GGL3LQJ. First it sets the location
of the MDYD command and then prints a usage message if two arguments are not
supplied. Perhaps the main thing it does is to set your classpath so that the neces-
sary �MDU files can be found.

Here is what you type at the command line if you want to get information about,
for example, Oracle:

UXQ�VK�XGGL�SURSHUWLHV�2UDFOH

Executing the UXQ script as shown in the preceding command line should pro-
duce an XML document with the name and description of Oracle as the content.
However, these are embedded in the XML document, which makes them diffi-
cult to see. The next section adds code to 8GGL3LQJ�MDYD that extracts the con-
tent so that it is readily visible.

Creating MyUddiPing.java
To make the response to 8GGL3LQJ�MDYD easier to read, you will create a new
file called 0\8GGL3LQJ�MDYD, which extracts the content and prints it out. You
will see how to write the new file later in this section after setting up a new direc-
tory with the necessary files. Because the name of the new file is 0\8GGL3�
LQJ�MDYD, you need to create the directory P\XGGLSLQJ under the
�JWSDP_HOME>�VDPSOHV�MD[P� directory. Then copy all of the files from the
XGGLSLQJ directory into the P\XGGLSLQJ directory.

FG��-:6'3B+20(�VDPSOHV�MD[P
PNGLU�P\XGGLSLQJ
FS�XGGLSLQJ�
�P\XGGLSLQJ

Open UXQ�VK and change 8GGL3LQJ to 0\8GGL3LQJ so that the UXQ script will be
called on the correct file.

The 0\8GGL3LQJ�FODVV file will be added to the directory P\XGGLSLQJ as part of
the execution of the UXQ�VK script. The UXQ�VK script will be examined more
later.

320 JAVA™ API FOR XML MESSAGING
The VUF directory will not have been copied from XGGLSLQJ because it is not a
file, so you need to create your own VUF directory. Then go to the VUF directory
and create the file 0\8GGL3LQJ�MDYD using your favorite editor.

FG�P\XGGLSLQJ
PNGLU�VUF

For convenience, you can copy 0\8GGL3LQJ�MDYD from the H[DPSOHV directory
to your new VUF directory as follows:

UNIX:

FG��-:6'3B+20(�GRFV�WXWRULDO�H[DPSOHV�MD[P
FS�0\8GGL3LQJ�MDYD��-:6'3B+20(�VDPSOHV�MD[P�P\XGGLSLQJ�VUF

Windows:

FG��-:6'3B+20(�?GRFV?WXWRULDO?H[DPSOHV?MD[P
FS�0\8GGL3LQJ�MDYD��-:6'3B+20(�?VDPSOHOV?MD[P?P\XGGLSLQJ?VUF

Now let’s go through the file a few lines at a time. Note that most of the class
0\8GGL3LQJ�MDYD is based on 8GGL3LQJ�MDYD. You will be adding a section at
the end that accesses only the content you want from the response that is
returned by the method FDOO.

The first four lines of code import the packages used in the application.

LPSRUW�MDYD[�[PO�VRDS�
�
LPSRUW�MDYD[�[PO�PHVVDJLQJ�
�
LPSRUW�MDYD�XWLO�
�
LPSRUW�MDYD�LR�
�

The next few lines begin the definition of the class 0\8GGL3LQJ, which starts
with the definition of its PDLQ method. The first thing it does is check to see if
two arguments were supplied. If not, it prints a usage message and exits. (Note
that if one of the UXQ scripts is used, the check will already have been done, so
there will always be two arguments to get to this point.)

SXEOLF�FODVV�0\8GGL3LQJ�^
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^

WU\�^
LI��DUJV�OHQJWK�� ����^

MYUDDIPING.JAVA 321
6\VWHP�HUU�SULQWOQ��8VDJH��8GGL3LQJ����
�SURSHUWLHV�ILOH�EXVLQHVV�QDPH���

6\VWHP�H[LW����
`

The following lines create a MDYD�XWLO�3URSHUWLHV file that contains the sys-
tem properties and the properties from the file XGGL�SURSHUWLHV that is in the
P\XGGLSLQJ directory.

3URSHUWLHV�P\SURSV� �QHZ�3URSHUWLHV���
P\SURSV�ORDG�QHZ�)LOH,QSXW6WUHDP�DUJV>�@���
3URSHUWLHV�SURSV� �6\VWHP�JHW3URSHUWLHV���
(QXPHUDWLRQ�LW� �P\SURSV�SURSHUW\1DPHV���
ZKLOH��LW�KDV0RUH(OHPHQWV����^

6WULQJ�V� ��6WULQJ��LW�QH[W(OHPHQW����
SURSV�SXW�V��P\SURSV�JHW3URSHUW\�V���

`�

The next four lines create a 62$30HVVDJH object. First, the code gets an instance
of 62$3&RQQHFWLRQ)DFWRU\ and uses it to create a connection. Then it gets an
instance of 0HVVDJH)DFWRU\ and uses it to create a message.

62$3&RQQHFWLRQ)DFWRU\�VFI�
62$3&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

62$3&RQQHFWLRQ�FRQQHFWLRQ�
VFI�FUHDWH&RQQHFWLRQ���

0HVVDJH)DFWRU\�PVJ)DFWRU\�
0HVVDJH)DFWRU\�QHZ,QVWDQFH���

62$30HVVDJH�PVJ� �PVJ)DFWRU\�FUHDWH0HVVDJH����

The new 62$30HVVDJH object msg automatically contains a 62$33DUW object that
contains a 62$3(QYHORSH object. The 62$3(QYHORSH object contains a 62$3%RG\
object, which is the element you want to access in order to add content to it. The
next lines of code get the 62$33DUW object, the 62$3(QYHORSH object, and the
62$3%RG\ object.

62$3(QYHORSH�HQYHORSH�
PVJ�JHW62$33DUW���JHW(QYHORSH���

62$3%RG\�ERG\� �HQYHORSH�JHW%RG\���

The following lines of code add an element with a fully-qualified name and then
add two attributes to the new element. The first attribute has the name
�JHQHULF� and the value �����. The second attribute has the name �PD[5RZV�
and the value �����. Then the code adds a child element with the name name and
adds some text to it with the method DGG7H[W1RGH. The text added is the 6WULQJ

322 JAVA™ API FOR XML MESSAGING
object that was passed in as the second argument, which is the name of the busi-
ness that is being searched for in the test registry.

62$3%RG\(OHPHQW�ILQG%XVLQHVV�
ERG\�DGG%RG\(OHPHQW�
HQYHORSH�FUHDWH1DPH��ILQGBEXVLQHVV��
�����XUQ�XGGL�RUJ�DSL����

ILQG%XVLQHVV�DGG$WWULEXWH�
HQYHORSH�FUHDWH1DPH��JHQHULF����������

ILQG%XVLQHVV�DGG$WWULEXWH�
HQYHORSH�FUHDWH1DPH��PD[5RZV����������

62$3(OHPHQW�EXVLQHVV1DPH�
ILQG%XVLQHVV�DGG&KLOG(OHPHQW�
HQYHORSH�FUHDWH1DPH��QDPH����

EXVLQHVV1DPH�DGG7H[W1RGH�DUJV>�@���

The next line of code creates the 85/(QGSRLQW object that is the destination for
this message. It gets the value of the property named "URL" from the system
property file.

85/(QGSRLQW�HQGSRLQW� �QHZ�85/(QGSRLQW�
6\VWHP�JHW3URSHUWLHV���JHW3URSHUW\��85/����

The following line of code saves the changes that have been made to the mes-
sage. This method will be called automatically when the message is sent, but it
does not hurt to call it explicitly.

� PVJ�VDYH&KDQJHV����

Next the message msg is sent to the destination that endpoint represents, which is
the test UDDI registry. The method FDOO will block until it gets a 62$30HVVDJH
object back, at which point it returns the reply.

62$30HVVDJH�UHSO\� �FRQQHFWLRQ�FDOO�PVJ�
HQGSRLQW��

In the next two lines, the first prints out a line giving the URL of the sender (the
test registry), and the second prints out the returned message as an XML docu-
ment.

6\VWHP�RXW�SULQWOQ��5HFHLYHG�UHSO\�IURP�����
HQGSRLQW��

UHSO\�ZULWH7R�6\VWHP�RXW��

MYUDDIPING.JAVA 323
The code thus far has been based on 8GGL3LQJ�MDYD. If you go to the XGGLSLQJ
directory and call the appropriate UXQ script, you can see what the output looks
like.

UNIX:

FG��-:6'3B+20(�VDPSOHV�MD[P�XGGLSLQJ
UXQ�VK�XGGL�SURSHUWLHV�0LFURVRIW

Windows:

FG��-:6'3B+20(�?VDPSOHV?MD[P?XGGLSLQJ
UXQ�EDW�XGGL�SURSHUWLHV�0LFURVRIW

What appears on your screen will look something like this:

5HFHLYHG�UHSO\IURP��
KWWS���ZZZ��LEP�FRP�VHUYLFHV�XGGL�WHVWUHJLVWU\�LQTXLU\DSL�"[P
O�YHUVLRQ ������HQFRGLQJ �87)����"!�(QYHORSH�
[POQV �KWWS���VFKHPDV�[POVRDS�RUJ�VRDS�HQYHORSH��!�%RG\!�EXVL
QHVV/LVW�JHQHULF ������[POQV �XUQ�XGGL�RUJ�DSL��
RSHUDWRU �ZZZ�LEP�FRP�VHUYLFHV�XGGL��
WUXQFDWHG �IDOVH�!�EXVLQHVV,QIRV!�EXVLQHVV,QIR�
EXVLQHVV.H\ �'��������%)�����'��$����
����$&��&&�(�!�QDPH!0LFURVRIW�&RUSRUDWLRQ��QDPH!�GHVFULSWLRQ�
[PO�ODQJ �HQ�!&RPSXWHU�6RIWZDUH�DQG�+DUGZDUH�
0DQXIDFWXUHU��GHVFULSWLRQ!�VHUYLFH,QIRV!��VHUYLFH,QIRV!��EXVL
QHVV,QIR!��EXVLQHVV,QIRV!��EXVLQHVV/LVW!��%RG\!��(QYHORSH!

Adding New Code
Now you are going to add code to make the reply more user-friendly. Your new
code will get the content from certain elements rather than printing out the whole
XML document as it was sent over the wire. Because the content is in the 62$3�
%RG\ object, the first thing you need to do is access it, as shown in the following
line of code. You can access each element in separate method calls, as was done
in earlier examples, or you can access the 62$3%RG\ object using this shorthand
version.

62$3%RG\�UHSO\%RG\�
UHSO\�JHW62$33DUW���JHW(QYHORSH���JHW%RG\���

324 JAVA™ API FOR XML MESSAGING
Next you might print out two blank lines to separate your results from the raw
XML message and a third line that describes the text that follows.

6\VWHP�RXW�SULQWOQ�����
6\VWHP�RXW�SULQWOQ�����
6\VWHP�RXW�SULQW�
�&RQWHQW�H[WUDFWHG�IURP�WKH�UHSO\�PHVVDJH�����

Now you can begin the process of getting all of the child elements from an ele-
ment, getting the child elements from each of those, and so on, until you arrive at
a text element that you can print out. Unfortunately, the registry used for this
example code, being just a test registry, is not always consistent. The number of
subelements sometimes varies, making it difficult to know how many levels
down the code needs to go. And in some cases, there are multiple entries for the
same company name.

The code you will be adding drills down through the subelements within the
SOAP body and retrieves the name and description of the company in most
cases. The method you use to retrieve child elements is the 62$3(OHPHQW method
JHW&KLOG(OHPHQWV. When you give this method no arguments, it retrieves all of
the child elements of the element on which it is called. If you know the 1DPH
object used to name an element, you can supply that to JHW&KLOG(OHPHQWV and
retrieve only the children with that name. In this case, however, you need to
retrieve all elements and keep drilling down until you get to the elements that
contain text content.

Here is the basic pattern that is repeated for drilling down:

,WHUDWRU�LWHU�� �UHSO\%RG\�JHW&KLOG(OHPHQWV���
ZKLOH��LWHU��KDV1H[W����^�

62$3%RG\(OHPHQW�ERG\(OHPHQW�
�62$3%RG\(OHPHQW�LWHU��QH[W���

,WHUDWRU�LWHU��
ERG\(OHPHQW�JHW&KLOG(OHPHQWV���

ZKLOH��LWHU��KDV1H[W����^

The method JHW&KLOG(OHPHQWV returns the elements in the form of a
MDYD�XWLO�,WHUDWRU object. You access the child elements by calling the
method QH[W on the ,WHUDWRU object. The method ,WHUDWRU�KDV1H[W can be
used in a ZKLOH loop because it returns WUXH as long as the next call to the
method QH[W will return a child element. The loop ends when there are no more
child elements to retrieve.

MYUDDIPING.JAVA 325
An immediate child of a 62$3%RG\ object is a 62$3%RG\(OHPHQW object, which is
why calling LWHU��QH[W returns a 62$3%RG\(OHPHQW object. Children of 62$3�
%RG\(OHPHQW objects and all child elements from there down are 62$3(OHPHQW
objects. For example, the call LWHU��QH[W returns the 62$3(OHPHQW object child2.
Note that the method ,WHUDWRU�QH[W returns an 2EMHFW, which has to be nar-
rowed (cast) to the specific kind of object you are retrieving. Thus, the result of
calling LWHU��QH[W is cast to a 62$3%RG\(OHPHQW object, whereas the results of
calling LWHU��QH[W, LWHU��QH[W, and so on, aUH� DOO� cast to a 62$3(OHPHQW
object.

Here is the code you add to access and print out the company name and descrip-
tion:

,WHUDWRU�LWHU�� �UHSO\%RG\�JHW&KLOG(OHPHQWV���
ZKLOH��LWHU��KDV1H[W����^�

62$3%RG\(OHPHQW�ERG\(OHPHQW�
�62$3%RG\(OHPHQW�LWHU��QH[W���

,WHUDWRU�LWHU��
ERG\(OHPHQW�JHW&KLOG(OHPHQWV���

ZKLOH��LWHU��KDV1H[W����^
62$3(OHPHQW�FKLOG��

�62$3(OHPHQW�LWHU��QH[W���
,WHUDWRU�LWHU��

FKLOG��JHW&KLOG(OHPHQWV���
6WULQJ�FRQWHQW� �FKLOG��JHW9DOXH���
6\VWHP�RXW�SULQWOQ�FRQWHQW��
ZKLOH��LWHU��KDV1H[W����^

62$3(OHPHQW�FKLOG��
�62$3(OHPHQW�LWHU��QH[W���

,WHUDWRU�LWHU��
FKLOG��JHW&KLOG(OHPHQWV���

FRQWHQW� �FKLOG��JHW9DOXH���
6\VWHP�RXW�SULQWOQ�FRQWHQW��
ZKLOH��LWHU��KDV1H[W����^

62$3(OHPHQW�FKLOG��
�62$3(OHPHQW�LWHU��QH[W���

FRQWHQW� �FKLOG��JHW9DOXH���
6\VWHP�RXW�SULQWOQ�FRQWHQW��

`
`

`
`
FRQQHFWLRQ�FORVH���

`�FDWFK��([FHSWLRQ�H[��^�

326 JAVA™ API FOR XML MESSAGING
H[�SULQW6WDFN7UDFH����
`

`
`

You are now ready to compile the code and move the new �FODVV file to the
directory P\XGGLSLQJ. If you have not already done so, you can copy the file
0\8GGL3LQJ�MDYD� from �JWSDP_HOME!�GRFV�WXWRULDO�H[DPSOHV�MD[P to
�JWSDP_HOME!�VDPSOHV�MD[P�P\XGGLSLQJ�VUF. When you execute the
appropriate UXQ script, which you will do next, it will compile 0\8GGL3LQJ�MDYD
and move the resulting 0\8GGL3LQJ�FODVV file to the P\XGGLSLQJ directory for
you.

First, you will need to copy the UXQ script in the H[DPSOHV directory of the tuto-
rial to the P\XGGLSLQJ directory as follows:

Unix:

FG��-:6'3B+20(�VDPSOHV�MD[P�P\XGGLSLQJ
FS��-:6'3B+20(�GRFV�WXWRULDO�MD[P�H[DPSOHV�UXQ�VK��

Windows:

FG��-:6'3B+20(�?VDPSOHV?MD[P?P\XGGLSLQJ
FS��-:6'3B+20(�?GRFV?WXWRULDO?MD[P?H[DPSOHV?UXQ�EDW��

To get a description of, for instance, Oracle, execute the appropriate UXQ script
from the P\XGGLSLQJ directory. If you are already in the directory P\XGGLSLQJ,
you can, of course, ignore the lines that FG to it.

Note: If the UXQ script is not executable, you will need to make it executable.

Unix:

FG��-:6'3B+20(�VDPSOHV�MD[P�P\XGGLSLQJ
UXQ�VK�XGGL�SURSHUWLHV�2UDFOH

Windows:

FG��-:6'3B+20(�?VDPSOHV?MD[P?P\XGGLSLQJ
UXQ�EDW�XGGL�SURSHUWLHV�2UDFOH

MYUDDIPING.JAVA 327
Here is the output that will appear after the full XML message. It is produced by
the code added in 0\8GGL3LQJ�MDYD.

&RQWHQW�H[WUDFWHG�IURP�WKH�UHSO\�PHVVDJH��

2UDFOH
RUDFOH�SRZHUV�WKH�LQWHUQHW

2UDFOH�&RUSRUDWLRQ
2UDFOH�&RUSRUDWLRQ�SURYLGHV�WKH�VRIWZDUH�DQG�VHUYLFHV�IRU�H�
EXVLQHVV�

Running the script with Microsoft instead of Oracle produces the following out-
put:

5HFHLYHG�UHSO\�IURP��KWWS���ZZZ�
��LEP�FRP�VHUYLFHV�XGGL�WHVWUHJLVWU\�LQTXLU\DSL
�"[PO�YHUVLRQ ������HQFRGLQJ �87)����"!�(QYHORSH�
[POQV �KWWS���VFKHPDV�[POVRDS�RUJ�VRDS�HQYHORSH��!�%RG\!�EXVL
QHVV/LVW�JHQHULF ������[POQV �XUQ�XGGL�RUJ�DSL��
RSHUDWRU �ZZZ�LEP�FRP�VHUYLFHV�XGGL��
WUXQFDWHG �IDOVH�!�EXVLQHVV,QIRV!�EXVLQHVV,QIR�
EXVLQHVV.H\ �'��������%)�����'��$����
����$&��&&�(�!�QDPH!0LFURVRIW�&RUSRUDWLRQ��QDPH!�GHVFULSWLRQ�
[PO�ODQJ �HQ�!&RPSXWHU�6RIWZDUH�DQG�+DUGZDUH�
0DQXIDFWXUHU��GHVFULSWLRQ!�VHUYLFH,QIRV!��VHUYLFH,QIRV!��EXVL
QHVV,QIR!��EXVLQHVV,QIRV!��EXVLQHVV/LVW!��%RG\!��(QYHORSH!

&RQWHQW�H[WUDFWHG�IURP�WKH�UHSO\�PHVVDJH��

0LFURVRIW�&RUSRUDWLRQ
&RPSXWHU�6RIWZDUH�DQG�+DUGZDUH�0DQXIDFWXUHU

Conclusion
JAXM provides a Java API that simplifies writing and sending XML messages.
You have learned how to use this API to write client code for JAXM request-
response messages and one-way messages. You have also learned how to get the
content from a reply message. Finally, you have seen how to write and run your
own modification of the XGGLSLQJ sample application. You now have first-hand
experience of how JAXM makes it easier to do XML messaging.

328 JAVA™ API FOR XML MESSAGING

Java™ API for
XML-based RPC

Dale Green

IF you’re new to the Java™ API for XML-based RPC (“JAX-RPC”), this chap-
ter is the place to start. After briefly describing JAX-RPC, the chapter shows you
how to build a simple Web service and client.

Although it starts with the basics, this chapter does have a few prerequisites.
First, you should already be familiar with the Java programming language. You
should also know how to install software, set environment variables, edit XML
files, and run commands from a terminal window. A basic knowledge of Web
servers is helpful, but not required.

Since this material is based on an early access (EA) release, it does not cover the
full capabilities of JAX-RPC. If you’re interested in learning more about JAX-
RPC and its underlying technologies, please see the list of links on the
�-$;53&B+20(!�LQGH[�KWPO page of your installation.

In This Chapter
What is JAX-RPC? 330
A Simple Example: HelloWorld 331

HelloWorld at Runtime 331
HelloWorld Files 333
Overview of Steps 333
Setting Up 333
Coding the Service Definition Interface and Implementation Class 334
Compiling the Service Definition Code 335
329

Bios.html

330 JAVA™ API FOR XML-BASED RPC
Creating the Configuration File 335
Generating the Stubs and Ties 336
Creating the Deployment Descriptor 337
Packaging the Service Definition 338
Deploying the Service Definition 339
Coding the Client 340
Compiling the Client Code 341
Running the Client 341

The Dynamic Invocation Interface 342
When to Use DII 342
A DII Client Example 343

What is JAX-RPC?
JAX-RPC stands for Java API for XML-based RPC. It’s an API for building
Web services and clients using remote procedure calls (RPC) and XML. Often
used in a distributed client/server model, an RPC mechanism enables clients to
execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines envelope structure, encoding
rules, and a convention for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages over HTTP. The
JAX-RPC reference implementation relies on SOAP 1.1 and HTTP 1.1.

Although JAX-RPC relies on complex protocols, the API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. After locating the
service endpoint by specifying a URL, the client simply invokes the methods on
a local object (a stub) that represents the remote service.

With JAX-RPC, clients and Web services have a big advantage— the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a Web service that is not running on the
Java platform and vice versa. This flexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTP, SOAP,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages. The

HELLOWORLD AT RUNTIME 331
JAX-RPC reference implementation includes a tool ([USFF) that can read or
write WSDL files. See the appendix, The xrpcc Tool (page 519).

A Simple Example: HelloWorld
This example shows you how to create a service named +HOOR:RUOG. A remote
client of the +HOOR:RUOG service can invoke the VD\+HOOR method, which
accepts a string parameter and then returns a string.

HelloWorld at Runtime
Figure 1 shows the structure of the +HOOR:RUOG service after it’s been deployed.
Here’s what happens at runtime:

1. To call a remote procedure, the +HOOR&OLHQW program invokes a method
on a stub, a local object that represents the remote service.

2. The stub invokes routines in the JAX-RPC runtime system of the reference
implementation.

3. The runtime system converts the remote method call into a SOAP message
and then transmits the message as an HTTP request.

4. When the server receives the HTTP request, the JAX-RPC runtime system
extracts the SOAP message from the request and translates it into a method
call.

5. The JAX-RPC runtime system invokes the method on the tie object.

6. The tie object invokes the method on the implementation of the +HO�
OR:RUOG service.

332 JAVA™ API FOR XML-BASED RPC
Figure 1 The +HOOR:RUOG Example at Runtime

The application developer only provides the top layers in the stacks depicted by
Figure 1. Table 1 shows where the layers originate.

Table 1 Who (or What) Provides the Layers

Layer Source

+HOOR&OLHQW Program
+HOOR:RUOG Service (definition interface
and implementation class)

Provided by the application developer

Stubs
Ties

Generated by the [USFF tool, which is run by
the application developer

JAX-RPC Runtime
System

Included with the reference implementation

Stubs

HelloClient
Program

JAX-RPC
Runtime

HTTP

 Ties

HelloWorld
Service

JAX-RPC
RuntimeSOAP

Message

HELLOWORLD FILES 333
HelloWorld Files
To create service, an application developer needs to provide just a few files. For
the +HOOR:RUOG example, these files are in the GRFV�WXWRULDO�H[DP�
SOHV�MD[USF�KHOOR subdirectory:

• +HOOR,)�MDYD - the service definition interface

• +HOOR,PSO�MDYD - the implementation class for the +HOOR,) interface

• FRQILJ�[PO - a configuration file read by the [USFF tool, which creates the
stub and tie classes

• ZHE�[PO - a deployment descriptor for the Web component (a servlet) that
dispatches to the service

• +HOOR&OLHQW�MDYD - the remote client that contacts the service and then
invokes the VD\+HOOR method

Overview of Steps
The basic steps for developing a service definition are as follows:

1. Code the service definition interface and implementation class.

2. Compile the service definition code of step 1.

3. Create the configuration file.

4. Generate the stubs and ties.

5. Create the deployment descriptor.

6. Package the service definition.

7. Deploy the service definition.

On the client side, these are the steps:

1. Code the client.

2. Compile the client code.

3. Run the client.

Setting Up
Before you try out the +HOOR:RUOG example, verify that you’ve installed the
required software and that you’ve set the necessary environment variables.

../examples/jaxrpc/hello/HelloIF.java
../examples/jaxrpc/hello/HelloImpl.java
../examples/jaxrpc/hello/HelloClient.java

334 JAVA™ API FOR XML-BASED RPC
Required Software
For a list of the required software and supported operating systems, see the
Release Notes of the Java Web Services Developer Pack.

The Java Web Services Developer Pack includes Tomcat and the DQW build util-
ity. You must use the included version of Tomcat to run the examples in this tuto-
rial. Although you may use a separate installation of DQW, we recommend that
you run the included version in order to avoid confusion over incompatible ver-
sions.

Environment Variables
Before you try out the +HOOR:RUOG example, you must set some environment
variables. For more information, see the Release Notes of the Java Web Services
Developer Pack.

Setting build.xml Properties
If you are on a Windows system, you may skip this section.

1. In a text editor, open the GRFV�WXWRULDO�H[DPSOHV�MD[USF�FRP�
PRQ�FRQILJ�EXLOG�SURSHUWLHV�file.

2. If you are on a UNIX system, change the value of the VFULSW�VXIIL[
property to VK. For Windows, the value should be EDW, which is the default.

3. Save the FRQILJ�EXLOG�SURSHUWLHV file and exit the editor.

Coding the Service Definition Interface
and Implementation Class
A service definition interface declares the methods that a remote client may
invoke on the service. The interface must conform to a few rules:

• It extends the MDYD�UPL�5HPRWH interface.

• It must not have constant declarations, such as SXEOLF�ILQDO�VWDWLF.

• The methods must throw the MDYD�UPL�5HPRWH([FHSWLRQ or one of its
subclasses. (The methods may also throw service-specific exceptions.)

• Method parameters and return types must be supported JAX-RPC types.
(See section 5.1 of the JAX-RPC Specifications.)

COMPILING THE SERVICE DEFINITION CODE 335
In this example, the service definition interface is +HOOR,)�MDYD:

SDFNDJH�KHOOR�

LPSRUW�MDYD�UPL�5HPRWH�
LPSRUW�MDYD�UPL�5HPRWH([FHSWLRQ�

SXEOLF�LQWHUIDFH�+HOOR,)�extends Remote�^
����SXEOLF�6WULQJ�VD\+HOOR�6WULQJ�V��throws RemoteException�
`

In addition to the interface, you’ll need to code the class that implements the
interface. In this example, the implementation class is called +HOOR,PSO:

SDFNDJH�KHOOR�

SXEOLF�FODVV�+HOOR,PSO�implements HelloIF�^

����SXEOLF�6WULQJ�PHVVDJH� �QHZ�6WULQJ�´+HOOR�´��

����SXEOLF�6WULQJ�VD\+HOOR�6WULQJ�V��^
��������UHWXUQ�QHZ�6WULQJ�PHVVDJH���V��
����`
`

Compiling the Service Definition Code
To compile +HOOR,)�MDYD and +HOOR,PSO�MDYD, go to the GRFV�WXWR�
ULDO�H[DPSOHV�MD[USF�KHOOR directory and type the following:

DQW�FRPSLOH�VHUYHU

This command places the resulting class files in the EXLOG subdirectory.

Creating the Configuration File
The FRQILJ�[PO file contains information needed by the [USFF tool, which
you’ll run in the next section.

In the file listing that follows, note the values defined in the �VHUYLFH! element.
The name of the service, +HOOR:RUOG, will be used as the prefix of the +HO�
OR:RUOG,PSO class name. Generated by the [USFF tool, the +HOOR:RUOG,PSO is
instantiated by the client class. (See Coding the Client (page 340).) The SDFND�

336 JAVA™ API FOR XML-BASED RPC
JH1DPH attribute, KHOOR, is the name of the package of the classes generated by
[USFF. In the �LQWHUIDFH! subelement, the QDPH attribute corresponds to the
fully qualified name of the service definition interface, KHOOR�+HOOR,). The
VHUYDQW1DPH attribute is the name of the interface’s implementation class,
KHOOR�+HOOR,PSO.

Here is the FRQILJ�[PO file:

�"[PO�YHUVLRQ µ���µ�HQFRGLQJ µ87)��µ"!
�FRQILJXUDWLRQ
���[POQV µKWWS���MDYD�VXQ�FRP�MD[�USF�UL�[USFF�FRQILJµ!
����UPL�QDPH µ+HOOR:RUOG6HUYLFHµ
������WDUJHW1DPHVSDFH µKWWS���KHOOR�RUJ�ZVGOµ
������W\SH1DPHVSDFH µKWWS���KHOOR�RUJ�W\SHVµ!
�������VHUYLFH�QDPH µHelloWorldµ�SDFNDJH1DPH µhelloµ!
����������LQWHUIDFH�QDPH µhello.HelloIFµ
���������VHUYDQW1DPH µhello.HelloImplµ�!
��������VHUYLFH!
�����UPL!
��FRQILJXUDWLRQ!

For more information about the syntax of the tool’s configuration file, see the
section Configuration File (page 521).

Note: Although required for the reference implementation of JAX-RPC, the config-
uration file and [USFF tool are not defined in the specifications. Their syntax and
usage may change in future releases.

Generating the Stubs and Ties
The [USFF tool generates the stubs and ties, which are lower-level classes that
enable the client and server to communicate. The tool also creates a properties
file and a WSDL file. Used internally by the reference implementation, the prop-
erties file is not defined in the specifications. For information about the relation-
ship between JAX-RPC technology and WSDL files, please refer to the JAX-
RPC specifications.

In this example, the tool reads the service definition interface and the configura-
tion file. (Alternatively, the tool may read a WSDL file instead of the interface.
See Starting With a WSDL Document (page 523) for more information.)

CREATING THE DEPLOYMENT DESCRIPTOR 337
The [USFF tool is a script—[USFF�VK for UNIX or [SUFF�EDW for Windows. To
create the stubs and ties, run the tool as follows:

UNIX:

[USFF�VK��FODVVSDWK�EXLOG��ERWK��G�EXLOG�FRQILJ�[PO

Windows:

[USFF�EDW��FODVVSDWK�EXLOG��ERWK��G�EXLOG�FRQILJ�[PO

The �ERWK option instructs [USFF to generate both stubs and ties. The �G option
denotes the destination directory for the generated files. See the section
Syntax (page 519) for the full syntax of the [USFF tool.

Creating the Deployment Descriptor
A deployment descriptor is an XML file that provides configuration information
for the Web server about the Web components (JSP pages or servlets) that are in
a Web application. Because the +HOOR:RUOG service is deployed as a servlet, the
deployment descriptor has some elements that are related to the service. This
section describes only those elements; for more information about deployment
descriptors, see the Java Servlet Specifications.

Let’s take a quick look at a couple of the elements in the deployment descriptor
(ZHE�[PO). First, note the +HOOR:RUOGB&RQILJ�SURSHUWLHV value of the �LQLW�
SDUDP! element. This properties file was generated by the [USFF tool. The name
of the file is the +HOOR:RUOG service name (which was defined in the configura-
tion file) appended by the B&RQILJ�SURSHUWLHV string. The value of the �XUO�
SDWWHUQ! element, �MD[USF�
, is part of the URL that designates the service’s
endpoint. This URL is passed to the +HOOR&OLHQW program as a command-line
parameter. See Running the Client (page 341).

The ZHE�[PO deployment descriptor follows:

�"[PO�YHUVLRQ µ���µ�HQFRGLQJ µ87)��µ"!�

���'2&7<3(�ZHE�DSS�38%/,&�
�����´���6XQ�0LFURV\VWHPV��,QF���'7'�:HE�$SSOLFDWLRQ������(1µ
�����´KWWS���MDYD�VXQ�FRP�M�HH�GWGV�ZHE�DSSB�B��GWGµ!�

�ZHE�DSS!�
����GLVSOD\�QDPH!+HOOR:RUOG$SSOLFDWLRQ��GLVSOD\�QDPH!�

338 JAVA™ API FOR XML-BASED RPC
����GHVFULSWLRQ!+HOOR�:RUOG�$SSOLFDWLRQ��GHVFULSWLRQ!�
����VHUYOHW!�
�������VHUYOHW�QDPH!-$;53&(QGSRLQW��VHUYOHW�QDPH!�
�������GLVSOD\�QDPH!-$;53&(QGSRLQW��GLVSOD\�QDPH!�
�������GHVFULSWLRQ!
���������(QGSRLQW�IRU�+HOOR�:RUOG�$SSOLFDWLRQ
��������GHVFULSWLRQ!�
�������VHUYOHW�FODVV!
��������FRP�VXQ�[PO�USF�VHUYHU�KWWS�-$;53&6HUYOHW
��������VHUYOHW�FODVV!�
�������LQLW�SDUDP!�
����������SDUDP�QDPH!FRQILJXUDWLRQ�ILOH��SDUDP�QDPH!�
����������SDUDP�YDOXH!
 /WEB_INF/HelloWorld_Config.properties
����������SDUDP�YDOXH!�
��������LQLW�SDUDP!�
�������ORDG�RQ�VWDUWXS!���ORDG�RQ�VWDUWXS!�
�����VHUYOHW!�
����VHUYOHW�PDSSLQJ!�
�������VHUYOHW�QDPH!-$;53&(QGSRLQW��VHUYOHW�QDPH!�
�������XUO�SDWWHUQ!/jaxrpc/*��XUO�SDWWHUQ!�
�����VHUYOHW�PDSSLQJ!�
����VHVVLRQ�FRQILJ!�
�������VHVVLRQ�WLPHRXW!����VHVVLRQ�WLPHRXW!�
�����VHVVLRQ�FRQILJ!�
��ZHE�DSS!

Packaging the Service Definition
A service definition is packaged in a Web application archive (WAR), a JAR file
whose contents is defined by the Java Servlet specifications. WAR files make it
easy to distribute and install (deploy) the service on various sites. In a later step,
you will deploy the MD[USF�KHOOR�ZDU file on Tomcat. For JAX-RPC, a WAR
file contains the following files:

• One or more service definition interfaces

Each service definition has a single interface, but a WAR file may contain
the files for more than one service. In this example, the service definition
interface is +HOOR,)�FODVV.

• One or more service definition classes that implement the interfaces

For each service definition interface, you must provide a corresponding
service implementation class (+HOOR,PSO�FODVV�.

• Classes for pluggable serializers and deserializers

DEPLOYING THE SERVICE DEFINITION 339
This example does not require these files. (See the JAX-RPC Specifica-
tions for more information.)

• Other files required by the service implementation classes

Examples of these files are: helper classes, JPEG images, and XML docu-
ments. Since it’s so simple, the +HOOR,PSO class does not need any of
these other files.

• A deployment descriptor

All WAR files require a deployment descriptor (ZHE�[PO).

• An optional WSDL file that describes the service

In a previous section, you created the +HOOR:RUOG6HUYLFH�ZVGO file by
running the [USFF tool.

In addition to the preceding list of files, in the JAX-RPC reference implementa-
tion a WAR file also contains several files generated by the [USFF tool: tie, serv-
let, and helper classes; and a server configuration file
(+HOOR:RUOGB&RQILJ�SURSHUWLHV).

To package the +HOOR:RUOG service definition, type the following:

DQW�SDFNDJH

This command creates the MD[USF�KHOOR�ZDU file.

Deploying the Service Definition
To deploy the service definition, you simply copy the WAR file to Tomcat’s
ZHEDSSV directory:

DQW�GHSOR\

The first time you deploy a WAR file, Tomcat must be started. For subsequent
deployments of the same WAR file, you do not need to start or restart Tomcat.
Because you are about to deploy the MD[USF�KHOOR�ZDU file for the first time, if
Tomcat is running now, you must shut it down and then restart it.

To shut down (stop) Tomcat, type the following command in a terminal window:

UNIX:

VKXWGRZQ�VK

340 JAVA™ API FOR XML-BASED RPC
Windows:

VKXWGRZQ

To start Tomcat, type this command:

UNIX:

VWDUWXS�VK

Windows:

VWDUWXS

To verify that the +HOOR:RUOG service has been deployed, open a browser win-
dow and specify this URL:

KWWS���ORFDOKRVW������MD[USF�KHOOR�MD[USF

The browser should display these lines:

$�:HE�6HUYLFH�LV�LQVWDOOHG�DW�WKLV�85/�

,W�VXSSRUWV�WKH�IROORZLQJ�SRUWV��´+HOOR,)µ
�KWWS���ORFDOKRVW������MD[USF�KHOOR�MD[USF�+HOOR,)�

Coding the Client
The +HOOR&OLHQW is a stand-alone program that calls the VD\+HOOR method of
the +HOOR:RUOG service. It makes this call through a stub, a local object which
acts as a proxy for the remote service.

In the code listing that follows, note the names of the +HOOR,)B6WXE and +HO�
OR:RUOG,PSO classes, which were generated by the [USFF tool. The +HOOR,)
prefix matches the name of the service definition interface and the +HOOR:RUOG
prefix corresponds to the service name specified in the configuration file. The
+HOOR:RUOG,PSO class is the implementation of a service as described in section
9.3 of the JAX-RPC specifications. The client gets a reference to the stub by
calling the JHW+HOOR,) method of +HOOR:RUOG,PSO.

The parameter of the BVHW7DUJHW(QGSRLQW method is a URI that denotes the
address of the target service port. For details on this URI, see Running the
Client (page 341).

COMPILING THE CLIENT CODE 341
The source code for the +HOOR&OLHQW follows:

SDFNDJH�KHOOR�

SXEOLF�FODVV�+HOOR&OLHQW�^
����SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^
��������WU\�^
������������HelloIF_Stub stub =
 (HelloIF_Stub)(new HelloWorldImpl().getHelloIF());
 stub._setTargetEndpoint(args[0]);
 System.out.println(stub.sayHello(“Duke!”));
��������`�FDWFK��([FHSWLRQ�H[��^
������������H[�SULQW6WDFN7UDFH���
��������`
����`
`

Compiling the Client Code
Because the client code refers to classes generated by the [USFF tool, be sure to
run the tool before compiling the client. To compile the client, type the follow-
ing:

DQW�FRPSLOH�FOLHQW�

Running the Client
To run the +HOOR&OLHQW program, type the following:

DQW�UXQ

The program should display this line:

+HOOR�'XNH�

The UXQ target executes this command:

MDYD��FODVVSDWK��FSDWK!�KHOOR�+HOOR&OLHQW��HQGSRLQW!

342 JAVA™ API FOR XML-BASED RPC
We created the UXQ�KHOOR target because the classpath includes many JAR files.
(The classpath will be simplified in a later release.) The command-line parame-
ter for the +HOOR&OLHQW program is the service endpoint:

KWWS���ORFDOKRVW������MD[USF�KHOOR�MD[USF�+HOOR,)

The MD[USF�KHOOR portion of the URL is the context of the servlet that imple-
ments the +HOOR:RUOG service. This portion corresponds to the prefix of the
MD[USF�KHOOR�ZDU file. The MD[USF string matches the value of the �XUO�SDW�
WHUQ! element of the ZHE�[PO deployment descriptor. And finally, +HOOR,) is
the name of the interface that defines the service.

The Dynamic Invocation Interface
With the dynamic invocation interface (DII), a client can call a remote procedure
even if the signature of the remote procedure or the name of the service are
unknown until runtime.

When to Use DII
 Although DII clients are flexible, they are more complex than clients that use
static stubs. (For an example of a client with static stubs, see Coding the
Client (page 340).) Compared to clients with static stubs, clients with DII are
more difficult to code, debug, and test. Therefore, a client should use DII only if
it cannot use static stubs.

However, there are two cases that require the flexibility of a DII client. The first
case is a service broker that dynamically discovers services, configures the
remote calls, and executes the calls. For example, an application for an online
clothing store might access a service broker that specializes in shipping. This
broker would use the Java API for XML Registries (JAXR) to locate the services
of the shipping companies that meet certain criteria, such as low cost or fast
delivery time. At runtime, the broker uses DII to call remote procedures on the
web services of the shipping companies. As an intermediary between the cloth-
ing store and the shipping companies, the broker offers benefits to all parties. For
the clothing store, it simplifies the shipping process, and for the shipping compa-
nies, it finds customers.

The second case requiring DII is less common: a development environment that
does not support the generation of static stubs.

A DII CLIENT EXAMPLE 343
A DII Client Example
The source code for this example is in the +HOOR&OLHQW�MDYD file of the
GRFV�WXWRULDO�H[DPSOHV�MD[USF�G\QDPLF directory.

The +HOOR&OLHQW program makes two remote procedure calls: VD\+HOOR and
VD\+HOOR2QH:D\. The VD\+HOOR call is synchronous and follows the familiar
request-response model. During a synchronous call, the client makes the call
(request) and waits for the call’s return (response) before continuing. The VD\�
+HOOR2QH:D\ call has a one-way invocation mode. In the one-way mode, the cli-
ent thread does not block and wait for the server to process the remote call. For
more information about invocation modes, see section 8.2.3.1 of the JAX-RPC
Specifications.

DII Classes and Interfaces
The +HOOR&OLHQW program uses the following interfaces and classes for dynamic
invocation.

• &DOO -supports the dynamic invocation of a remote operation on a service
port

• 6HUYLFH - a factory for &DOO objects, dynamic proxies, and stubs; only
generated services are factories for stubs

• 7\SH0DSSLQJ - a set of tuples that describe the mapping between Java pro-
gramming language types and XML data types; each 7\SH0DSSLQJ is for a
specific encoding; each tuple in a 7\SH0DSSLQJ contains the following
information:

• Java programming language type

• 6HULDOL]HU)DFWRU\

• 'HVHULDOL]HU)DFWRU\

• XML data type

• 7\SH0DSSLQJ5HJLVWU\ - a storage area (registry) for 7\SH0DSSLQJ
instances; this registry enables you to store and retrieve 7\SH0DSSLQJ
instances for specific encodings

• 4QDPH - a qualified name based on the Namespaces in XML Specifications

To see how to set up and invoke a dynamic invocation, refer to the +HOOR&OLHQW
source code that is shown in the next section. As you examine the source code,
note the classes and interfaces that belong to the packages whose names begin

../examples/jaxrpc/dynamic/HelloClient.java
../../api/javax/xml/rpc/Call.html
../../api/javax/xml/rpc/Service.html
../../api/javax/xml/rpc/encoding/TypeMapping.html
../../api/javax/xml/rpc/encoding/TypeMappingRegistry.html
../../api/javax/xml/rpc/namespace/QName.html
../../api/javax/xml/rpc/encoding/SerializerFactory.html
../../api/javax/xml/rpc/encoding/DeserializerFactory.html

344 JAVA™ API FOR XML-BASED RPC
with FRP�VXQ. These packages are specific to the reference implementation and
are not defined in the JAX-RPC Specifications.

DII HelloClient Listing
Here is the full listing for the +HOOR&OLHQW�MDYD file of the GRFV�WXWR�
ULDO�H[DPSOHV�MD[USF�G\QDPLF directory. Note how much longer the DII cli-
ent is than the static stub client shown in Coding the Client (page 340).

SDFNDJH�G\QDPLF�
LPSRUW�MDYD�UPL�5HPRWH([FHSWLRQ�

LPSRUW�MDYD[�[PO�USF�&DOO�
LPSRUW�MDYD[�[PO�USF�6HUYLFH�
LPSRUW�MDYD[�[PO�USF�-$;53&([FHSWLRQ�
LPSRUW�MDYD[�[PO�USF�QDPHVSDFH�41DPH�
LPSRUW�MDYD[�[PO�USF�HQFRGLQJ�7\SH0DSSLQJ�
LPSRUW�MDYD[�[PO�USF�HQFRGLQJ�7\SH0DSSLQJ5HJLVWU\�

LPSRUW�FRP�VXQ�[PO�USF�FOLHQW�6HUYLFH,PSO�
LPSRUW�FRP�VXQ�[PO�USF�FOLHQW�GLL�&DOO,PSO�
LPSRUW�FRP�VXQ�[PO�USF�FOLHQW�GLL�&DOO3URSHUW\&RQVWDQWV�

LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�,QLWLDOL]DEOH�
LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�7\SH0DSSLQJ,PSO�
LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�6HULDOL]HU&RQVWDQWV�
LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�7\SH0DSSLQJ5HJLVWU\,PSO�

LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�VRDS�62$3&RQVWDQWV�
LPSRUW�FRP�VXQ�[PO�USF�HQFRGLQJ�VRDS�6WDQGDUG62$37\SH0DSSLQJV�

LPSRUW�FRP�VXQ�[PO�USF�VRDS�VWUHDPLQJ�62$31DPHVSDFH&RQVWDQWV�

SXEOLF�FODVV�+HOOR&OLHQW�LPSOHPHQWV�&DOO3URSHUW\&RQVWDQWV��
����6HULDOL]HU&RQVWDQWV�^

����SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^

��������WU\�^

������������6WULQJ�ERG\1DPHVSDFH9DOXH� �
����������������QHZ�6WULQJ�´KWWS���G\QDPLF�KHOOR�RUJ�ZVGOµ��

������������41DPH�VWULQJ4QDPH� �
����������������QHZ�41DPH�62$31DPHVSDFH&RQVWDQWV�;6'��´VWULQJµ��

../examples/jaxrpc/dynamic/HelloClient.java

A DII CLIENT EXAMPLE 345
������������7\SH0DSSLQJ�W\SH0DSSLQJ� �
����������������QHZ�6WDQGDUG62$37\SH0DSSLQJV���
������������7\SH0DSSLQJ5HJLVWU\�UHJLVWU\� �
�����������������QHZ�7\SH0DSSLQJ5HJLVWU\,PSO���
������������UHJLVWU\�UHJLVWHU�W\SH0DSSLQJ��
����������������62$3&RQVWDQWV�85,B(1&2',1*��
����
������������41DPH�SRUW� �QHZ�41DPH�´+HOOR,)µ��
������������6HUYLFH�VHUYLFH� �
����������������QHZ�6HUYLFH,PSO�QHZ�41DPH�´+HOORµ���
������������VHUYLFH�VHW7\SH0DSSLQJ5HJLVWU\�UHJLVWU\��

������������&DOO�FDOO� �VHUYLFH�FUHDWH&DOO���
������������FDOO�VHW3RUW7\SH1DPH�SRUW��
������������FDOO�VHW7DUJHW(QGSRLQW$GGUHVV�DUJV>�@��

������������FDOO�VHW3URSHUW\�%2'<B1$0(63$&(B3523(57<��
����������������ERG\1DPHVSDFH9DOXH��
������������FDOO�VHW3URSHUW\�,6B62$3$&7,21B86('B3523(57<��
����������������QHZ�%RROHDQ�WUXH���
������������FDOO�VHW3URSHUW\�62$3$&7,21B9$/8(B3523(57<��´´��
������������FDOO�VHW3URSHUW\�(1&2',1*B67</(B3523(57<��
����������������62$3&RQVWDQWV�85,B(1&2',1*��

��������������&DOO,PSO�FDOO��VHW5HWXUQ7\SH�VWULQJ4QDPH�
�����������������6WULQJ�FODVV��
������������call.setOperationName(“sayHello”);
������������FDOO�DGG3DUDPHWHU�´6WULQJB�µ��VWULQJ4QDPH�
����������������&DOO�3$5$0B02'(B,1��
������������6WULQJ>@�SDUDPV� �^�QHZ�6WULQJ�´'XNH�µ��`�
������������String result = (String)call.invoke(params);
������������6\VWHP�RXW�SULQWOQ�UHVXOW��

������������call.setOperationName(“sayHelloOneWay”);
������������FDOO�UHPRYH$OO3DUDPHWHUV���
������������call.invokeOneWay(null);
������������6\VWHP�RXW�SULQWOQ�´2QH�ZD\�LQYRNHGµ��

��������`�FDWFK��([FHSWLRQ�H[��^
������������H[�SULQW6WDFN7UDFH���
��������`
����`
`

346 JAVA™ API FOR XML-BASED RPC
Building and Running the DII Example
To build this example, follow these steps:

1. Make sure that you’ve performed the set up instructions in Setting
Up (page 333) and Coding the Service Definition Interface and Implemen-
tation Class (page 334).

2. Go to the GRFV�WXWRULDO�H[DPSOHV�MD[USF�G\QDPLF directory.

3. Type the following:

���DQW�EXLOG

This command compiles the code, runs the� [USFF tool, packages the
WAR file, and deploys the WAR file onto the Tomcat server. The section,
A Simple Example: HelloWorld (page 331), instructed you to perform
each of these tasks by executing separate DQW targets. The EXLOG target
executes the same set of targets, but is more convenient because it
requires less typing.

4. To run the client, type the following command:

���DQW�UXQ

The client should display the following lines:

���$�G\QDPLF�KHOOR�WR�'XNH���WLPH�VWDPS!�
���2QH�ZD\�LQYRNHG

(Useful for debugging, the WLPH�VWDPS indicates when the server code for the
example was compiled. You can check the WLPH�VWDPS to make sure that the cli-
ent is accessing the WAR file most recently built.)

Java™ API for XML
Registries

by Kim Haase

THE Java™ API for XML Registries (“JAXR”) provides a uniform and stan-
dard Java API for accessing different kinds of XML Registries.

The release of JAXR 1.0 that you have downloaded as part of the Java Web Ser-
vices Developer Pack (“Java WSDP”) includes the following:

• The JAXR 1.0 Early Access Reference Implementation (RI)

• API documentation

• Sample programs, including a Registry Browser

To learn how to configure JAXR in preparation for running JAXR client pro-
grams, see the JAXR home page (�-:6'3B+20(!�GRFV�MD[U�LQGH[�KWPO on
UNIX® systems; �-:6'3B+20(!?GRFV?MD[U?LQGH[�KWPO on Microsoft Win-
dows systems).

In This Chapter
Overview of JAXR 348

What is a Registry? 348
What Is JAXR? 348
JAXR Architecture 349

Implementing a JAXR Client 350
Establishing a Connection 351
Querying a Registry 353
Managing Registry Data 355
347

Bios.html

348 JAVA™ API FOR XML REGISTRIES
Running the Client Examples 360
Using the Registry Browser 362

Querying a Registry 362
Managing Registry Data 363

Overview of JAXR
This section provides a brief overview of JAXR.

What is a Registry?
An XML registry is an infrastructure that enables the building, deployment, and
discovery of Web services. It is a neutral third party that facilitates dynamic and
loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of a Web-based service.

Currently there are a variety of specifications for XML registries. These include

• The ebXML Registry and Repository standard, which is being developed
by the Organization for the Advancement of Structured Information Stan-
dards (OASIS) and the United Nations Centre for the Facilitation of Pro-
cedures and Practices in Administration, Commerce and Transport
(U.N./CEFACT)

• The Universal Description, Discovery, and Integration (UDDI) project,
which is being developed by a vendor consortium

What Is JAXR?
JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across different target registries. JAXR also enables value-added capabili-
ties beyond those of the underlying registries.

JAXR ARCHITECTURE 349
The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the ebXML Registry and the
UDDI v1.0 specifications. You can find the latest version of the specification at

KWWS���MDYD�VXQ�FRP�[PO�GRZQORDGV�MD[U�KWPO

At this release, the JAXR RI implements the level 0 capability profile defined by
the JAXR specification. This level allows access to both UDDI and ebXML reg-
istries at a basic level. The RI, however, currently supports access only to UDDI
registries.

Currently several UDDI registries exist. The Java WSDP Registry Server pro-
vides a UDDI-compliant registry that you can use to test your JAXR applica-
tions.

Some ebXML registries are under development, but they are not yet generally
available.

JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

• A JAXR client, which uses the JAXR API to access a registry via a JAXR
provider.

• A JAXR provider, which implements the RegistryService interface and
various interfaces in order to allow a client to access registries.

A JAXR provider implements two main packages:

• MDYD[�[PO�UHJLVWU\, which consists of the API interfaces and classes
that define the registry access interface.

• MDYD[�[PO�UHJLVWU\�LQIRPRGHO, which consists of interfaces that
define the information model for JAXR. These interfaces define the types
of objects that reside in a registry and how they relate to each other. The
basic interface in this package is the 5HJLVWU\2EMHFW interface. Its sub-
interfaces include 2UJDQL]DWLRQ, 6HUYLFH, and 6HUYLFH%LQGLQJ.

The most basic interfaces in the�MDYD[�[PO�UHJLVWU\ package are

• &RQQHFWLRQ. The &RQQHFWLRQ interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use a registry.

http://java.sun.com/xml/downloads/jaxr.html

350 JAVA™ API FOR XML REGISTRIES
• 5HJLVWU\6HUYLFH. The client obtains a 5HJLVWU\6HUYLFH object from its
connection. The 5HJLVWU\6HUYLFH object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, also part of the MDYD[�[PO�UHJLVWU\�package, are

• %XVLQHVV4XHU\0DQDJHU, which allows the client to search a registry for
information in accordance with the MDYD[�[PO�UHJLVWU\�LQIRPRGHO
interfaces. An optional interface, 'HFODUDWLYH4XHU\0DQDJHU, allows the
client to use SQL syntax for queries. (This release of the JAXR RI does not
implement 'HFODUDWLYH4XHU\0DQDJHU.)

• %XVLQHVV/LIH&\FOH0DQDJHU, which allows the client to modify the infor-
mation in a registry by either saving it (updating it) or deleting it.

When an error occurs, JAXR API methods throw a -$;5([FHSWLRQ or one of its
subclasses.

Many methods in the JAXR API use a &ROOHFWLRQ object as an argument or a
returned value. Using a &ROOHFWLRQ object allows operations on several registry
objects at a time.

Implementing a JAXR Client
This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updates to a UDDI registry. A JAXR client is
a client program that can access registries using the JAXR API.

This tutorial does not describe how to implement a JAXR provider. A JAXR
provider provides an implementation of the JAXR specification, usually as a
façade around an existing registry provider, such as a UDDI or ebXML registry.
The JAXR RI itself is an example of a JAXR provider.

This tutorial includes several client examples:

• -$;54XHU\�MDYD shows how to search a registry

• -$;53XEOLVK�MDYD shows how to publish an organization to a registry

• -$;5'HOHWH�MDYD shows how to remove an organization from a registry

The JAXR release also includes several sample JAXR clients, the most complete
of which is a Registry Browser that includes a graphical user interface (GUI).

../examples/jaxr/JAXRQuery.java
../examples/jaxr/JAXRPublish.java
../examples/jaxr/JAXRDelete.java

ESTABLISHING A CONNECTION 351
The Registry Browser allows access to any registry, but includes some of the
most commonly used registries as preset URLs:

• KWWS���XGGL�PLFURVRIW�FRP����LQTXLUH (the Microsoft query regis-
try)

• KWWS���ZZZ���LEP�FRP�VHUYLFHV�XGGL�WHVWUHJLVWU\�LQTXLU\DSL
(the IBM query registry)

• KWWS���WHVW�XGGL�PLFURVRIW�FRP����LQTXLUH (the Microsoft test
query registry)

• KWWSV���WHVW�XGGL�PLFURVRIW�FRP�����SXEOLVK (the Microsoft test
update registry)

The Registry Browser source code is in the directory �-:6'3B+20(!/VDP�
SOHV�MD[U�MD[U�EURZVHU (on UNIX systems) or �-:6'3B+20(!?VDP�
SOHV?MD[U?MD[U�EURZVHU (on Microsoft Windows systems). Much of the
source code implements the GUI. The JAXR code is in the file -$;5&OL�
HQW�MDYD.

Establishing a Connection
The first task a JAXR client must complete is to establish a connection to a reg-
istry.

Preliminaries: Getting Access to a Registry
Any user of a JAXR client may perform queries on a public registry. In order to
add data to the registry or to update registry data, however, a user must obtain
permission from the registry to access it through a user name and password. To
register with one of the test registries, go to one of the following Web sites and
follow the instructions:

� KWWS���XGGL�PLFURVRIW�FRP�
� KWWS���ZZZ���LEP�FRP�VHUYLFHV�XGGL�

You do not need access permission to use the Java WSDP Registry Server.

Creating or Looking Up a Connection Factory
A client creates a connection from a connection factory. A JAXR provider may
supply one or more preconfigured connection factories that clients can obtain by
looking them up using the Java Naming and Directory Interface™ (JNDI) API.

http://uddi.microsoft.com/
http://www-3.ibm.com/services/uddi/

352 JAVA™ API FOR XML REGISTRIES
The JAXR RI does not currently supply preconfigured connection factories.
Instead, a client creates an instance of the abstract class &RQQHFWLRQ)DFWRU\:

LPSRUW�MDYD[�[PO�UHJLVWU\�
�
���
&RQQHFWLRQ)DFWRU\�FRQQ)DFWRU\� �
����&RQQHFWLRQ)DFWRU\�QHZ,QVWDQFH���

Creating a Connection
To create a connection, a client first creates a set of properties that specify the
URL of the registry or registries being accessed and the type of registry (UDDI
or ebXML). For example, the following code provides the URL of the IBM test
query registry and specifies the JAXR RI implementation of the connection fac-
tory for the UDDI registry. (There should be no line break in the string.)

3URSHUWLHV�SURSV� �QHZ�3URSHUWLHV���
SURSV�VHW3URSHUW\��MDYD[�[PO�UHJLVWU\�TXHU\0DQDJHU85/��
�����KWWS���ZZZ�
��LEP�FRP�VHUYLFHV�XGGL�WHVWUHJLVWU\�LQTXLU\DSL���
SURSV�VHW3URSHUW\��MDYD[�[PO�UHJLVWU\�IDFWRU\&ODVV���
�����FRP�VXQ�[PO�UHJLVWU\�XGGL�&RQQHFWLRQ)DFWRU\,PSO���

The client then sets the properties for the connection factory and creates the con-
nection:

FRQQ)DFWRU\�VHW3URSHUWLHV�SURSV��
&RQQHFWLRQ�FRQQHFWLRQ� �FRQQ)DFWRU\�FUHDWH&RQQHFWLRQ���

The PDNH&RQQHFWLRQ method in -$;53XEOLVK�MDYD and -$;5'HOHWH�MDYD
shows the steps used to create a JAXR connection.

Obtaining and Using a RegistryService Object
After creating the connection, the client uses the connection to obtain a 5HJLV�
WU\6HUYLFH object and then the interface or interfaces it will use:

5HJLVWU\6HUYLFH�UV� �FRQQHFWLRQ�JHW5HJLVWU\6HUYLFH���
%XVLQHVV4XHU\0DQDJHU�ETP� �UV�JHW%XVLQHVV4XHU\0DQDJHU���
%XVLQHVV/LIH&\FOH0DQDJHU�EOFP� �
����UV�JHW%XVLQHVV/LIH&\FOH0DQDJHU���

QUERYING A REGISTRY 353
Typically, a client obtains both a %XVLQHVV4XHU\0DQDJHU object and a %XVL�
QHVV/LIH&\FOH0DQDJHU object from the 5HJLVWU\6HUYLFH object. If it is using
the registry for queries only, it may need to obtain only a %XVLQHVV4XHU\0DQ�
DJHU object.

Querying a Registry
The simplest way for a client to use a registry is to query it for information about
the organizations that have submitted data to it. The %XVLQHVV4XHU\0DQDJHU
interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a %XON5H�
VSRQVH (a collection of objects) that meets a set of criteria specified in the
method arguments. At this release the most useful of these methods are likely to
be

• ILQG2UJDQL]DWLRQV, which returns a list of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

• ILQG6HUYLFHV, which returns a set of services offered by a specified orga-
nization

• ILQG6HUYLFH%LQGLQJV, which returns the service bindings supported by a
specified service

The -$;54XHU\ program illustrates how to query a registry and display the data
returned.

The following sections describe how to perform some common queries.

Finding Organizations by Name
The following fragment of the H[HFXWH4XHU\ method in -$;54XHU\�MDYD
shows how to find all the organizations in the registry whose names begin with a
specified string, T6WULQJ, and to sort them in alphabetical order.

���'HILQH�ILQG�TXDOLILHUV�DQG�QDPH�SDWWHUQV
&ROOHFWLRQ�ILQG4XDOLILHUV� �QHZ�$UUD\/LVW���
ILQG4XDOLILHUV�DGG�)LQG4XDOLILHU�6257B%<B1$0(B'(6&��
&ROOHFWLRQ�QDPH3DWWHUQV� �QHZ�$UUD\/LVW���
QDPH3DWWHUQV�DGG�T6WULQJ��

���)LQG�XVLQJ�WKH�QDPH

354 JAVA™ API FOR XML REGISTRIES
%XON5HVSRQVH�UHVSRQVH� �
����ETP�ILQG2UJDQL]DWLRQV�ILQG4XDOLILHUV��
��������QDPH3DWWHUQV��QXOO��QXOO��QXOO��QXOO��
&ROOHFWLRQ�RUJV� �UHVSRQVH�JHW&ROOHFWLRQ���

A client can specify a case-sensitive search by using the first argument of the
ILQG2UJDQL]DWLRQV method to specify a collection of ILQG4XDOLILHUV. For
example, the following code fragment finds organizations whose names contain
the string “Coffee”:

&ROOHFWLRQ�ILQG4XDOLILHUV� �QHZ�$UUD\/LVW���
ILQG4XDOLILHUV�DGG�)LQG4XDOLILHU�&$6(B6(16,7,9(B0$7&+��
&ROOHFWLRQ�QDPH3DWWHUQV� �QHZ�$UUD\/LVW���
QDPH3DWWHUQV�DGG���&RIIHH����
�
���)LQG�RUJV�ZLWK�QDPH�FRQWDLQLQJ�·&RIIHH·
%XON5HVSRQVH�UHVSRQVH� �
����ETP�ILQG2UJDQL]DWLRQV�ILQG4XDOLILHUV��QDPH3DWWHUQV��QXOO�
��������QXOO��QXOO��QXOO��
&ROOHFWLRQ�RUJV� �UHVSRQVH�JHW&ROOHFWLRQ���

Finding Organizations by Classification
To find organizations by classification, you need to establish the classification
within a particular classification scheme and then specify the classification as an
argument to the ILQG2UJDQL]DWLRQV method. The following code fragment
finds all organizations that correspond to a particular classification within the
North American Industry Classification System (NAICS) taxonomy. (You can
find the NAICS codes at KWWS���ZZZ�FHQVXV�JRY�HSFG�QDLFV�QDLF�
VFRG�W[W.)

%XVLQHVV/LIH&\FOH0DQDJHU�OFP� �
����UV�JHW%XVLQHVV/LIH&\FOH0DQDJHU���
&ODVVLILFDWLRQ6FKHPH�F6FKHPH� �
����OFP�ILQG&ODVVLILFDWLRQ6FKHPH%\1DPH��QWLV�JRY�QDLFV���
&ODVVLILFDWLRQ�FODVVLILFDWLRQ� ��&ODVVLILFDWLRQ�
����OFP�FUHDWH&ODVVLILFDWLRQ�F6FKHPH���6QDFN�DQG�1RQDOFRKROLF
���������%HYHUDJH�%DUV�������������
&ROOHFWLRQ�FODVVLILFDWLRQV� �QHZ�$UUD\/LVW���
FODVVLILFDWLRQV�DGG�FODVVLILFDWLRQ��

����
���PDNH�-$;5�UHTXHVW
%XON5HVSRQVH�UHVSRQVH� �ET0DQDJHU�ILQG2UJDQL]DWLRQV�QXOO�
����QXOO��FODVVLILFDWLRQV��QXOO��QXOO��QXOO��
&ROOHFWLRQ�RUJV� �UHVSRQVH�JHW&ROOHFWLRQ���

http://www.census.gov/epcd/naics/naicscod.txt
http://www.census.gov/epcd/naics/naicscod.txt

MANAGING REGISTRY DATA 355
Finding Services and ServiceBindings
After a client has located an organization, it can find that organization’s services
and the service bindings associated with those services.

,WHUDWRU�RUJ,WHU� �RUJV�LWHUDWRU���
ZKLOH��RUJ,WHU�KDV1H[W����^
����2UJDQL]DWLRQ�RUJ� ��2UJDQL]DWLRQ��RUJ,WHU�QH[W���
����&ROOHFWLRQ�VHUYLFHV� �RUJ�JHW6HUYLFHV���
����,WHUDWRU�VYF,WHU� �VHUYLFHV�LWHUDWRU���
����ZKLOH��VYF,WHU�KDV1H[W����^
��������6HUYLFH�VYF� ��6HUYLFH��VYF,WHU�QH[W���
��������&ROOHFWLRQ�VHUYLFH%LQGLQJV� �
������������VYF�JHW6HUYLFH%LQGLQJV���
��������,WHUDWRU�VE,WHU� �VHUYLFH%LQGLQJV�LWHUDWRU���
��������ZKLOH��VE,WHU�KDV1H[W����^
������������6HUYLFH%LQGLQJ�VE� �
�����������������6HUYLFH%LQGLQJ��VE,WHU�QH[W���
��������`
����`
`

Managing Registry Data
If a client has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the %XVLQHVV/LIH&\FOH0DQDJHU interface to perform
these tasks.

Registries usually allow a client to modify data only if the data is being modified
by the same user who first submitted the data.

Getting Authorization from the Registry
Before it can submit data, the client must send its username and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

���(GLW�WR�SURYLGH�\RXU�RZQ�XVHUQDPH�DQG�SDVVZRUG
6WULQJ�XVHUQDPH� ����
6WULQJ�SDVVZRUG� ����

���*HW�DXWKRUL]DWLRQ�IURP�WKH�UHJLVWU\
3DVVZRUG$XWKHQWLFDWLRQ�SDVVZG$XWK�
����QHZ�3DVVZRUG$XWKHQWLFDWLRQ�XVHUQDPH��

356 JAVA™ API FOR XML REGISTRIES
��������SDVVZRUG�WR&KDU$UUD\����

6HW�FUHGV� �QHZ�+DVK6HW���
FUHGV�DGG�SDVVZG$XWK��
FRQQHFWLRQ�VHW&UHGHQWLDOV�FUHGV��

Creating an Organization
The client creates the organization and populates it with data before saving it.

An 2UJDQL]DWLRQ object is one of the more complex data items in the JAXR
API. It normally includes the following:

• A 1DPH object

• A 'HVFULSWLRQ object

• A .H\ object, representing the ID by which the organization is known to
the registry

• A 3ULPDU\&RQWDFW object, which is a 8VHU object that refers to an autho-
rized user of the registry. A 8VHU object normally includes a 3HUVRQ1DPH
object and collections of 7HOHSKRQH1XPEHU and (PDLO$GGUHVV objects.

• A collection of &ODVVLILFDWLRQ objects

• 6HUYLFH objects and their associated 6HUYLFH%LQGLQJ objects

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organiza-
tion, it does not include a key; the registry normally returns the new key when it
accepts the newly created organization. The EOFP object in this code fragment is
the %XVLQHVV/LIH&\FOH0DQDJHU object returned in Obtaining and Using a Reg-
istryService Object (page 352). An ,QWHUQDWLRQDO6WULQJ object is used for
string values that may need to be localized.

���&UHDWH�RUJDQL]DWLRQ�QDPH�DQG�GHVFULSWLRQ
2UJDQL]DWLRQ�RUJ� �EOFP�FUHDWH2UJDQL]DWLRQ��7KH�&RIIHH�%UHDN���
,QWHUQDWLRQDO6WULQJ�V�
����EOFP�FUHDWH,QWHUQDWLRQDO6WULQJ��3XUYH\RU�RI�RQO\�WKH����
���������ILQHVW�FRIIHHV��(VWDEOLVKHG��������
RUJ�VHW'HVFULSWLRQ�V��

���&UHDWH�SULPDU\�FRQWDFW��VHW�QDPH
8VHU�SULPDU\&RQWDFW� �EOFP�FUHDWH8VHU���
3HUVRQ1DPH�S1DPH� �EOFP�FUHDWH3HUVRQ1DPH��-DQH�'RH���
SULPDU\&RQWDFW�VHW3HUVRQ1DPH�S1DPH��

���6HW�SULPDU\�FRQWDFW�SKRQH�QXPEHU

MANAGING REGISTRY DATA 357
7HOHSKRQH1XPEHU�W1XP� �EOFP�FUHDWH7HOHSKRQH1XPEHU���
W1XP�VHW1XPEHU�������������������
&ROOHFWLRQ�SKRQH1XPV� �QHZ�$UUD\/LVW���
SKRQH1XPV�DGG�W1XP��
SULPDU\&RQWDFW�VHW7HOHSKRQH1XPEHUV�SKRQH1XPV��

���6HW�SULPDU\�FRQWDFW�HPDLO�DGGUHVV
(PDLO$GGUHVV�HPDLO$GGUHVV� �
����EOFP�FUHDWH(PDLO$GGUHVV��MDQH�GRH#7KH&RIIHH%UHDN�FRP���
&ROOHFWLRQ�HPDLO$GGUHVVHV� �QHZ�$UUD\/LVW���
HPDLO$GGUHVVHV�DGG�HPDLO$GGUHVV��
SULPDU\&RQWDFW�VHW(PDLO$GGUHVVHV�HPDLO$GGUHVVHV��

���6HW�SULPDU\�FRQWDFW�IRU�RUJDQL]DWLRQ
RUJ�VHW3ULPDU\&RQWDFW�SULPDU\&RQWDFW��

Adding Classifications
Organizations commonly belong to one or more classifications within one or
more classification schemes (taxonomies). To establish a classification for an
organization within a taxonomy, the client locates the taxonomy it wants to use,
then creates a classification. It uses the %XVLQHVV4XHU\0DQDJHU to find the tax-
onomy. For example, the following code sets up a classification for the organiza-
tion within the NAICS taxonomy.

���6HW�FODVVLILFDWLRQ�VFKHPH�WR�1$,&6
&ODVVLILFDWLRQ6FKHPH�F6FKHPH� �
����ETP�ILQG&ODVVLILFDWLRQ6FKHPH%\1DPH��QWLV�JRY�QDLFV���

���&UHDWH�DQG�DGG�FODVVLILFDWLRQ
&ODVVLILFDWLRQ�FODVVLILFDWLRQ� ��&ODVVLILFDWLRQ�
����EOFP�FUHDWH&ODVVLILFDWLRQ�F6FKHPH��
���������6QDFN�DQG�1RQDOFRKROLF�%HYHUDJH�%DUV�������������
&ROOHFWLRQ�FODVVLILFDWLRQV� �QHZ�$UUD\/LVW���
FODVVLILFDWLRQV�DGG�FODVVLILFDWLRQ��
RUJ�DGG&ODVVLILFDWLRQV�FODVVLILFDWLRQV��

Services also use classifications, so you can use similar code to add a classifica-
tion to a 6HUYLFH object.

358 JAVA™ API FOR XML REGISTRIES
Adding Services and Service Bindings to an
Organization
Most organizations add themselves to a registry in order to offer services, so the
JAXR API has facilities to add services and service bindings to an organization.

Like an 2UJDQL]DWLRQ object, a 6HUYLFH object has a name and a description.
Also like an 2UJDQL]DWLRQ object, it has a unique key that is generated by the
registry when the service is registered. It may also have classifications associated
with it.

A service also commonly has service bindings, which provide information about
how to access the service. A 6HUYLFH%LQGLQJ object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, then add the services to the organization. It speci-
fies an access URI but not a specification link.

���&UHDWH�VHUYLFHV�DQG�VHUYLFH
&ROOHFWLRQ�VHUYLFHV� �QHZ�$UUD\/LVW���
6HUYLFH�VHUYLFH� �EOFP�FUHDWH6HUYLFH��0\�6HUYLFH�1DPH���
,QWHUQDWLRQDO6WULQJ�LV� �
��EOFP�FUHDWH,QWHUQDWLRQDO6WULQJ��0\�6HUYLFH�'HVFULSWLRQ���
VHUYLFH�VHW'HVFULSWLRQ�LV��

���&UHDWH�VHUYLFH�ELQGLQJV
&ROOHFWLRQ�VHUYLFH%LQGLQJV� �QHZ�$UUD\/LVW���
6HUYLFH%LQGLQJ�ELQGLQJ� �EOFP�FUHDWH6HUYLFH%LQGLQJ���
LV� �EOFP�FUHDWH,QWHUQDWLRQDO6WULQJ��0\�6HUYLFH�%LQGLQJ����
�����'HVFULSWLRQ���
ELQGLQJ�VHW'HVFULSWLRQ�LV��
ELQGLQJ�VHW$FFHVV85,��KWWS���7KH&RIIHH%UHDN�FRP������VE����
VHUYLFH%LQGLQJV�DGG�ELQGLQJ��

���$GG�VHUYLFH�ELQGLQJV�WR�VHUYLFH
VHUYLFH�DGG6HUYLFH%LQGLQJV�VHUYLFH%LQGLQJV��

���$GG�VHUYLFH�WR�VHUYLFHV��WKHQ�DGG�VHUYLFHV�WR�RUJDQL]DWLRQ
VHUYLFHV�DGG�VHUYLFH��
RUJ�DGG6HUYLFHV�VHUYLFHV��

MANAGING REGISTRY DATA 359
Saving an Organization
The primary method a client uses to add or modify organization data is the VDYH�
2UJDQL]DWLRQV method, which creates one or more new organizations in a reg-
istry if they did not exist previously. If one of the organizations exists but some
of the data have changed, the VDYH2UJDQL]DWLRQV method updates the data.

After a client populates an organization with the information it wants to make
public, it saves the organization. The registry returns the key in its response, and
the client retrieves it.

���$GG�RUJDQL]DWLRQ�DQG�VXEPLW�WR�UHJLVWU\
���5HWULHYH�NH\�LI�VXFFHVVIXO
&ROOHFWLRQ�RUJV� �QHZ�$UUD\/LVW���
RUJV�DGG�RUJ��
%XON5HVSRQVH�UHVSRQVH� �EOFP�VDYH2UJDQL]DWLRQV�RUJV��
&ROOHFWLRQ�H[FHSWLRQV� �UHVSRQVH�JHW([FHSWLRQ���
LI��H[FHSWLRQV� �QXOO��^
����6\VWHP�RXW�SULQWOQ��2UJDQL]DWLRQ�VDYHG���

����&ROOHFWLRQ�NH\V� �UHVSRQVH�JHW&ROOHFWLRQ���
����,WHUDWRU�NH\,WHU� �NH\V�LWHUDWRU���
����LI��NH\,WHU�KDV1H[W����^
���������MDYD[�[PO�UHJLVWU\�LQIRPRGHO�.H\�RUJ.H\� �
�������������MDYD[�[PO�UHJLVWU\�LQIRPRGHO�.H\��NH\,WHU�QH[W���
��������6WULQJ�LG� �RUJ.H\�JHW,G���
��������6\VWHP�RXW�SULQWOQ��2UJDQL]DWLRQ�NH\�LV�����LG��
��������RUJ�VHW.H\�RUJ.H\��
����`
`

Removing Data from the Registry
A registry allows you to remove from the registry any data that you have submit-
ted to it. You use the key returned by the registry as an argument to one of the
%XVLQHVV/LIH&\FOH0DQDJHU delete methods: GHOHWH2UJDQL]DWLRQV, GHOHWH�
6HUYLFHV, GHOHWH6HUYLFH%LQGLQJV, and others.

The -$;5'HOHWH sample program deletes the organization created by the -$;5�
3XEOLVK program. It searches the registry by name for the organization and uses
the key string displayed by the -$;53XEOLVK program to verify that it is remov-
ing the correct organization. Once it has the key, it deletes the organization and

360 JAVA™ API FOR XML REGISTRIES
then displays the key again so that the user can confirm that it has deleted the
correct one.

6WULQJ�LG� �NH\�JHW,G���
6\VWHP�RXW�SULQWOQ��'HOHWLQJ�RUJDQL]DWLRQ�ZLWK�LG�����LG��
&ROOHFWLRQ�NH\V� �QHZ�$UUD\/LVW���
NH\V�DGG�NH\��
%XON5HVSRQVH�UHVSRQVH� �EOFP�GHOHWH2UJDQL]DWLRQV�NH\V��
&ROOHFWLRQ�H[FHSWLRQV� �UHVSRQVH�JHW([FHSWLRQ���
LI��H[FHSWLRQV� �QXOO��^
����6\VWHP�RXW�SULQWOQ��2UJDQL]DWLRQ�GHOHWHG���
����&ROOHFWLRQ�UHW.H\V� �UHVSRQVH�JHW&ROOHFWLRQ���
����,WHUDWRU�NH\,WHU� �UHW.H\V�LWHUDWRU���
����MDYD[�[PO�UHJLVWU\�LQIRPRGHO�.H\�RUJ.H\� �QXOO�
����LI��NH\,WHU�KDV1H[W����^
��������RUJ.H\� �
�������������MDYD[�[PO�UHJLVWU\�LQIRPRGHO�.H\��NH\,WHU�QH[W���
��������LG� �RUJ.H\�JHW,G���
��������6\VWHP�RXW�SULQWOQ��2UJDQL]DWLRQ�NH\�ZDV�����LG��
����`
`�

A client can use a similar mechanism to delete services and service bindings.

Running the Client Examples
The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. Currently they specify the
IBM test registry for queries and updates; you can specify another registry.

Before you compile the -$;53XEOLVK and -$;5'HOHWH examples, edit the lines
containing the empty strings for the username and password to specify your
username and password. Feel free to change any of the organization data in the
-$;53XEOLVK program.

Set the -9B+20(, -$;5B+20(, and &$7$/,1$B+20(environment variables as
specified in the JAXR home page (�-:6'3B+20(!�GRFV�MD[U�LQGH[�KWPO on
UNIX systems; �-:6'3B+20(!?GRFV?MD[U?LQGH[�KWPO on Microsoft Windows
systems).

To compile the programs, go to the�GRFV�WXWRULDO�H[DPSOHV�MD[U directory
(on UNIX systems) or the GRFV?WXWRULDO?H[DPSOHV?MD[U directory (on
Microsoft Windows systems). A EXLOG�[Pl file allows you to use the command

DQW�EXLOG

RUNNING THE CLIENT EXAMPLES 361
to compile all the examples. The DQW tool creates a subdirectory called EXLOG
and places the class files there.

Before you run the examples, start Tomcat. See the JAXR home page
(�-:6'3B+20(!�GRFV�MD[U�LQGH[�KWPO on UNIX systems;
�-:6'3B+20(!?GRFV?MD[U?LQGH[�KWPO on Microsoft Windows systems) for
details.

To run the -$;54XHU\ example, use the DQW target UXQ�TXHU\. Specify a TXHU\�
VWULQJ argument on the command line to search the registry for organizations
whose names contain that string. For example, the following command line
searches for organizations whose names contain the string “sun”:

DQW��'TXHU\�VWULQJ VXQ�UXQ�TXHU\

To run the -$;53XEOLVK program, use the UXQ�SXEOLVK target with no command
line arguments:

DQW�UXQ�SXEOLVK

The program output displays the string value of the key of the new organization.

If you forgot to fill in the username and password strings, you will get a “No
Credentials present” error message.

After you run the -$;53XEOLVK program but before you run -$;5'HOHWH, you
can run -$;54XHU\ to look up the organization you published. You can also use
the Registry Browser to search for it.

To run the -$;5'HOHWH program, specify the string returned by the -$;53XEOLVK
program as input to the UXQ�GHOHWH target:

DQW��'NH\�VWULQJ VWULQJ�YDOXH�UXQ�GHOHWH

To remove the EXLOG directory and class files, use the command

DQW�FOHDQ

To obtain a syntax reminder for the UXQ�TXHU\, UXQ�SXEOLVK, and UXQ�GHOHWH
targets, use the command

DQW�KHOS

362 JAVA™ API FOR XML REGISTRIES
Using the Registry Browser
The Registry Browser is both a working example of a JAXR client and a GUI
tool that enables you to search registries. You can examine the source code, as
described in Implementing a JAXR Client (page 350).

Before you run the Registry Browser, start Tomcat. See Starting
Tomcat (page 67) for details.

To start the browser, go to the ELQ directory of your Java WSDP installation or
place this directory in your path.

To start the browser on a UNIX system, enter the following command:

MD[U�EURZVHU�VK

On a Microsoft Windows system, enter the following command:

MD[U�EURZVHU

After the browser starts, enter the URL of the registry you want to use in the
Registry Location combo box, or select a URL from the drop-down menu in the
combo box. There may be a delay of a few seconds while a busy cursor is visi-
ble.

When the busy cursor disappears, you have a connection to the URL. However,
you do not establish a connection to the registry itself until you perform a query
or update, so the browser will not report an invalid URL until then.

The browser contains two main panes, Browse and Submissions.

Querying a Registry
You use the Browse pane to query a registry.

Querying by Name
To search for organizations by name, perform the following steps.

1. Click the Browse tab if it is not already selected.

MANAGING REGISTRY DATA 363
2. In the Find By panel on the left side of the Registry Browser window, do
the following:

a. Select Name in the Find By combo box if it is not already selected.

b. Enter a string in the text field.

c. Press Enter or click the Search button in the toolbar.

After a few seconds, the organizations whose names begin with the text string
appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Double-click on an organization to show its details. An Organization dialog box
appears. In this dialog box, you can click Show Services to display the Services
dialog box for the organization. In the Services dialog box, you can click Show
ServiceBindings to display the ServiceBindings dialog box for that service.

Querying by Classification
To query a registry by classification, perform the following steps.

1. Select Classification in the Find By combo box.

2. In the Classifications pane that appears below the combo box, double-click
a classification scheme.

3. Continue to double-click until you reach the node you want to search on.

4. Click the Search button in the toolbar.

After a few seconds, one or more organizations in the chosen classification may
appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Managing Registry Data
You use the Submissions pane to add, modify, or delete registry data.

To get to the Submissions pane, do either of the following:

• Click the Submissions tab.

• If you used the Browse pane to locate an organization for which you want
to modify data, right-click on the organization and choose either Edit Reg-
istryObject or Delete RegistryObject from the pop-up menu. In order to
modify data, you need to be connected to a registry that allows you to pub-

364 JAVA™ API FOR XML REGISTRIES
lish data. If you were previously using a URL that only allows queries,
change the URL to the publish URL.

If you click Delete RegistryObject, an authorization dialog box appears. To
delete the organization, enter your username and password and click OK. To
close the window without deleting the organization, click Cancel.

Adding an Organization
To enter or modify information about an organization, use the Organization
panel on the left side of the Submissions pane.

Use the Organization Information fields as follows:

• Name: Enter the name of the organization.

• Id: You cannot enter or modify data in this field; the ID value is returned
by the registry after you submit the data.

• Description: Enter a description of the organization.

Use the Primary Contact Information fields as follows:

• Name: Enter the name of the primary contact person for the organization.

• Phone: Enter the primary contact's phone number.

• Email: Enter the primary contact's email address.

For information on adding or removing classifications, see Adding and Remov-
ing Classifications (page 365).

Adding Services to an Organization
To add or modify information about an organization's services, Use the Services
panel on the right side of the Submissions pane.

To add a service, click the Add Services button in the toolbar. A subpanel for the
service appears in the Services panel. Click the Add Services button more than
once to add more services in the Services panel.

Each service subpanel has the following components:

• Name, Id, and Description fields

• Edit Bindings and Remove Service buttons

• A Classifications panel

MANAGING REGISTRY DATA 365
Use these components as follows:

• Name field: Enter a name for the service.

• Id field: You cannot enter or modify data in this field; the ID value is
returned by the registry after you submit the data.

• Description field: Enter a description of the service.

• Click the Edit Bindings button to add or edit service bindings for the ser-
vice. An Edit ServiceBindings dialog box appears.

• Click the Remove Service button to remove this service from the organi-
zation. The service subpanel disappears from the Services panel.

• To add or remove classifications, use the Classifications panel.

Adding Service Bindings to a Service
To add service bindings for a service, click the Edit Bindings button in a service
subpanel in the Submissions pane. The Edit ServiceBindings dialog box appears.

If there are no existing service bindings when the dialog box first appears, it con-
tains an empty Service Bindings panel and two buttons, Add Binding and Done.
If the service already has service bindings, the Service Bindings panel contains a
subpanel for each service binding.

Click Add Binding to add a service binding. Click Add Binding more than once
to add multiple service bindings.

After you click Add Binding, a new service binding subpanel appears. It con-
tains three text fields and a Remove Binding button.

Use the text fields as follows:

• Description: Enter a description of the service binding.

• Access URI: Enter the URI used to access the service.

Use the Remove Binding button to remove the service binding from the service.

Click Done to close the dialog box when you have finished adding or removing
service bindings.

Adding and Removing Classifications
To add classifications to, or remove classifications from, an organization or ser-
vice, use a Classifications panel. A Classifications panel appears in an Organiza-
tion panel or service subpanel.

366 JAVA™ API FOR XML REGISTRIES
To add a classification:

1. Click Add.

2. In the Select Classifications dialog, double-click one of the classification
schemes.

• If you clicked ntis-gov:naics, you can add the classification at any level
of the taxonomy hierarchy. When you reach the level you want, click
Add.

• If you clicked Geography, locate the appropriate leaf node (the country)
and click Add.

The classification appears in a table in the Classifications panel below the but-
tons.

Follow these steps more than once to add multiple classifications to the organi-
zation or service.

Click Close to dismiss the window when you have finished.

To remove a classification, select the appropriate table row in the Classifications
panel and click Remove. The classification disappears from the table.

Submitting the Data
When you have finished entering the data you want to add or modify, click the
Submit button in the toolbar.

An authorization dialog box appears. To continue with the submission, enter
your username and password and click OK. To close the window without sub-
mitting the data, click Cancel.

The Java™ WSDP
Registry Server

by Kim Haase

A registry offers a mechanism for humans or software applications to advertise
and discover Web services. The Java™ Web Services Developer Pack (“Java
WSDP”) Registry Server implements Version 1 of the Universal Description,
Discovery and Integration (UDDI) project, providing a UDDI-compliant registry
for Web services in a private environment. You can use it with the Java WSDP
APIs as a test registry for Web services application development.

You can use the Registry Server to test applications that you develop that use the
Java API for XML Registries (“JAXR”), described in the chapter Java™ API for
XML Registries. You can also use the JAXR Registry Browser provided with the
Java WSDP to perform queries and updates on registry data.

The release of the Registry Server that you have downloaded as part of the Java
WSDP includes the following:

• The Java WSDP Registry Server 1.0 Early Access release

• A database based on the native XML database Xindice, which is part of the
Apache XML project. This database provides the repository for registry
data.

• A tool named Indri that allows you to create and inspect database data
using a graphical user interface

Before you can access the Registry Server, you must start Tomcat and the data-
base. For details, see the Registry Server home page.
367

Bios.html

368 THE JAVA™ WSDP REGISTRY SERVER
At this release, the Registry Server has limited capabilities. It supports only the
following messages defined in the UDDI Programmer’s API 1.0 Specification:

� �VDYHBEXVLQHVV!
� �ILQGBEXVLQHVV!
� �JHWBEXVLQHVV'HWDLO!
� �GHOHWHBEXVLQHVV!

In This Chapter
Setting Up the Registry Server 368
Using the JAXR Registry Browser with the Registry Server 369

Adding Organizations 369
Querying the Registry 369

Using the Command Line Client Scripts with the Registry Server 370
Using the JAXR API to Access the Registry Server 371
Using the Indri Tool to Access the Registry Server Database 372

Setting Up the Registry Server
Before you can use the Java WSDP Registry Server, you must start both Tomcat
and the Xindice database.

Instructions for starting and stopping Tomcat are in Starting Tomcat (page 67).

Go to the ELQ directory of your Java WSDP installation (or place this directory
in your PATH). To start the Xindice database, use the command

[LQGLFH�VWDUW��������RQ�D�0LFURVRIW�:LQGRZV�V\VWHP�

[LQGLFH�VWDUW�VK�����RQ�D�81,;�V\VWHP�

This command runs in the background. The database may take several seconds
to start up.

To stop the database, use the command

[LQGLFH�VWRS��������RQ�D�0LFURVRIW�:LQGRZV�V\VWHP�

[LQGLFH�VWRS�VK�����RQ�D�81,;�V\VWHP�

ADDING ORGANIZATIONS 369
Using the JAXR Registry Browser with
the Registry Server

You can use the JAXR Registry Browser to access the Registry Server.

For basic information on the Registry Browser, see Using the Registry Browser
in Java™ API for XML Registries.

After you start the Registry Browser using the MD[U�EURZVHU�VK or MD[U�
EURZVHU�EDW script, enter the following URL in the Registry Location combo
box (all on one line):

KWWS���KRVWQDPH������UHJLVWU\�VHUYHU�5HJLVWU\6HUYHU6HUYOHW

The hostname must be fully qualified; do not specify ORFDOKRVW. If you enter the
name incorrectly, no error message appears until you try to perform a query or
update.

You specify KWWS� for both queries and updates. The registry server does not
support authentication at this release.

Adding Organizations
When you submit an organization and the authorization dialog box appears,
enter any string in the username and password fields. The Registry Server does
not check the values you enter, but you may not enter an empty string.

The Registry Server supports adding and deleting organizations, but does not
support modifying organizations. If you submit an organization and then choose
the Edit Registry Object menu item to modify it, a new organization is created
when you submit the modified data.

Querying the Registry
To perform queries by name against the Registry Server, enter the string in the
Name text field. Searches against the Registry Server are case-sensitive. A
search will find all organizations whose names contain the exact string entered.

370 THE JAVA™ WSDP REGISTRY SERVER
Using the Command Line Client Scripts
with the Registry Server

You will find a shell script called �-:6'3B+20(!/VDPSOHV�UHJLVWU\�
VHUYHU�UHJLVWU\�VHUYHU�WHVW�VK (on UNIX® systems) or
�-:6'3B+20(!?VDPSOHV?UHJLVWU\�VHUYHU�UHJLVWU\�VHUYHU�WHVW�EDW (on
Microsoft Windows systems).

The script uses XML files in the [PO subdirectory to send messages to the Regis-
try Server.

Before you use the script, make sure it is executable (make it so if it is not).

1. Save a business.

To save a business, the script uses the file 6DYH%XVLQHVV�[PO in the [PO
subdirectory. Edit this file if you wish.

To save the business, use the following command (on a UNIX system,
add the �VK suffix):

���UHJLVWU\�VHUYHU�WHVW�UXQ�FOL�VDYH

Output appears in the terminal window in which you run the command.
Notice the EXVLQHVV.H\ value returned in the �EXVLQHVV(QWLW\! tag.
You will use it in step 2.

2. Obtain business details.

To obtain details about a business, the script uses the file *HW%XVLQHVV�
'HWDLO�[PO in the [PO subdirectory.

Before you run the script this time, edit this file by copying the EXVL�
QHVV.H\ value from the output of the command in step 1 into the �EXVL�
QHVV.H\! tag.

To obtain details about the business you saved, use the following com-
mand:

���UHJLVWU\�VHUYHU�WHVW�UXQ�FOL�JHW

Output appears in the terminal window.

3. Find a business.

To find a business by name, the script uses the file)LQG%XVLQHVV�[PO in
the [PO subdirectory.

QUERYING THE REGISTRY 371
Before you run the script this time, edit the file by changing the value in
the �QDPH! tag to the name you specified in the 6DYH%XVLQHVV�[PO file.

To find the business, use the following command:

���UHJLVWU\�VHUYHU�WHVW�UXQ�FOL�ILQG

Output appears in the terminal window.

You can create your own XML files to run with the script. To use the
�VDYHBEXVLQHVV! message, specify the following in the �DXWK,QIR! tag:

����DXWK,QIR!PDJLF&RRNLH��DXWK,QIR!�

Using the JAXR API to Access the
Registry Server

You can access the Registry Server by using the sample programs in the
GRFV�WXWRULDO�H[DPSOHV�MD[U directory (on UNIX systems) or the
GRFV?WXWRULDO?H[DPSOHV?MD[U directory (on Microsoft Windows systems).
You need to edit them as follows

In -$;53XEOLVK�MDYD and -$;5'HOHWH�MDYD, for both the TXHU\85/ and the
SXEOLVK85/, specify the Registry Server by using the following string (on one
line):

�KWWS���KRVWQDPH������UHJLVWU\�VHUYHU�5HJLVWU\6HUYHU6HUYOHW��

where KRVWQDPH is the fully qualified host name. Do not use KWWSV� for the SXE�
OLVK85/.

Edit the lines that specify a username and password by providing any non-empty
string. For example:

���(GLW�WR�SURYLGH�\RXU�RZQ�XVHUQDPH�DQG�SDVVZRUG
6WULQJ�XVHUQDPH� ��[��
6WULQJ�SDVVZRUG� ��\��

In -$;54XHU\�MDYD, specify the Registry Server as follows:

SURSV�VHW3URSHUW\��MDYD[�[PO�UHJLVWU\�TXHU\0DQDJHU85/��
�KWWS���KRVWQDPH������UHJLVWU\�
VHUYHU�5HJLVWU\6HUYHU6HUYOHW���

372 THE JAVA™ WSDP REGISTRY SERVER
Also in -$;54XHU\�MDYD, remove the percent (�) signs from the following line:

QDPH3DWWHUQV�DGG�������T6WULQJ��������

Instead, specify the QDPH3DWWHUQV for the query string as follows:

QDPH3DWWHUQV�DGG�T6WULQJ��

Using the Indri Tool to Access the
Registry Server Database

The Indri tool provides a graphic user interface (GUI) that allows you to access
the Registry Server database directly. You can use this tool to save and find busi-
nesses and to obtain business details.

Note: The Indri is a large lemur. It is reported that when Europeans first arrived in
Madagascar, they heard its cry from the trees and asked what was making that
sound. The reply was “Indri! Indri!” which is Malagasy for “Look up! Look up!”
This seems an appropriate name for a database lookup tool.

You invoke the Indri tool through the UHJLVWU\�VHUYHU�WHVW script. Use the
following command:

UHJLVWU\�VHUYHU�WHVW�VK�UXQ�LQGUL��81,;�V\VWHPV�
UHJLVWU\�VHUYHU�WHVW�EDW�UXQ�LQGUL��0LFURVRIW�:LQGRZV�V\VWHPV�

To save a business, perform the following steps.

1. Open the file 6DYH%XVLQHVV�[PO in the [PO subdirectory. Edit it if you
wish.

2. Copy the contents of the file and paste them into the large text area labeled
Node.

3. Choose Check Content from the Process menu and verify that the message

���GRFXPHQW�LV�ZHOO�IRUPHG

appears in the status area at the bottom of the Indri window.

4. In the Collection panel on the top left side of the Indri window, make sure
XGGL is selected.

QUERYING THE REGISTRY 373
5. Choose Create Node from the Database menu. The message

���QRGH�¶QLG·�LQ�FROOHFWLRQ�¶XGGL·�FUHDWHG

appears in the status area.

To obtain business details, perform the following steps:

1. Select Clear Text Area from the Database menu to clear the Node text area.

2. Select Get Node from the Database menu. The XML code you submitted
when you saved the business appears in the text area.

To find a business by name, perform the following steps:

1. Select Clear Text Area from the Database menu to clear the Node text area.

2. Copy the following string into the XPath Query text field. If necessary,
replace “Alter” with a string that appears in the name of the business you
saved.

�����XGGL�EXVLQHVV(QWLW\�XGGL�QDPH>FRQWDLQV�WH[W����$OWHU��@

3. Click Find.

4. Check the status area for a message like the following:

���TXHU\�FRPSOHWH����PDWFKHV�

5. If there are any matches, select a node from the XNodes panel on the bot-
tom left side of the Indri window. The content of the node appears in the
Node area.

To exit the Indri tool, choose Exit from the File menu.

374 THE JAVA™ WSDP REGISTRY SERVER

Web Applications
Stephanie Bodoff

A Web application is a dynamic extension of a Web server. A Web application
can consist of dynamic Web pages containing various types of markup language
(HTML, XML, and so on) as well as static resources such as images. A Web
application can also be the endpoint of a fine-grained Web service that is used by
the dynamic Web pages. In the Java™ 2 Platform, Web components provide the
dynamic extension capabilities for a Web server. Web components are supported
by the services of a runtime platform called a Web container. In the Java Web
Services Developer Pack (“Java WSDP”), Web components are either Java™
Servlets and JSP™ pages and they run in the Tomcat Web container.

This chapter describes the organization of and configuration, and deployment
procedures for Web applications. Subsequent chapters, Java™ Servlet
Technology (page 393) and JavaServer Pages™ Technology (page 429), cover
how to develop the Web components. Many features of JSP technology are
determined by Java Servlet technology so you should familiarize yourself with
that material.

Most Web applications use the HTTP protocol and support for HTTP is a major
aspect of Web components. For a brief summary of HTTP protocol features see
HTTP Overview (page 525).

In This Chapter
Web Application Life Cycle 376
Web Application Archives 378

Creating a WAR File 379
Web Application Deployment Descriptors 379

Prolog 380
Context Parameters 380
375

Bios.html

376 WEB APPLICATIONS
Filter Mappings 381
Event Listeners 381
Alias Paths 381
Error Mappings 382
References to Environment Entries, Resource Environment Entries, or
Resources 383

Deploying Web Applications 383
Specifying the Web Application Context 384
Example 385

Running Web Applications 385
Updating Web Applications 385
Internationalizing and Localizing Web Applications 386
Accessing Databases from Web Applications 388

The Examples 388
Downloading and Starting the Database Server 389
Populating the Database 389
Configuring the Web Application to Use the Database 390
Configuring the Server to Recognize the Database 390

Web Application Life Cycle
The server-side portion of a Web application consists of Web components, static
resource files such as images, and helper classes and libraries. The JWSDP pro-
vides many supporting services that enhance the capabilities of Web components
and make them easier to develop. However, because it must take these services
into account, the process for creating and running a Web application is different
than that of traditional stand-alone Java classes.

Web components run within an environment called a Web container. The Web
container provides services such as request dispatching, security, concurrency,
and life cycle management. It also gives Web components access to APIs such as
naming, transactions, and e-mail.

Certain aspects of Web application behavior can be configured when it is
deployed. The configuration information is maintained in a text file in XML for-
mat called a Web application deployment descriptor. A deployment descriptor
must conform to the schema described in the Java Servlet specification.

http://java.sun.com/products/servlet/download.html#specs

377
The process for creating, deploying, and executing a Web application can be
summarized as follows:

1. Develop the Web component code (including possibly a deployment
descriptor).

2. Build the Web application components along with any static resources (for
example, images) and helper classes referenced by the component.

3. Deploy the application.

4. Access a URL that references the Web application.

Developing Web component code is covered in the chapters on servlet and JSP
technology. Steps 2. through 4. are expanded on in the following sections illus-
trated with a Hello, World style application. This application allows a user to
enter a name into an HTML form:

Figure 1 Greeting Form

378 WEB APPLICATIONS
and then displays a greeting after the name is submitted:

Figure 2 Response

The Hello application contains two Web components that generate the greeting
and the response. This tutorial has two versions of this application: a servlet ver-
sion called +HOOR� in which the components are implemented by two servlet
classes, *UHHWLQJ6HUYOHW�MDYD and 5HVSRQVH6HUYOHW�MDYD and a JSP version
called +HOOR� in which the components are implemented by two JSP pages,
JUHHWLQJ�MVS and UHVSRQVH�MVS. The two versions are used to illustrate the
tasks involved in packaging, deploying, and running an application that contains
Web components. If you are viewing this tutorial online, you must download the
tutorial bundle to get the source code for this example. See Running the
Examples (page xvi).

Web Application Archives
If you want to distribute a Web application and run it on another server you
package it in a Web application archive (WAR), which is a JAR similar to the
package used for Java class libraries, and installed (or deployed) into a Web con-
tainer. In addition to Web components, a Web application archive usually con-
tains other files including:

• Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.

• Static Web content (HTML, image, and sound files, and so on)

• Client-side classes (applets and utility classes)

../examples/web/hello1/GreetingServlet.java
../examples/web/hello1/ResponseServlet.java
../examples/web/hello2/greeting.txt
../examples/web/hello2/response.txt

CREATING A WAR FILE 379
Web components and static Web content files are called Web resources.

A WAR has a specific directory structure. The top-level directory of a WAR is
the document root of the application. The document root is where JSP pages, cli-
ent-side classes and archives, and static Web resources are stored.

The document root contains a subdirectory called :(%�,1), which contains the
following files and directories:

• ZHE�[PO���the Web application deployment descriptor

• Tag library descriptor files (see Tag Library Descriptors (page 471)).

• FODVVHV - a directory that contains server-side classes: servlets, utility
classes, and JavaBeans components.

• OLE - a directory that contains JAR archives of libraries (tag libraries and
any utility libraries called by server-side classes).

You can also create application-specific subdirectories (that is, package directo-
ries) in either the document root or the :(%�,1)�FODVVHV directory.

The ant build files distributed with the tutorial examples construct this directory
structure in the EXLOG subdirectory.

Creating a WAR File
You can manually create a WAR in two ways:

• With the JAR tool distributed with the J2SE SDK. You simply execute the
following command in the build directory of a tutorial example:

MDU�FYI�DUFKLYH1DPH�ZDU��

• With the ZDU task of the DQW portable build tool.

Web Application Deployment
Descriptors

The following sections give a brief introduction to the Web application deploy-
ment descriptor elements you will usually want to specify. A number of security
parameters can be specified but this release of the tutorial does not cover them.
For a complete listing and description of the elements, see the Java Servlet spec-
ification. The simpler applications discussed in Creating the Getting Started

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html

380 WEB APPLICATIONS
Application (page 61), Updating Web Applications (page 385), and What is a
JSP Page? (page 430) do not need a Web application deployment descriptor, but
all the others are distributed with a descriptor.

Note: Descriptor elements must appear in the deployment descriptor in the follow-
ing order: LFRQ, GLVSOD\�QDPH, GHVFULSWLRQ, GLVWULEXWDEOH, FRQWH[W�SDUDP,
ILOWHU, ILOWHU�PDSSLQJ, OLVWHQHU, VHUYOHW, VHUYOHW�PDSSLQJ, VHVVLRQ�FRQ�
ILJ, PLPH�PDSSLQJ, ZHOFRPH�ILOH�OLVW, HUURU�SDJH, WDJOLE, UHVRXUFH�HQY�
UHI, UHVRXUFH�UHI, VHFXULW\�FRQVWUDLQW, ORJLQ�FRQILJ, VHFXULW\�UROH, HQY�
HQWU\.

Prolog
The prolog of the Web application deployment descriptor is as follows:

�"[PO�YHUVLRQ ������HQFRGLQJ �,62��������"!
��'2&7<3(�ZHE�DSS�38%/,&�����6XQ�0LFURV\VWHPV��,QF���'7'�:HE�
$SSOLFDWLRQ������(1���KWWS���MDYD�VXQ�FRP�M�HH�GWGV�ZHE�
DSSB�B��GWG�!�

Context Parameters
The Web components in a WAR share an object that represents their Web context
(see Accessing the Web Context (page 421)). To pass initialization parameters to
the context, you must add a FRQWH[W�SDUDP element to the Web application
deployment descriptor. Here is the element used to declare a context parameter
that sets the resource bundle used in the example discussed in JavaServer
Pages™ Standard Tag Library (page 497):

�FRQWH[W�SDUDP!
�SDUDP�QDPH!

MDYD[�VHUYOHW�MVS�MVWO�L��Q�EDVHQDPH
��SDUDP�QDPH!
�SDUDP�YDOXH!PHVVDJHV�%RRNVWRUH0HVVDJHV��SDUDP�YDOXH!

��FRQWH[W�SDUDP!�

FILTER MAPPINGS 381
Filter Mappings
A Web container uses filter mapping declarations to decide which filters to apply
to a request, and in what order (see Specifying Filter Mappings (page 415)). The
container matches the request URI to a servlet as described in Alias
Paths (page 381). To determine which filters to apply, it matches filter mapping
declarations by servlet name or URL pattern. The order in which filters are
invoked is the order in which filter mapping declarations that match a request
URI for a servlet appear in the filter mapping list.

To specify a filter mapping you must add an ILOWHU and ILOWHU�PDSSLQJ ele-
ments to the Web application deployment descriptor. Here is the element use to
declare the order filter and map it to the 5HFHLSW6HUYOHW discussed in Java™
Servlet Technology (page 393):

�ILOWHU!
�ILOWHU�QDPH!2UGHU)LOWHU�ILOWHU�QDPH!
�ILOWHU�FODVV!ILOWHUV�2UGHU)LOWHU�ILOWHU�FODVV!

��ILOWHU!
�ILOWHU�PDSSLQJ!

�ILOWHU�QDPH!2UGHU)LOWHU��ILOWHU�QDPH!
�XUO�SDWWHUQ!5HFHLSW6HUYOHW��XUO�SDWWHUQ!

��ILOWHU�PDSSLQJ!

Event Listeners
To add an event listener class (described in Handling Servlet Life Cycle
Events (page 397)), you must add a OLVWHQHU element to the Web application
deployment descriptor. Here is the element use to declare the listener class used
in Java™ Servlet Technology (page 393) and JavaServer Pages™ Standard Tag
Library (page 497):

�OLVWHQHU!
�OLVWHQHU�FODVV!OLVWHQHUV�&RQWH[W/LVWHQHU��OLVWHQHU�FODVV!

��OLVWHQHU!

Alias Paths
When a request is received by Tomcat it must determine which Web component
should handle the request. It does so by mapping the URL path contained in the

382 WEB APPLICATIONS
request to a Web component. A URL path contains the context root (described in
Running Web Applications (page 385)) and an alias path:

KWWS����KRVW!������FRQWH[W�URRW�DOLDV�SDWK

Before a servlet can be accessed, the Web container must have least one alias
path for the component. The alias path must start with a ‘�’ and end with a string
or a wildcard expression with an extension (
�MVS for example). Since Web con-
tainers automatically map an alias path that ends with
�MVS, you do not have to
specify an alias path for a JSP page unless you wish to refer to the page by a
name other than its file name. In the example discussed in Updating Web
Applications (page 385), the page JUHHWLQJ�MVS has an alias, �JUHHWLQJ, but
the page UHVSRQVH�MVS is referenced by its file name within JUHHWLQJ�MVS.

To set up the mappings for the servlet version of the Hello application you must
add the following VHUYOHW and VHUYOHW�PDSSLQJ elements to the Web applica-
tion deployment descriptor:

�VHUYOHW!
�VHUYOHW�QDPH!JUHHWLQJ��VHUYOHW�QDPH!
�GLVSOD\�QDPH!JUHHWLQJ��GLVSOD\�QDPH!
�GHVFULSWLRQ!QR�GHVFULSWLRQ��GHVFULSWLRQ!
�VHUYOHW�FODVV!*UHHWLQJ6HUYOHW��VHUYOHW�FODVV!

��VHUYOHW!
�VHUYOHW!

�VHUYOHW�QDPH!UHVSRQVH��VHUYOHW�QDPH!
�GLVSOD\�QDPH!UHVSRQVH��GLVSOD\�QDPH!
�GHVFULSWLRQ!QR�GHVFULSWLRQ��GHVFULSWLRQ!
�VHUYOHW�FODVV!5HVSRQVH6HUYOHW��VHUYOHW�FODVV!

��VHUYOHW!
�VHUYOHW�PDSSLQJ!

�VHUYOHW�QDPH!JUHHWLQJ��VHUYOHW�QDPH!
�XUO�SDWWHUQ!�JUHHWLQJ��XUO�SDWWHUQ!

��VHUYOHW�PDSSLQJ!
�VHUYOHW�PDSSLQJ!

�VHUYOHW�QDPH!UHVSRQVH��VHUYOHW�QDPH!
�XUO�SDWWHUQ!�UHVSRQVH��XUO�SDWWHUQ!

��VHUYOHW�PDSSLQJ!

Error Mappings
You can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any Web com-
ponent and a Web resource (see Handling Errors (page 399)). To set up the map-

REFERENCES TO ENVIRONMENT ENTRIES, RESOURCE ENVI-
ping, you must add an �HUURU�SDJH! element to the deployment descriptor.
Here is the element use to map 2UGHU([FHSWLRQ to the page HUURUSDJH�KWPO
used in Java™ Servlet Technology (page 393):

�HUURU�SDJH!
�H[FHSWLRQ�W\SH!H[FHSWLRQ�2UGHU([FHSWLRQ��H[FHSWLRQ�W\SH!
�ORFDWLRQ!�HUURUSDJH�KWPO��ORFDWLRQ!

��HUURU�SDJH!

Note: You can also define error pages for a JSP page contained in a WAR. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

References to Environment Entries,
Resource Environment Entries, or
Resources
If your Web components reference environment entries, resource environment
entries, or resources such as databases, you must declare the references with
�HQY�HQWU\!, �UHVRXUFH�HQY�UHI!, or �UHVRXUFH�UHI! elements. Here is the
element use to declare a reference to the data source used in the Web technology
chapters in this tutorial:

�UHVRXUFH�UHI!
�UHV�UHI�QDPH!MGEF�%RRN'%��UHV�UHI�QDPH!
�UHV�W\SH!MDYD[�VTO�'DWD6RXUFH��UHV�W\SH!
�UHV�DXWK!&RQWDLQHU��UHV�DXWK!

��UHVRXUFH�UHI!

Deploying Web Applications
The next step after you have programmed and configured a Web application is to
deploy it to Tomcat. You deploy an application to Tomcat by notifying it of a
new application context. The first time you deploy a new application you must
restart Tomcat. Thereafter you can reload the application as described in Reload-
ing the Examples (page xviii).

384 WEB APPLICATIONS
Specifying the Web Application Context
A context is a name that gets mapped to the document root of a Web application.
The context of the Hello1 application is /KHOOR�. The request URL
KWWS���ORFDOKRVW������KHOOR��LQGH[�KWPO retrieves the file LQGH[�KWPO
from the document root.

Tomcat can be notified of a new context in two ways:

• Automatically. If you copy a Web application directory or WAR to
�-:6'3B+20(!�ZHEDSSV, the context root for the application is automati-
cally added to the Tomcat configuration. This is the approach used by the
simpler applications (+HOOR�, +HOOR�, 'DWH) discussed in the Web tech-
nology chapters.

• By adding a context entry to Tomcat’s configuration. This is the approach
used by the Duke’s Bookstore application discussed in the Web technology
chapters. For example, here is the &RQWH[W entry for the application dis-
cussed in Java™ Servlet Technology (page 393):

�&RQWH[W�SDWK ��ERRNVWRUH��
GRF%DVH ����GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG��
GHEXJ ���!

There are two ways to add this entry to Tomcat’s configuration:

• Edit the file �-:6'3B+20(!�FRQI�VHUYHU�[PO. Since this can be error
prone, we recommend the next approach.

• Put an application-specific configuration file in
�-:6'3B+20(!�ZHEDSSV. The &RQWH[W entry for the application dis-
cussed in Java™ Servlet Technology (page 393) is in the file
GRFV�WXWRULDO�ZHE�ERRNVWRUH��ERRNVWRUH�[PO. When the applica-
tion is deployed, ERRNVWRUH��[PO is copied to
�-:6'3B+20(!�ZHEDSSV.

Note: Manual specification of the &RQWH[W entry is a limitation of the current release
of the Web Services Pack. Later releases will include an administration tool that will
simplify this task.

EXAMPLE 385
Example
To deploy the +HOOR� application:

1. Go to GRFV�WXWRULDO�H[DPSOHV�KHOOR� and build and deploy the exam-
ple by running DQW. This runs the default ant target GHSOR\ which depends
on the EXLOG target. The EXLOG target will spawn any necessary compila-
tions and copy files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�GDWH�EXLOG
directory. The GHSOR\ target copies the build directory to
�-:6'3B+20(!�ZHEDSSV.

2. Start or restart Tomcat.

Running Web Applications
A Web application is executed when a Web browser references a URL that is
mapped to component contained in the client. Once you have deployed the
+HOOR� application, you can run the Web application by pointing a browser at:

KWWS����KRVW!������KHOOR��JUHHWLQJ

Replace �KRVW! with the name of the host running Tomcat. If your browser is
running on the same host as Tomcat, you may replace �KRVW!�with ORFDOKRVW.

Updating Web Applications
During development, you will often need to make changes to Web applications.
To modify a servlet you modify the source file, recompile the servlet class, and
redeploy the application. Except for the compilation step, you update a JSP page
in the same way.

To try this feature, first build and deploy the JSP version of the Hello applica-
tion:

1. Go to GRFV�WXWRULDO�H[DPSOHV�KHOOR� and build and deploy the exam-
ple by running DQW. This runs the default ant target GHSOR\ which depends
on the EXLOG target. The EXLOG target will spawn any necessary compila-
tions and copy files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�KHOOR��EXLOG
directory. The GHSOR\ target copies the build directory to
�-:6'3B+20(!�ZHEDSSV.

2. Start or restart Tomcat.

386 WEB APPLICATIONS
3. Open the +HOOR� URL KWWS���ORFDOKRVW������KHOOR�.

Now modify one of the JSP files. For example, you could replace the contents of
UHVSRQVH�MVS with:

�K�!�IRQW�FRORU �UHG�!+HOOR���� XVHUQDPH�!���IRQW!��K�!

1. Edit UHVSRQVH�MVS�

2. Execute DQW�

3. Reload the application as described in Reloading the
Examples (page xviii) by loading the URL KWWS���ORFDO�
KRVW������PDQDJHU�UHORDG"SDWK �KHOOR�.

4. Reload the +HOOR� URL.

If you make this change, the next time you execute the application, the color of
the response will be red:

Figure 3 Red Response

Internationalizing and Localizing Web
Applications

Internationalization is the process of preparing an application to support various
languages. Localization is the process of adapting an internationalized applica-
tion to support a specific language or locale. While all client user interfaces
should be internationalized and localized, it is particularly important for Web

EXAMPLE 387
applications because of the far reaching nature of the Web. For a good overview
of internationalization and localization see

KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�L��Q�LQGH[�KWPO

There are two approaches to internationalizing a Web application:

• Provide a version of the JSP in each of the target locales and have a con-
troller servlet dispatch the request to the appropriate page (depending on
the requested locale). This approach is useful if large amounts of data on a
page or an entire Web application need to be internationalized.

• Isolate any locale-sensitive data on a page (such as error messages, string
literals, or button labels) into resource bundles, and access the data so that
the corresponding translated message is fetched automatically and inserted
into the page. Thus, instead of creating strings directly in your code, you
create a resource bundle that contains translations and read the translations
from that bundle using the corresponding key. A resource bundle can be
backed by a text file (properties resource bundle) or a class (list resource
bundle) containing the mappings.

In the following chapters on Web technology, the Duke’s Bookstore example is
internationalized and localized into English and Spanish. The key and value
pairs are contained in list resource bundles named PHV�
VDJHV�%RRN0HVVDJHB
�FODVV. To give you an idea of what the key and string
pairs in a resource bundle look like, here are a few lines from the file mes-
sages.%RRN0HVVDJHV�MDYD.

^�7LWOH&DVKLHU����&DVKLHU�`�
^�7LWOH%RRN'HVFULSWLRQ����%RRN�'HVFULSWLRQ�`�
^�9LVLWRU����<RX�DUH�YLVLWRU�QXPEHU��`�
^�:KDW����:KDW�:HµUH�5HDGLQJ�`�
^�7DON�����WDONV�DERXW�KRZ�ZHE�FRPSRQHQWV�FDQ�WUDQVIRUP�WKH�ZD\�
\RX�GHYHORS�DSSOLFDWLRQV�IRU�WKH�ZHE��7KLV�LV�D�PXVW�UHDG�IRU�
DQ\�VHOI�UHVSHFWLQJ�ZHE�GHYHORSHU��`�
^�6WDUW����6WDUW�6KRSSLQJ�`�

To get the correct strings for a given user, a Web component retrieves the locale
(set by a browser language preference) from the request, opens the resource bun-

http://java.sun.com/docs/books/tutorial/i18n/index.html

388 WEB APPLICATIONS
dle for that locale, and then saves the bundle as a session attribute (see Associat-
ing Attributes with a Session (page 422)):

5HVRXUFH%XQGOH�PHVVDJHV� ��5HVRXUFH%XQGOH�VHVVLRQ�
JHW$WWULEXWH��PHVVDJHV���
LI��PHVVDJHV� �QXOO��^

/RFDOH�ORFDOH UHTXHVW�JHW/RFDOH���
PHVVDJHV� �5HVRXUFH%XQGOH�JHW%XQGOH��:HE0HVVDJHV��

ORFDOH���
VHVVLRQ�VHW$WWULEXWH��PHVVDJHV���PHVVDJHV��

`

A Web component retrieves the resource bundle from the session:

5HVRXUFH%XQGOH�PHVVDJHV�
�5HVRXUFH%XQGOH�VHVVLRQ�JHW$WWULEXWH��PHVVDJHV���

and looks up the string associated with the key 7LWOH&DVKLHU as follows:

PHVVDJHV�JHW6WULQJ�´7LWOH&DVKLHUµ��

This has been a very brief introduction to internationalizing Web applications.
For more information on this subject see the Java BluePrints:

KWWS���MDYD�VXQ�FRP�EOXHSULQWV

Accessing Databases from Web
Applications

Data that is shared between Web components and persistent between invocations
of a Web application is usually maintained by a database. Web applications use
the JDBC 2.0 API to access relational databases. For information on this API,
see

KWWS���MDYD�VXQ�FRP�GRFV�ERRNV�WXWRULDO�MGEF

The Examples
The examples discussed in the chapters Java™ Servlet Technology (page 393),
JavaServer Pages™ Technology (page 429), Custom Tags in JSP™
Pages (page 461), and JavaServer Pages™ Standard Tag Library (page 497)

http://java.sun.com/blueprints
http://java.sun.com/docs/books/tutorial/jdbc

DOWNLOADING AND STARTING THE DATABASE SERVER 389
require a database. For this release we have tested the examples with the Point-
base database and we provide an DQW build file to create the database tables and
populate the database. The remainder of this section describes how to install and
start the Pointbase database server, set up the example tables, configure the Web
application to use the database, and configure Tomcat to recognize the database.

Downloading and Starting the Database
Server
You can download a copy of the Pointbase database from:

KWWS���ZZZ�SRLQWEDVH�FRP

After you have downloaded and installed the Pointbase database, you will need
to do the following:

1. Set the 3%B+20(environment variable to point to your Pointbase install
directory.

2. Copy <3%B+20(!�FOLHQW�OLE�SEFOLHQW��HY�MDU to
<-:6'3B+20(!�FRPPRQ�OLE to make the Pointbase client library available
to the example applications.

3. In a terminal window, go to <3%B+20(!�VHUYHU.

4. Start the Pointbase server by typing 6HUYHU.

Populating the Database
1. In a terminal window, set the environment variable 3%B+20(to point to

your Pointbase installation to make the Pointbase libraries available to the
DQW task that populates the database.

2. Go to �-:6'3B+20(!�GRFV�WXWRULDO�H[DPSOHV�ZHE.

3. Execute DQW. At the end of the processing, you should see the following
output:

>MDYD@�,'
>MDYD@�����������
>MDYD@����
>MDYD@����
>MDYD@����
>MDYD@����

http://www.pointbase.com

390 WEB APPLICATIONS
>MDYD@����
>MDYD@����
>MDYD@����
>MDYD@
>MDYD@���5RZV�6HOHFWHG�
>MDYD@
>MDYD@�64/!
>MDYD@
>MDYD@�&200,7�
>MDYD@�2.

Configuring the Web Application to Use
the Database
In order to access a database from a Web application you must declare resource
reference in the application’s Web application deployment descriptor (see Refer-
ences to Environment Entries, Resource Environment Entries, or
Resources (page 383)). The resource reference declares the name and type of
resource and the type of authentication used when the resource is accessed.

Configuring the Server to Recognize the
Database
Since the resource reference declared in the Web application deployment
descriptor uses a JNDI name to refer to the database, you must connect the name
to an actual database by providing a resource factory in the Tomcat’s configura-
tion. Here is the resource factory used by the application discussed in all the Web
technology chapters:

�5HVRXUFH�QDPH �MGEF�%RRN'%��UHORDGDEOH �WUXH��
DXWK �&RQWDLQHU��W\SH �MDYD[�VTO�'DWD6RXUFH��!

�5HVRXUFH3DUDPV�QDPH �MGEF�%RRN'%�!
�SDUDPHWHU!

�QDPH!XVHU��QDPH!
�YDOXH!SXEOLF��YDOXH!

��SDUDPHWHU!
�SDUDPHWHU!

�QDPH!SDVVZRUG��QDPH!
�YDOXH!SXEOLF��YDOXH!

��SDUDPHWHU!
�SDUDPHWHU!

�QDPH!GULYHU&ODVV1DPH��QDPH!

CONFIGURING THE SERVER TO RECOGNIZE THE DATABASE
�YDOXH!FRP�SRLQWEDVH�MGEF�MGEF8QLYHUVDO'ULYHU��YDOXH!
��SDUDPHWHU!
�SDUDPHWHU!

�QDPH!GULYHU1DPH��QDPH!
�YDOXH!MGEF�SRLQWEDVH�

VHUYHU���ORFDOKRVW�VDPSOH��YDOXH!
��SDUDPHWHU!

��5HVRXUFH3DUDPV!

Since the resource factory is a subentry of the &RQWH[W entry described in Run-
ning Web Applications (page 385), you add this entry to Tomcat’s configuration
in the same ways that you can add the &RQWH[W entry.

392 WEB APPLICATIONS

Java™ Servlet
Technology

Stephanie Bodoff

AS soon as the Web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts
towards this goal, focused on using the client platform to deliver dynamic user
experiences. At the same time, developers also investigated using the server plat-
form for this purpose. Initially, CGI scripts were the main technology used to
generate dynamic content. Though widely used, CGI scripting technology has a
number of shortcomings including platform-dependence and lack of scalability.
To address these limitations, Java Servlet technology was created as a portable
way to provide dynamic, user-oriented content.

In This Chapter
What is a Servlet? 394
The Example Servlets 395

Troubleshooting 396
Servlet Life Cycle 397

Handling Servlet Life Cycle Events 397
Handling Errors 399

Sharing Information 400
Using Scope Objects 400
Controlling Concurrent Access to Shared Resources 402
Accessing Databases 403

Initializing a Servlet 404
Writing Service Methods 405
393

Bios.html

394 JAVA™ SERVLET TECHNOLOGY
Getting Information From Requests 406
Constructing Responses 408

Filtering Requests and Responses 410
Programming Filters 411
Programming Customized Requests and Responses 413
Specifying Filter Mappings 415

Invoking Other Web Resources 417
Including Other Resources in the Response 418
Transferring Control to Another Web Component 420

Accessing the Web Context 421
Maintaining Client State 422

Accessing a Session 422
Associating Attributes with a Session 422
Session Management 423
Session Tracking 424

Finalizing a Servlet 425
Tracking Service Requests 425
Notifying Methods to Shut Down 426
Creating Polite Long-Running Methods 427

What is a Servlet?
A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed via a request-response programming
model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by Web servers. For such applications,
Java Servlet technology defines HTTP-specific servlet classes.

The MDYD[�VHUYOHW and MDYD[�VHUYOHW�KWWS packages provide interfaces and
classes for writing servlets. All servlets must implement the 6HUYOHW interface,
which defines life cycle methods.

When implementing a generic service, you can use or extend the *HQHULF6HUY�
OHW class provided with the Java Servlet API. The +WWS6HUYOHW class provides
methods, such as GR*HW and GR3RVW, for handling HTTP-specific services.

This chapter focuses on writing servlets that generate responses to HTTP
requests. Some knowledge of the HTTP protocol is assumed; if you are unfamil-
iar with this protocol, you can get a brief introduction to HTTP in HTTP
Overview (page 525).

../../api/javax/servlet/package-summary.html
../../api/javax/servlet/http/package-summary.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/Servlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/http/HttpServlet.html

395
The Example Servlets
This chapter uses the Duke’s Bookstore application to illustrate the tasks
involved in programming servlets. Table 1 lists the servlets that handle each
bookstore function. Each programming task is illustrated by one or more serv-
lets. For example, %RRN'HWDLOV6HUYOHW illustrates how to handle HTTP *(7
requests, %RRN'HWDLOV6HUYOHW and &DWDORJ6HUYOHW show how to construct
responses, and &DWDORJ6HUYOHW shows you how to track session information.

The data for the bookstore application is maintained in a database and accessed
through the helper class GDWDEDVH�%RRN'%. The GDWDEDVH package also contains
the class %RRN'HWDLOV which represents a book. The shopping cart and shopping
cart items are represented by the classes FDUW�6KRSSLQJ&DUW and FDUW�6KRS�
SLQJ&DUW,WHP.

Table 1 Duke’s Bookstore Example Servlets

Function Servlet

Enter the bookstore %RRN6WRUH6HUYOHW

Create the bookstore banner %DQQHU6HUYOHW

Browse the bookstore catalog &DWDORJ6HUYOHW

Put a book in a shopping cart
&DWDORJ6HUYOHW,
%RRN'HWDLOV6HUYOHW

Get detailed information on a specific book %RRN'HWDLOV6HUYOHW

Display the shopping cart 6KRZ&DUW6HUYOHW

Remove one or more books from the shopping cart 6KRZ&DUW6HUYOHW

Buy the books in the shopping cart &DVKLHU6HUYOHW

Receive an acknowledgement for the purchase 5HFHLSW6HUYOHW

396 JAVA™ SERVLET TECHNOLOGY
The source for the bookstore application is located in the GRFV�WXWRULDO�H[DP�
SOHV�ZHE�ERRNVWRUH� directory created when you unzip the tutorial bundle
(see Running the Examples (page xvi)). To build, deploy, and run the example:

1. Go to the examples directory and build and deploy the example by running
DQW. This runs the default ant target GHSOR\ which depends on the EXLOG
target. The EXLOG target will spawn any necessary compilations and copy
files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG directory.
The GHSOR\ target copies the bookstore1 context file to
<JWSDP_HOME>�ZHEDSSV as described in Running Web
Applications (page 385).

1. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

2. Start or restart Tomcat.

3. Open the bookstore URL KWWS���ORFDOKRVW������ERRNVWRUH��HQWHU.

Troubleshooting
Common Problems and Their Solutions (page 70) lists some reasons why a Web
client can fail. In addition, Duke’s Bookstore returns the following exceptions:

• %RRN1RW)RXQG([FHSWLRQ—if a book can’t be located in the bookstore
database. This will occur if you haven’t loaded the bookstore database with
data by running DQW�FUHDWH�ZHE�GE or if the database server hasn’t been
started or it has crashed.

• %RRNV1RW)RXQG([FHSWLRQ—if the bookstore data can’t be retrieved. This
will occur if you haven’t loaded the bookstore database with data by run-
ning DQW�FUHDWH�ZHE�GE or if the database server hasn’t been started or it
has crashed.

• 8QDYDLODEOH([FHSWLRQ—if a servlet can’t retrieve the Web context
attribute representing the bookstore. This will occur if you haven’t copied
the Pointbase client library �PB_HOME!�FOLHQW�OLE�SEFOLHQW��HY�MDU
to �JWSDP_HOME!�FRPPRQ�OLE.

Since we have specified an error page, you will see the message 7KH�DSSOLFD�
WLRQ�LV�XQDYDLODEOH��3OHDVH�WU\�ODWHU. If you don’t specify an error page,
the Web container generates a default page containing the message $� 6HUYOHW
([FHSWLRQ�+DV�2FFXUUHG�and a stack trace that can help diagnose the cause of
the exception. If you use the HUURUSDJH�KWPO, you will have to look in the Web

HANDLING SERVLET LIFE CYCLE EVENTS 397
container’s log to determine the cause of the exception. Web log files reside in
the directory <JWSDP_HOME>/ORJV and are named jZVGSBORJ��date!�W[W.

Servlet Life Cycle
The life cycle of a servlet is controlled by the container in which the servlet has
been deployed. When a request is mapped to a servlet, the container performs the
following steps:

1. If an instance of the servlet does not exist, the Web container:

a. Loads the servlet class

b. Creates an instance of the servlet class

c. Initializes the servlet instance by calling the LQLW method. Initialization
is covered in Initializing a Servlet (page 404).

2. Invokes the VHUYLFH method, passing a request and response object. Ser-
vice methods are discussed in Writing Service Methods (page 405).

If the container needs to remove the servlet, it finalizes the servlet by calling the
servlet’s GHVWUR\ method. Finalization is discussed in Finalizing a
Servlet (page 425).

Handling Servlet Life Cycle Events
You can monitor and react to events in a servlet’s life cycle by defining listener
objects whose methods get invoked when life cycle events occur. To use these
listener objects you must

• Define the listener class

• Specify the listener class

Defining The Listener Class
You define a listener class as an implementation of a listener interface. Servlet
Life Cycle Events (page 398) lists the events that can be monitored and the cor-
responding interface that must be implemented. When a listener method is
invoked it is passed an event that contains information appropriate to the event.

398 JAVA™ SERVLET TECHNOLOGY
For example, the methods in the +WWS6HVVLRQ/LVWHQHU interface are passed an
+WWS6HVVLRQ(YHQW, which contains an +WWS6HVVLRQ.

The OLVWHQHUV�&RQWH[W/LVWHQHU class creates and removes the database
helper and counter objects used in the Duke’s Bookstore application. The meth-
ods retrieve the Web context object from 6HUYOHW&RQWH[W(YHQW and then store
(and remove) the objects as servlet context attributes.

LPSRUW�GDWDEDVH�%RRN'%�
LPSRUW�MDYD[�VHUYOHW�
�
LPSRUW�XWLO�&RXQWHU�

SXEOLF�ILQDO�FODVV�&RQWH[W/LVWHQHU
LPSOHPHQWV�6HUYOHW&RQWH[W/LVWHQHU�^
SULYDWH�6HUYOHW&RQWH[W�FRQWH[W� �QXOO�
SXEOLF�YRLG�FRQWH[W,QLWLDOL]HG�6HUYOHW&RQWH[W(YHQW�HYHQW��^

FRQWH[W� �HYHQW�JHW6HUYOHW&RQWH[W���
WU\�^

%RRN'%�ERRN'%� �QHZ�%RRN'%���
FRQWH[W�VHW$WWULEXWH��ERRN'%���ERRN'%��

`�FDWFK��([FHSWLRQ�H[��^
6\VWHP�RXW�SULQWOQ�

�&RXOGQ
W�FUHDWH�GDWDEDVH����
��H[�JHW0HVVDJH����

Table 2 Servlet Life Cycle Events

Object Event Listener Interface and Event Class

Web context
(See Accessing
the Web
Context (page 421))

Initialization
and destruction

MDYD[�VHUYOHW�
6HUYOHW&RQWH[W/LVWHQHU and
6HUYOHW&RQWH[W(YHQW

Attribute added,
removed, or
replaced

MDYD[�VHUYOHW�
6HUYOHW&RQWH[W$WWULEXWH/LVWHQHU and
6HUYOHW&RQWH[W$WWULEXWH(YHQW

Session
(See Maintaining
Client
State (page 422))

Creation,
invalidation,
and timeout

MDYD[�VHUYOHW�KWWS�
+WWS6HVVLRQ/LVWHQHU and
+WWS6HVVLRQ(YHQW

Attribute added,
removed, or
replaced

MDYD[�VHUYOHW�KWWS�
+WWS6HVVLRQ$WWULEXWH/LVWHQHU and
+WWS6HVVLRQ%LQGLQJ(YHQW

../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextEvent.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeEvent.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionEvent.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionBindingEvent.html
../examples/web/bookstore1/listeners/ContextListener.java

HANDLING ERRORS 399
`
&RXQWHU�FRXQWHU� �QHZ�&RXQWHU���
FRQWH[W�VHW$WWULEXWH��KLW&RXQWHU���FRXQWHU��
FRQWH[W�ORJ��&UHDWHG�KLW&RXQWHU�

��FRXQWHU�JHW&RXQWHU����
FRXQWHU� �QHZ�&RXQWHU���
FRQWH[W�VHW$WWULEXWH��RUGHU&RXQWHU���FRXQWHU��
FRQWH[W�ORJ��&UHDWHG�RUGHU&RXQWHU�

���FRXQWHU�JHW&RXQWHU����
`

SXEOLF�YRLG�FRQWH[W'HVWUR\HG�6HUYOHW&RQWH[W(YHQW�HYHQW��^
FRQWH[W� �HYHQW�JHW6HUYOHW&RQWH[W���
%RRN'%�ERRN'%� �FRQWH[W�JHW$WWULEXWH�

�ERRN'%���
ERRN'%�UHPRYH���
FRQWH[W�UHPRYH$WWULEXWH��ERRN'%���
FRQWH[W�UHPRYH$WWULEXWH��KLW&RXQWHU���
FRQWH[W�UHPRYH$WWULEXWH��RUGHU&RXQWHU���

`
`

Specifying Event Listener Classes
To specify an event listener class, you add a OLVWHQHU element to the Web appli-
cation deployment descriptor. Here is the OLVWHQHU element for the Duke’s
Bookstore application:

�OLVWHQHU!
�OLVWHQHU�FODVV!OLVWHQHUV�&RQWH[W/LVWHQHU��OLVWHQHU�FODVV!

��OLVWHQHU!

Handling Errors
Any number of exceptions can occur when a servlet is executed. The Web con-
tainer will generate a default page containing the message $� 6HUYOHW� ([FHS�
WLRQ� +DV� 2FFXUUHG�when an exception occurs, but you can also specify that
the container should return a specific error page for a given exception. To specify
such a page, you add an HUURU�SDJH element to the Web application deployment

400 JAVA™ SERVLET TECHNOLOGY
descriptor. These elements map the exceptions returned by the Duke’s Bookstore
application to HUURUSDJH�KWPO:

�HUURU�SDJH!
�H[FHSWLRQ�

W\SH!H[FHSWLRQ�%RRN1RW)RXQG([FHSWLRQ��H[FHSWLRQ�W\SH!
�ORFDWLRQ!�HUURUSDJH�KWPO��ORFDWLRQ!

��HUURU�SDJH!
�HUURU�SDJH!

�H[FHSWLRQ�
W\SH!H[FHSWLRQ�%RRNV1RW)RXQG([FHSWLRQ��H[FHSWLRQ�W\SH!

�ORFDWLRQ!�HUURUSDJH�KWPO��ORFDWLRQ!
��HUURU�SDJH!
�HUURU�SDJH!

�H[FHSWLRQ�W\SH!H[FHSWLRQ�2UGHU([FHSWLRQ��H[FHSWLRQ�W\SH!
�ORFDWLRQ!�HUURUSDJH�KWPO��ORFDWLRQ!

��HUURU�SDJH!

Sharing Information
Web components, like most objects, usually work with other objects to accom-
plish their tasks. There are several ways they can do this. They can use private
helper objects (for example, JavaBeans components), they can share objects that
are attributes of a public scope, they can use a database, and they can invoke
other Web resources. The Java Servlet technology mechanisms that allow a Web
component to invoke other Web resources are described in Invoking Other Web
Resources (page 417).

Using Scope Objects
Collaborating Web components share information via objects maintained as
attributes of four scope objects. These attributes are accessed with the

USING SCOPE OBJECTS 401
>JHW_VHW@$WWULEXWH methods of the class representing the scope. Table 3 lists
the scope objects.

Table 3 Scope Objects

Scope
Object Class Accessible From

Web context
MDYD[�VHUYOHW�
6HUYOHW&RQWH[W

Web components within a Web context. See
Accessing the Web Context (page 421).

session
MDYD[�VHUYOHW�
KWWS�+WWS6HVVLRQ

Web components handling a request that belongs to
the session. See Maintaining Client
State (page 422).

request
subtype of
MDYD[�VHUYOHW�
6HUYOHW5HTXHVW

Web components handling the request.

page
MDYD[�VHUYOHW�
MVS�3DJH&RQWH[W

The JSP page that creates the object. See Implicit
Objects (page 439).

../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/http/HttpSession.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/jsp/PageContext.html

402 JAVA™ SERVLET TECHNOLOGY
Figure 1 shows the scoped attributes maintained by the Duke’s Bookstore appli-
cation.

Figure 1 Duke’s Bookstore Scoped Attributes

Controlling Concurrent Access to Shared
Resources
In a multithreaded server, it is possible for shared resources to be accessed con-
currently. Besides scope object attributes, shared resources include in-memory
data such as instance or class variables and external objects such as files, data-
base connections, and network connections. Concurrent access can arise in sev-
eral situations:

• Multiple Web components accessing objects stored in the Web context

• Multiple Web components accessing objects stored in a session

• Multiple threads within a Web component accessing instance variables. A
Web container will typically create a thread to handle each request. If you
want to ensure that a servlet instance handles only one request at a time, a
servlet can implement the 6LQJOH7KUHDG0RGHO interface. If a servlet
implements this interface, you are guaranteed that no two threads will exe-
cute concurrently in the servlet’s service method. A Web container can
implement this guarantee by synchronizing access to a single instance of

../../api/javax/servlet/SingleThreadModel.html

ACCESSING DATABASES 403
the servlet, or by maintaining a pool of Web component instances and dis-
patching each new request to a free instance. This interface does not pre-
vent synchronization problems that result from Web components accessing
shared resources such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsis-
tent fashion. To prevent this, you must control the access using the synchroniza-
tion techniques described in the Threads lesson in the Java Tutorial.

In the previous section we showed five scoped attributes shared by more than
one servlet: ERRN'%, FDUW, FXUUHQF\, KLW&RXQWHU, and RUGHU&RXQWHU. The
ERRN'% attribute is discussed in the next section. The cart, currency, and counters
can be set and read by multiple multithreaded servlets. To prevent these objects
from being used inconsistently, access is controlled by synchronized methods.
For example, here is the XWLO�&RXQWHU class:

SXEOLF�FODVV�&RXQWHU�^
SULYDWH�LQW�FRXQWHU�
SXEOLF�&RXQWHU���^

FRXQWHU� ���
`
SXEOLF�V\QFKURQL]HG�LQW�JHW&RXQWHU���^

UHWXUQ�FRXQWHU�
`
SXEOLF�V\QFKURQL]HG�LQW�VHW&RXQWHU�LQW�F��^

FRXQWHU� �F�
UHWXUQ�FRXQWHU�

`
SXEOLF�V\QFKURQL]HG�LQW�LQF&RXQWHU���^

UHWXUQ���FRXQWHU��
`

`

Accessing Databases
Data that is shared between Web components and persistent between invocations
of a Web application is usually maintained by a database. Web components use
the JDBC 2.0 API to access relational databases. The data for the bookstore
application is maintained in a database and accessed through the helper class
GDWDEDVH�%RRN'%. For example, 5HFHLSW6HUYOHW invokes the %RRN'%�EX\�
%RRNV method to update the book inventory when a user makes a purchase. The
EX\%RRNV method invokes EX\%RRN for each book contained in the shopping
cart. To ensure the order is processed in its entirety, the calls to EX\%RRN are

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial
../examples/web/bookstore1/util/Counter.java
../examples/web/bookstore1/database/BookDB.java
../examples/web/bookstore1/ReceiptServlet.java

404 JAVA™ SERVLET TECHNOLOGY
wrapped in a single JDBC transaction. The use of the shared database connection
is synchronized via the >JHW_UHOHDVH@&RQQHFWLRQ methods.

SXEOLF�YRLG�EX\%RRNV�6KRSSLQJ&DUW�FDUW��WKURZV�2UGHU([FHSWLRQ^
&ROOHFWLRQ�LWHPV� �FDUW�JHW,WHPV���
,WHUDWRU�L� �LWHPV�LWHUDWRU���
WU\�^�

JHW&RQQHFWLRQ����
FRQ�VHW$XWR&RPPLW�IDOVH���
ZKLOH��L�KDV1H[W����^

6KRSSLQJ&DUW,WHP�VFL� ��6KRSSLQJ&DUW,WHP�L�QH[W���
%RRN'HWDLOV�EG� ��%RRN'HWDLOV�VFL�JHW,WHP���
6WULQJ�LG� �EG�JHW%RRN,G���
LQW�TXDQWLW\� �VFL�JHW4XDQWLW\���
EX\%RRN�LG��TXDQWLW\��

`
FRQ�FRPPLW���
FRQ�VHW$XWR&RPPLW�WUXH���
UHOHDVH&RQQHFWLRQ����

`�FDWFK��([FHSWLRQ�H[��^�
WU\�^�
FRQ�UROOEDFN����
UHOHDVH&RQQHFWLRQ����
WKURZ�QHZ�2UGHU([FHSWLRQ��7UDQVDFWLRQ�IDLOHG�����

H[�JHW0HVVDJH�����
`�FDWFK��64/([FHSWLRQ�VT[��^�

UHOHDVH&RQQHFWLRQ����
WKURZ�QHZ�2UGHU([FHSWLRQ��5ROOEDFN�IDLOHG�����

VT[�JHW0HVVDJH�����
`�

`�
`

Initializing a Servlet
After the Web container loads and instantiates the servlet class and before it
delivers requests from clients, the Web container initializes the servlet. You can
customize this process to allow the servlet to read persistent configuration data,
initialize resources, and perform any other one-time activities by overriding the
LQLW method of the 6HUYOHW interface. A servlet that cannot complete its initial-
ization process should throw 8QDYDLODEOH([FHSWLRQ.

All the servlets that access the bookstore database (%RRN6WRUH6HUYOHW, &DWD�
ORJ6HUYOHW, %RRN'HWDLOV6HUYOHW, and 6KRZ&DUW6HUYOHW� initialize a variable

../../api/javax/servlet/Servlet.html
../examples/web/bookstore1/BookStoreServlet.java
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/BookDetailsServlet.java
../examples/web/bookstore1/ShowCartServlet.java

ACCESSING DATABASES 405
in their LQLW method that points to the database helper object created by the Web
context listener:

SXEOLF�FODVV�&DWDORJ6HUYOHW�H[WHQGV�+WWS6HUYOHW�^
SULYDWH�%RRN'%�ERRN'%�
SXEOLF�YRLG�LQLW���WKURZV�6HUYOHW([FHSWLRQ�^

ERRN'%� ��%RRN'%�JHW6HUYOHW&RQWH[W���
JHW$WWULEXWH��ERRN'%���

LI��ERRN'%� �QXOO��WKURZ�QHZ
8QDYDLODEOH([FHSWLRQ��&RXOGQ
W�JHW�GDWDEDVH����

`
`

Writing Service Methods
The service provided by a servlet is implemented in the VHUYLFH method of a
*HQHULF6HUYOHW, the GRMethod methods (where Method can take the value *HW,
'HOHWH, 2SWLRQV, 3RVW, 3XW, 7UDFH) of an +WWS6HUYOHW, or any other protocol-
specific methods defined by a class that implements the 6HUYOHW interface. In
the rest of this chapter, the term “service method” will be used for any method in
a servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the
request, access external resources, and then populate the response based on that
information.

For HTTP servlets, the correct procedure for populating the response is to first
fill in the response headers, then retrieve an output stream from the response, and
finally write any body content to the output stream. Response headers must
always be set before a 3ULQW:ULWHU or 6HUYOHW2XWSXW6WUHDP is retrieved
because the HTTP protocol expects to receive all headers before body content.
The next two sections describe how to get information from requests and gener-
ate responses.

406 JAVA™ SERVLET TECHNOLOGY
Getting Information From Requests
A request contains data passed between a client and the servlet. All requests
implement the 6HUYOHW5HTXHVW interface. This interface defines methods for
accessing the following information:

• Parameters, which are typically used to convey information between cli-
ents and servlets

• Object-valued attributes, which are typically used to pass information
between the servlet container and a servlet or between collaborating serv-
lets

• Information about the protocol used to communicate the request and the
client and server involved in the request

• Information relevant to localization

For example, in &DWDORJ6HUYOHW the identifier of the book that a customer
wishes to purchase is included as a parameter to the request. The following code
fragment illustrates how to use the JHW3DUDPHWHU method to extract the identi-
fier:

6WULQJ�ERRN,G� �UHTXHVW�JHW3DUDPHWHU��$GG���
LI��ERRN,G�� �QXOO��^

%RRN'HWDLOV�ERRN� �ERRN'%�JHW%RRN'HWDLOV�ERRN,G��

You can also retrieve an input stream from the request and manually parse the
data. To read character data, use the %XIIHUHG5HDGHU object returned by the
request’s JHW5HDGHU method. To read binary data, use the 6HUYOHW,QSXW6WUHDP
returned by JHW,QSXW6WUHDP.

HTTP servlets are passed an HTTP request object, +WWS6HUYOHW5HTXHVW, which
contains the request URL, HTTP headers, query string, and so on.

An HTTP request URL contains the following parts:

KWWS���>KRVW@�>SRUW@>UHTXHVW�SDWK@">TXHU\�VWULQJ@

The request path is further composed of the following elements:

• Context path: A concatenation of ·�· with the context root of the servlet’s
Web application.

• Servlet path: The path section that corresponds to the component alias
that activated this request. This path starts with a ·�·.

../../api/javax/servlet/ServletRequest.html
../examples/web/bookstore1/CatalogServlet.java
http://java.sun.com/j2se/1.3/docs/api/java/io/BufferedReader.html
../../api/javax/servlet/ServletInputStream.html
../../api/javax/servlet/http/HttpServletRequest.html

GETTING INFORMATION FROM REQUESTS 407
• Path info: The part of the request path that is not part of the context path
or the servlet path.

Table 5 gives some examples of how the URL will be broken down if the context
path is �FDWDORJ, and the aliases are as listed in Table 4:

Query strings are composed of a set of parameters and values. Individual param-
eters are retrieved from a request with the JHW3DUDPHWHU method. There are two
ways to generate query strings:

• A query string can explicitly appear in a Web page. For example, an
HTML page generated by the &DWDORJ6HUYOHW could contain the link �D
KUHI ��ERRNVWRUH��FDWDORJ"$GG ����!$GG� 7R� &DUW��D!. &DWD�
ORJ6HUYOHW extracts the parameter named $GG as follows:

6WULQJ�ERRN,G� �UHTXHVW�JHW3DUDPHWHU��$GG���

• A query string is appended to a URL when a form with a *(7 HTTP
method is submitted. In the Duke’s Bookstore application, &DVKLHU6HUY�
OHW generates a form, a user name input to the form is appended to the URL
that maps to 5HFHLSW6HUYOHW, and 5HFHLSW6HUYOHW extracts the user
name using the JHW3DUDPHWHU method.

Table 4 Aliases

Pattern Servlet

�ODZQ�
 /DZQ6HUYOHW

�
�MVS -636HUYOHW

Table 5 Request Path Elements

Request Path Servlet Path Path Info

�FDWDORJ�ODZQ�LQGH[�KWPO �ODZQ �LQGH[�KWPO

�FDWDORJ�KHOS�IHHGEDFN�MVS �KHOS�IHHGEDFN�MVS QXOO

../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/CashierServlet.java
../examples/web/bookstore1/CashierServlet.java
../examples/web/bookstore1/ReceiptServlet.java

408 JAVA™ SERVLET TECHNOLOGY
Constructing Responses
A response contains data passed between a server and the client. All responses
implement the 6HUYOHW5HVSRQVH interface. This interface defines methods that
allow you to:

• Retrieve an output stream to use to send data to the client. To send charac-
ter data, use the 3ULQW:ULWHU returned by the response’s JHW:ULWHU
method. To send binary data in a MIME body response, use the 6HUY�
OHW2XWSXW6WUHDP returned by JHW2XWSXW6WUHDP. To mix binary and text
data, for example, to create a multipart response, use a 6HUYOHW2XWSXW�
6WUHDP and manage the character sections manually.

• Indicate the content type (for example, WH[W�KWPO�, being returned by the
response. A registry of content type names is kept by IANA at:

IWS���IWS�LVL�HGX�LQ�QRWHV�LDQD�DVVLJQPHQWV�PHGLD�W\SHV

• Indicate whether to buffer output. By default, any content written to the
output stream is immediately sent to the client. Buffering allows content to
be written before anything is actually sent back to the client, thus providing
the servlet with more time to set appropriate status codes and headers or
forward to another Web resource.

• Set localization information.

HTTP response objects, +WWS6HUYOHW5HVSRQVH, have fields representing HTTP
headers such as

• Status codes, which are used to indicate the reason of a request is not sat-
isfied.

• Cookies, which are used to store application-specific information at the
client. Sometimes cookies are used to maintain an identifier for tracking a
user’s session (see Session Tracking (page 424)).

In Duke’s Bookstore, %RRN'HWDLOV6HUYOHW generates an HTML page that dis-
plays information about a book which the servlet retrieves from a database. The
servlet first sets response headers: the content type of the response and the buffer
size. The servlet buffers the page content because the database access can gener-
ate an exception that would cause forwarding to an error page. By buffering the
response, the client will not see a concatenation of part of a Duke’s Bookstore
page with the error page should an error occur. The GR*HW method then retrieves
a 3ULQW:ULWHU from the response.

../../api/javax/servlet/ServletResponse.html
http://java.sun.com/j2se/1.3/docs/api/java/io/PrintWriter.html
../../api/javax/servlet/ServletOutputStream.html
../../api/javax/servlet/ServletOutputStream.html
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
../../api/javax/servlet/http/HttpServletResponse.html
../examples/web/bookstore1/BookDetailsServlet.java

CONSTRUCTING RESPONSES 409
For filling in the response, the servlet first dispatches the request to %DQ�
QHU6HUYOHW, which generates a common banner for all the servlets in the appli-
cation. This process is discussed in Including Other Resources in the
Response (page 418). Then the servlet retrieves the book identifier from a
request parameter and uses the identifier to retrieve information about the book
from the bookstore database. Finally the servlet generates HTML markup that
describes the book information and commits the response to the client by calling
the FORVH method on the 3ULQW:ULWHU.

SXEOLF�FODVV�%RRN'HWDLOV6HUYOHW�H[WHQGV�+WWS6HUYOHW�^�
�SXEOLF�YRLG�GR*HW��+WWS6HUYOHW5HTXHVW�UHTXHVW�

+WWS6HUYOHW5HVSRQVH�UHVSRQVH�
WKURZV�6HUYOHW([FHSWLRQ��,2([FHSWLRQ�^

���VHW�KHDGHUV�EHIRUH�DFFHVVLQJ�WKH�:ULWHU
UHVSRQVH�VHW&RQWHQW7\SH��WH[W�KWPO���
UHVSRQVH�VHW%XIIHU6L]H�������
3ULQW:ULWHU�RXW� �UHVSRQVH�JHW:ULWHU���

���WKHQ�ZULWH�WKH�UHVSRQVH
RXW�SULQWOQ���KWPO!���
��KHDG!�WLWOH!�
PHVVDJHV�JHW6WULQJ��7LWOH%RRN'HVFULSWLRQ��
���WLWOH!��KHDG!���

���*HW�WKH�GLVSDWFKHU��LW�JHWV�WKH�EDQQHU�WR�WKH�XVHU
5HTXHVW'LVSDWFKHU�GLVSDWFKHU�

JHW6HUYOHW&RQWH[W���
JHW5HTXHVW'LVSDWFKHU���EDQQHU���

LI��GLVSDWFKHU�� �QXOO�
GLVSDWFKHU�LQFOXGH�UHTXHVW��UHVSRQVH��

��*HW�WKH�LGHQWLILHU�RI�WKH�ERRN�WR�GLVSOD\
6WULQJ�ERRN,G� �UHTXHVW�JHW3DUDPHWHU��ERRN,G���
LI��ERRN,G�� �QXOO��^

���DQG�WKH�LQIRUPDWLRQ�DERXW�WKH�ERRN
WU\�^

%RRN'HWDLOV�EG�
ERRN'%�JHW%RRN'HWDLOV�ERRN,G��

���
��3ULQW�RXW�WKH�LQIRUPDWLRQ�REWDLQHG
RXW�SULQWOQ���K�!����EG�JHW7LWOH��������K�!���
���

`�FDWFK��%RRN1RW)RXQG([FHSWLRQ�H[��^
UHVSRQVH�UHVHW%XIIHU���
WKURZ�QHZ�6HUYOHW([FHSWLRQ�H[��

`
`

410 JAVA™ SERVLET TECHNOLOGY
RXW�SULQWOQ����ERG\!��KWPO!���
RXW�FORVH���

`
`

%RRN'HWDLOV6HUYOHW generates a page that looks like:

Figure 2 Book Details

Filtering Requests and Responses
A filter is an object that can transform the header and/or content of a request or
response. Filters differ from Web components in that they usually do not them-
selves create a response. Instead, a filter provides functionality that can be
“attached” to any kind of Web resource. As a consequence, a filter should not
have any dependencies on a Web resource for which it is acting as a filter so that

PROGRAMMING FILTERS 411
it can be composable with more than one type of Web resource. The main tasks
that a filter can perform are:

• Query the request and act accordingly

• Block the request and response pair from passing any further.

• Modify the request headers and data. You do this by providing a custom-
ized version of the request.

• Modify the response headers and data. You do this by providing a custom-
ized version of the response.

• Interact with external resources

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a Web resource to be filtered by a chain of zero, one, or more
filters in a specific order. This chain is specified when the Web application con-
taining the component is deployed and instantiated when a Web container loads
the component.

In summary, the tasks involved in using filters include:

• Programming the filter

• Programming customized requests and responses

• Specifying the filter chain for each Web resource

Programming Filters
The filtering API is defined by the)LOWHU,)LOWHU&KDLQ, and)LOWHU&RQILJ
interfaces in the MDYD[�VHUYOHW package. You define a filter by implementing
the)LOWHU interface. The most important method in this interface is the GR)LO�
WHU method, which is passed request, response, and filter chain objects. This
method can perform the following actions:

• Examine the request headers

• Customize the request object if it wishes to modify request headers or data

• Customize the response object if it wishes to modify response headers or
data

• Invoke the next entity in the filter chain. If the current filter is the last filter
in the chain that ends with the target Web component or static resource, the
next entity is the resource at the end of the chain; otherwise, it is the next
filter that was configured in the WAR. It invokes the next entity by calling

../../api/javax/servlet/Filter.html

412 JAVA™ SERVLET TECHNOLOGY
the GR)LOWHU method on the chain object (passing in the request and
response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to
invoke the next entity. In the latter case, the filter is responsible for filling
out the response.

• Examine response headers after it has invoked the next filter in the chain

• Throw an exception to indicate an error in processing

In addition to GR)LOWHU, you must implement the LQLW and GHVWUR\ methods.
The inLW method is called by the container when the filter is instantiated. If you
wish to pass initialization parameters to the filter you retrieve them from the
)LOWHU&RQILJ object passed to LQLW.

The Duke’s Bookstore application uses the filters +LW&RXQWHU)LOWHU and
2UGHU)LOWHU to increment and log the value of a counter when the entry and
receipt servlets are accessed.

In the GR)LOWHU method, both filters retrieve the servlet context from the filter
configuration object so that they can access the counters stored as context
attributes. After the filters have completed application-specific processing, they
invoke GR)LOWHU on the filter chain object passed into the original GR)LOWHU
method. The elided code is discussed in the next section.

SXEOLF�ILQDO�FODVV�+LW&RXQWHU)LOWHU�LPSOHPHQWV�)LOWHU�^
SULYDWH�)LOWHU&RQILJ�ILOWHU&RQILJ� �QXOO�

SXEOLF�YRLG�LQLW�)LOWHU&RQILJ�ILOWHU&RQILJ��
WKURZV�6HUYOHW([FHSWLRQ�^
WKLV�ILOWHU&RQILJ� �ILOWHU&RQILJ�

`
SXEOLF�YRLG�GHVWUR\���^

WKLV�ILOWHU&RQILJ� �QXOO�
`
SXEOLF�YRLG�GR)LOWHU�6HUYOHW5HTXHVW�UHTXHVW�

6HUYOHW5HVSRQVH�UHVSRQVH��)LOWHU&KDLQ�FKDLQ��
WKURZV�,2([FHSWLRQ��6HUYOHW([FHSWLRQ�^
LI��ILOWHU&RQILJ� �QXOO�

UHWXUQ�
6WULQJ:ULWHU�VZ� �QHZ�6WULQJ:ULWHU���
3ULQW:ULWHU�ZULWHU� �QHZ�3ULQW:ULWHU�VZ��
&RXQWHU�FRXQWHU� ��&RXQWHU�ILOWHU&RQILJ�

JHW6HUYOHW&RQWH[W���
JHW$WWULEXWH��KLW&RXQWHU���

ZULWHU�SULQWOQ���
ZULWHU�SULQWOQ�� ���

../examples/web/bookstore1/filters/HitCounterFilter.java
../examples/web/bookstore1/filters/OrderFilter.java

PROGRAMMING CUSTOMIZED REQUESTS AND RESPONSES413
ZULWHU�SULQWOQ��7KH�QXPEHU�RI�KLWV�LV�����
FRXQWHU�LQF&RXQWHU����

ZULWHU�SULQWOQ�� ���
���/RJ�WKH�UHVXOWLQJ�VWULQJ
ZULWHU�IOXVK���
ILOWHU&RQILJ�JHW6HUYOHW&RQWH[W���

ORJ�VZ�JHW%XIIHU���WR6WULQJ����
���
FKDLQ�GR)LOWHU�UHTXHVW��ZUDSSHU��
���

`
`

Programming Customized Requests and
Responses
There are many ways for a filter to modify a request or response. For example, a
filter could add an attribute to the request or insert data in the response. In the
Duke’s Bookstore example, +LW&RXQWHU)LOWHU inserts the value of the counter
into the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. The way to do this is to pass the servlet that generates the
response a stand-in stream. The stand-in stream prevents the servlet from closing
the original response stream when it completes and allows the filter to modify
the servlet’s response.

In order to pass this stand-in stream to the servlet, the filter creates a response
“wrapper” that overrides the JHW:ULWHU or JHW2XWSXW6WUHDP method to return
this stand-in stream. The wrapper is passed to the GR)LOWHU method of the filter
chain. Wrapper methods default to calling through to the wrapped request or
response object. This approach follows the well-known Wrapper or Decorator
pattern described in Design Patterns, Elements of Reusable Object-Oriented
Software. The following sections describe how the hit counter filter described
earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
6HUYOHW5HTXHVW:UDSSHU or +WWS6HUYOHW5HTXHVW:UDSSHU. To override
response methods, you wrap the response in an object that extends
6HUYOHW5HVSRQVH:UDSSHU or +WWS6HUYOHW5HVSRQVH:UDSSHU.

+LW&RXQWHU)LOWHU wraps the response in a &KDU5HVSRQVH:UDSSHU. The
wrapped response is passed to the next object in the filter chain, which is %RRN�

../../api/javax/servlet/ServletRequestWrapper.html
../../api/javax/servlet/http/HttpServletRequestWrapper.html
../../api/javax/servlet/ServletResponseWrapper.html
../../api/javax/servlet/http/HttpServletResponseWrapper.html
../examples/web/bookstore1/filters/CharResponseWrapper.java

414 JAVA™ SERVLET TECHNOLOGY
6WRUH6HUYOHW. %RRN6WRUH6HUYOHW writes its response into the stream created
by &KDU5HVSRQVH:UDSSHU. When FKDLQ�GR)LOWHU returns, +LW&RXQWHU)LOWHU
retrieves the servlet’s response from 3ULQW:ULWHU and writes it to a buffer. The
filter inserts the value of the counter into the buffer, resets the content length
header of the response, and finally writes the contents of the buffer to the
response stream.

3ULQW:ULWHU�RXW� �UHVSRQVH�JHW:ULWHU���
&KDU5HVSRQVH:UDSSHU�ZUDSSHU� �QHZ�&KDU5HVSRQVH:UDSSHU�

�+WWS6HUYOHW5HVSRQVH�UHVSRQVH��
FKDLQ�GR)LOWHU�UHTXHVW��ZUDSSHU��
&KDU$UUD\:ULWHU�FDZ� �QHZ�&KDU$UUD\:ULWHU���
FDZ�ZULWH�ZUDSSHU�WR6WULQJ���VXEVWULQJ���

ZUDSSHU�WR6WULQJ���LQGH[2I����ERG\!�������
FDZ�ZULWH���S!?Q�FHQWHU!�FHQWHU!����

PHVVDJHV�JHW6WULQJ��9LVLWRU�������IRQW�FRORU
UHG
!����
FRXQWHU�JHW&RXQWHU��������IRQW!�FHQWHU!���

FDZ�ZULWH��?Q��ERG\!��KWPO!���
UHVSRQVH�VHW&RQWHQW/HQJWK�FDZ�WR6WULQJ���OHQJWK����
RXW�ZULWH�FDZ�WR6WULQJ����
RXW�FORVH���

SXEOLF�FODVV�&KDU5HVSRQVH:UDSSHU�H[WHQGV
+WWS6HUYOHW5HVSRQVH:UDSSHU�^
SULYDWH�&KDU$UUD\:ULWHU�RXWSXW�
SXEOLF�6WULQJ�WR6WULQJ���^

UHWXUQ�RXWSXW�WR6WULQJ���
`
SXEOLF�&KDU5HVSRQVH:UDSSHU�+WWS6HUYOHW5HVSRQVH�UHVSRQVH�^

VXSHU�UHVSRQVH��
RXWSXW� �QHZ�&KDU$UUD\:ULWHU���

`
SXEOLF�3ULQW:ULWHU�JHW:ULWHU��^

UHWXUQ�QHZ�3ULQW:ULWHU�RXWSXW��
`

`

SPECIFYING FILTER MAPPINGS 415
Figure 3 shows the entry page for Duke’s Bookstore with the hit counter.

Figure 3 Duke’s Bookstore

Specifying Filter Mappings
A Web container uses filter mappings to decide how to apply filters to Web
resources. A filter mapping matches a filter to a Web component by name or to
Web resources by URL pattern. The filters are invoked in the order that filter
mappings appear in the filter mapping list of a WAR.

To map a filter to a Web resources you:

• Declare the filter using the �ILOWHU! element in the Web application
deployment descriptor. This element creates a name for the filter and
declares the filter’s implementation class and initialization parameters.

• Map the filter to a Web resource by defining a �ILOWHU�PDSSLQJ! element
in the deployment descriptor. This element maps a filter name to a Web
resource by name or by URL pattern.

416 JAVA™ SERVLET TECHNOLOGY
The following elements show how to specify the hit counter and order filters. To
define a filter you provide a name for the filter, the class that implements the
filter, and optionally some initialization parameters.

�ILOWHU!
�ILOWHU�QDPH!2UGHU)LOWHU��ILOWHU�QDPH!
�ILOWHU�FODVV!ILOWHUV�2UGHU)LOWHU��ILOWHU�FODVV!

��ILOWHU!
�ILOWHU!

�ILOWHU�QDPH!+LW&RXQWHU)LOWHU��ILOWHU�QDPH!
�ILOWHU�FODVV!ILOWHUV�+LW&RXQWHU)LOWHU��ILOWHU�FODVV!

��ILOWHU!

The ILOWHU�PDSSLQJ element maps the order filter to the �UHFHLSW URL. The
mapping could also have specified the servlet 5HFHLSW6HUYOHW. Note that the
ILOWHU, ILOWHU�PDSSLQJ, VHUYOHW, and VHUYOHW�PDSSLQJ elements must
appear in the Web application deployment descriptor in that order.

�ILOWHU�PDSSLQJ!
�����ILOWHU�QDPH!2UGHU)LOWHU��ILOWHU�QDPH!
�����XUO�SDWWHUQ!�UHFHLSW��XUO�SDWWHUQ!
����ILOWHU�PDSSLQJ!
���ILOWHU�PDSSLQJ!
�����ILOWHU�QDPH!+LW&RXQWHU)LOWHU��ILOWHU�QDPH!
�����XUO�SDWWHUQ!�HQWHU��XUO�SDWWHUQ!
����ILOWHU�PDSSLQJ!

If you want to log every request to a Web application, you would map the hit
counter filter to the URL pattern �
. Table 6 summarizes the filter mapping list
for the Duke’s Bookstore application. The filters are matched by URL pattern
and each filter chain contains only one filter.

You can map a filter to one or more Web resource and you can map more than
one filter to a Web resource. This is illustrated in Figure 4, where filter F1 is

Table 6 Duke’s Bookstore Filter Mapping List

URL Filter

�HQWHU +LW&RXQWHU)LOWHU

�UHFHLSW 2UGHU)LOWHU

SPECIFYING FILTER MAPPINGS 417
mapped to servlets S1, S2, and S3, filter F2 is mapped to S2, and filter F3 is
mapped to S1 and S2.

Figure 4 Filter to Servlet Mapping

Recall that a filter chain is one of the objects passed to the GR)LOWHU method of a
filter. This chain is formed indirectly via filter mappings. The order of the filters
in the chain is the same as the order that filter mappings appear in the Web appli-
cation deployment descriptor.

When a filter is mapped to servlet S1, the Web container invokes the GR)LOWHU
method of F1. The GR)LOWHU method of each filter in S1’s filter chain is invoked
by the preceding filter in the chain via the FKDLQ�GR)LOWHU method. Since S1’s
filter chain contains filters F1 and F3, F1’s call to FKDLQ�GR)LOWHU invokes the
GR)LOWHU method of filter F3. When F3’s GR)LOWHU method completes, control
returns to F1’s GR)LOWHU method.

Invoking Other Web Resources
Web components can invoke other Web resources in two ways: indirect and
direct.

A Web component indirectly invokes another Web resource when it embeds a
URL that points to another Web component in content returned to a client. In the

418 JAVA™ SERVLET TECHNOLOGY
Duke’s Bookstore application, most Web components contain embedded URLs
that point to other Web components. For example, 5HFHLSW6HUYOHW indirectly
invokes the &DWDORJ6HUYOHW through the embedded URL �ERRNVWRUH��FDWD�
ORJ.

A Web component can also directly invoke another resource while it is execut-
ing. There are two possibilities: it can include the content of another resource, or
it can forward a request to another resource.

To invoke a resource available on the server that is running a Web component,
you must first obtain a 5HTXHVW'LVSDWFKHU using the JHW5HTXHVW'LV�
SDWFKHU��85/�� method.

You can get a 5HTXHVW'LVSDWFKHU from either a request or the Web context,
however, the two methods have slightly different behavior. The method takes the
path to the requested resource as an argument. A request can take a relative path
(that is, one that does not begin with a ·�·), but the Web context requires an
absolute path. If the resource is not available, or if the server has not imple-
mented a 5HTXHVW'LVSDWFKHU object for that type of resource, JHW5HTXHVW'LV�
SDWFKHU will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the
Response
It is often useful to include another Web resource, for example, banner content or
copyright information, in the response returned from a Web component. To
include another resource, invoke the LQFOXGH method of a 5HTXHVW'LVSDWFKHU:

LQFOXGH�UHTXHVW��UHVSRQVH��

If the resource is static, the LQFOXGH method enables programmatic server-side
includes. If the resource is a Web component, the effect of the method is to send
the request to the included Web component, execute the Web component, and
then include the result of the execution in the response from the containing serv-
let. An included Web component has access to the request object, but it is limited
in what it can do with the response object:

• It can write to the body of and commit a response.

• It cannot set headers or call any method (for example, VHW&RRNLH) that
affects the headers of the response.

../../api/javax/servlet/RequestDispatcher.html

INCLUDING OTHER RESOURCES IN THE RESPONSE 419
The banner for the Duke’s Bookstore application is generated by %DQQHU6HUY�
OHW. Note that both GR*HW and GR3RVW methods are implemented because %DQ�
QHU6HUYOHW can be dispatched from either method in a calling servlet.

SXEOLF�FODVV�%DQQHU6HUYOHW�H[WHQGV�+WWS6HUYOHW�^�
SXEOLF�YRLG�GR*HW��+WWS6HUYOHW5HTXHVW�UHTXHVW�

+WWS6HUYOHW5HVSRQVH�UHVSRQVH�
WKURZV�6HUYOHW([FHSWLRQ��,2([FHSWLRQ�^

3ULQW:ULWHU�RXW� �UHVSRQVH�JHW:ULWHU���
RXW�SULQWOQ���ERG\�EJFRORU ?��IIIIII?�!���
��FHQWHU!������KU!��EU!�	QEVS�������K�!���
��IRQW�VL]H ?���?��FRORU ?��&&����?�!'XNH
V���IRQW!���
�LPJ�VUF ?�����UHTXHVW�JHW&RQWH[W3DWK����
��GXNH�ERRNV�JLI?�!����
��IRQW�VL]H ?���?��FRORU ?�EODFN?�!%RRNVWRUH��IRQW!���
���K�!�������FHQWHU!������EU!�	QEVS���KU!��EU!����

`
SXEOLF�YRLG�GR3RVW��+WWS6HUYOHW5HTXHVW�UHTXHVW�

+WWS6HUYOHW5HVSRQVH�UHVSRQVH�
WKURZV�6HUYOHW([FHSWLRQ��,2([FHSWLRQ�^

3ULQW:ULWHU�RXW� �UHVSRQVH�JHW:ULWHU���
RXW�SULQWOQ���ERG\�EJFRORU ?��IIIIII?�!���
��FHQWHU!������KU!��EU!�	QEVS�������K�!���
��IRQW�VL]H ?���?��FRORU ?��&&����?�!'XNH
V���IRQW!���
�LPJ�VUF ?�����UHTXHVW�JHW&RQWH[W3DWK����
��GXNH�ERRNV�JLI?�!����
��IRQW�VL]H ?���?��FRORU ?�EODFN?�!%RRNVWRUH��IRQW!���
���K�!�������FHQWHU!������EU!�	QEVS���KU!��EU!����

`
`

Each servlet in the Duke’s Bookstore application includes the result from %DQ�
QHU6HUYOHW with the following code:

5HTXHVW'LVSDWFKHU�GLVSDWFKHU�
JHW6HUYOHW&RQWH[W���JHW5HTXHVW'LVSDWFKHU���EDQQHU���

LI��GLVSDWFKHU�� �QXOO�
GLVSDWFKHU�LQFOXGH�UHTXHVW��UHVSRQVH��

`�

../examples/web/bookstore1/BannerServlet.java
../examples/web/bookstore1/BannerServlet.java

420 JAVA™ SERVLET TECHNOLOGY
Transferring Control to Another Web
Component
In some applications you might want to have one Web component do prelimi-
nary processing of a request and another component generate the response. For
example, you might want to partially process a request and then transfer to
another component depending on the nature of the request.

To transfer control to another Web component, you invoke the IRUZDUG method
of a 5HTXHVW'LVSDWFKHU. When a request is forwarded, the request URL is set to
the path of the forwarded page. If the original URL is required for any process-
ing you can save it as a request attribute. The 'LVSDWFKHU servlet, used by a ver-
sion of the Duke’s Bookstore application described in The Example JSP
Pages (page 463), saves the path information from the original URL, retrieves a
5HTXHVW'LVSDWFKHU from the request, and then forwards to the JSP page WHP�
SODWH�MVS.

SXEOLF�FODVV�'LVSDWFKHU�H[WHQGV�+WWS6HUYOHW�^
SXEOLF�YRLG�GR*HW�+WWS6HUYOHW5HTXHVW�UHTXHVW��

+WWS6HUYOHW5HVSRQVH�UHVSRQVH��^
UHTXHVW�VHW$WWULEXWH��VHOHFWHG6FUHHQ��

UHTXHVW�JHW6HUYOHW3DWK����
5HTXHVW'LVSDWFKHU�GLVSDWFKHU� �UHTXHVW�

JHW5HTXHVW'LVSDWFKHU���WHPSODWH�MVS���
LI��GLVSDWFKHU�� �QXOO�

GLVSDWFKHU�IRUZDUG�UHTXHVW��UHVSRQVH��
`
SXEOLF�YRLG�GR3RVW�+WWS6HUYOHW5HTXHVW�UHTXHVW��
���

`

The IRUZDUG method should be used to give another resource responsibility for
replying to the user. If you have already accessed a 6HUYOHW2XWSXW6WUHDP or
3ULQW:ULWHU object within the servlet, you cannot use this method; it throws an
,OOHJDO6WDWH([FHSWLRQ.

../examples/web/bookstore3/Dispatcher.java
../examples/web/bookstore3/template.txt
../examples/web/bookstore3/template.txt

TRANSFERRING CONTROL TO ANOTHER WEB COMPONENT421
Accessing the Web Context
The context in which Web components execute is an object that implements the
6HUYOHW&RQWH[W interface. You retrieve the Web context with the JHW6HUYOHW�
&RQWH[W method. The Web context provides methods for accessing:

• Initialization parameters

• Resources associated with the Web context

• Object-valued attributes

• Logging capabilities

The Web context is used by the Duke’s Bookstore filters ILOWHUV�+LW&RXQWHU�
)LOWHU and 2UGHU)LOWHU discussed in Filtering Requests and
Responses (page 410). The filters store a counter as a context attribute. Recall
from Controlling Concurrent Access to Shared Resources (page 402) that the
counter’s access methods are synchronized to prevent incompatible operations
by servlets that are running concurrently. A filter retrieves the counter object
with the context’s JHW$WWULEXWH method. The incremented value of the counter
is recorded with the context’s ORJ method.

SXEOLF�ILQDO�FODVV�+LW&RXQWHU)LOWHU�LPSOHPHQWV�)LOWHU�^
SULYDWH�)LOWHU&RQILJ�ILOWHU&RQILJ� �QXOO�
SXEOLF�YRLG�GR)LOWHU�6HUYOHW5HTXHVW�UHTXHVW�

6HUYOHW5HVSRQVH�UHVSRQVH��)LOWHU&KDLQ�FKDLQ��
WKURZV�,2([FHSWLRQ��6HUYOHW([FHSWLRQ�^
���
6WULQJ:ULWHU�VZ� �QHZ�6WULQJ:ULWHU���
3ULQW:ULWHU�ZULWHU� �QHZ�3ULQW:ULWHU�VZ��
6HUYOHW&RQWH[W�FRQWH[W� �ILOWHU&RQILJ�

JHW6HUYOHW&RQWH[W���
&RXQWHU�FRXQWHU� ��&RXQWHU�FRQWH[W�

JHW$WWULEXWH��KLW&RXQWHU���
���
ZULWHU�SULQWOQ��7KH�QXPEHU�RI�KLWV�LV�����

FRXQWHU�LQF&RXQWHU����
���
FRQWH[W�ORJ�VZ�JHW%XIIHU���WR6WULQJ����
���

`
`

../../api/javax/servlet/ServletContext.html
../examples/web/bookstore1/filters/HitCounterFilter.java
../examples/web/bookstore1/filters/HitCounterFilter.java

422 JAVA™ SERVLET TECHNOLOGY
Maintaining Client State
Many applications require a series of requests from a client to be associated with
one another. For example, the Duke’s Bookstore application saves the state of a
user’s shopping cart across requests. Web-based applications are responsible for
maintaining such state, called a session, because the HTTP protocol is stateless.
To support applications that need to maintain state, Java Servlet technology pro-
vides an API for managing sessions and allows several mechanisms for imple-
menting sessions.

Accessing a Session
Sessions are represented by an +WWS6HVVLRQ object. You access a session by
calling the JHW6HVVLRQ method of a request object. This method returns the cur-
rent session associated with this request, or, if the request does not have a ses-
sion, creates one. Since JHW6HVVLRQ may modify the response header (if cookies
are the session tracking mechanism), it needs to be called before you retrieve a
3ULQW:ULWHU or 6HUYOHW2XWSXW6WUHDP.

Associating Attributes with a Session
You can associate object-valued attributes with a session by name. Such
attributes are accessible by any Web component that belongs to the same Web
context and is handling a request that is part of the same session.

The Duke’s Bookstore application stores a customer’s shopping cart as a session
attribute. This allows the shopping cart to be saved between requests and also
allows cooperating servlets to access the cart. &DWDORJ6HUYOHW adds items to the
cart, 6KRZ&DUW6HUYOHW displays, deletes items from, and clears the cart, and
&DVKLHU6HUYOHW retrieves the total cost of the books in the cart.

SXEOLF�FODVV�&DVKLHU6HUYOHW�H[WHQGV�+WWS6HUYOHW�^�
SXEOLF�YRLG�GR*HW��+WWS6HUYOHW5HTXHVW�UHTXHVW�

+WWS6HUYOHW5HVSRQVH�UHVSRQVH�
WKURZV�6HUYOHW([FHSWLRQ��,2([FHSWLRQ�^

���*HW�WKH�XVHU
V�VHVVLRQ�DQG�VKRSSLQJ�FDUW
+WWS6HVVLRQ�VHVVLRQ� �UHTXHVW�JHW6HVVLRQ���
6KRSSLQJ&DUW�FDUW�

�6KRSSLQJ&DUW�VHVVLRQ�

../../api/javax/servlet/http/HttpSession.html
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/ShowCartServlet.java
../examples/web/bookstore1/CashierServlet.java

SESSION MANAGEMENT 423
JHW$WWULEXWH��FDUW����
���
���'HWHUPLQH�WKH�WRWDO�SULFH�RI�WKH�XVHU
V�ERRNV
GRXEOH�WRWDO� �FDUW�JHW7RWDO���

Notifying Objects That Are Associated with a
Session
Recall that your application can notify Web context and session listener objects
of servlet life cycle events (Handling Servlet Life Cycle Events (page 397)). You
can also notify objects of certain events related to their association with a ses-
sion:

• When the object is added to or removed from a session. To receive this
notification, your object must implement the MDYD[�KWWS�+WWS6HVVLRQ�
%LQGLQJ/LVWHQHU interface�

• When the session to which the object is attached will be passivated and/or
activated. A session will be passivated and activated when it is moved
between virtual machines or saved to and restored from persistent storage.
To receive this notification, your object must implement the
MDYD[�KWWS�+WWS6HVVLRQ$FWLYDWLRQ/LVWHQHU interface�

Session Management
Since there is no way for an HTTP client to signal that it no longer needs a ses-
sion, each session has an associated time-out so that its resources can be
reclaimed. The time-out period can be accessed with a session’s >JHW_VHW@0D[�
,QDFWLYH,QWHUYDO methods. To ensure that an active session is not timed-out,
you should periodically access the session in service methods because this resets
the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s LQYDOL�
GDWH method to invalidate a session on the server side and remove any session
data.

The bookstore application’s 5HFHLSW6HUYOHW is the last servlet to access a cli-
ent’s session, so it has responsibility for invalidating the session:

SXEOLF�FODVV�5HFHLSW6HUYOHW�H[WHQGV�+WWS6HUYOHW�^�
SXEOLF�YRLG�GR3RVW�+WWS6HUYOHW5HTXHVW�UHTXHVW�

+WWS6HUYOHW5HVSRQVH�UHVSRQVH��
WKURZV�6HUYOHW([FHSWLRQ��,2([FHSWLRQ�^

../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionActivationListener.html
../examples/web/bookstore1/ReceiptServlet.java

424 JAVA™ SERVLET TECHNOLOGY
���*HW�WKH�XVHU
V�VHVVLRQ�DQG�VKRSSLQJ�FDUW
+WWS6HVVLRQ�VHVVLRQ� �UHTXHVW�JHW6HVVLRQ���
���3D\PHQW�UHFHLYHG����LQYDOLGDWH�WKH�VHVVLRQ
VHVVLRQ�LQYDOLGDWH���
���

Session Tracking
A Web container can use several methods to associate a session with a user, all of
which involve passing an identifier between the client and server. The identifier
can be maintained on the client as a cookie or the Web component can include
the identifier in every URL that is returned to the client.

If your application makes use of session objects, you must ensure that session
tracking is enabled by having the application rewrite URLs whenever the client
turns off cookies. You do this by calling the response’s HQFRGH85/�85/� method
on all URLs returned by a servlet. This method includes the session ID in the
URL only if cookies are disabled; otherwise it returns the URL unchanged.

The GR*HW method of 6KRZ&DUW6HUYOHW encodes the three URLs at the bottom
of the shopping cart display page as follows:

RXW�SULQWOQ���S!�	QEVS���S!�VWURQJ!�D�KUHI ?����
UHVSRQVH�HQFRGH85/�UHTXHVW�JHW&RQWH[W3DWK�������FDWDORJ����

�?�!����PHVVDJHV�JHW6WULQJ��&RQWLQXH6KRSSLQJ����
���D!�	QEVS��	QEVS��	QEVS����
��D�KUHI ?����

UHVSRQVH�HQFRGH85/�UHTXHVW�JHW&RQWH[W3DWK�������FDVKLHU����
�?�!����PHVVDJHV�JHW6WULQJ��&KHFNRXW����
���D!�	QEVS��	QEVS��	QEVS����
��D�KUHI ?�����

UHVSRQVH�HQFRGH85/�UHTXHVW�JHW&RQWH[W3DWK����
��VKRZFDUW"&OHDU FOHDU����
�?�!����PHVVDJHV�JHW6WULQJ��&OHDU&DUW����
���D!��VWURQJ!���

If cookies are turned off, the session is encoded in the Check Out URL as fol-
lows:

KWWS���ORFDOKRVW������ERRNVWRUH��FDVKLHU�
MVHVVLRQLG F�R�IV]HE�

If cookies are turned on, the URL is simply:

KWWS���ORFDOKRVW������ERRNVWRUH��FDVKLHU

../examples/web/bookstore1/ShowCartServlet.java

TRACKING SERVICE REQUESTS 425
Finalizing a Servlet
When a servlet container determines that a servlet should be removed from ser-
vice (for example, when a container wants to reclaim memory resources, or
when it is being shut down) it calls the GHVWUR\ method of the 6HUYOHW inter-
face. In this method you release any resources the servlet is using and save any
persistent state. The following GHVWUR\ method releases the database object cre-
ated in the LQLW method described in Initializing a Servlet (page 404):

SXEOLF�YRLG�GHVWUR\���^
ERRN'%� �QXOO�

`

All of a servlet’s VHUYLFH methods should be complete when a servlet is
removed. The server tries to ensure this completion by calling the GHVWUR\
method only after all service requests have returned or after a server-specific
grace period, whichever comes first.

If your servlet has potentially long-running service requests, use the techniques
described below to:

• Keep track of how many threads are currently running the VHUYLFH method

• Provide a clean shutdown by having the GHVWUR\ method notify long-run-
ning threads of the shutdown and wait for them to complete

• Have the long-running methods poll periodically to check for shutdown
and, if necessary, stop working, clean up, and return

Tracking Service Requests
To track service requests, include in your servlet class a field that counts the
number of service methods that are running. The field should have synchronized
access methods to increment, decrement, and return its value.

SXEOLF�6KXWGRZQ([DPSOH�H[WHQGV�+WWS6HUYOHW�^
SULYDWH�LQW�VHUYLFH&RXQWHU� ���
���
��$FFHVV�PHWKRGV�IRU�VHUYLFH&RXQWHU
SURWHFWHG�V\QFKURQL]HG�YRLG�HQWHULQJ6HUYLFH0HWKRG���^

VHUYLFH&RXQWHU���
`
SURWHFWHG�V\QFKURQL]HG�YRLG�OHDYLQJ6HUYLFH0HWKRG���^

VHUYLFH&RXQWHU���

426 JAVA™ SERVLET TECHNOLOGY
`
SURWHFWHG�V\QFKURQL]HG�LQW�QXP6HUYLFHV���^

UHWXUQ�VHUYLFH&RXQWHU�
`

`

The VHUYLFH method should increment the service counter each time the method
is entered and should decrement the counter each time the method returns. This
is one of the few times that your +WWS6HUYOHW subclass should override the VHU�
YLFH method. The new method should call VXSHU�VHUYLFH to preserve all of the
original VHUYLFH method’s functionality.

SURWHFWHG�YRLG�VHUYLFH�+WWS6HUYOHW5HTXHVW�UHT�
+WWS6HUYOHW5HVSRQVH�UHVS�
WKURZV�6HUYOHW([FHSWLRQ�,2([FHSWLRQ�^

HQWHULQJ6HUYLFH0HWKRG���
WU\�^

VXSHU�VHUYLFH�UHT��UHVS��
`�ILQDOO\�^

OHDYLQJ6HUYLFH0HWKRG���
`

`

Notifying Methods to Shut Down
To ensure a clean shutdown, your GHVWUR\ method should not release any shared
resources until all of the service requests have completed. One part of doing this
is to check the service counter. Another part is to notify the long-running meth-
ods that it is time to shut down. For this notification another field is required.
The field should have the usual access methods:

SXEOLF�6KXWGRZQ([DPSOH�H[WHQGV�+WWS6HUYOHW�^
SULYDWH�ERROHDQ�VKXWWLQJ'RZQ�
���
��$FFHVV�PHWKRGV�IRU�VKXWWLQJ'RZQ
SURWHFWHG�VHW6KXWWLQJ'RZQ�ERROHDQ�IODJ��^

VKXWWLQJ'RZQ� �IODJ�
`
SURWHFWHG�ERROHDQ�LV6KXWWLQJ'RZQ���^

UHWXUQ�VKXWWLQJ'RZQ�
`

`

CREATING POLITE LONG-RUNNING METHODS 427
An example of the GHVWUR\ method using these fields to provide a clean shut-
down follows:

SXEOLF�YRLG�GHVWUR\���^
�
�&KHFN�WR�VHH�ZKHWKHU�WKHUH�DUH�VWLOO�VHUYLFH�PHWKRGV��

�
�UXQQLQJ��DQG�LI�WKHUH�DUH��WHOO�WKHP�WR�VWRS��
�
LI��QXP6HUYLFHV���!����^

VHW6KXWWLQJ'RZQ�WUXH��
`

�
�:DLW�IRU�WKH�VHUYLFH�PHWKRGV�WR�VWRS��
�
ZKLOH�QXP6HUYLFHV���!����^

WU\�^
7KUHDG�VOHHS�LQWHUYDO��

`�FDWFK��,QWHUUXSWHG([FHSWLRQ�H��^
`

`
`�

Creating Polite Long-Running Methods
The final step to provide a clean shutdown is to make any long-running methods
behave politely. Methods that might run for a long time should check the value
of the field that notifies them of shutdowns and should interrupt their work, if
necessary.

SXEOLF�YRLG�GR3RVW������^
���
IRU�L� ������L���ORWV2I6WXII7R'R��		�

�LV6KXWWLQJ'RZQ�����L����^
WU\�^

SDUW2I/RQJ5XQQLQJ2SHUDWLRQ�L��
`�FDWFK��,QWHUUXSWHG([FHSWLRQ�H��^

���
`

`
`

428 JAVA™ SERVLET TECHNOLOGY

JavaServer Pages™
Technology

Stephanie Bodoff

JAVASERVER Pages™ (JSP™) technology allows you to easily create Web
content that has both static and dynamic components. JSP technology projects
all the dynamic capabilities of Java Servlet technology but provides a more natu-
ral approach to creating static content. The main features of JSP technology are:

• A language for developing JSP pages, which are text-based documents that
describe how to process a request and construct a response

• Constructs for accessing server-side objects

• Mechanisms for defining extensions to the JSP language

JSP technology also contains API that is used by developers of Web containers,
but this API is not covered in this chapter.

In This Chapter
What is a JSP Page? 430
The Example JSP Pages 432
The Life Cycle of a JSP Page 434

Translation and Compilation 435
Execution 436

Initializing and Finalizing a JSP Page 437
Creating Static Content 438
Creating Dynamic Content 438

Using Objects Within JSP Pages 438
JSP Scripting Elements 441
429

Bios.html

430 JAVASERVER PAGES™ TECHNOLOGY
Including Content in a JSP Page 444
Transferring Control to Another Web Component 445

Param Element 446
Including an Applet 446
Extending the JSP Language 448

What is a JSP Page?
A JSP page is a text-based document that contains two types of text: static tem-
plate data, which can be expressed in any text-based format such as HTML,
SVG, WML, and XML, and JSP elements, which construct dynamic content. A
syntax card and reference for the JSP elements is available at:

KWWS���MDYD�VXQ�FRP�SURGXFWV�MVS�WHFKQLFDO�KWPO�V\QWD[

The following Web page is a form that allows you to select a locale and displays
the date in a manner appropriate to the locale.

Figure 1 Localized Date Form

The source for this example is in the GRFV�WXWRULDO�H[DPSOHV�ZHE�GDWH
directory created when you unzip the tutorial bundle. The JSP page LQGH[�MVS
used to create the form appears below; it is a typical mixture of static HTML
markup and JSP elements. If you have developed Web pages, you are probably
familiar with the HTML document structure statements (�KHDG!, �ERG\!, and so

http://www.w3.org/MarkUp
http://www.w3.org/TR/SVG
http://www.oasis-open.org/cover/wap-wml.html
http://www.w3.org/TR/REC-xml
http://java.sun.com/products/jsp/technical.html#syntax
../examples/web/date/index.txt

431
on) and the HTML statements that create a form �IRUP! and a menu �VHOHFW!.
The example contains the following types of JSP constructs:

• Directives (<%@page ... %>) import classes in the MDYD�XWLO package and
the 0\/RFDOHV class, and set the content type returned by the page.

• The jsp:useBean element creates an object containing a collection of locales
and initializes a variable that point to that object.

• Scriptlets (<% ... %>) retrieve the value of the ORFDOH request parameter,
iterate over a collection of locale names, and conditionally insert HTML
text into the output.

• Expressions (<%= ... %>) insert the value of the locale name into the
response.

• The jsp:include element sends a request to another page (GDWH�MVS) and
includes the response in the response from the calling page.

<%@ page import="java.util.*,MyLocales" %>
<%@ page contentType="text/html; charset=ISO-8859-5" %>
<html>
�KHDG!�WLWOH!/RFDOL]HG�'DWHV��WLWOH!��KHDG!
�ERG\�EJFRORU �ZKLWH�!
<jsp:useBean id="locales" scope="application"

class="MyLocales"/>
�IRUP�QDPH �ORFDOH)RUP��DFWLRQ �LQGH[�MVS��PHWKRG �SRVW�!
�E!/RFDOH���E!
�VHOHFW�QDPH ORFDOH!
<%

String selectedLocale = request.getParameter("locale");
Iterator i = locales.getLocaleNames().iterator();
while (i.hasNext()) {

String locale = (String)i.next();
if (selectedLocale != null &&

selectedLocale.equals(locale)) {
%>

�RSWLRQ�VHOHFWHG!�� ORFDOH�!��RSWLRQ!
��

`�HOVH�^�
�!

�RSWLRQ!<%=locale%>��RSWLRQ!
��

`�
`

�!
��VHOHFW!
�LQSXW�W\SH �VXEPLW��QDPH �6XEPLW��YDOXH �*HW�'DWH�!

432 JAVASERVER PAGES™ TECHNOLOGY
��IRUP!
<jsp:include page="date.jsp"/>
��ERG\!
��KWPO!

To build, deploy, and execute this JSP page:

1. Go to docs/tutorial/H[DPSOHV�ZHE�GDWH and build the example by execut-
ing DQW. This runs the default ant target GHSOR\ which depends on the
EXLOG target. The EXLOG target will spawn any necessary compilations and
copy files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�GDWH�EXLOG directory.
The GHSOR\ target copies the build directory to �-:6'3B+20(!�ZHEDSSV.

2. Start or restart Tomcat.

3. Open the bookstore URL KWWS���ORFDOKRVW������GDWH.

You will see a combo box whose entries are locales. Select a locale and click Get
Date. You will see the date expressed in a manner appropriate for that locale.

The Example JSP Pages
To illustrate JSP technology, this chapter rewrites each servlet in the Duke’s
Bookstore application introduced in Java™ Servlet Technology (page 393) as a
JSP page:

Table 1 Duke’s Bookstore Example JSP Pages

Function JSP Pages

Enter the bookstore ERRNVWRUH�MVS

Create the bookstore banner EDQQHU�MVS

Browse the books offered for sale FDWDORJ�MVS

Put a book in a shopping cart FDWDORJ�MVS and ERRNGHWDLOV�MVS

Get detailed information on a specific book ERRNGHWDLOV�MVS

Display the shopping cart VKRZFDUW�MVS

Remove one or more books from the shopping cart VKRZFDUW�MVS

Buy the books in the shopping cart FDVKLHU�MVS

433
The data for the bookstore application is still maintained in a database. However,
two changes are made to the database helper object GDWDEDVH�%RRN'%:

• The database helper object is rewritten to conform to JavaBeans compo-
nent design patterns as described in JavaBeans Component Design
Conventions (page 452). This change is made so that JSP pages can access
the helper object using JSP language elements specific to JavaBeans com-
ponents.

• Instead of accessing the bookstore database directly, the helper object goes
through a data access object GDWDEDVH�%RRN'$2.

The implementation of the database helper object follows. The bean has two
instance variables: the current book and a reference to the database enterprise
bean.

SXEOLF�FODVV�%RRN'%�^
SULYDWH�6WULQJ�ERRN,G� �����
SULYDWH�%RRN'%(-%�GDWDEDVH� �QXOO�

SXEOLF�%RRN'%����WKURZV�([FHSWLRQ�^
`
SXEOLF�YRLG�VHW%RRN,G�6WULQJ�ERRN,G��^

WKLV�ERRN,G� �ERRN,G�
`
SXEOLF�YRLG�VHW'DWDEDVH�%RRN'%(-%�GDWDEDVH��^

WKLV�GDWDEDVH� �GDWDEDVH�
`
SXEOLF�%RRN'HWDLOV�JHW%RRN'HWDLOV���

WKURZV�([FHSWLRQ�^
WU\�^

UHWXUQ��%RRN'HWDLOV�GDWDEDVH�
JHW%RRN'HWDLOV�ERRN,G��

`�FDWFK��%RRN1RW)RXQG([FHSWLRQ�H[��^
WKURZ�H[�

`�
`
���

`

Receive an acknowledgement for the purchase UHFHLSW�MVS

Table 1 Duke’s Bookstore Example JSP Pages (Continued)

Function JSP Pages

../examples/web/bookstore2/database/BookDB.java

434 JAVASERVER PAGES™ TECHNOLOGY
Finally, this version of the example contains an applet to generate a dynamic dig-
ital clock in the banner. See Including an Applet (page 446) for a description of
the JSP element that generates HTML for downloading the applet.

The source for the application is located in the GRFV�WXWRULDO�H[DP�
SOHV�ZHE�ERRNVWRUH� directory created when you unzip the tutorial bundle
(see Running the Examples (page xvi)). To build, deploy, and run the example:

1. Go to the examples directory and build and deploy the example by running
DQW. This runs the default ant target GHSOR\ which depends on the EXLOG
target. The EXLOG target will spawn any necessary compilations and copy
files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG directory.
The GHSOR\ target copies the bookstore2 context file to
�-:6'3B+20(!�ZHEDSSV as described in Running Web
Applications (page 385).

2. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

3. Start or restart Tomcat.

4. Open the bookstore URL KWWS���ORFDOKRVW������ERRNVWRUH��HQWHU.

See Common Problems and Their Solutions (page 70) and
Troubleshooting (page 396) for help with diagnosing common problems.

The Life Cycle of a JSP Page
A JSP page services requests as a servlet. Thus, the life cycle and many of the
capabilities of JSP pages (in particular the dynamic aspects) are determined by
Java Servlet technology and much of the discussion in this chapter refers to func-
tions described in Java™ Servlet Technology (page 393).

When a request is mapped to a JSP page, it is handled by a special servlet that
first checks whether the JSP page’s servlet is older than the JSP page. If it is, it
translates the JSP page into a servlet class and compiles the class. During devel-
opment, one of the advantages of JSP pages over servlets is that the “build” pro-
cess is performed automatically.

TRANSLATION AND COMPILATION 435
Translation and Compilation
During the translation phase each type of data in a JSP page is treated differ-
ently:

• Template data is transformed into code that will emit the data into the
stream that returns data to the client.

• JSP elements are treated as follows:

• Directives are used to control how the Web container translates and exe-
cutes the JSP page.

• Scripting elements are inserted into the JSP page’s servlet class. See JSP
Scripting Elements (page 441) for details.

• Elements of the form �MVS�;;;������! are converted into method calls
to JavaBeans components or invocations of the Java Servlet API.

For a JSP page named SDJH1DPH, the source for a JSP page’s servlet is kept in
the file:

�-:6'3B+20(!�ZRUN�ORFDOKRVW�FRQWH[W�URRW�SDJH1DPH�MVS�MDYD

For example, the source for the index page (named LQGH[�MVS) for the GDWH
localization example discussed at the beginning the chapter would be named:

�-:6'3B+20(!�ZRUN�ORFDOKRVW�GDWH�LQGH[�MVS�MDYD

Both the translation and compilation phases can yield errors that are only
observed when the page is requested for the first time. If an error occurs while
the page is being translated (for example, if the translator encounters a mal-
formed JSP element), the server will return a 3DUVH([FHSWLRQ and the servlet
class source file will be empty or incomplete. The last incomplete line will give a
pointer to the incorrect JSP element.

If an error occurs while the JSP page is being compiled (for example, due to a
syntax error in a scriptlet), the server will return a -DVSHU([FHSWLRQ and a mes-
sage that includes the name of the JSP page’s servlet and the line where the error
occurred.

Once the page has been translated and compiled, the JSP page’s servlet for the
most part follows the servlet life cycle described in Servlet Life
Cycle (page 397):

1. If an instance of the JSP page’s servlet does not exist, the container:

a. Loads the JSP page’s servlet class

436 JAVASERVER PAGES™ TECHNOLOGY
b. Instantiates an instance of the servlet class

c. Initializes the servlet instance by calling the MVS,QLW method

2. Invokes the BMVS6HUYLFH method, passing a request and response object.

If the container needs to remove the JSP page’s servlet, it calls the MVS'HVWUR\
method.

Execution
You can control various JSP page execution parameters using SDJH directives.
The directives that pertain to buffering output and handling errors are discussed
here. Other directives are covered in the context of specific page authoring tasks
throughout the chapter.

Buffering
When a JSP page is executed, output written to the response object is automati-
cally buffered. You can set the size of the buffer with the following page direc-
tive:

��#�SDJH�EXIIHU �QRQH_[[[NE���!

A larger buffer allows more content to be written before anything is actually sent
back to the client, thus providing the JSP page with more time to set appropriate
status codes and headers or forward to another Web resource. A smaller buffer
decreases server memory load and allows the client to start receiving data more
quickly.

Handling Errors
Any number of exceptions can arise when a JSP page is executed. To specify that
the Web container should forward control to an error page if an exception occurs,
include the following SDJH directive at the beginning of your JSP page:

��#�SDJH�HUURU3DJH �ILOHBQDPH���!

The Duke’s Bookstore application page LQLWGHVWUR\�MVS contains the directive

��#�SDJH�HUURU3DJH �HUURUSDJH�MVS��!

../examples/web/bookstore2/initdestroy.txt

EXECUTION 437
The beginning of HUURUSDJH�MVS indicates that it is serving as an error page
with the following page directive:

��#�SDJH�LV(UURU3DJH �WUXH_IDOVH���!

This directive makes the exception object (of type MDYD[�VHUYOHW�MVS�-VS([�
FHSWLRQ) available to the error page, so that you can retrieve, interpret, and pos-
sibly display information about the cause of the exception in the error page.

Note: You can also define error pages for the WAR that contains a JSP page. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

Initializing and Finalizing a JSP Page
You can customize the initialization process to allow the JSP page to read persis-
tent configuration data, initialize resources, and perform any other one-time
activities by overriding the MVS,QLW method of the -VS3DJH interface. You
release resources using the MVS'HVWUR\ method. The methods are defined using
JSP declarations, discussed in Declarations (page 441).

The bookstore example page LQLWGHVWUR\�MVS defines the MVS,QLW method to
retrieve the object GDWDEDVH�%RRN'%$2 that accesses the bookstore database and
stores a reference to the bean in ERRN'%$2.

SULYDWH�%RRN'%$2�ERRN'%$2�
SXEOLF�YRLG�MVS,QLW���^
ERRN'%$2�

�%RRN'%$2�JHW6HUYOHW&RQWH[W���JHW$WWULEXWH��ERRN'%���
LI��ERRN'%$2� �QXOO�

6\VWHP�RXW�SULQWOQ��&RXOGQ·W�JHW�GDWDEDVH����
`

When the JSP page is removed from service, the MVS'HVWUR\ method releases
the %RRN'%$2 variable.

SXEOLF�YRLG�MVS'HVWUR\���^
ERRN'%$2� �QXOO�

`

../examples/web/bookstore2/errorpage.txt
../../api/javax/servlet/jsp/JspException.html
../../api/javax/servlet/jsp/JspException.html
../examples/web/bookstore2/initdestroy.txt
../examples/web/bookstore2/database/BookDBAO.java

438 JAVASERVER PAGES™ TECHNOLOGY
Since the enterprise bean is shared between all the JSP pages, it should be initial-
ized when the application is started, instead of in each JSP page. Java Servlet
technology provides application life cycle events and listener classes for this
purpose. As an exercise, you can move the code that manages the creation of the
enterprise bean to a context listener class. See Handling Servlet Life Cycle
Events (page 397) for the context listener that initializes the Java Servlet version
of the bookstore application.

Creating Static Content
You create static content in a JSP page by simply writing it as if you were creat-
ing a page that consists only of that content. Static content can be expressed in
any text-based format such as HTML, WML, and XML. The default format is
HTML. If you want to use a format other than HTML you include a SDJH direc-
tive with the FRQWHQW7\SH attribute set to the format type at the beginning of
your JSP page. For example, if you want a page to contain data expressed in the
wireless markup language (WML), you need to include the following directive:

��#�SDJH�FRQWHQW7\SH �WH[W�YQG�ZDS�ZPO��!

A registry of content type names is kept by IANA at:

IWS���IWS�LVL�HGX�LQ�QRWHV�LDQD�DVVLJQPHQWV�PHGLD�W\SHV

Creating Dynamic Content
You create dynamic content by accessing Java programming language objects
from within scripting elements.

Using Objects Within JSP Pages
You can access a variety of objects, including enterprise beans and JavaBeans
components, within a JSP page. JSP technology automatically makes some
objects available and you can also create and access application-specific objects.

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

USING OBJECTS WITHIN JSP PAGES 439
Implicit Objects
Implicit objects are created by the Web container and contain information related
to a particular request, page, or application. Many of the objects are defined by
the Java Servlet technology underlying JSP technology and are discussed at
length in Java™ Servlet Technology (page 393). Table 2 summarizes the
implicit objects.

Table 2 Implicit Objects

Variable Class Description

DSSOLFDWLRQ MDYD[�VHUYOHW�
6HUYOHW&RQWH[W

The context for the JSP page’s servlet and any Web
components contained in the same application. See
Accessing the Web Context (page 421).

FRQILJ MDYD[�VHUYOHW�
6HUYOHW&RQILJ Initialization information for the JSP page’s servlet.

H[FHSWLRQ MDYD�ODQJ�
7KURZDEOH

Accessible only from an error page. See Han-
dling Errors (page 436).

RXW MDYD[�VHUYOHW�
MVS�-VS:ULWHU The output stream.

SDJH MDYD�ODQJ�
2EMHFW

The instance of the JSP page’s servlet processing
the current request. Not typically used by JSP page
authors.

SDJH&RQWH[W MDYD[�VHUYOHW�
MVS�3DJH&RQWH[W

The context for the JSP page. Provides a single API
to manage the various scoped attributes described
in Using Scope Objects (page 400).
This API is used extensively when implementing
tag handlers (see Tag Handlers (page 469)).

UHTXHVW
subtype of
MDYD[�VHUYOHW�
6HUYOHW5HTXHVW

The request triggering the execution of the JSP
page. See Getting Information From
Requests (page 406).

UHVSRQVH
subtype of
MDYD[�VHUYOHW�
6HUYOHW5HVSRQVH

The response to be returned to the client. Not typi-
cally used by JSP page authors.

VHVVLRQ MDYD[�VHUYOHW�
KWWS�+WWS6HVVLRQ

The session object for the client. See Maintain-
ing Client State (page 422).

../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/ServletConfig.html
http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Throwable.html
../../api/javax/servlet/jsp/JspWriter.html
http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Object.html
../../api/javax/servlet/jsp/PageContext.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/ServletResponse.html
../../api/javax/servlet/http/HttpSession.html

440 JAVASERVER PAGES™ TECHNOLOGY
Application-Specific Objects
When possible, application behavior should be encapsulated in objects so that
page designers can focus on presentation issues. Objects can be created by devel-
opers who are proficient in the Java programming language and accessing data-
bases and other services. There are four ways to create and use objects within a
JSP page:

• Instance and class variables of the JSP page’s servlet class are created in
declarations and accessed in scriptlets and expressions.

• Local variables of the JSP page’s servlet class are created and used in
scriptlets and expressions.

• Attributes of scope objects (see Using Scope Objects (page 400)) are cre-
ated and used in scriptlets and expressions.

• JavaBeans components can be created and accessed using streamlined JSP
elements. These elements are discussed in the chapter JavaBeans™ Com-
ponents in JSP™ Pages (page 451). You can also create a JavaBeans com-
ponent in a declaration or scriptlet and invoke the methods of a JavaBeans
component in a scriptlet or expression.

Declarations, scriptlets, and expressions are described in JSP Scripting
Elements (page 441).

Shared Objects
The conditions affecting concurrent access to shared objects described in Con-
trolling Concurrent Access to Shared Resources (page 402) apply to objects
accessed from JSP pages that run as multithreaded servlets. You can indicate
how a Web container should dispatch multiple client requests with the following
SDJH directive:

��#�SDJH�LV7KUHDG6DIH �WUXH_IDOVH���!

When LV7KUHDG6DIH is set to WUXH, the Web container may choose to dispatch
multiple concurrent client requests to the JSP page. This is the default setting. If
using WUXH, you must ensure that you properly synchronize access to any shared
objects defined at the page level. This includes objects created within declara-
tions, JavaBeans components with page scope, and attributes of the SDJH scope
object.

If LV7KUHDG6DIH is set to IDOVH, requests are dispatched one at a time, in the
order they were received and access to page level objects does not have to be

JSP SCRIPTING ELEMENTS 441
controlled. However, you still must ensure that access to attributes of the DSSOL�
FDWLRQ or VHVVLRQ scope objects and JavaBeans components with application or
session scope is properly synchronized.

JSP Scripting Elements
JSP scripting elements are used to create and access objects, define methods, and
manage the flow of control. Since one of the goals of JSP technology is to sepa-
rate static template data from the code needed to dynamically generate content,
very sparing use of JSP scripting is recommended. Much of the work that
requires the use of scripts can be eliminated by using custom tags, described in
Custom Tags in JSP™ Pages (page 461).

JSP technology allows a container to support any scripting language that can call
Java objects. If you wish to use a scripting language other than the default, MDYD,
you must specify it in a SDJH directive at the beginning of a JSP page:

��#�SDJH�ODQJXDJH �VFULSWLQJ�ODQJXDJH���!

Since scripting elements are converted to programming language statements in
the JSP page’s servlet class, you must import any classes and packages used by a
JSP page. If the page language is MDYD, you import a class or package with the
SDJH directive:

��#�SDJH�LPSRUW �SDFNDJHQDPH�
��IXOO\BTXDOLILHGBFODVVQDPH���!

For example, bookstore example page VKRZFDUW�MVS imports the classes needed
to implement the shopping cart with the following directive:

��#�SDJH�LPSRUW �MDYD�XWLO�
��FDUW�
���!

Declarations
A JSP declaration is used to declare variables and methods in a page’s scripting
language. The syntax for a declaration is:

����VFULSWLQJ�ODQJXDJH�GHFODUDWLRQ��!

When the scripting language is the Java programming language, variables and
methods in JSP declarations become declarations in the JSP page’s servlet class.

../examples/web/bookstore2/showcart.txt

442 JAVASERVER PAGES™ TECHNOLOGY
The bookstore example page LQLWGHVWUR\�MVS defines an instance variable
named ERRN'%$2 and the initialization and finalization methods MVS,QLW and
MVS'HVWUR\ discussed earlier in a declaration:

���
SULYDWH�%RRN'%$2�ERRN'%$2�

SXEOLF�YRLG�MVS,QLW���^
���

`
SXEOLF�YRLG�MVS'HVWUR\���^

���
`

�!

Scriptlets
A JSP scriptlet is used to contain any code fragment that is valid for the scripting
language used in a page. The syntax for a scriptlet is:

��
VFULSWLQJ�ODQJXDJH�VWDWHPHQWV

�!

When the scripting language is set to MDYD, a scriptlet is transformed into a Java
programming language statement fragment and is inserted into the service
method of the JSP page’s servlet. A programming language variable created
within a scriptlet is accessible from anywhere within the JSP page.

The JSP page VKRZFDUW�MVS contains a scriptlet that retrieves an iterator from
the collection of items maintained by a shopping cart and sets up a construct to
loop through all the items in the cart. Inside the loop, the JSP page extracts prop-
erties of the book objects and formats them using HTML markup. Since the
ZKLOH loop opens a block, the HTML markup is followed by a scriptlet that
closes the block.

���
,WHUDWRU�L� �FDUW�JHW,WHPV���LWHUDWRU���
ZKLOH��L�KDV1H[W����^

6KRSSLQJ&DUW,WHP�LWHP�
�6KRSSLQJ&DUW,WHP�L�QH[W���

%RRN'HWDLOV�EG� ��%RRN'HWDLOV�LWHP�JHW,WHP���
�!

�WU!�

../examples/web/bookstore2/initdestroy.txt
../examples/web/bookstore2/showcart.txt

JSP SCRIPTING ELEMENTS 443
�WG�DOLJQ �ULJKW��EJFRORU ��IIIIII�!�
�� LWHP�JHW4XDQWLW\���!
��WG!�
�WG�EJFRORU ��IIIIDD�!�
�VWURQJ!�D�KUHI �
�� UHTXHVW�JHW&RQWH[W3DWK���!�ERRNGHWDLOV"ERRN,G
�� EG�JHW%RRN,G���!�!�� EG�JHW7LWOH���!��D!��VWURQJ!�
��WG!�
���

��
���(QG�RI�ZKLOH
`

�!

The output appears below:

Figure 2 Duke’s Bookstore Shopping Cart

Expressions
A JSP expression is used to insert the value of a scripting language expression,
converted into a string, into the data stream returned to the client. When the
scripting language is the Java programming language, an expression is trans-

444 JAVASERVER PAGES™ TECHNOLOGY
formed into a statement that converts the value of the expression into a 6WULQJ
object and inserts it into the implicit RXW object.

The syntax for an expression is:

�� �VFULSWLQJ�ODQJXDJH�H[SUHVVLRQ��!

Note that a semicolon is not allowed within a JSP expression, even if the same
expression has a semicolon when you use it within a scriptlet.

The following scriptlet retrieves the number of items in a shopping cart:

��
���3ULQW�D�VXPPDU\�RI�WKH�VKRSSLQJ�FDUW
LQW�QXP� �FDUW�JHW1XPEHU2I,WHPV���
LI��QXP�!����^

�!

Expressions are then used to insert the value of QXP into the output stream and
determine the appropriate string to include after the number:

�IRQW�VL]H ����!
�� PHVVDJHV�JHW6WULQJ��&DUW&RQWHQWV���!��� QXP�!�

�� �QXP ��"��� PHVVDJHV�JHW6WULQJ��&DUW,WHP���!��
�� PHVVDJHV�JHW6WULQJ��&DUW,WHPV����!��IRQW!

Including Content in a JSP Page
There are two mechanisms for including another Web resource in a JSP page: the
LQFOXGH directive and the�MVS�LQFOXGH element.

The LQFOXGH directive is processed when the JSP page is translated into a servlet
class. The effect of the directive to the insert the text contained in another file,
either static content or another JSP page, in the including JSP page. You would
probably use the LQFOXGH directive to include banner content, copyright infor-
mation, or any chunk of content that you might want to reuse in another page.
The syntax for the LQFOXGH directive is:

��#�LQFOXGH�ILOH �ILOHQDPH���!

JSP SCRIPTING ELEMENTS 445
For example, all the bookstore application pages include the file EDQQHU�MVS
containing the banner content with the following directive:

��#�LQFOXGH�ILOH �EDQQHU�MVS���!

In addition, the pages ERRNVWRUH�MVS, ERRNGHWDLOV�MVS, FDWDORJ�MVS, and
VKRZFDUW�MVS include JSP elements that create and destroy a database bean
with the element:

��#�LQFOXGH�ILOH �LQLWGHVWUR\�MVS���!

Because you must statically put an LQFOXGH directive in each file that reuses the
resource referenced by the directive, this approach has its limitations. For a more
flexible approach to building pages out of content chunks, see A Template Tag
Library (page 489).

The MVS�LQFOXGH element is processed when a JSP page is executed. The
LQFOXGH action allows you to include either a static or dynamic resource in a JSP
file. The results of including static and dynamic resources are quite different. If
the resource is static, its content is inserted into the calling JSP file. If the
resource is dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response from the calling
JSP page. The syntax for the MVS�LQFOXGH element is:

�MVS�LQFOXGH�SDJH �LQFOXGHG3DJH���!

The GDWH application introduced at the beginning of this chapter includes the
page that generates the display of the localized date with the following state-
ment:

�MVS�LQFOXGH�SDJH �GDWH�MVS��!

Transferring Control to Another Web
Component

The mechanism for transferring control to another Web component from a JSP
page uses the functionality provided by the Java Servlet API as described in
Transferring Control to Another Web Component (page 420). You access this
functionality from a JSP page with the MVS�IRUZDUG element:

�MVS�IRUZDUG�SDJH ��PDLQ�MVS���!

../examples/web/bookstore2/banner.txt
../examples/web/bookstore2/bookstore.txt
../examples/web/bookstore2/bookdetails.txt
../examples/web/bookstore2/catalog.txt
../examples/web/bookstore2/showcart.txt

446 JAVASERVER PAGES™ TECHNOLOGY
Note that if any data has already been returned to a client, the MVS�IRUZDUG ele-
ment will fail with an ,OOHJDO6WDWH([FHSWLRQ.

Param Element
When an LQFOXGH or IRUZDUG element is invoked, the original request object is
provided to the target page. If you wish to provide additional data to that page,
you can append parameters to the request object with the MVS�SDUDP element:

�MVS�LQFOXGH�SDJH ������!
�MVS�SDUDP�QDPH µSDUDP�µ�YDOXH �YDOXH���!

��MVS�LQFOXGH!

Including an Applet
You can include an applet or JavaBeans component in a JSP page using the
MVS�SOXJLQ element. This element generates HTML that contains the appropri-
ate client browser dependent constructs (�REMHFW! or �HPEHG!) that will result in
the download of the Java Plug-in software (if required) and client-side compo-
nent and subsequent execution of an client-side component. The syntax for the
MVS�SOXJLQ element follows:

�MVS�SOXJLQ�
W\SH �EHDQ_DSSOHW��
FRGH �REMHFW&RGH��
FRGHEDVH �REMHFW&RGHEDVH��
^�DOLJQ �DOLJQPHQW��`�
^�DUFKLYH �DUFKLYH/LVW��`�
^�KHLJKW �KHLJKW��`�
^�KVSDFH �KVSDFH��`�
^�MUHYHUVLRQ �MUHYHUVLRQ��`�
^�QDPH �FRPSRQHQW1DPH��`�
^�YVSDFH �YVSDFH��`�
^�ZLGWK �ZLGWK��`�
^�QVSOXJLQXUO �XUO��`�
^�LHSOXJLQXUO �XUO��`�!�
^��MVS�SDUDPV!�

^��MVS�SDUDP�QDPH �SDUDP1DPH��YDOXH �SDUDP9DOXH���!�`�
��MVS�SDUDPV!�`�
^��MVS�IDOOEDFN!�DUELWUDU\BWH[W���MVS�IDOOEDFN!�`�

��MVS�SOXJLQ!

PARAM ELEMENT 447
The MVS�SOXJLQ tag is replaced by either an �REMHFW! or �HPEHG! tag, as appro-
priate for the requesting client. The attributes of the jsp:plugin tag provide con-
figuration data for the presentation of the element as well as the version of the
plug-in required. The QVSOXJLQXUO and LHSOXJLQXUO attributes specify the URL
where the plug-in can be downloaded.

The MVS�SDUDP elements specify parameters to the applet or JavaBeans compo-
nent. The MVS�IDOOEDFN element indicates the content to be used by the client
browser if the plug-in cannot be started (either because �REMHFW! or �HPEHG! is
not supported by the client or due to some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found
or started, a plug-in-specific message will be presented to the user, most likely a
popup window reporting a &ODVV1RW)RXQG([FHSWLRQ.

The Duke’s Bookstore page EDQQHU�MVS that creates the banner displays a
dynamic digital clock generated by 'LJLWDO&ORFN:

Figure 3 Duke’s Bookstore with Applet

../examples/web/bookstore2/banner.txt

448 JAVASERVER PAGES™ TECHNOLOGY
The MVS�SOXJLQ element used to download the applet follows:

�MVS�SOXJLQ�
W\SH �DSSOHW��
FRGH �'LJLWDO&ORFN�FODVV��
FRGHEDVH ��ERRNVWRUH���
MUHYHUVLRQ ������
DOLJQ �FHQWHU��KHLJKW �����ZLGWK �����
QVSOXJLQXUO �KWWS���MDYD�VXQ�FRP�SURGXFWV�SOXJLQ������B��

�SOXJLQ�LQVWDOO�KWPO��
LHSOXJLQXUO �KWWS���MDYD�VXQ�FRP�SURGXFWV�SOXJLQ������B��

�MLQVWDOO����B���ZLQ���FDE�9HUVLRQ ���������!
�MVS�SDUDPV!

�MVS�SDUDP�QDPH �ODQJXDJH�
YDOXH ��� UHTXHVW�JHW/RFDOH���JHW/DQJXDJH���!���!

�MVS�SDUDP�QDPH �FRXQWU\�
YDOXH ��� UHTXHVW�JHW/RFDOH���JHW&RXQWU\���!���!

�MVS�SDUDP�QDPH �EJFRORU��YDOXH �))))))���!
�MVS�SDUDP�QDPH �IJFRORU��YDOXH �&&�������!

��MVS�SDUDPV!
�MVS�IDOOEDFN!
�S!8QDEOH�WR�VWDUW�SOXJLQ���S!

��MVS�IDOOEDFN!
��MVS�SOXJLQ!

Extending the JSP Language
You can perform a wide variety of dynamic processing tasks including accessing
databases, using enterprise services such as e-mail and directories, and flow con-
trol with JavaBeans components in conjunction with scriptlets. One of the draw-
backs of scriptlets however, is that they tend to make JSP pages more difficult to
maintain. Alternatively, JSP technology provides a mechanism, called custom
tags, that allows you to encapsulate dynamic functionality in objects that are
accessed through extensions to the JSP language. Custom tags bring the benefits
of another level of componentization to JSP pages.

For example, recall the scriptlet used to loop through and display the contents of
the Duke’s Bookstore shopping cart:

���
,WHUDWRU�L� �FDUW�JHW,WHPV���LWHUDWRU���
ZKLOH��L�KDV1H[W����^

6KRSSLQJ&DUW,WHP�LWHP�
�6KRSSLQJ&DUW,WHP�L�QH[W���

PARAM ELEMENT 449
���
�!

�WU!
�WG�DOLJQ �ULJKW��EJFRORU ��IIIIII�!�
�� LWHP�JHW4XDQWLW\���!
��WG!
���

���
`�

�!

An LWHUDWH custom tag eliminates the code logic and manages the scripting
variable LWHP that references elements in the shopping cart:

�ORJLF�LWHUDWH�LG �LWHP�
FROOHFWLRQ ��� FDUW�JHW,WHPV���!�!
�WU!�
�WG�DOLJQ �ULJKW��EJFRORU ��IIIIII�!�
�� LWHP�JHW4XDQWLW\���!
��WG!�
���

��ORJLF�LWHUDWH!

Custom tags are packaged and distributed in a unit called a tag library. The syn-
tax of custom tags is the same as that used for the JSP elements, namely
�SUHIL[�WDJ!, but for custom tags, SUHIL[is defined by the user of the tag
library and WDJ is defined by the tag developer. Custom Tags in JSP™
Pages (page 461) explains how to use and develop custom tags.

450 JAVASERVER PAGES™ TECHNOLOGY

451
JavaBeans™
Components in JSP™

Pages
Stephanie Bodoff

JAVABEANS components are Java classes that can be easily reused and com-
posed together into applications. Any Java class that follows certain design con-
ventions can be a JavaBeans component.

JavaServer Pages™ technology directly supports using JavaBeans components
with JSP language elements. You can easily create and initialize beans and get
and set the values of their properties. This chapter provides basic information
about JavaBeans components and the JSP language elements for accessing Java-
Beans components in your JSP pages. For further information about the Java-
Beans component model see KWWS���MDYD�VXQ�FRP�SURGXFWV�MDYDEHDQV.

In This Chapter
JavaBeans Component Design Conventions . 452
Why Use a JavaBeans Component? . 453
Creating and Using a JavaBeans Component. 454
Setting JavaBeans Component Properties . 455
Retrieving JavaBeans Component Properties 458

Bios.html
http://java.sun.com/products/javabeans

452
JavaBeans Component Design
Conventions

JavaBeans component design conventions govern the properties of the class, and
the public methods that give access to the properties.

A JavaBeans component property can be:

• Read/write, read-only, or write-only.

• Simple, which means it contains a single value, or indexed, which means
it represents an array of values.

There is no requirement that a property be implemented by an instance variable;
the property must simply be accessible using public methods that conform to
certain conventions:

• For each readable property, the bean must have a method of the form:
3URSHUW\&ODVV�JHW3URSHUW\���^�����`

• For each writable property, the bean must have a method of the form:
VHW3URSHUW\�3URSHUW\&ODVV�SF��^�����`

In addition to the property methods, a JavaBeans component must define a con-
structor that takes no parameters.

The 'XNH·V� %RRNVWRUH application JSP pages HQWHU�MVS, ERRNGHWDLOV�MVS,
FDWDORJ�MVS, VKRZFDUW�MVS use the GDWDEDVH�%RRN'% and GDWDEDVH�%RRN�
'HWDLOV JavaBeans components. %RRN'% provides a JavaBeans component front
end to the access object %RRN'%$2. Both beans are used extensively by bean-ori-
ented custom tags (see Custom Tags in JSP™ Pages (page 461)). The JSP pages
VKRZFDUW�MVS and FDVKLHU�MVS use FDUW�6KRSSLQJ&DUW to represent a user’s
shopping cart.

The JSP pages FDWDORJ�MVS, VKRZFDUW�MVS, and FDVKLHU�MVS use the
XWLO�&XUUHQF\ JavaBeans component to format currency in a locale-sensitive
manner. The bean has two writable properties, ORFDOH and DPRXQW, and one read-

../examples/src/web/bookstore2/database/BookDB.java
../examples/src/ejb/database/BookDetails.java
../examples/src/ejb/database/BookDetails.java
../examples/src/web/bookstore2/cart/ShoppingCart.java
../examples/src/web/bookstore2/util/Currency.java

453
able property, IRUPDW. The IRUPDW property does not correspond to any instance
variable, but returns a function of the ORFDOH and DPRXQW properties.

SXEOLF�FODVV�&XUUHQF\�^
SULYDWH�/RFDOH�ORFDOH�
SULYDWH�GRXEOH�DPRXQW�
SXEOLF�&XUUHQF\���^

ORFDOH� �QXOO�
DPRXQW� �����

`
SXEOLF�YRLG�VHW/RFDOH�/RFDOH�O��^

ORFDOH� �O�
`
SXEOLF�YRLG�VHW$PRXQW�GRXEOH�D��^

DPRXQW� �D�
`
SXEOLF�6WULQJ�JHW)RUPDW���^

1XPEHU)RUPDW�QI�
1XPEHU)RUPDW�JHW&XUUHQF\,QVWDQFH�ORFDOH��

UHWXUQ�QI�IRUPDW�DPRXQW��
`

`

Why Use a JavaBeans Component?
A JSP page can create and use any type of Java programming language object
within a declaration or scriptlet. The following scriptlet creates the bookstore
shopping cart and stores it as a session attribute:

���
6KRSSLQJ&DUW�FDUW� ��6KRSSLQJ&DUW�VHVVLRQ�

JHW$WWULEXWH��FDUW���
���,I�WKH�XVHU�KDV�QR�FDUW��FUHDWH�D�QHZ�RQH
LI��FDUW� �QXOO��^

FDUW� �QHZ�6KRSSLQJ&DUW���
VHVVLRQ�VHW$WWULEXWH��FDUW���FDUW��

`
�!

454
If the shopping cart object conforms to JavaBeans conventions, JSP pages can
use JSP elements to create and access the object. For example, the 'XNH·V
%RRNVWRUH pages ERRNGHWDLOV�MVS, FDWDORJ�MVS, and VKRZFDUW�MVS replace
the scriptlet with the much more concise JSP XVH%HDQ element:

�MVS�XVH%HDQ�LG �FDUW��FODVV �FDUW�6KRSSLQJ&DUW�
VFRSH �VHVVLRQ��!

Creating and Using a JavaBeans
Component

You declare that your JSP page will use a JavaBeans component using either one
of the following formats:

�MVS�XVH%HDQ�LG �EHDQ1DPH�
FODVV �IXOO\BTXDOLILHGBFODVVQDPH��VFRSH �VFRSH��!

or

�MVS�XVH%HDQ�LG �EHDQ1DPH�
FODVV �IXOO\BTXDOLILHGBFODVVQDPH��VFRSH �VFRSH�!
�MVS�VHW3URSHUW\�����!

��MVS�XVH%HDQ!

The second format is used when you want to include MVS�VHW3URSHUW\ state-
ments, described in the next section, for initializing bean properties.

The MVS�XVH%HDQ element declares that the page will use a bean that is stored
within and accessible from the specified scope, which can be DSSOLFDWLRQ,
VHVVLRQ, UHTXHVW or SDJH. If no such bean exists, the statement creates the bean
and stores it as an attribute of the scope object (see Using Scope
Objects (page 400)). The value of the LG attribute determines the name of the
bean in the scope and the identifier used to reference the bean in other JSP ele-
ments and scriptlets.

455
Note: In JSP Scripting Elements (page 441) we mentioned that you must you
must import any classes and packages used by a JSP page. This rule is slightly
altered if the class is only referenced by XVH%HDQ elements. In these cases, you must
only import the class if the class is in the unnamed package. For example, in What
is a JSP Page? (page 430), the page LQGH[�MVS imports the 0\/RFDOHV class. How-
ever, in the Duke’s Bookstore example, all classes are contained in packages, and
so are not explicitly imported.

The following element creates an instance of &XUUHQF\ if none exists, stores it as
an attribute of the VHVVLRQ object, and makes the bean available throughout the
session by the identifier FXUUHQF\:

�MVS�XVH%HDQ�LG �FXUUHQF\��FODVV �XWLO�&XUUHQF\�
VFRSH �VHVVLRQ��!

Setting JavaBeans Component
Properties

There are two ways to set JavaBeans component properties in a JSP page:

• With the MVS�VHW3URSHUW\ element

• With a scriptlet: ���EHDQ1DPH�VHW3URS1DPH�YDOXH����!

456
The syntax of the MVS�VHW3URSHUW\ element depends on the source of the prop-
erty value. Table 1 summarizes the various ways to set a property of a JavaBeans
component using the MVS�VHW3URSHUW\ element:

A property set from a constant string or request parameter must have a type
listed in Table 2. Since both a constant and request parameter are strings, the
Web container automatically converts the value to the property’s type; the con-
version applied is shown in the table. 6WULQJ values can be used to assign values
to a property that has a 3URSHUW\(GLWRU class. When that is the case, the VHW$V�
7H[W�6WULQJ� method is used. A conversion failure arises if the method throws

Table 1 Setting JavaBeans Component Properties

Value Source Element Syntax

String constant
�MVS�VHW3URSHUW\�QDPH �EHDQ1DPH�
SURSHUW\ �SURS1DPH��YDOXH �VWULQJ�FRQVWDQW��!

Request parameter
�MVS�VHW3URSHUW\�QDPH �EHDQ1DPH��
SURSHUW\ �SURS1DPH��SDUDP �SDUDP1DPH��!�

Request parameter name
matches bean property

�MVS�VHW3URSHUW\�QDPH �EHDQ1DPH��
SURSHUW\ �SURS1DPH��!

�MVS�VHW3URSHUW\�QDPH �EHDQ1DPH��
SURSHUW\ �
��!

Expression
�MVS�VHW3URSHUW\�QDPH ���
SURSHUW\ �SURS1DPH��
YDOXH ��� �H[SUHVVLRQ��!��!�

1. EHDQ1DPH must be the same as that specified for the LG attribute in a XVH%HDQ ele-
ment.
2. There must be a VHW3URS1DPH�method in the JavaBeans component.
3. SDUDP1DPH must be a request parameter name.

457
an ,OOHJDO$UJXPHQW([FHSWLRQ. The value assigned to an indexed property
must be an array, and the rules just described apply to the elements.

You would use a runtime expression to set the value of a property whose type is
a compound Java programming language type. Recall from
Expressions (page 443) that a JSP expression is used to insert the value of a
scripting language expression, converted into a String, into the stream returned
to the client. When used within a setProperty element, an expression simply
returns its value; no automatic conversion is performed. As a consequence, the
type returned from an expression must match or be castable to the type of the
property.

Table 2 Valid Value Assignments

Property Type Conversion on String Value

Bean Property Uses VHW$V7H[W�string-literal�

ERROHDQ or %RROHDQ As indicated in MDYD�ODQJ�%RROHDQ�YDOXH2I�6WULQJ�

E\WH or %\WH As indicated in MDYD�ODQJ�%\WH�YDOXH2I�6WULQJ�

FKDU or &KDUDFWHU As indicated in MDYD�ODQJ�6WULQJ�FKDU$W���

GRXEOH or 'RXEOH As indicated in MDYD�ODQJ�'RXEOH�YDOXH2I�6WULQJ�

LQW or ,QWHJHU As indicated in MDYD�ODQJ�,QWHJHU�YDOXH2I�6WULQJ�

IORDW or)ORDW As indicated in MDYD�ODQJ�)ORDW�YDOXH2I�6WULQJ�

ORQJ or /RQJ As indicated in MDYD�ODQJ�/RQJ�YDOXH2I�6WULQJ�

VKRUW or 6KRUW As indicated in MDYD�ODQJ�6KRUW�YDOXH2I�6WULQJ�

2EMHFW new 6WULQJ�string-literal�

458
The Duke’s Bookstore application demonstrates how to use the VHW3URSHUW\
element and a scriptlet to set the current book for the database helper bean. For
example, ERRNVWRUH��ERRNGHWDLOV�MVS uses the form:

�MVS�VHW3URSHUW\�QDPH �ERRN'%��SURSHUW\ �ERRN,G��!

while ERRNVWRUH��ERRNGHWDLOV�MVS uses the form:

���ERRN'%�VHW%RRN,G�ERRN,G����!

The following fragments from the page ERRNVWRUH��VKRZFDUW�MVS illustrate
how to initialize a currency bean with a /RFDOH object and amount determined
by evaluating request-time expressions. Because the first initialization is nested
in a XVH%HDQ element, it is only executed when the bean is created.

�MVS�XVH%HDQ�LG �FXUUHQF\��FODVV �XWLO�&XUUHQF\�
VFRSH �VHVVLRQ�!
�MVS�VHW3URSHUW\�QDPH �FXUUHQF\��SURSHUW\ �ORFDOH�

YDOXH ��� �UHTXHVW�JHW/RFDOH����!��!
��MVS�XVH%HDQ!

�MVS�VHW3URSHUW\�QDPH �FXUUHQF\��SURSHUW\ �DPRXQW�
YDOXH ��� FDUW�JHW7RWDO���!��!

Retrieving JavaBeans Component
Properties

There are several ways to retrieve JavaBeans component properties. Two of the
methods convert the value of the property into a 6WULQJ and insert the value into
the current implicit RXW object: the MVS�JHW3URSHUW\ element and an expres-
sion:

� �MVS�JHW3URSHUW\�QDPH �EHDQ1DPH��SURSHUW\ �SURS1DPH��!
� �� �EHDQ1DPH�JHW3URS1DPH����!

../examples/src/web/bookstore3/bookdetails.txt
../examples/src/web/bookstore2/bookdetails.txt
../examples/src/web/bookstore3/showcart.txt

459
For both methods, EHDQ1DPH must be the same as that specified for the LG
attribute in a XVH%HDQ element and there must be a JHW3URS1DPH method in the
JavaBeans component.

If you need to retrieve the value of a property without converting it and inserting
it into the out object, you must use a scriptlet:

���2EMHFW�R� �EHDQ1DPH�JHW3URS1DPH�����!

Note the differences between the expression and the scriptlet; the expression has
an ‘=’ after the opening ‘%’ and does not terminate with a semicolon, as does the
scriptlet.

The 'XNH·V� %RRNVWRUH application demonstrates how to use both forms to
retrieve the formatted currency from the currency bean and insert it into the
page. For example, ERRNVWRUH��VKRZFDUW�MVS uses the form:

�MVS�JHW3URSHUW\�QDPH �FXUUHQF\��SURSHUW\ �IRUPDW��!

while ERRNVWRUH��VKRZFDUW�MVS uses the form:

�� �FXUUHQF\�JHW)RUPDW����!

The 'XNH·V� %RRNVWRUH application page ERRNVWRUH��VKRZFDUW�MVS uses the
following scriptlet to retrieve the number of books from the shopping cart bean
and open a conditional insertion of text into the output stream:

��
���3ULQW�D�VXPPDU\�RI�WKH�VKRSSLQJ�FDUW
LQW�QXP� �FDUW�JHW1XPEHU2I,WHPV���
LI��QXP�!����^

�!

Although scriptlets are very useful for dynamic processing, using custom tags
(see Custom Tags in JSP™ Pages (page 461)) to access object properties and
perform flow control is considered to be a better approach. For example,
ERRNVWRUH��VKRZFDUW�MVS replaces the scriptlet with the following custom
tags:

�EHDQ�GHILQH�LG �QXP��QDPH �FDUW��SURSHUW\ �QXPEHU2I,WHPV���!
�ORJLF�JUHDWHU7KDQ�QDPH �QXP��YDOXH ����!

Figure 1 summarizes where various types of objects are stored and how those
objects can be accessed from a JSP page. Objects created by the MVS�XVH%HDQ

../examples/src/web/bookstore3/showcart.txt
../examples/src/web/bookstore2/showcart.txt

460 JAVABEANS™ COMPONENTS IN JSP™ PAGES
tag are stored as attributes of the scope objects and can be accessed by
MVS�>JHW_VHW@3URSHUW\ tags and in scriptlets and expressions. Objects created
in declarations and scriptlets are stored as variables of the JSP page’s servlet
class and can be accessed in scriptlets and expressions.

Figure 1 Accessing Objects From a JSP Page

Custom Tags in JSP™
Pages
Stephanie Bodoff

THE standard JSP tags for invoking operations on JavaBeans™ components
and performing request dispatching simplify JSP page development and mainte-
nance. JSP technology also provides a mechanism for encapsulating other types
of dynamic functionality in custom tags, which are extensions to the JSP lan-
guage. Custom tags are usually distributed in the form of a tag library, which
defines a set of related custom tags and contains the objects that implement the
tags.

Some examples of tasks that can be performed by custom tags include operations
on implicit objects, form processing, accessing databases and other enterprise
services such as e-mail and directories, and flow control. JSP tag libraries are
created by developers who are proficient at the Java programming language and
expert in accessing data and other services and used by Web application design-
ers who can focus on presentation issues rather than being concerned with how
to access enterprise services. As well as encouraging division of labor between
library developers and library users, custom tags increase productivity by encap-
sulating recurring tasks so that they can be reused across more than one applica-
tion.

Tag libraries are receiving a great deal of attention in the JSP technology com-
munity. For more information about tag libraries and pointers to some freely-
available libraries see KWWS���MDYD�VXQ�FRP�SURGXFWV�MVS�WDJOLEUDU�
LHV�KWPO.
461

Bios.html
http://java.sun.com/products/jsp/taglibraries.html
http://java.sun.com/products/jsp/taglibraries.html

462 CUSTOM TAGS IN JSP™ PAGES
In This Chapter
What is a Custom Tag? 462
The Example JSP Pages 463
Using Tags 465

Declaring Tag Libraries 465
Making the Tag Library Implementation Available 466
Types of Tags 466

Defining Tags 469
Tag Handlers 469
Tag Library Descriptors 471
Simple Tags 473
Tags With Attributes 474
Tags With Bodies 477
Tags That Define Scripting Variables 479
Cooperating Tags 483

Examples 485
An Iteration Tag 485
A Template Tag Library 489
How Is a Tag Handler Invoked? 494

What is a Custom Tag?
A custom tag is a user-defined JSP language element. When a JSP page contain-
ing a custom tag is translated into a servlet, the tag is converted to operations on
an object called a tag handler. The Web container then invokes those operations
when the JSP page’s servlet is executed.

Custom tags have a rich set of features. They can

• Be customized via attributes passed from the calling page.

• Access all the objects available to JSP pages.

• Modify the response generated by the calling page.

• Communicate with each other. You can create and initialize a JavaBeans
component, create a variable that refers to that bean in one tag, and then
use the bean in another tag.

• Be nested within one another, allowing for complex interactions within a
JSP page.

463
The Example JSP Pages
This chapter describes the tasks involved in using and defining tags. The chapter
illustrates the tasks with excerpts from the JSP version of the Duke’s Bookstore
application discussed in The Example JSP Pages (page 432) rewritten to take
advantage of two tag libraries: Struts and tutorial-template. The third section in
the chapter, Examples (page 485), describes two tags in detail: the LWHUDWH tag
from Struts and the set of tags in the tutorial-template tag library.

The Struts tag library provides a framework for building internationalized Web
applications that implement the Model-View-Controller design pattern. Struts
includes a comprehensive set of utility custom tags for handling:

• HTML forms

• Templates

• JavaBeans components

• Logic processing

The Duke’s Bookstore application uses tags from the Struts EHDQ and ORJLF
sublibraries.

The tutorial-template tag library defines a set of tags for creating an application
template. The template is a JSP page, with place holders for the parts that need to
change with each screen. Each of these place holders is referred to as a parameter
of the template. For example, a simple template could include a title parameter
for the top of the generated screen and a body parameter to refer to a JSP page
for the custom content of the screen. The template is created with a set of nested
tags—GHILQLWLRQ, VFUHHQ, and SDUDPHWHU—that are used to build a table of
screen definitions for Duke’s Bookstore and an LQVHUW tag to insert parameters
from the table into the screen.

Figure 1 shows the flow of a request through the Duke’s Bookstore Web compo-
nents:

• WHPSODWH�MVS which determines the structure of each screen. It uses the
LQVHUW tag to compose a screen from subcomponents.

• VFUHHQGHILQLWLRQV�MVS which defines the subcomponents used by each
screen. All screens have the same banner, but different title and body con-
tent (specified by the JSP Pages column in Table 1).

• 'LVSDWFKHU, a servlet, processes requests and forwards to WHPSODWH�MVS.

http://jakarta.apache.org/struts
../examples/web/bookstore3/template.txt
../examples/web/bookstore3/screendefinitions.txt
../examples/web/bookstore3/Dispatcher.java

464 CUSTOM TAGS IN JSP™ PAGES
Figure 1 Request Flow Through Duke’s Bookstore Components

The source for the Duke’s Bookstore application is located in the GRFV�WXWR�
ULDO�H[DPSOHV�ZHE�ERRNVWRUH� directory created when you unzip the tutorial
bundle (see Running the Examples (page xvi)). To build, deploy, and run the
example:

1. Download Struts version 1.0 from

KWWS���MDNDUWD�DSDFKH�RUJ�EXLOGV�MDNDUWD�VWUXWV�
UHOHDVH�Y����

2. Unpack Struts and copy VWUXWV�EHDQ�WOG, VWUXWV�ORJLF�WOG, and
VWUXWV�MDU from MDNDUWD�VWUXWV�����OLE to� GRFV�WXWRULDO�H[DP�
SOHV�ZHE�ERRNVWRUH�.

3. Go to the examples directory and build and deploy the example by running
DQW. This runs the default ant target GHSOR\ which depends on the EXLOG
target. The EXLOG target will spawn any necessary compilations and copy
files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG directory.
The GHSOR\ target copies the bookstore3 context file to

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0

DECLARING TAG LIBRARIES 465
<JWSDP_HOME>�ZHEDSSV as described in Running Web
Applications (page 385).

4. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

5. Start or restart Tomcat.

6. Open the bookstore URL KWWS���ORFDOKRVW������ERRNVWRUH��HQWHU.

See Common Problems and Their Solutions (page 70) and
Troubleshooting (page 396) for help with diagnosing common problems.

Using Tags
This section describes how a JSP page uses tags and introduces the different
types of tags.

To use a tag, a page author must do two things:

• Declare the tag library containing the tag

• Make the tag library implementation available to the Web application

Declaring Tag Libraries
You declare that a JSP page will use tags defined in a tag library by including a
WDJOLE directive in the page before any custom tag is used:

��#�WDJOLE�XUL ��:(%�,1)�WXWRULDO�WHPSODWH�WOG��SUHIL[�WW���!

The XUL attribute refers to a URI that uniquely identifies the TLD, described in
Tag Library Descriptors (page 471). This URI can be direct or indirect. The SUH�
IL[attribute defines the prefix that distinguishes tags defined by a given tag
library from those provided by other tag libraries.

Tag library descriptor filenames must have the extension �WOG. TLD files are
stored in the :(%�,1) directory of the WAR or in a subdirectory of :(%�,1). You
can reference a TLD directly and indirectly.

The following WDJOLE directive directly references a TLD filename:

��#�WDJOLE�XUL ��:(%�,1)�WXWRULDO�WHPSODWH�WOG��SUHIL[�WW���!

This WDJOLE directive uses a short logical name to indirectly reference the TLD:

466 CUSTOM TAGS IN JSP™ PAGES
��#�WDJOLE�XUL ��WXWRULDO�WHPSODWH��SUHIL[�WW���!

A logical name must be mapped to an absolute location in the Web application
deployment descriptor. To map the logical name �WXWRULDO�WHPSODWH to the
absolute location �:(%�,1)�WXWRULDO�WHPSODWH�WOG, you must add a WDJOLE
element to ZHE�[PO:

�WDJOLE!
�WDJOLE�XUL!�WXWRULDO�WHPSODWH��WDJOLE�XUL!
�WDJOLE�ORFDWLRQ!

�:(%�,1)�WXWRULDO�WHPSODWH�WOG
��WDJOLE�ORFDWLRQ!

��WDJOLE!

Making the Tag Library Implementation
Available
A tag library implementation can be made available to a Web application in two
basic ways. The classes implementing the tag handlers can be stored in an
unpacked form in the :(%�,1)�FODVVHV subdirectory of the Web application.
Alternatively, if the library is distributed as a JAR, it is stored the :(%�,1)�OLE
directory of the Web application. A tag library shared between more than one
application is stored in the �JWSDP_HOME!�FRPPRQ�OLE directory of the Java
WSDP.

Types of Tags
JSP custom tags are written using XML syntax. They have a start tag and end
tag, and possibly a body:

�WW�WDJ!
ERG\

��WW�WDJ!

A custom tag with no body is expressed as follows:

�WW�WDJ��!

TYPES OF TAGS 467
Simple Tags
A simple tag contains no body and no attributes:

�WW�VLPSOH��!

Tags With Attributes
A custom tag can have attributes. Attributes are listed in the start tag and have
the syntax DWWU �YDOXH�. Attribute values serve to customize the behavior of a
custom tag just as parameters are used to customize the behavior of a method.

You specify the types of a tag’s attributes in a tag library descriptor, (see Tags
With Attributes (page 474)).

You can set an attribute value from a 6WULQJ constant or a runtime expression.
The conversion process between the constants and runtime expressions and
attribute types follows the rules described for JavaBeans component properties
in Setting JavaBeans Component Properties (page 455).

The attributes of the Struts ORJLF�SUHVHQW tag determine whether the body of
the tag is evaluated. In the following example, an attribute specifies a request
parameter named &OHDU:

�ORJLF�SUHVHQW�SDUDPHWHU �&OHDU�!

The Duke’s Bookstore application page FDWDORJ�MVS uses a runtime expression
to set the value of the attribute that determines the collection of books over
which the Struts ORJLF�LWHUDWH tag iterates:

�ORJLF�LWHUDWH�FROOHFWLRQ ��� ERRN'%�JHW%RRNV���!��
LG �ERRN��W\SH �GDWDEDVH�%RRN'HWDLOV�!

Tags With Bodies
A custom tag can contain custom and core tags, scripting elements, HTML text,
and tag-dependent body content between the start and end tag.

In the following example, the Duke’s Bookstore application page VKRZFDUW�MVS
uses the Struts ORJLF�SUHVHQW tag to clear the shopping cart and print a message
if the request contains a parameter named &OHDU:

../examples/web/bookstore3/catalog.txt
../examples/web/bookstore3/showcart.txt

468 CUSTOM TAGS IN JSP™ PAGES
�ORJLF�SUHVHQW�SDUDPHWHU �&OHDU�!
���FDUW�FOHDU�����!
�IRQW�FRORU ��II������VL]H ����!�VWURQJ!�
<RX�MXVW�FOHDUHG�\RXU�VKRSSLQJ�FDUW��
��VWURQJ!�EU!	QEVS��EU!��IRQW!

��ORJLF�SUHVHQW!

Choosing Between Passing Information as
Attributes or Body
As shown in the last two sections, it is possible to pass a given piece of data as an
attribute of the tag or to the tag’s body. Generally speaking, any data that is a
simple string or can be generated by evaluating a simple expression is best
passed as an attribute.

Tags That Define Scripting Variables
A custom tag can define a variable that can be used in scripts within a page. The
following example illustrates how to define and use a scripting variable that con-
tains an object returned from a JNDI lookup. Examples of such objects include
enterprise beans, transactions, databases, environment entries, and so on:

�WW�ORRNXS�LG �W[��W\SH �8VHU7UDQVDFWLRQ��
QDPH �MDYD�FRPS�8VHU7UDQVDFWLRQ���!

���W[�EHJLQ�����!

In the Duke’s Bookstore application, several pages use bean-oriented tags from
Struts to define scripting variables. For example, ERRNGHWDLOV�MVS uses the
EHDQ�SDUDPHWHU tag to create the ERRN,G scripting variable and set it to value of
the ERRN,G request parameter. The MVS�VHW3URSHUW\ statement also sets the
ERRN,G property of the ERRN'% object to the value of the ERRN,G request parame-
ter. The EHDQ�GHILQH tag retrieves the value of the bookstore database property
ERRN'HWDLOV and defines the result as the scripting variable ERRN:

�EHDQ�SDUDPHWHU�LG �ERRN,G��QDPH �ERRN,G���!
�MVS�VHW3URSHUW\�QDPH �ERRN'%��SURSHUW\ �ERRN,G��!
�EHDQ�GHILQH�LG �ERRN��QDPH �ERRN'%��SURSHUW\ �ERRN'HWDLOV�

W\SH �GDWDEDVH�%RRN'HWDLOV��!
�K�!�MVS�JHW3URSHUW\�QDPH �ERRN��SURSHUW\ �WLWOH�!��K�!

../examples/web/bookstore3/bookdetails.txt

TAG HANDLERS 469
Cooperating Tags
Customer tags can cooperate with each other through shared objects.

In the following example, WDJ� creates an object called REM�, which is then
reused by WDJ�.

�WW�WDJ��DWWU� �REM���YDOXH� �YDOXH���!
�WW�WDJ��DWWU� �REM����!

In the next example, an object created by the enclosing tag of a group of nested
tags is available to all inner tags. Since the object is not named, the potential for
naming conflicts is reduced. The following example illustrates how a set of
cooperating nested tags would appear in a JSP page.

�WW�RXWHU7DJ!
�WW�LQQHU7DJ��!

��WW�RXWHU7DJ!

The Duke’s Bookstore page WHPSODWH�MVS uses a set of cooperating tags to
define the screens of the application. These tags are described in A Template Tag
Library (page 489).

Defining Tags
To define a tag, you need to:

• Develop a tag handler and helper classes for the tag

• Declare the tag in a tag library descriptor (TLD)

This section describes the properties of tag handlers and TLDs and explains how
to develop tag handlers and library descriptor elements for each type of tag intro-
duced in the previous section.

Tag Handlers
A tag handler is an object invoked by a Web container to evaluate a custom tag
during the execution of the JSP page that references the tag. Tag handlers must
implement either the 7DJ or %RG\7DJ interface. Interfaces can be used to take an
existing Java object and make it a tag handler. For newly created handlers, you
can use the 7DJ6XSSRUW and %RG\7DJ6XSSRUW classes as base classes. These

../../api/javax/servlet/jsp/tagext/Tag.html
../../api/javax/servlet/jsp/tagext/BodyTag.html
../../api/javax/servlet/jsp/tagext/TagSupport.html
../../api/javax/servlet/jsp/tagext/BodyTagSupport.html

470 CUSTOM TAGS IN JSP™ PAGES
classes and interfaces are contained in the MDYD[�VHUYOHW�MVS�WDJH[W pack-
age.

Tag handler methods defined by the 7DJ and %RG\7DJ interfaces are called by the
JSP page’s servlet at various points during the evaluation of the tag. When the
start tag of a custom tag is encountered, the JSP page’s servlet calls methods to
initialize the appropriate handler and then invokes the handler’s GR6WDUW7DJ
method. When the end tag of a custom tag is encountered, the handler’s GR(QG�
7DJ method is invoked. Additional methods are invoked in between when a tag
handler needs to interact with the body of the tag. For further information, see
Tags With Bodies (page 477). In order to provide a tag handler implementation,
you must implement the methods, summarized in Table 1, that are invoked at
various stages of processing the tag.

A tag handler has access to an API that allows it to communicate with the JSP
page. The entry point to the API is the page context object (MDYD[�VHUY�
OHW�MVS�3DJH&RQWH[W) through which a tag handler can retrieve all the other
implicit objects (request, session, and application) accessible from a JSP page.

Implicit objects can have named attributes associated with them. Such attributes
are accessed using >VHW_JHW@$WWULEXWH methods.

If the tag is nested, a tag handler also has access to the handler (called the parent)
associated with the enclosing tag.

Table 1 Tag Handler Methods

Tag Handler Type Methods

Simple GR6WDUW7DJ��GR(QG7DJ��UHOHDVH

Attributes
GR6WDUW7DJ��GR(QG7DJ��VHW�JHW$WWULEXWH����1��
UHOHDVH

Body, Evaluation and
No Interaction

GR6WDUW7DJ��GR(QG7DJ��UHOHDVH

Body, Iterative Evalua-
tion

GR6WDUW7DJ��GR$IWHU%RG\��GR(QG7DJ��UHOHDVH

Body, Interaction
GR6WDUW7DJ��GR(QG7DJ��UHOHDVH��GR,QLW%RG\��
GR$IWHU%RG\��UHOHDVH

../../api/javax/servlet/jsp/tagext/package-summary.html
../../api/javax/servlet/jsp/PageContext.html
../../api/javax/servlet/jsp/PageContext.html

TAG LIBRARY DESCRIPTORS 471
A set of related tag handler classes (a tag library) is usually packaged and
deployed as a JAR archive.

Tag Library Descriptors
A tag library descriptor (TLD) is an XML document that describes a tag library.
A TLD contains information about a library as a whole and about each tag con-
tained in the library. TLDs are used by a Web container to validate the tags and
by JSP page development tools.

TLD filenames must have the extension �WOG. TLD files are stored in the :(%�
,1) directory of the WAR file or a subdirectory of :(%�,1).

A TLD must begin with an XML document prolog that specifies the version of
XML and the document type definition (DTD):

�"[PO�YHUVLRQ ������HQFRGLQJ �,62���������"!
��'2&7<3(�WDJOLE�38%/,&�����6XQ�0LFURV\VWHPV��,QF���'7'�-63�7DJ�
/LEUDU\������(1�
�KWWS���MDYD�VXQ�FRP�GWG�ZHE�MVSWDJOLEUDU\B�B��GWG�!

Tomcat supports 1.1 and 1.2 version DTDs. However, this chapter documents
the 1.2 version because you should use the newer version in any tag libraries that
you develop. The template library TLD, WXWRULDO�WHPSODWH�WOG, conforms to
the 1.2 version. The Struts library TLDs conform to the 1.1 version of the DTD,
which has fewer elements and uses slightly different names for some of the ele-
ments.

The root of a TLD is the WDJOLE element. The subelements of WDJOLE are listed
in Table 2:

Table 2 WDJOLE Subelements

Element Description

WOLE�YHUVLRQ The tag library’s version.

MVS�YHUVLRQ The JSP specification version the tag library requires.

VKRUW�QDPH Optional name that could be used by a JSP page authoring tool to create
names with a mnemonic value.

XUL A URI that uniquely identifies the tag library.

../examples/web/bookstore3/tutorial-template.tld

472 CUSTOM TAGS IN JSP™ PAGES
Listener Element
A tag library can specify some classes that are event listeners (see Handling
Servlet Life Cycle Events (page 397)). The listeners are listed in the TLD as
OLVWHQHU elements and the Web container will instantiate the listener classes
and register them in a way analogous to listeners defined at the WAR level.
Unlike WAR-level listeners, the order in which the tag library listeners are regis-
tered is undefined. The only subelement of the OLVWHQHU element is the OLV�
WHQHU�FODVV element, which must contain the fully-qualified name of the
listener class.

Tag Element
Each tag in the library is described by giving its name and the class of its tag
handler, information on the scripting variables created by the tag, and informa-
tion on the tag’s attributes. Scripting variable information can be given directly
in the TLD or through a tag extra info class (see Tags That Define Scripting
Variables (page 468)). Each attribute declaration contains an indication of
whether the attribute is required or not, whether its value can be determined by
request-time expressions, and the type of the attribute (see Attribute
Element (page 475)).

GLVSOD\�QDPH Optional name intended to be displayed by tools.

VPDOO�LFRQ Optional small-icon that can be used by tools.

ODUJH�LFRQ Optional large-icon that can be used by tools.

GHVFULSWLRQ Optional tag-specific information.

OLVWHQHU See Listener Element (page 472)�

WDJ See Tag Element (page 472).

Table 2 WDJOLE Subelements (Continued)

Element Description

SIMPLE TAGS 473
A tag is specified in a TLD in a WDJ element. The subelements of tag are listed in
Table 3:

The following sections will describe the methods and TLD elements that you
need to develop for each type of tag introduced in Types of Tags (page 466).

Simple Tags

Tag Handlers
The handler for a simple tag must implement the GR6WDUW7DJ and GR(QG7DJ
methods of the 7DJ interface. The GR6WDUW7DJ method is invoked when the start
tag is encountered. This method returns 6.,3B%2'< because a simple tag has no
body. The GR(QG7DJ method is invoked when the end tag is encountered. The

Table 3 WDJ Subelements

Element Description

QDPH The unique tag name.

WDJ�FODVV The fully-qualified name of the tag handler class.

WHL�FODVV Optional subclass of MDYD[�VHUYOHW�MVS�WDJH[W�7DJ([WUD,QIR.
See Providing Information About the Scripting
Variable (page 480).

ERG\�FRQWHQW The body content type. See Body-content Element (page 474) and
Body-content Element (page 479).

GLVSOD\�QDPH Optional name intended to be displayed by tools.

VPDOO�LFRQ Optional small-icon that can be used by tools.

ODUJH�LFRQ Optional large-icon that can be used by tools.

GHVFULSWLRQ Optional tag-specific information.

YDULDEOH Optional scripting variable information. See Providing Information
About the Scripting Variable (page 480).

DWWULEXWH Tag attribute information. See Attribute Element (page 475).

474 CUSTOM TAGS IN JSP™ PAGES
GR(QG7DJ method needs to return (9$/B3$*(if the rest of the page needs to be
evaluated; otherwise it should return 6.,3B3$*(.

The simple tag discussed in the first section:

�WW�VLPSOH��!

would be implemented by the following tag handler:

SXEOLF�6LPSOH7DJ�H[WHQGV�7DJ6XSSRUW�^
SXEOLF�LQW�GR6WDUW7DJ���WKURZV�-VS([FHSWLRQ�^

WU\�^
SDJH&RQWH[W�JHW2XW���SULQW��+HOOR����

`�FDWFK��([FHSWLRQ�H[��^
WKURZ�QHZ�-VS7DJ([FHSWLRQ��6LPSOH7DJ������

H[�JHW0HVVDJH����
`
UHWXUQ�6.,3B%2'<�

`
SXEOLF�LQW�GR(QG7DJ���^

UHWXUQ�(9$/B3$*(�
`

`

Body-content Element
Tags without bodies must declare that their body content is empty using the
ERG\�FRQWHQW element:

�ERG\�FRQWHQW!HPSW\��ERG\�FRQWHQW!

Tags With Attributes

Defining Attributes in a Tag Handler
For each tag attribute, you must define a property and get and set methods that
conform to the JavaBeans architecture conventions in the tag handler. For exam-
ple, the tag handler for the Struts ORJLF�SUHVHQW tag

�ORJLF�SUHVHQW�SDUDPHWHU �&OHDU�!

TAGS WITH ATTRIBUTES 475
contains the following declaration and methods:

SURWHFWHG�6WULQJ�SDUDPHWHU� �QXOO�
SXEOLF�6WULQJ�JHW3DUDPHWHU���^

UHWXUQ��WKLV�SDUDPHWHU��
`
SXEOLF�YRLG�VHW3DUDPHWHU�6WULQJ�SDUDPHWHU��^

WKLV�SDUDPHWHU� �SDUDPHWHU�
`

Note that if your attribute is named LG, and your tag handler inherits from the
7DJ6XSSRUW class, you do not need to define the property and set and get meth-
ods as these are already defined by 7DJ6XSSRUW.

A tag attribute whose value is a 6WULQJ can name an attribute of one of the
implicit objects available to tag handlers. An implicit object attribute would be
accessed by passing the tag attribute value to the [VHW_JHW@$WWULEXWH method
of the implicit object. This is a good way to pass scripting variable names to a
tag handler where they are associated with objects stored in the page context
(See Implicit Objects (page 439)).

Attribute Element
For each tag attribute you must specify whether the attribute is required, whether
the value can be determined by an expression, and optionally, the type of the
attribute in an DWWULEXWH element. For static values the type is always
MDYD�ODQJ�6WULQJ. If the UWH[SUYDOXH element is WUXH or \HV, then the W\SH
element defines the return type expected from any expression specified as the
value of the attribute.

�DWWULEXWH!
�QDPH!attr1��QDPH!
�UHTXLUHG!WUXH_IDOVH_\HV_QR��UHTXLUHG!
�UWH[SUYDOXH!WUXH_IDOVH_\HV_QR��UWH[SUYDOXH!
�W\SH!fully-qualified_type��W\SH!

��DWWULEXWH!

If a tag attribute is not required, a tag handler should provide a default value.

The WDJ element for the ORJLF�SUHVHQW tag declares that SDUDPHWHU attribute is
not required (because the tag can also test for the presence of other entities such
as bean properties), and that its value can be set by a runtime expression.

476 CUSTOM TAGS IN JSP™ PAGES
�WDJ!
�QDPH!SUHVHQW��QDPH!
�WDJ�FODVV!RUJ�DSDFKH�VWUXWV�WDJOLE�

ORJLF�3UHVHQW7DJ��WDJ�FODVV!
�ERG\�FRQWHQW!-63��ERG\�FRQWHQW!
���
�DWWULEXWH!

�QDPH!SDUDPHWHU��QDPH!
�UHTXLUHG!IDOVH��UHTXLUHG!
�UWH[SUYDOXH!WUXH��UWH[SUYDOXH!

��DWWULEXWH!
���

��WDJ!

Attribute Validation
The documentation for a tag library should describe valid values for tag
attributes. When a JSP page is translated, a Web container will enforce any con-
straints contained in the TLD element for each attribute.

The attributes passed to a tag can also be validated at translation time with the
LV9DOLG method of a class derived from 7DJ([WUD,QIR. This class is also used
to provide information about scripting variables defined by the tag (see Provid-
ing Information About the Scripting Variable (page 480)).

The LV9DOLG method is passed the attribute information in a 7DJ'DWD object,
which contains attribute-value tuples for each of the tag’s attributes. Since the
validation occurs at translation time, the value of an attribute that is computed at
request time will be set to 7DJ'DWD�5(48(67B7,0(B9$/8(.

The tag �WW�WZD DWWU� �YDOXH���! has the following TLD DWWULEXWH ele-
ment:

�DWWULEXWH!
�QDPH!DWWU���QDPH!
�UHTXLUHG!WUXH��UHTXLUHG!
�UWH[SUYDOXH!WUXH��D!

��DWWULEXWH

This declaration indicates that the value of DWWU� can be determined at runtime.

The following LV9DOLG�method checks that the value of DWWU� is a valid bool-
ean value. Note that since the value of DWWU� can be computed at runtime,
LV9DOLG must check whether the tag user has chosen to provide a runtime value.

TAGS WITH BODIES 477
SXEOLF�FODVV�7ZD7(,�H[WHQGV�7DJ([WUD,QIR�^
SXEOLF�ERROHDQ�LV9DOLG�7DJGDWD�GDWD��^

2EMHFW�R� �GDWD�JHW$WWULEXWH��DWWU����
LI��R�� �QXOO�		�R�� �7DJ'DWD�5(48(67B7,0(B9$/8(��^

LI��R�WR/RZHU&DVH���HTXDOV��WUXH���__�
R�WR/RZHU&DVH���HTXDOV��IDOVH�����
UHWXUQ�WUXH�

HOVH
UHWXUQ�IDOVH�

`
HOVH

UHWXUQ�WUXH�
`

`

Tags With Bodies

Tag Handlers
A tag handler for a tag with a body is implemented differently depending on
whether the tag handler needs to interact with the body or not. By interact, we
mean that the tag handler reads or modifies the contents of the body.

Tag Handler Does Not Interact With the Body
If the tag handler does not need to interact with the body, the tag handler should
implement the 7DJ interface (or be derived from 7DJ6XSSRUW). If the body of the
tag needs to be evaluated, the GR6WDUW7DJ method needs to return
(9$/B%2'<B,1&/8'(; otherwise it should return 6.,3B%2'<.

If a tag handler needs to iteratively evaluate the body it should implement the
,WHUDWLRQ7DJ interface or be derived from 7DJ6XSSRUW. It should return
(9$/B%2'<B$*$,1 from the GR6WDUW7DJ and GR$IWHU%RG\ methods if it deter-
mines that the body needs to be evaluated again.

Tag Handler Interacts With the Body
If the tag handler needs to interact with the body, the tag handler must implement
%RG\7DJ (or be derived from %RG\7DJ6XSSRUW). Such handlers typically imple-
ment the GR,QLW%RG\ and the GR$IWHU%RG\ methods. These methods interact
with body content passed to the tag handler by the JSP page’s servlet.

478 CUSTOM TAGS IN JSP™ PAGES
A body content supports several methods to read and write its contents. A tag
handler can use the body content’s JHW6WULQJ or JHW5HDGHU methods to extract
information from the body and the ZULWH2XW�RXW� method to write the body
contents to an out stream. The writer supplied to the ZULWH2XW method is
obtained using the tag handler’s JHW3UHYLRXV2XW method. This method is used
to ensure that a tag handler’s results are available to an enclosing tag handler.

If the body of the tag needs to be evaluated, the GR6WDUW7DJ method needs to
return (9$/B%2'<B%8))(5('; otherwise it should return 6.,3B%2'<.

GR,QLW%RG\ Method

The GR,QLW%RG\ method is called after the body content is set but before it is
evaluated. You generally use this method to perform any initialization that
depends on the body content.

GR$IWHU%RG\ Method

The GR$IWHU%RG\ method is called after the body content is evaluated.

Like the GR6WDUW7DJ method, GR$IWHU%RG\ must return an indication of
whether to continue evaluating the body. Thus, if the body should be evaluated
again, as would be the case if you were implementing an iteration tag, GR$IWHU�
%RG\ should return (9$/B%2'<B%8))(5('; otherwise GR$IWHU%RG\ should return
6.,3B%2'<.

UHOHDVH Method

A tag handler should reset its state and release any private resources in the
UHOHDVH method.

The following example reads the content of the body (which contains an SQL
query) and passes it to a object that executes the query. Since the body does not
need to be reevaluated, GR$IWHU%RG\ returns 6.,3B%2'<.

SXEOLF�FODVV�4XHU\7DJ�H[WHQGV�%RG\7DJ6XSSRUW�^
SXEOLF�LQW�GR$IWHU%RG\���WKURZV�-VS7DJ([FHSWLRQ�^

%RG\&RQWHQW�EF� �JHW%RG\&RQWHQW���
���JHW�WKH�EF�DV�VWULQJ
6WULQJ�TXHU\� �EF�JHW6WULQJ���
���FOHDQ�XS
EF�FOHDU%RG\���
WU\�^

6WDWHPHQW�VWPW� �FRQQHFWLRQ�FUHDWH6WDWHPHQW���
UHVXOW� �VWPW�H[HFXWH4XHU\�TXHU\��

`�FDWFK��64/([FHSWLRQ�H��^
WKURZ�QHZ�-VS7DJ([FHSWLRQ��4XHU\7DJ�����

TAGS THAT DEFINE SCRIPTING VARIABLES 479
�H�JHW0HVVDJH����
`
UHWXUQ�6.,3B%2'<�

`
`

Body-content Element
For tags that have a body, you must specify the type of the body content using
the ERG\�FRQWHQW element:

�ERG\�FRQWHQW!-63_WDJGHSHQGHQW��ERG\�FRQWHQW!

Body content containing custom and core tags, scripting elements, and HTML
text is categorized as -63. This is the value declared for the Struts
lRJLF�SUHVHQW� tag. All other types of body content, for example, SQL state-
ments passed to the query tag, would be labeled WDJGHSHQGHQW.

Note that the value of the ERG\�FRQWHQW element does not affect the interpreta-
tion of the body by the tag handler; the element is only intended to be used by an
authoring tool for rendering the body content.

Tags That Define Scripting Variables

Tag Handlers
A tag handler is responsible for creating and setting the object referred to by the
scripting variable into a context accessible from the page. It does this by using
the SDJH&RQWH[W�VHW$WWULEXWH�QDPH� YDOXH� VFRSH� or SDJH&RQ�
WH[W�VHW$WWULEXWH�QDPH� YDOXH� methods. Typically an attribute passed to
the custom tag specifies the QDPH of the scripting variable object; this name can
be retrieved by invoking the attribute’s get method described in Using Scope
Objects (page 400).

If the value of the scripting variable is dependent on an object present in the tag
handler’s context it can retrieve the object using the SDJH&RQWH[W�JHW$W�
WULEXWH�QDPH��VFRSH� method.

The usual procedure is that the tag handler retrieves a scripting variable, per-
forms some processing on the object, and then sets the scripting variable’s value
using the SDJH&RQWH[W�VHW$WWULEXWH�QDPH� REMHFW� method.

480 CUSTOM TAGS IN JSP™ PAGES
The scope that an object can have is summarized in Table 4. The scope con-
strains the accessibility and lifetime of the object.

Providing Information About the Scripting
Variable
The example described in Tags That Define Scripting Variables (page 468)
defines a scripting variable ERRN that is used for accessing book information:

�EHDQ�GHILQH�LG �ERRN��QDPH �ERRN'%��SURSHUW\ �ERRN'HWDLOV�
W\SH �GDWDEDVH�%RRN'HWDLOV��!

�IRQW�FRORU �UHG��VL]H ����!
�� PHVVDJHV�JHW6WULQJ��&DUW5HPRYHG���!
�VWURQJ!�MVS�JHW3URSHUW\�QDPH �ERRN�

SURSHUW\ �WLWOH��!��VWURQJ!�
�EU!	QEVS��EU!
��IRQW!

When the JSP page containing this tag is translated, the Web container generates
code to synchronize the scripting variable with the object referenced by the vari-

Table 4 Scope of Objects

Name Accessible From Lifetime

SDJH Current page
Until the response has been sent back
to the user or the request is passed to
a new page

UHTXHVW
Current page and any included or
forwarded pages

Until the response has been sent back
to the user

VHVVLRQ
Current request and any subsequent
request from the same browser
(subject to session lifetime).

The life of the user’s session

DSSOLFDWLRQ
Current and any future request from
the same Web application

The life of the application

TAGS THAT DEFINE SCRIPTING VARIABLES 481
able. In order to do the code generation, the Web container requires certain infor-
mation about the scripting variable:

• Variable name

• Variable class

• Whether the variable refers to a new or existing object.

• The availability of the variable.

There are two ways to provide this information: by specifying the YDULDEOH
TLD subelement or by defining a tag extra info class and including the WHL�
FODVV element in the TLD. Using the YDULDEOH element is simpler, but slightly
less flexible.

variable Element
The YDULDEOH element has the following subelements:

• QDPH�JLYHQ—The variable name as a constant

• QDPH�IURP�DWWULEXWH—The name of an attribute whose translation-time
value will give the name of the variable.

One of QDPH�JLYHQ or QDPH�IURP�DWWULEXWH is required. The following sub-
elements are optional:

• YDULDEOH�FODVV—Fully-qualified name of the class of the variable.
MDYD�ODQJ�6WULQJ is the default.

• GHFODUH—Whether the variable refers to a new object. 7UXH is the default.

• VFRSH—The scope of the scripting variable defined. 1(67(' is default.
Table 5 describes the availability of the scripting variable and the methods
where the value of the variable must be set or reset.

Table 5 Scripting Variable Availability

Value Availability Methods

1(67('
Between the start
tag and the end tag.

In GR,QLW%RG\ and GR$IWHU%RG\ for a tag handler
implementing %RG\7DJ; otherwise in GR6WDUW7DJ.

$7B%(*,1
From the start tag
until the end of the
page.

In GR,QLW%RG\, GR$IWHU%RG\, and GR(QG7DJ for a
tag handler implementing %RG\7DJ; otherwise in
GR6WDUW7DJ and GR(QG7DJ.

482 CUSTOM TAGS IN JSP™ PAGES
The implementation of the Struts EHDQ�GHILQH tag conforms to the JSP specifi-
cation version 1.1, which requires you to define a tag extra info class. The JSP
specification version 1.2 adds the YDULDEOH element. You could define the fol-
lowing YDULDEOH element for the EHDQ�GHILQH tag:

�WDJ!
�YDULDEOH!

�QDPH�IURP�DWWULEXWH!LG��QDPH�IURP�DWWULEXWH!
�YDULDEOH�FODVV!GDWDEDVH�%RRN'HWDLOV��YDULDEOH�FODVV!
�GHFODUH!WUXH��GHFODUH!
�VFRSH!$7B%(*,1��VFRSH!

��YDULDEOH!
��WDJ!

TagExtraInfo Class
You define a tag extra info class by extending the class MDYD[�VHUY�
OHW�MVS�7DJ([WUD,QIR. A 7DJ([WUD,QIR must implement the JHW9DUL�
DEOH,QIR method to return an array of 9DULDEOH,QIR objects containing the
following information:

• Variable name

• Variable class

• Whether the variable refers to a new object

• The availability of the variable

The Web container passes a parameter called GDWD to the JHW9DULDEOH,QIR
method that contains attribute-value tuples for each of the tag’s attributes. These
attributes can be used to provide the 9DULDEOH,QIR object with a scripting vari-
able’s name and class.

The Struts tag library provides information about the scripting variable created
by the EHDQ�GHILQH tag in the 'HILQH7HL tag extra info class. Since the name
(ERRN) and class (GDWDEDVH�%RRN'HWDLOV) of the scripting variable are passed

$7B(1'
After the end tag
until the end of the
page.

In GR(QG7DJ.

Table 5 Scripting Variable Availability (Continued)

Value Availability Methods

COOPERATING TAGS 483
in as tag attributes, they can be retrieved with the GDWD�JHW$WWULEXWH6WULQJ
method and used to fill in the 9DULDEOH,QIR constructor. To allow the scripting
variable ERRN to be used in the rest of the page, the scope of ERRN is set to be
$7B%(*,1.

SXEOLF�FODVV�'HILQH7HL�H[WHQGV�7DJ([WUD,QIR�^
SXEOLF�9DULDEOH,QIR>@�JHW9DULDEOH,QIR�7DJ'DWD�GDWD��^
6WULQJ�W\SH� �GDWD�JHW$WWULEXWH6WULQJ��W\SH���

LI��W\SH� �QXOO�
W\SH� ��MDYD�ODQJ�2EMHFW��

UHWXUQ�QHZ�9DULDEOH,QIR>@�^
QHZ�9DULDEOH,QIR�GDWD�JHW$WWULEXWH6WULQJ��LG���

W\SH�
WUXH�
9DULDEOH,QIR�$7B%(*,1�

`�
`

`

The fully-qualified name of the tag extra info class defined for a scripting vari-
able must be declared in the TLD in the WHL�FODVV subelement of the WDJ ele-
ment. Thus, the WHL�FODVV element for 'HILQH7HL would be:

�WHL�FODVV!RUJ�DSDFKH�VWUXWV�WDJOLE�EHDQ�'HILQH7DJ7HL
��WHL�FODVV!

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object
sharing.

The first style requires that a shared object be named and stored in the page con-
text (one of the implicit objects accessible to both JSP pages and tag handlers).
To access objects created and named by another tag, a tag handler uses the SDJH�
&RQWH[W�JHW$WWULEXWH�QDPH� VFRSH� method.

In the second style of object sharing, an object created by the enclosing tag han-
dler of a group of nested tags is available to all inner tag handlers. This form of
object sharing has the advantage that it uses a private namespace for the objects,
thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its
enclosing tag with the static method 7DJ6XSSRUW�ILQG$QFHVWRU:LWK�
&ODVV�IURP� FODVV� or the 7DJ6XSSRUW�JHW3DUHQW method. The former

484 CUSTOM TAGS IN JSP™ PAGES
method should be used when a specific nesting of tag handlers cannot be guaran-
teed. Once the ancestor has been retrieved, a tag handler can access any statically
or dynamically created objects. Statically created objects are members of the
parent. Private objects can also be created dynamically created. Such objects can
be stored in a tag handler with the VHW9DOXH method and retrieved with the
JHW9DOXH method.

The following example illustrates a tag handler that supports both the named and
private object approaches to sharing objects. In the example, the handler for a
query tag checks whether an attribute named FRQQHFWLRQ has been set in the
GR6WDUW7DJ method. If the connection attribute has been set, the handler
retrieves the connection object from the page context. Otherwise, the tag handler
first retrieves the tag handler for the enclosing tag, and then retrieves the connec-
tion object from that handler.

SXEOLF�FODVV�4XHU\7DJ�H[WHQGV�%RG\7DJ6XSSRUW�^
SULYDWH�6WULQJ�FRQQHFWLRQ,G�
SXEOLF�LQW�GR6WDUW7DJ���WKURZV�-VS([FHSWLRQ�^

6WULQJ�FLG� �JHW&RQQHFWLRQ���
LI��FLG�� �QXOO��^
���WKHUH�LV�D�FRQQHFWLRQ�LG��XVH�LW

FRQQHFWLRQ� �&RQQHFWLRQ�SDJH&RQWH[W�
JHW$WWULEXWH�FLG��

`�HOVH�^
&RQQHFWLRQ7DJ�DQFHVWRU7DJ�

�&RQQHFWLRQ7DJ�ILQG$QFHVWRU:LWK&ODVV�WKLV�
&RQQHFWLRQ7DJ�FODVV��

LI��DQFHVWRU7DJ� �QXOO��^
WKURZ�QHZ�-VS7DJ([FHSWLRQ��$�TXHU\�ZLWKRXW

D�FRQQHFWLRQ�DWWULEXWH�PXVW�EH�QHVWHG
ZLWKLQ�D�FRQQHFWLRQ�WDJ����

`
FRQQHFWLRQ� �DQFHVWRU7DJ�JHW&RQQHFWLRQ���

`
`

`

The query tag implemented by this tag handler could be used in either of the fol-
lowing ways:

�WW�FRQQHFWLRQ�LG �FRQ��������!�������WW�FRQQHFWLRQ!
�WW�TXHU\�LG �EDODQFHV��FRQQHFWLRQ �FRQ���!�

6(/(&7�DFFRXQW��EDODQFH�)520�DFFWBWDEOH�
ZKHUH�FXVWRPHUBQXPEHU� ��� �UHTXHVW�JHW&XVWQR���!�

��WW�TXHU\!

AN ITERATION TAG 485
�WW�FRQQHFWLRQ����!
�[�TXHU\�LG �EDODQFHV�!�

6(/(&7�DFFRXQW��EDODQFH�)520�DFFWBWDEOH�
ZKHUH�FXVWRPHUBQXPEHU� ��� �UHTXHVW�JHW&XVWQR���!�

��[�TXHU\!
��WW�FRQQHFWLRQ!

The TLD for the tag handler must indicate that the connection attribute is
optional with the following declaration:

�WDJ!
���
�DWWULEXWH!

�QDPH!FRQQHFWLRQ��QDPH!
�UHTXLUHG!IDOVH��UHTXLUHG!

��DWWULEXWH!
��WDJ!

Examples
The custom tags described in this section demonstrate solutions to two recurring
problems in developing JSP applications: minimizing the amount of Java pro-
gramming in JSP pages and ensuring a common look and feel across applica-
tions. In doing so, they illustrate many of the styles of tags discussed in the first
section.

An Iteration Tag
Constructing page content that is dependent on dynamically generated data often
requires the use of flow control scripting statements. By moving the flow control
logic to tag handlers, flow control tags reduce the amount of scripting needed in
JSP pages.

The Struts ORJLF�LWHUDWH tag retrieves objects from a collection stored in a Jav-
aBeans component and assigns them to a scripting variable. The body of the tag
retrieves information from the scripting variable. While elements remain in the
collection, the LWHUDWH tag causes the body to be reevaluated.

486 CUSTOM TAGS IN JSP™ PAGES
JSP Page
Two Duke’s Bookstore application pages, FDWDORJ�MVS and VKRZFDUW�MVS, use
the ORJLF�LWHUDWH tag to iterate over collections of objects. An excerpt from
FDWDORJ�MVS is shown below. The JSP page initializes the LWHUDWH tag with a
collection (named by the SURSHUW\ attribute) of the ERRN'% bean. The LWHUDWH
tag sets the ERRN scripting variable on each iteration over the collection. The
ERRN,G property of the ERRN variable is exposed as another scripting variable.
Properties of both variables are used to dynamically generate a table containing
links to other pages and book catalog information.

�ORJLF�LWHUDWH�QDPH �ERRN'%��SURSHUW\ �ERRNV��
LG �ERRN��W\SH �GDWDEDVH�%RRN'HWDLOV�!
�EHDQ�GHILQH�LG �ERRN,G��QDPH �ERRN��SURSHUW\ �ERRN,G�

W\SH �MDYD�ODQJ�6WULQJ��!

�WU!�
�WG�EJFRORU ��IIIIDD�!�
�D�KUHI ��� UHTXHVW�JHW&RQWH[W3DWK���!

�ERRNGHWDLOV"ERRN,G �� ERRN,G�!�!
�VWURQJ!�MVS�JHW3URSHUW\�QDPH �ERRN�
SURSHUW\ �WLWOH��!	QEVS���VWURQJ!��D!��WG!�

�WG�EJFRORU ��IIIIDD��URZVSDQ �!�
�MVS�VHW3URSHUW\�QDPH �FXUUHQF\��SURSHUW\ �DPRXQW�

YDOXH ��� ERRN�JHW3ULFH���!��!
�MVS�JHW3URSHUW\�QDPH �FXUUHQF\��SURSHUW\ �IRUPDW��!
	QEVS���WG!�

�WG�EJFRORU ��IIIIDD��URZVSDQ �!�
�D�KUHI ��� UHTXHVW�JHW&RQWH[W3DWK���!

�FDWDORJ"$GG �� ERRN,G�!�!
	QEVS��� PHVVDJHV�JHW6WULQJ��&DUW$GG���!
	QEVS���D!��WG!��WU!�

�WU!�
�WG�EJFRORU ��IIIIII�!�
	QEVS�	QEVS��� PHVVDJHV�JHW6WULQJ��%\���!��HP!

�MVS�JHW3URSHUW\�QDPH �ERRN�
SURSHUW\ �ILUVW1DPH��!	QEVS�

�MVS�JHW3URSHUW\�QDPH �ERRN�
SURSHUW\ �VXUQDPH��!��HP!��WG!��WU!

��ORJLF�LWHUDWH!

../examples/web/bookstore3/catalog.txt
../examples/web/bookstore3/showcart.txt

AN ITERATION TAG 487
Tag Handler
The implementation of the Struts ORJLF�LWHUDWH tag conforms to JSP version
1.1 specification capabilities, which requires you to extend the %RG\7DJ6XSSRUW
class. The JSP version 1.2 specification adds features (described in Tag Handler
Does Not Interact With the Body (page 477)) that simplify programming tags
that iteratively evaluate their body. The following discussion is based on an
implementation that uses these features.

The ORJLF�LWHUDWH tag supports initializing the collection in a several ways:
from a collection provided as a tag attribute or from a collection that is a bean or
a property of a bean. Our example uses the latter method. Most of the code in
GR6WDUW7DJ is concerned with constructing an iterator over the collection object.
The method first checks if the handler’s collection property is set and if not, pro-
ceeds to checking the bean and property attributes. If the EHDQ and SURSHUW\
attributes are both set, the GR6WDUW7DJ calls a utility method that uses JavaBeans
introspection methods to retrieve the collection. Once the collection object is
determined, the method constructs the iterator.

If the iterator contains more elements, GR6WDUW7DJ sets the value of the scripting
variable to the next element and then indicates that the body should be evaluated;
otherwise it ends the iteration by returning 6.,3B%2'<.

After the body has been evaluated, the GR$IWHU%RG\ method retrieves the body
content and writes it to the out stream. The body content object is then cleared in
preparation for another body evaluation. If the iterator contains more elements,
GR$IWHU%RG\ again sets the value of the scripting variable to the next element
and returns (9$/B%2'<B$*$,1 to indicate that the body should be evaluated
again. This causes the re-execution of GR$IWHU%RG\. When there are no remain-
ing elements, GR$IWHU%RG\ terminates the process by returning 6.,3B%2'<.

SXEOLF�FODVV�,WHUDWH7DJ�H[WHQGV�7DJ6XSSRUW�^
SURWHFWHG�,WHUDWRU�LWHUDWRU� �QXOO�
SURWHFWHG�2EMHFW�FROOHFWLRQ� �QXOO�
SURWHFWHG�6WULQJ�LG� �QXOO�
SURWHFWHG�6WULQJ�QDPH� �QXOO�
SURWHFWHG�6WULQJ�SURSHUW\� �QXOO�
SURWHFWHG�6WULQJ�W\SH� �QXOO�
SXEOLF�LQW�GR6WDUW7DJ���WKURZV�-VS([FHSWLRQ�^

2EMHFW�FROOHFWLRQ� �WKLV�FROOHFWLRQ�
LI��FROOHFWLRQ� �QXOO��^

WU\�^
2EMHFW�EHDQ� �SDJH&RQWH[W�ILQG$WWULEXWH�QDPH��
LI��EHDQ� �QXOO��^

����WKURZ�DQ�H[FHSWLRQ

488 CUSTOM TAGS IN JSP™ PAGES
`
LI��SURSHUW\� �QXOO�

FROOHFWLRQ� �EHDQ�
HOVH

FROOHFWLRQ�
3URSHUW\8WLOV�

JHW3URSHUW\�EHDQ��SURSHUW\��
LI��FROOHFWLRQ� �QXOO��^

����WKURZ�DQ�H[FHSWLRQ
`

`�FDWFK�
����FDWFK�H[FHSWLRQV�WKURZQ�

E\�3URSHUW\8WLOV�JHW3URSHUW\
`

`
���&RQVWUXFW�DQ�LWHUDWRU�IRU�WKLV�FROOHFWLRQ
LI��FROOHFWLRQ�LQVWDQFHRI�&ROOHFWLRQ�

LWHUDWRU� ���&ROOHFWLRQ��FROOHFWLRQ��LWHUDWRU���
HOVH�LI��FROOHFWLRQ�LQVWDQFHRI�,WHUDWRU�

LWHUDWRU� ��,WHUDWRU��FROOHFWLRQ�
���

`
���6WRUH�WKH�ILUVW�YDOXH�DQG�HYDOXDWH��
���RU�VNLS�WKH�ERG\�LI�QRQH
LI��LWHUDWRU�KDV1H[W����^

2EMHFW�HOHPHQW� �LWHUDWRU�QH[W���
SDJH&RQWH[W�VHW$WWULEXWH�LG��HOHPHQW��
UHWXUQ��(9$/B%2'<B$*$,1��

`�HOVH
UHWXUQ��6.,3B%2'<��

`
SXEOLF�LQW�GR$IWHU%RG\���WKURZV�-VS([FHSWLRQ�^

LI��ERG\&RQWHQW�� �QXOO��^
WU\�^

-VS:ULWHU�RXW� �JHW3UHYLRXV2XW���
RXW�SULQW�ERG\&RQWHQW�JHW6WULQJ����
ERG\&RQWHQW�FOHDU%RG\���

`�FDWFK��,2([FHSWLRQ�H��^
���

`
`
LI��LWHUDWRU�KDV1H[W����^

2EMHFW�HOHPHQW� �LWHUDWRU�QH[W���
SDJH&RQWH[W�VHW$WWULEXWH�LG��HOHPHQW��
UHWXUQ��(9$/B%2'<B$*$,1��

`�HOVH

A TEMPLATE TAG LIBRARY 489
UHWXUQ��6.,3B%2'<��
`

`
`

Tag Extra Info Class
Information about the scripting variable is provided in the ,WHUDWH7HL tag extra
info class. The name and class of the scripting variable are passed in as tag
attributes and used to fill in the 9DULDEOH,QIR constructor.

SXEOLF�FODVV�,WHUDWH7HL�H[WHQGV�7DJ([WUD,QIR�^
SXEOLF�9DULDEOH,QIR>@�JHW9DULDEOH,QIR�7DJ'DWD�GDWD��^
6WULQJ�W\SH� �GDWD�JHW$WWULEXWH6WULQJ��W\SH���
LI��W\SH� �QXOO�

W\SH� ��MDYD�ODQJ�2EMHFW��

UHWXUQ�QHZ�9DULDEOH,QIR>@�^
QHZ�9DULDEOH,QIR�GDWD�JHW$WWULEXWH6WULQJ��LG���

W\SH�
WUXH�
9DULDEOH,QIR�$7B%(*,1�

`�
`

`

A Template Tag Library
A template provides a way to separate the common elements that are part of each
screen from the elements that change with each screen of an application. Putting
all the common elements together into one file makes it easier to maintain and
enforce a consistent look and feel in all the screens. It also makes development
of individual screens easier since the designer can focus on portions of a screen
that are specific to that screen while the template takes care of the common por-
tions.

The template is a JSP page, with place holders for the parts that need to change
with each screen. Each of these place holders is referred to as a parameter of the
template. For example, a simple template could include a title parameter for the
top of the generated screen and a body parameter to refer to a JSP page for the
custom content of the screen.

490 CUSTOM TAGS IN JSP™ PAGES
The template uses a set of nested tags—GHILQLWLRQ, VFUHHQ, and SDUDPHWHU—
to define a table of screen definition for an application screen and an LQVHUW tag
to insert parameters from a screen definition into the application screen.

JSP Page
The template for the Duke’s Bookstore example, WHPSODWH�MVS, is shown
below. This page includes a JSP page that creates the screen definition and then
uses the LQVHUW tag to insert parameters from the definition into the application
screen.

��#�WDJOLE�XUL ��WXWRULDO�WHPSODWH�WOG��SUHIL[�WW���!
��#�SDJH�HUURU3DJH �HUURUSDJH�MVS���!
��#�LQFOXGH�ILOH �VFUHHQGHILQLWLRQV�MVS���!�KWPO!

�KHDG!
�WLWOH!

�WW�LQVHUW�GHILQLWLRQ �ERRNVWRUH�
SDUDPHWHU �WLWOH��!

��WLWOH!
��KHDG!

�WW�LQVHUW�GHILQLWLRQ �ERRNVWRUH�
SDUDPHWHU �EDQQHU��!

�WW�LQVHUW�GHILQLWLRQ �ERRNVWRUH��
SDUDPHWHU �ERG\��!

��ERG\!
��KWPO!

VFUHHQGHILQLWLRQV�MVS creates a screen definition based on a request attribute
VHOHFWHG6FUHHQ:

�WW�GHILQLWLRQ�QDPH �ERRNVWRUH��
VFUHHQ ��� ��6WULQJ�UHTXHVW�

JHW$WWULEXWH�?�VHOHFWHG6FUHHQ?����!�!
�WW�VFUHHQ�LG ��HQWHU�!

�WW�SDUDPHWHU�QDPH �WLWOH��
YDOXH �'XNH·V�%RRNVWRUH��GLUHFW �WUXH��!

�WW�SDUDPHWHU�QDPH �EDQQHU��
YDOXH ��EDQQHU�MVS��GLUHFW �IDOVH��!

�WW�SDUDPHWHU�QDPH �ERG\��
YDOXH ��ERRNVWRUH�MVS��GLUHFW �IDOVH��!

��WW�VFUHHQ!
�WW�VFUHHQ�LG ��FDWDORJ�!

�WW�SDUDPHWHU�QDPH �WLWOH��

../examples/web/bookstore3/template.txt
../examples/web/bookstore3/screendefinitions.txt

A TEMPLATE TAG LIBRARY 491
YDOXH ��� PHVVDJHV�JHW6WULQJ��7LWOH%RRN&DWDORJ���!�
GLUHFW �WUXH��!
���

��WW�GHILQLWLRQ!

The template is instantiated by the 'LVSDWFKHU servlet. 'LVSDWFKHU first gets the
requested screen and stores as an attribute of the request. This is necessary
because when the request is forwarded to WHPSODWH�MVS, the request URL
doesn’t contain the original request (for example, �ERRNVWRUH��FDWDORJ), but
instead reflects the path (�ERRNVWRUH��WHPSODWH�MVS) of the forwarded page.
Finally the servlet dispatches the request to WHPSODWH�MVS:

SXEOLF�FODVV�'LVSDWFKHU�H[WHQGV�+WWS6HUYOHW�^
SXEOLF�YRLG�GR*HW�+WWS6HUYOHW5HTXHVW�UHTXHVW��

+WWS6HUYOHW5HVSRQVH�UHVSRQVH��^
UHTXHVW�VHW$WWULEXWH��VHOHFWHG6FUHHQ��

UHTXHVW�JHW6HUYOHW3DWK����
5HTXHVW'LVSDWFKHU�GLVSDWFKHU�

UHTXHVW�JHW5HTXHVW'LVSDWFKHU���WHPSODWH�MVS���
LI��GLVSDWFKHU�� �QXOO�

GLVSDWFKHU�IRUZDUG�UHTXHVW��UHVSRQVH��
`
SXEOLF�YRLG�GR3RVW�+WWS6HUYOHW5HTXHVW�UHTXHVW��

+WWS6HUYOHW5HVSRQVH�UHVSRQVH��^
UHTXHVW�VHW$WWULEXWH��VHOHFWHG6FUHHQ��

UHTXHVW�JHW6HUYOHW3DWK����
5HTXHVW'LVSDWFKHU�GLVSDWFKHU�

UHTXHVW�JHW5HTXHVW'LVSDWFKHU���WHPSODWH�MVS���
LI��GLVSDWFKHU�� �QXOO�

GLVSDWFKHU�IRUZDUG�UHTXHVW��UHVSRQVH��
`

`

Tag Handlers
The template tag library contains four tag handlers—'HILQLWLRQ7DJ,
6FUHHQ7DJ, 3DUDPHWHU7DJ, and ,QVHUW7DJ—that demonstrate the use of coop-
erating tags. 'HILQLWLRQ7DJ, 6FUHHQ7DJ, and 3DUDPHWHU7DJ comprise a set of
nested tag handlers that share public and private objects. 'HILQLWLRQ7DJ creates
a public named object called GHILQLWLRQ that is used by ,QVHUW7DJ.

In GR6WDUW7DJ, 'HILQLWLRQ7DJ creates a public object named VFUHHQV that
contains a hash table of screen definitions. A screen definition consists of a
screen identifier and a set of parameters associated with the screen.

../examples/web/bookstore3/Dispatcher.java
../examples/web/bookstore3/taglib/DefinitionTag.java

492 CUSTOM TAGS IN JSP™ PAGES
SXEOLF�LQW�GR6WDUW7DJ���^
+DVK0DS�VFUHHQV� �QXOO�
VFUHHQV� ��+DVK0DS��SDJH&RQWH[W�JHW$WWULEXWH��VFUHHQV���

SDJH&RQWH[W�$33/,&$7,21B6&23(��
LI��VFUHHQV� �QXOO�

SDJH&RQWH[W�VHW$WWULEXWH��VFUHHQV���QHZ�+DVK0DS����
SDJH&RQWH[W�$33/,&$7,21B6&23(��

UHWXUQ�(9$/B%2'<B,1&/8'(�
`

The table of screen definitions is filled in by 6FUHHQ7DJ and 3DUDPHWHU7DJ from
text provided as attributes to these tags. Table 6 shows the contents of the screen
definitions hash table for the Duke’s Bookstore application.

In GR(QG7DJ, 'HILQLWLRQ7DJ creates a public object of class 'HILQLWLRQ,
selects a screen definition from the VFUHHQV object based on the URL passed in
the request, and uses it to initialize the 'HILQLWLRQ object.

SXEOLF�LQW�GR(QG7DJ��WKURZV�-VS7DJ([FHSWLRQ�^
WU\�^

'HILQLWLRQ�GHILQLWLRQ� �QHZ�'HILQLWLRQ���
+DVKWDEOH�VFUHHQV� �QXOO�
$UUD\/LVW�SDUDPV� �QXOO�
7DJ6XSSRUW�VFUHHQ� �QXOO�
VFUHHQV� ��+DVK0DS��

SDJH&RQWH[W�JHW$WWULEXWH��VFUHHQV��
SDJH&RQWH[W�$33/,&$7,21B6&23(��

LI��VFUHHQV�� �QXOO�
SDUDPV� ��$UUD\/LVW��VFUHHQV�JHW�VFUHHQ,G��

Table 6 Screen Definitions

Screen Id Title Banner Body

�HQWHU 'XNH·V�%RRNVWRUH �EDQQHU�MVS �ERRNVWRUH�MVS

�FDWDORJ %RRN�&DWDORJ �EDQQHU�MVS �FDWDORJ�MVS

�ERRNGHWDLOV %RRN�'HVFULSWLRQ �EDQQHU�MVS �ERRNGHWDLOV�MVS

�VKRZFDUW <RXU�6KRSSLQJ�&DUW �EDQQHU�MVS �VKRZFDUW�MVS

�FDVKLHU &DVKLHU �EDQQHU�MVS �FDVKLHU�MVS

�UHFHLSW 5HFHLSW �EDQQHU�MVS �UHFHLSW�MVS

../examples/web/bookstore3/taglib/Definition.java

A TEMPLATE TAG LIBRARY 493
HOVH
���

LI��SDUDPV� �QXOO�
���

,WHUDWRU�LU� �QXOO�
LI��SDUDPV�� �QXOO�

LU� �SDUDPV�LWHUDWRU���
ZKLOH���LU�� �QXOO��		�LU�KDV1H[W���

GHILQLWLRQ�VHW3DUDP��3DUDPHWHU��LU�QH[W����
���SXW�WKH�GHILQLWLRQ�LQ�WKH�SDJH�FRQWH[W

SDJH&RQWH[W�VHW$WWULEXWH�
GHILQLWLRQ1DPH��GHILQLWLRQ��

`�FDWFK��([FHSWLRQ�H[��^
H[�SULQW6WDFN7UDFH���

`
UHWXUQ�(9$/B3$*(�

`

If the URL passed in the request is /HQWHU, the 'HILQLWLRQ contains the items
from the first row of Table 6:

The definition for the URL �HQWHU is shown in Table 7. The definition specifies
that the value of the 7LWOH parameter, Duke’s Bookstore, should be inserted
directly into the output stream, but the values of %DQQHU and %RG\ should be
dynamically included.

Title Banner Body

'XNH·V�%RRNVWRUH �EDQQHU�MVS �ERRNVWRUH�MVS

Table 7 Screen Definition for URL �HQWHU

Parameter
Name Parameter Value isDirect

WLWOH 'XNH·V�%RRNVWRUH WUXH

EDQQHU �EDQQHU�MVS IDOVH

ERG\ �ERRNVWRUH�MVS IDOVH

494 CUSTOM TAGS IN JSP™ PAGES
,QVHUW7DJ uses the 'HILQLWLRQ to insert parameters of the screen definition
into the response. In the GR6WDUW7DJ method it retrieves the definition object
from the page context.

SXEOLF�LQW�GR6WDUW7DJ���^
���JHW�WKH�GHILQLWLRQ�IURP�WKH�SDJH�FRQWH[W
GHILQLWLRQ� ��'HILQLWLRQ��SDJH&RQWH[W�

JHW$WWULEXWH�GHILQLWLRQ1DPH��
���JHW�WKH�SDUDPHWHU
LI��SDUDPHWHU1DPH�� �QXOO�		�GHILQLWLRQ�� �QXOO�

SDUDPHWHU� ��3DUDPHWHU�GHILQLWLRQ�
JHW3DUDP�SDUDPHWHU1DPH��

LI��SDUDPHWHU�� �QXOO�
GLUHFW,QFOXGH� �SDUDPHWHU�LV'LUHFW���

UHWXUQ�6.,3B%2'<�
`

The GR(QG7DJ method inserts the parameter value. If the parameter is direct, it is
directly inserted into the response; otherwise the request is sent to the parameter
and the response is dynamically included into the overall response.

SXEOLF�LQW�GR(QG7DJ��WKURZV�-VS7DJ([FHSWLRQ�^
WU\�^

LI��GLUHFW,QFOXGH�		�SDUDPHWHU�� �QXOO�
SDJH&RQWH[W�JHW2XW���SULQW�SDUDPHWHU�JHW9DOXH����

HOVH�^
LI���SDUDPHWHU�� �QXOO��		�

�SDUDPHWHU�JHW9DOXH���� �QXOO��
SDJH&RQWH[W�LQFOXGH�SDUDPHWHU�JHW9DOXH����

`
`�FDWFK��([FHSWLRQ�H[��^

WKURZ�QHZ�-VS7DJ([FHSWLRQ�H[�JHW0HVVDJH����
`
UHWXUQ�(9$/B3$*(�

`

How Is a Tag Handler Invoked?
The 7DJ interface defines the basic protocol between a tag handler and JSP
page’s servlet. It defines the life cycle and the methods to be invoked when the
start and end tags are encountered.

The JSP page’s servlet invokes the VHW3DJH&RQWH[W, VHW3DUHQW, and attribute
setting methods before calling GR6WDUW7DJ. The JSP page’s servlet also guaran-
tees that UHOHDVH will be invoked on the tag handler before the end of the page.

../examples/web/bookstore3/taglib/InsertTag.java

HOW IS A TAG HANDLER INVOKED? 495
Here is a typical tag handler method invocation sequence:

$7DJ�W� �QHZ�$7DJ���
W�VHW3DJH&RQWH[W������
W�VHW3DUHQW������
W�VHW$WWULEXWH��YDOXH���
W�VHW$WWULEXWH��YDOXH���
W�GR6WDUW7DJ���
W�GR(QG7DJ���
W�UHOHDVH���

The %RG\7DJ interface extends 7DJ by defining additional methods that let a tag
handler access its body. The interface provides three new methods:

VHW%RG\&RQWHQW - creates body content and adds to tag handler

GR,QLW%RG\ - called before evaluation of tag body

GR$IWHU%RG\ - called after evaluation of tag body

A typical invocation sequence is:

W�GR6WDUW7DJ���
RXW� �SDJH&RQWH[W�SXVK%RG\���
W�VHW%RG\&RQWHQW�RXW��
���SHUIRUP�DQ\�LQLWLDOL]DWLRQ�QHHGHG�DIWHU�ERG\�FRQWHQW�LV�VHW
W�GR,QLW%RG\���
W�GR$IWHU%RG\���
���ZKLOH�GR$IWHU%RG\�UHWXUQV�(9$/B%2'<B%8))(5('�ZH�
���LWHUDWH�ERG\�HYDOXDWLRQ
���
W�GR$IWHU%RG\���
W�GR(QG7DJ���
W�SDJH&RQWH[W�SRS%RG\���
W�UHOHDVH���

496 CUSTOM TAGS IN JSP™ PAGES

JavaServer Pages™
Standard Tag Library

Stephanie Bodoff

THE JavaServer Pages™ Standard Tag Library (“JSTL”) encapsulates core
functionality common to many JSP applications. For example, instead of iterat-
ing over lists using a scriptlet or different iteration tags from numerous vendors,
JSTL defines a standard tag that works the same everywhere. This standardiza-
tion lets you learn a single tag and use it on multiple JSP containers. Also, when
tags are standard, containers can recognize them and optimize their implementa-
tions.

JSTL has support for common, structural tasks such as iteration and condition-
als, tags for manipulating XML documents, internationalization tags, and tags
for accessing databases using SQL. It also introduces the concept of an expres-
sion language to simplify page development and includes several experimental
languages. JSTL also provides a framework for integrating existing custom tags
with JSTL tags.

For a complete description of JSTL tags, see the JSTL reference included with
the Java™ Web Services Developer Pack (“Java WSDP”) at
<JSWDP_HOME!�GRFV�MVWO�LQGH[�KWPO. This chapter assumes that you are
familiar with the material in the Using Tags (page 465) section of Custom Tags
in JSP™ Pages (page 461).

In This Chapter
The Example JSP Pages 498
Using JSTL 499
497

498 JAVASERVER PAGES™ STANDARD TAG LIBRARY
Expression Language Support 501
Twin Libraries 502
Specifying an Expression Language Evaluator 503
Simplest Possible Expression Language (SPEL) 504
Tag Collaboration 505

Core Tags 506
Expression Tags 506
Flow Control Tags 507
Import Tags 509

XML Tags 509
Core Tags 510
Flow Control Tags 511
Transformation Tags 511

Internationalization Tags 512
Messaging Tags 512
Formatting Tags 513

SQL Tags 514
query Tag Result-Related Interfaces 515

The Example JSP Pages
This chapter illustrates JSTL with excerpts from the JSP version of the Duke’s
Bookstore application discussed in Custom Tags in JSP™ Pages (page 461)
rewritten as follows:

• Replaced the Struts logic tags with JSTL core tags.

• Replaced scriptlets accessing a message store with message formatting
tags.

• Removed the JavaBeans component database helper object and replaced
its function with direct calls to the database via the JSTL SQL tags. For
most applications, it is better to encapsulate calls to a database in a bean.
JSTL includes SQL tags for situations where a new application is being
prototyped and the overhead of creating a bean may not be warranted.

The source for the Duke’s Bookstore application is located in the GRFV�WXWR�
ULDO�H[DPSOHV�ZHE�ERRNVWRUH� directory created when you unzip the tutorial
bundle (see Running the Examples (page xvi)). To build, deploy, and run the
example:

1. Go to the examples directory and build and deploy the example by running
DQW. This runs the default ant target GHSOR\ which depends on the EXLOG

499
target. The EXLOG target will spawn any necessary compilations and copy
files to the GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG directory.
The GHSOR\ target copies the ERRNVWRUH��[PO context file to
<JWSDP_HOME>�ZHEDSSV as described in Running Web
Applications (page 385).

2. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

3. Start or restart Tomcat.

4. Open the bookstore URL KWWS���ORFDOKRVW������ERRNVWRUH��HQWHU.

See Common Problems and Their Solutions (page 70) and
Troubleshooting (page 396) for help with diagnosing common problems.

Using JSTL
JSTL includes a wide variety of tags that naturally fit into discrete functional
areas. Therefore, JSTL is exposed via multiple TLDs to clearly show the func-
tional areas it covers and give each area its own namespace. Table 1 summarizes
these functional areas along with the logical TLD names and prefixes used in
this chapter and Duke’s Bookstore application.

To use the JSTL core tags in a JSP page, you declare the library using a WDJOLE
directive that references the TLD:

��#�WDJOLE�XUL ��MVWO�FRUH��SUHIL[�F���!

The JSTL tag libraries comes in two versions (see Twin Libraries (page 502)).
The TLDs for the JSTL-EL library are named prefix�WOG. The TLDs for the
JSTL-RT library are named prefix�UW�WOG. Since this chapter and examples use
logical TLD names, we map the names to actual TLD locations with a WDJOLE
element in ZHE�[PO:

�WDJOLE!
�WDJOLE�XUL!�MVWO�F��WDJOLE�XUL!
�WDJOLE�ORFDWLRQ!�:(%�,1)�F�WOG��WDJOLE�ORFDWLRQ!

��WDJOLE!

In the Java WSDP, the JSTL TLDs are stored in �JWSDP_HOME!�WRROV�MVWO.
When you build the Duke’s Bookstore application these TLDs are automatically
copied into GRFV�WXWRULDO�H[DPSOHV�ZHE�ERRNVWRUH��EXLOG�:(%�,1).

500 JAVASERVER PAGES™ STANDARD TAG LIBRARY
You can also reference a TLD in a WDJOLE directive with an absolute URI:

• Core: KWWS���MDYD�VXQ�FRP�MVWO�HD�FRUH

• XML: KWWS���MDYD�VXQ�FRP�MVWO�HD�[PO

• Internationalization: KWWS���MDYD�VXQ�FRP�MVWO�HD�IPW

• SQL: KWWS���MDYD�VXQ�FRP�MVWO�HD�VTO

When you use an absolute URI, you do not have to add the WDJOLE element to
ZHE�[PO; the JSP container automatically locates the TLD inside the JSTL
library implementation.

Table 1 JSTL Tags

Area Function Tags TLD Prefix

Core

Expression Language
Support

�H[SU!
�VHW!

�MVWO�F FFlow Control

�IRU(DFK!
�IRU(DFK7RNHQ!
�LI!
�FKRRVH!
�ZKHQ!
�RWKHUZLVH!

Import
�LPSRUW!
�SDUDP!
�XUO(QFRGH!

XML

Core
�SDUVH!
�H[SU!
�VHW!

�MVWO�[[Flow Control

�IRU(DFK!
�LI!
�FKRRVH!
�ZKHQ!
�RWKHUZLVH!

Transformation
�WUDQVIRUP!
�SDUDP!
�WUDQVIRUPHU!

501
In addition to declaring the tag library, you also need to make the JSTL API and
implementation available to the Web application. In the Java WSDP, these JSTL
libraries are respectively MVWO�MDU and VWDQGDUG�MDU� and are stored in
�JWSDP_HOME!�WRROV�MVWO. When you build the Duke’s Bookstore application
these libraries are automatically copied into GRFV�WXWRULDO�H[DP�
SOHV�ZHE�ERRNVWRUH��EXLOG�:(%�,1)�OLE.

Expression Language Support
A primary feature of JSTL is its support for an expression language. Currently, a
page author has to use an expression �� �D1DPH��! to access the value of a sys-
tem or user-defined JavaBeans component. For example:

�[�D7DJ�DWW ��� �SDJH&RQWH[W�JHW$WWULEXWH��D1DPH����!�!�

Furthermore, referring to nested bean properties is even more complex:

�� �D1DPH�JHW)RR���JHW%DU����!

I18n

Locale �ORFDOH!

�MVWO�IPW IPW

Message formatting

�EXQGOH!
�PHVVDJH!
�PHVVDJH)RUPDW!
�PHVVDJH$UJ!

Number and date
formatting

�IRUPDW1XPEHU!
�SDUVH1XPEHU!
�WLPH=RQH!
�IRUPDW'DWH!
�SDUVH'DWH!

Data-
base

�GULYHU!

�MVWO�VTO VTO
SQL

�WUDQVDFWLRQ!
�TXHU\!
�XSGDWH!
�SDUDP!

Table 1 JSTL Tags (Continued)

Area Function Tags TLD Prefix

502 JAVASERVER PAGES™ STANDARD TAG LIBRARY
This makes page authoring more complex than it need be. An expression lan-
guage allows a page author to access an object using a simplified syntax such as

����[�DWDJ�DWW ��D1DPH�!�

for a simple variable or

�[�D7DJ�DWW ��D1DPH�IRR�EDU�!�

for a nested property.

Expression languages elevate JSP scoped attributes as the standard way to com-
municate information from business logic to JSP pages. An expression language,
in concert with JSTL tags, makes it possible to easily access application data and
manipulate it in simple ways without having to use scriptlets or request-time
expressions. For example, this conditional tag tests whether the number of items
in a session-scoped shopping cart is greater than 0.

�F�LI�WHVW ��VHVVLRQ�FDUW�QXPEHU2I,WHPV�!���!�
���

��F�LI!

A goal of the next version of the JSP specification is to standardize on an expres-
sion language for all custom tag libraries. In the meantime, JSTL contains sev-
eral expression languages for experimenting with, including:

• SPEL, the Simplest Possible Expression Language

• ECMAScript

• JXPath

The default expression language for the JSTL implementation is ECMAScript.
However, the example discussed in this chapter uses SPEL (see Simplest Possi-
ble Expression Language (SPEL) (page 504)) because it allows you to specify
the scope of objects.

Twin Libraries
The JSTL tag libraries comes in two versions which differ only in the way they
support the use of runtime expressions for attribute values.

In the JSTL-RT tag library, expressions are specified in the page's scripting lan-
guage. This is exactly how things currently work in current tag libraries.

http://www.ecma.ch/ecma1/stand/ecma-262.htm
http://jakarta.apache.org/commons/components.html

SPECIFYING AN EXPRESSION LANGUAGE EVALUATOR 503
In the JSTL-EL tag library, expressions are specified in a JSTL expression lan-
guage (EL). An expression is a 6WULQJ literal in the syntax of the EL. It is the
responsibility of the EL to define the metacharacter(s) used to discriminate
expressions from 6WULQJ literals (for example, use � at the beginning of an
expression).

When using the EL tag library you cannot pass a scripting language expression
for the value of an attribute. This rule makes it possible to validate the syntax of
an expression at translation time.

Specifying an Expression Language
Evaluator
To use an expression language other than the default (ECMAScript) you must
provide a context parameter MDYD[�VHUYOHW�MVS�([SUHVVLRQ(YDOXDWRU&ODVV
in the Web application deployment descriptor. Because the Duke’s Bookstore
example uses SPEL, which is not the default expression language, it must con-
vey this information to the tag library implementation. Here is the declaration
from the Duke’s Bookstore descriptor:

�FRQWH[W�SDUDP!
�SDUDP�QDPH!

MDYD[�VHUYOHW�MVS�MVWO�WHPS�([SUHVVLRQ(YDOXDWRU&ODVV
��SDUDP�QDPH!
�SDUDP�YDOXH!

RUJ�DSDFKH�WDJOLEV�VWDQGDUG�ODQJ�VSHO�(YDOXDWRU
��SDUDP�YDOXH!

��FRQWH[W�SDUDP!

It is also possible to override the default expression language setting with the
H[SUHVVLRQ/DQJXDJH tag. For example:

�F�H[SUHVVLRQ/DQJXDJH�FODVV �����!�
�F�IRU(DFK�LWHPVB �SURGXFWV�#NH\�!�
����
��F�IRU(DFK!�

��F�H[SUHVVLRQ/DQJXDJH!�

The scope of the expression language specified by tag F�H[SUHVVLRQ/DQJXDJH
is limited to its body. F�H[SUHVVLRQ/DQJXDJH tags can be nested, where nested
occurrences shadow their ancestors.

504 JAVASERVER PAGES™ STANDARD TAG LIBRARY
Simplest Possible Expression Language
(SPEL)
This is a brief summary of SPEL. For a complete syntax, see
<JWSDP_HOME!�GRFV�MVWO�VSHO�VSHO�KWPO.

SPEL is responsible for handling both expressions and literals. The syntax of
SPEL is extremely simple. Expressions begin with a � character. For example:

�����F�LI�WHVW ��EHDQ��D�������!

Any value that does not begin with � is treated as a literal that is parsed to the
expected type using the 3URSHUW\(GLWRU for the expected type:

�����F�LI�WHVW �WUXH���!

Literal values that start with the $ character must be escaped using the ? charac-
ter:

�P\WDJV�SULFH�SULFH �?��������!

If a value starts with ?�, it is treated as a literal value with the leading ? removed.

Attributes
Attributes are accessed by name, with an optional scope. Properties of attributes
are accessed using the � operator, and may be nested arbitrarily. Indexed proper-
ties are accessed using the >@ operator.

Attribute and property names must be Java identifiers, unless they are quoted.

If an attribute is specified with a scope of SDJH, UHTXHVW, VHVVLRQ, or DSS, its
value is the value of that name in the given scope. If no scope is given, the value
is found according to the rules of 3DJH&RQWH[W�ILQG$WWULEXWH�QDPH�.

If an attribute is specified with a scope of KHDGHU, its value is obtained by calling
+WWS6HUYOHW5HTXHVW�JHW+HDGHU�6WULQJ�.

If an attribute is specified with a scope of SDUDP, its value is obtained by calling
6HUYOHW5HTXHVW�JHW3DUDPHWHU�6WULQJ�.

If an attribute is specified with a scope of SDUDPYDOXHV, its value is obtained by
calling 6HUYOHW5HTXHVW�JHW3DUDPHWHU9DOXHV�6WULQJ�.

../../api/javax/servlet/jsp/PageContext.html#findAttribute(java.lang.String)
../../api/javax/servlet/http/HttpServletRequest.html#getHeader(java.lang.String)
../../api/javax/servlet/ServletRequest.html#getParameter(java.lang.String)
../../api/javax/servlet/ServletRequest.html#getParameterValues(java.lang.String)

TAG COLLABORATION 505
In any of these cases, if a value is not found, the result is an ([SUHVVLRQ([FHS�
WLRQ, not QXOO.

Relational Operators
Relational comparisons are allowed using the relational operators (, � , �, !,
� , !). Comparisons may be made against other values, or against boolean,
string, integer, or floating point literals.

Tag Collaboration
Tags usually collaborate with their environment in implicit and/or explicit ways.
Implicit collaboration is done via a well defined interface that allows nested tags
to work seamlessly with the ancestor tag exposing that interface. The JSTL itera-
tor tags support this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environ-
ment. Traditionally, this has been done by exposing a scripting variable (with a
JSP scoped attribute providing the actual object). Because JSTL supports an
expression language, there is less need for scripting variables. So the JSTL tags
(both the EL and RT versions) expose information only as JSP scoped attributes;
no scripting variables are used. The convention JSTL follows is to use the name
YDU for any tag attribute that exports information about the tag. For example, the
IRU(DFK tag exposes the current item of shopping cart it is iterating over in the
following way:

�F�IRU(DFK�YDU �LWHP��LWHPV ��VHVVLRQ�FDUW�LWHPV�!
���

��F�IRU(DFK!

The name YDU was selected to highlight the fact that the scoped variable exposed
is not a scripting variable (which is normally the case for attributes named LG).

In situations where a tag exposes more than one piece of information, the name
YDU is used for the primary piece of information being exported, and an appropri-
ate name is selected for any other secondary piece of information exposed. For
example, iteration status information is exported by the IRU(DFK tag via the
attribute VWDWXV.

../../api/javax/servlet/jsp/jstl/core/ExpressionException.html
../../api/javax/servlet/jsp/jstl/core/ExpressionException.html

506 JAVASERVER PAGES™ STANDARD TAG LIBRARY
Core Tags
The core tags include those related to expressions, flow control, and a generic
way to access URL-based resources whose content can then be included and or
processed within the JSP page.

Expression Tags
The H[SU tag evaluates an expression and outputs the result of the evaluation to
the current -VS:ULWHU object. It is the equivalent of the JSP syntax �� �expression

�!. For example, VKRZFDUW�MVS displays the number of items in a shopping cart
as follows:

�F�H[SU�YDOXH ��VHVVLRQ�FDUW�QXPEHU2I,WHPV��!

The VHW tag sets the value of an attribute in any of the JSP scopes (page, request,
session, application). If the attribute does not already exist, it is created.

The JSP scoped attribute can be set either from attribute value:

�F�VHW�LG �IRR��VFRSH �VHVVLRQ��YDOXH ������!�

Table 2 Core Tags

Area Function Tags TLD Prefix

Core

Expression Language
Support

�H[SU!
�VHW!

�MVWO�F FFlow Control

�IRU(DFK!
�IRU(DFK7RNHQ!
�LI!
�FKRRVH!
�ZKHQ!
�RWKHUZLVH!

Import
�LPSRUW!
�SDUDP!
�XUO(QFRGH!

../examples/web/bookstore4/showcart.txt

FLOW CONTROL TAGS 507
or from the body of the tag:

�F�VHW�LG �IRR�!�
����

��F�VHW!�

The JSTL expression language reduces the need for scripting. However, page
authors will still have to deal with situations where some attributes of non-JSTL
tags must be specified as expressions in the page’s scripting language. The stan-
dard JSP element MVS�XVH%HDQ is used to declare a scripting variable that can be
used in a scripting language expression or scriptlet. For example, VKRZFDUW�MVS
removes a book from a shopping cart using a scriptlet. The ID of the book to be
removed is passed as a request parameter. The value of the request parameter is
first set as a page attribute (to be used later by the JSTL VTO�TXHU\ tag) and then
declared as scripting variable and passed to the FDUW�UHPRYH�method:

�F�VHW�YDU �ERRN,G��YDOXH ��SDUDP�5HPRYH��!
�MVS�XVH%HDQ�LG �ERRN,G��W\SH �MDYD�ODQJ�6WULQJ���!
���FDUW�UHPRYH�ERRN,G����!
�VTO�TXHU\�YDU �ERRNV��GDWD6RXUFH ��ERRN'6�!

VHOHFW�
�IURP�38%/,&�ERRNV�ZKHUH�LG� �"
�VTO�SDUDP�YDOXH ��ERRN,G���!

��VTO�TXHU\!

Flow Control Tags
To execute flow control logic, a page author must generally resort to using
scriptlets. For example, the following scriptlet is used to iterate through a shop-
ping cart:

���
,WHUDWRU�L� �FDUW�JHW,WHPV���LWHUDWRU���
ZKLOH��L�KDV1H[W����^

6KRSSLQJ&DUW,WHP�LWHP�
�6KRSSLQJ&DUW,WHP�L�QH[W���

���
�!

�WU!
�WG�DOLJQ �ULJKW��EJFRORU ��IIIIII�!�
�� LWHP�JHW4XDQWLW\���!
��WG!

../examples/web/bookstore4/showcart.txt

508 JAVASERVER PAGES™ STANDARD TAG LIBRARY
���
���

`�
�!

Flow control tags eliminate the need for scriptlets.

Iterator Tags
The IRU(DFK tag allows you to iterate over a collection of objects.

Here’s the iteration from the previous section using the IRU(DFK tag:

�F�IRU(DFK�YDU �LWHP��LWHPV ��VHVVLRQ�FDUW�LWHPV�!
���
�WU!�

�WG�DOLJQ �ULJKW��EJFRORU ��IIIIII�!�
�F�H[SU�YDOXH ��LWHP�TXDQWLW\��!

��WG!
���

��F�IRU(DFK!

Conditional Tags
The LI tag allows the conditional execution of its body according to value of a
test attribute. The following example from FDWDORJ�MVS tests whether the
request parameter $GG is not empty. If the test evaluates to WUXH, the page queries
the database for the book record identified by the request parameter and adds the
book to the shopping cart:

�F�LI�WHVW ��SDUDP�$GG�� �··�!
�F�VHW�YDU �ELG��YDOXH ��SDUDP�$GG��!
�F�GHFODUH�LG �ELG���W\SH �MDYD�ODQJ�6WULQJ���!
��VTO�TXHU\�YDU �ERRNV��GDWD6RXUFH ��ERRN'6�!

VHOHFW�
�IURP�38%/,&�ERRNV�ZKHUH�LG� �"
�VTO�SDUDP�YDOXH ��ELG���!

��VTO�TXHU\!
�F�IRU(DFK�YDU �ERRN5RZ��EHJLQ ����LWHPV ��ERRNV�URZV�!�

�F�GHFODUH�LG �ERRN5RZ�
W\SH �MDYD[�VHUYOHW�MVS�MVWO�VTO�5RZ���!

�MVS�XVH%HDQ�LG �DGGHG%RRN�
FODVV �GDWDEDVH�%RRN'HWDLOV��VFRSH �SDJH���!

../examples/web/bookstore4/catalog.txt

IMPORT TAGS 509
���
���FDUW�DGG�ELG��DGGHG%RRN����!

���
��F�LI!

The FKRRVH tag performs conditional block execution embedded by the ZKHQ sub
tags. It renders the body of the first ZKHQ tag whose test condition evaluates to
true. If none of the test conditions of nested ZKHQ tags evaluate to WUXH, then the
body of an RWKHUZLVH tag is evaluated, if present.

Import Tags
The MVS�LQFOXGH element provides for the inclusion of static and dynamic
resources in the same context as the current page. However, MVS�LQFOXGH can-
not access resources that reside outside of the Web application and causes unnec-
essary buffering when the resource included is fed into another element

In the example below, the WUDQVIRUP element uses the content of the included
resource as the input of its transformation. The MVS�LQFOXGH element reads the
content of the response, writes it to the body content of the enclosing transform
element, which then re-reads the exact same content. It would be more efficient
if the WUDQVIRUP element could access the input source directly and avoid the
buffering involved in the body content of the transform tag.

�DFPH�WUDQVIRUP!
�MVS�LQFOXGH�SDJH ��H[HF�HPSOR\HHV/LVW��!

�DFPH�WUDQVIRUP�!

The LPSRUW tag is therefore the simple, generic way to access URL based
resources whose content can then be included and or processed within the JSP
page. The SDUDP tag, analogous to the MVS�SDUDP tag (see Param
Element (page 446)), can be used with LPSRUW to specify request parameters.

XML Tags
A key aspect of dealing with XML documents is to be able to easily access their
content. XPath, a W3C recommendation since 1999, provides an easy notation
for specifying and selecting parts of an XML document. The JSTL XML tag set
is based on XPath.

510 JAVASERVER PAGES™ STANDARD TAG LIBRARY
The XML tags use XPath as a local expression language; XPath expressions are
always specified using attribute VHOHFW. This means that only values specified
for VHOHFW attributes are evaluated using the XPath expression language. All
other attributes are evaluated using the rules associated with the currently active
global expression language.

For information on XPath see:

• Zvon XPath Tutorial

• XML in a Nutshell—Chapter 9—XPath

This release of the tutorial summarizes the XML tags but does not illustrate their
use in the Duke’s Bookstore application.

Core Tags
The core set of XML tags provides the basic functionality to easily parse and
access XML data.

The SDUVH tag parses an XML document and saves the resulting object in the
JSP scoped attribute specified by attribute YDU.

The H[SU and VHW tags parallel the behavior described in Expression
Tags (page 506) for the XPath local expression language.

Table 3 XML Tags

Area Function Tags TLD Prefix

XML

Core
�SDUVH!
�H[SU!
�VHW!

�MVWO�[[Flow Control

�IRU(DFK!
�LI!
�FKRRVH!
�ZKHQ!
�RWKHUZLVH!

Transformation
�WUDQVIRUP!
�SDUDP!
�WUDQVIRUPHU!

http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

FLOW CONTROL TAGS 511
The H[SU tag evaluates an XPath expression on the current context node and out-
puts the result of the evaluation to the current -VS:ULWHU object.

The VHW tag evaluates an XPath expression and sets the result into a JSP scoped
attribute specified by attribute YDU.

Flow Control Tags
The XML flow control tags parallel the behavior described in Flow Control
Tags (page 507) for the XPath expression language.

�IRU(DFK!

�LI!

�FKRRVH!
�ZKHQ!
�RWKHUZLVH!

Transformation Tags
The WUDQVIRUP tag applies a transformation, specified by a XSLT stylesheet set
by the attribute [VOW, to an XML document, specified by the attribute [PO. If the
[PO attribute is not specified, the input XML document is read from the tag’s
body content.

The SDUDP subtag can be used along with WUDQVIRUP to set transformation
parameters. The attributes QDPH and YDOXH are used to specify the parameter. The
value attribute is optional. If it is not specified the value is retrieved from the
tag’s body.

Sometimes the same stylesheet transformation needs to be applied multiple
times to different source XML documents. Instead of processing the stylesheet
on each invocation of WUDQVIRUP, a more efficient approach is to process the
transformation stylesheet once, and then save this transformer object for succes-
sive transformations. The WUDQVIRUPHU tag can be used in collaboration with the
WUDQVIRUPHU attribute of WUDQVIRUP to efficiently reuse a transformation
stylesheet.

512 JAVASERVER PAGES™ STANDARD TAG LIBRARY
Internationalization Tags
In Internationalizing and Localizing Web Applications (page 386) we discussed
the how to adapt Web applications to the language and formatting conventions of
client locales. This section describes tags that support the internationalization of
JSP pages.

JSTL defines two sets of tags:

• Messaging tags assist page authors with creating messages that can be
adapted to any locale available in the JSP container

• Formatting tags allow various data elements such as numbers, currencies,
dates and times to be formatted and parsed in a locale-sensitive or custom-
ized manner.

Messaging Tags
By default, browser-sensing capabilities for locales are enabled. This means that
the client determines (via its browser settings) which locale to use, and allows
page authors to cater to the language preferences of their clients.

The ORFDOH tag is used to override the client-specified locale for a page.

Table 4 Internationalization Tags

Area Function Tags TLD Prefix

I18n

Locale �ORFDOH!

�MVWO�IPW IPW

Message formatting

�EXQGOH!
�PHVVDJH!
�PHVVDJH)RUPDW!
�PHVVDJH$UJ!

Number and date
formatting

�IRUPDW1XPEHU!
�SDUVH1XPEHU!
�WLPH=RQH!
�IRUPDW'DWH!
�SDUVH'DWH!

FORMATTING TAGS 513
Specifying a Bundle
You use the EXQGOH tag to specify a resource bundle for a page.

To define a resource bundle for a Web application you specify the context
parameter MDYD[�VHUYOHW�MVS�MVWO�L��Q�EDVHQDPH in the Web application
deployment descriptor. Here is the declaration from the Duke’s Bookstore
descriptor:

�FRQWH[W�SDUDP!
�SDUDP�QDPH!

MDYD[�VHUYOHW�MVS�MVWO�L��Q�EDVHQDPH
��SDUDP�QDPH!
�SDUDP�YDOXH!PHVVDJHV�%RRNVWRUH0HVVDJHV��SDUDP�YDOXH!

��FRQWH[W�SDUDP!

Message Tags
The PHVVDJH tag is used to output localized strings. The following tag from FDW�
DORJ�MVS:

�K�!�IPW�PHVVDJH�NH\ �&KRRVH��!��K�!

is used to output a string inviting customers to choose a book from the catalog.

The PHVVDJH)RUPDW tag performs parametric replacement on a given pattern
string, using the runtime’s default locale. The pattern string may be specified via
the YDOXH attribute; if missing, it is read from the tag’s body content.

The PHVVDJH$UJ tag provides a single argument (for parametric replacement) to
the compound message or pattern in its parent PHVVDJH or PHVVDJH)RUPDW tag,
respectively. One PHVVDJH$UJ tag must be specified for each variable in the
compound message or pattern. Parametric replacement takes place in the order
of the PHVVDJH$UJ tags.

Formatting Tags
The IRUPDW1XPEHU tag is used to output localized numbers. The following tag
from VKRZFDUW�MVS:

�IPW�IRUPDW1XPEHU�YDOXH ��ERRN�SULFH��W\SH �FXUUHQF\��!

../examples/web/bookstore4/catalog.txt
../examples/web/bookstore4/catalog.txt

514 JAVASERVER PAGES™ STANDARD TAG LIBRARY
is used to display a localized price for a book. Note that since the price is main-
tained in the database in dollars, the localization is somewhat phony, because the
the IRUPDW1XPEHU tag is unaware of exchange rates. The tag formats currencies
but does not convert them. Analogous tags for formatting dates (IRUPDW'DWH),
and parsing numbers and dates (SDUVH1XPEHU, SDUVH'DWH) are also available.
The WLPH=RQH tag establishes the time zone (specified via the YDOXH attribute) to
be used by any nested IRUPDW'DWH tags.

SQL Tags
The JSTL SQL tags are designed for quick prototyping and simple applications.

The GULYHU tag is provided to allow you to set driver information for the data-
base. However, an application’s business logic (for example, via a life cycle
event listener or controller servlet) should normally be used to create a data
source and make it available to the rest of the application. This is the approach
followed by the Duke’s Bookstore, which creates a data source in OLVWHQ�
HUV�&RQWH[W/LVWHQHU:

SXEOLF�YRLG�FRQWH[W,QLWLDOL]HG�6HUYOHW&RQWH[W(YHQW�HYHQW��^
FRQWH[W� �HYHQW�JHW6HUYOHW&RQWH[W���
WU\��^�

,QLWLDO&RQWH[W�LF� �QHZ�,QLWLDO&RQWH[W���
&RQWH[W�HQY&W[� ��&RQWH[W��LF�ORRNXS��MDYD�FRPS�HQY���
'DWD6RXUFH�GV� ��'DWD6RXUFH�

HQY&W[�ORRNXS��MGEF�%RRN'%����
FRQWH[W�VHW$WWULEXWH��ERRN'6���GV��

Table 5 SQL Tags

Area Function Tags TLD Prefix

Data-
base

�GULYHU!

�MVWO�VTO VTO
SQL

�WUDQVDFWLRQ!
�TXHU\!
�XSGDWH!
�SDUDP!

QUERY TAG RESULT-RELATED INTERFACES 515
The TXHU\ tag is used to perform an SQL query that returns a result set. For
parameterized SQL queries, you use a nested SDUDP tag inside the query tag. The
XSGDWH tag is used to update a database row. The WUDQVDFWLRQ tag is used to per-
form an atomic update.

In FDWDORJ�MVS, the value of the $GG request parameter determines which book
information should be retrieved from in the database. This parameter is saved as
the attribute name ELG and passed to the SDUDP tag. Notice that the TXHU\ tag
obtains its data source from the attribute ERRN'6 set in the context listener.

�F�VHW�YDU �ELG��YDOXH ��SDUDP�$GG��!
�VTO�TXHU\�YDU �ERRNV��GDWD6RXUFH ��ERRN'6�!

VHOHFW�
�IURP�38%/,&�ERRNV�ZKHUH�LG� �"
�VTO�SDUDP�YDOXH ��ELG���!

��VTO�TXHU\!

query Tag Result-Related Interfaces
The following interfaces are used to retrieve information from objects returned
from a TXHU\ tag. For each interface we list the methods discussed in this sec-
tion. For complete information about these interfaces, see the API documenta-
tion for the MDYD[�VHUYOHW�MVS�MVWO�VTO package.

SXEOLF�LQWHUIDFH�5HVXOW
SXEOLF�5RZ>@�JHW5RZV��

SXEOLF�LQWHUIDFH�5HVXOW0HWD'DWD
SXEOLF�LQWHUIDFH�5RZ

SXEOLF�&ROXPQ>@�JHW&ROXPQV��
SXEOLF�LQWHUIDFH�&ROXPQ0HWD'DWD
SXEOLF�LQWHUIDFH�&ROXPQ

SXEOLF�6WULQJ�WR6WULQJ��
SXEOLF�2EMHFW�JHW9DOXH��

The YDU attribute set by a query is of type 5HVXOW. The JHW5RZV method returns
a collection of rows that can be provided to an iterator tag. The SPEL expression
language converts the syntax result�URZV to a call to�result�JHW5RZV. The expres-
sion �ERRNV�URZV in the following example returns a collection of rows.

When you provide a collection of rows to an iterator, the YDU attribute set by the
iterator is of type 5RZ. To retrieve information from a row, use the JHW&ROXPQV
method of 5RZ to get its columns, and the JHW9DOXH method of &ROXPQ to get the
value. The SPEL expression language converts the syntax row�FROXPQV>i@ to a

../../api/javax/servlet/jsp/jstl/sql/package-summary.html
../examples/web/bookstore4/catalog.txt

516 JAVASERVER PAGES™ STANDARD TAG LIBRARY
call to row�JHW&ROXPQV��>i@�which returns a &ROXPQ. When you pass a column
to F�H[SU tag, it outputs a 6WULQJ representation of the value of the column.

Thus, the Duke’s Bookstore page ERRNGHWDLOV�MVS retrieves the columns from
the ERRN row as follows.

�F�IRU(DFK�YDU �ERRN��EHJLQ ����LWHPV ��ERRNV�URZV�!
�K�!�F�H[SU�YDOXH ��ERRN�FROXPQV>�@��!��K�!
	QEVS��IPW�PHVVDJH�NH\ �%\��!��HP!�F�H[SU
YDOXH ��ERRN�FROXPQV>�@��!��F�H[SU
YDOXH ��ERRN�FROXPQV>�@��!��HP!	QEVS�	QEVS�
��F�H[SU�YDOXH ��ERRN�FROXPQV>�@��!��EU!�	QEVS���EU!
�K�!�IPW�PHVVDJH�NH\ �&ULWLFV��!��K�!
�EORFNTXRWH!�F�H[SU�YDOXH ��ERRN�FROXPQV>�@��!
��EORFNTXRWH!
�K�!�IPW�PHVVDJH�NH\ �,WHP3ULFH��!��
�IPW�IRUPDW1XPEHU�YDOXH ��ERRN�FROXPQV>�@�

W\SH �FXUUHQF\��!�
��K�!

��F�IRU(DFK!

The following excerpt from FDWDORJ�MVS uses the 5RZ and &ROXPQ interfaces to
retrieve values from the columns of a book row using scripting language expres-
sions. First the book row that matches a request parameter (ELG) is retrieved
from the database. Since the ELG and ERRN5RZ objects are later used by tags that
use scripting language expressions to set attribute values and a scriptlet that adds
a book to the shopping cart, both objects are declared as scripting variables using
the MVS�XVH%HDQ tag. The page then creates a bean that describes the book and
scripting language expressions are used to set the book properties from column
values. Finally the book is added to the shopping cart.

You might want to compare this version of FDWDORJ�MVS to the versions that use
a book database JavaBeans component.

�VTO�TXHU\�YDU �ERRNV��GDWD6RXUFH ��ERRN'6�!
VHOHFW�
�IURP�38%/,&�ERRNV�ZKHUH�LG� �"
�VTO�SDUDP�YDOXH ��ELG���!

��VTO�TXHU\!
�F�IRU(DFK�YDU �ERRN5RZ��EHJLQ ����LWHPV ��ERRNV�URZV�!�

�MVS�XVH%HDQ�LG �ELG���W\SH �MDYD�ODQJ�6WULQJ���!
�MVS�XVH%HDQ�LG �ERRN5RZ��

W\SH �MDYD[�VHUYOHW�MVS�MVWO�VTO�5RZ���!
�MVS�XVH%HDQ�LG �DGGHG%RRN��FODVV �GDWDEDVH�%RRN'HWDLOV�

VFRSH �SDJH���!
�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �ERRN,G�

YDOXH ��� ERRN5RZ�JHW����WR6WULQJ���!���!

../examples/web/bookstore4/catalog.txt
../examples/web/bookstore4/bookdetails.txt

QUERY TAG RESULT-RELATED INTERFACES 517
�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �VXUQDPH�
YDOXH ��� ERRN5RZ�JHW����WR6WULQJ���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �ILUVW1DPH�
YDOXH ��� ERRN5RZ�JHW����WR6WULQJ���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �WLWOH�
YDOXH ��� ERRN5RZ�JHW����WR6WULQJ���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �SULFH�
YDOXH ��� ��'RXEOH�ERRN5RZ�JHW����JHW9DOXH����
IORDW9DOXH���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �\HDU�
YDOXH ��� �,QWHJHU�ERRN5RZ�JHW����JHW9DOXH���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��
SURSHUW\ �GHVFULSWLRQ��
YDOXH ��� ERRN5RZ�JHW����WR6WULQJ���!���!

�MVS�VHW3URSHUW\�QDPH �DGGHG%RRN��SURSHUW\ �LQYHQWRU\�
YDOXH ��� �,QWHJHU�ERRN5RZ�JHW����JHW9DOXH���!���!

��MVS�XVH%HDQ!
���FDUW�DGG�ELG��DGGHG%RRN����!
���

��F�IRU(DFK!

518 JAVASERVER PAGES™ STANDARD TAG LIBRARY

The xrpcc Tool
Dale Green

PArt of the JAX-RPC reference implementation, the [USFF tool generates
stubs, ties, and other files. Stubs and ties are class files that enable communica-
tion between a remote client and a Web service. To see how stubs and ties fit into
the JAX-RPC stack, see Figure 1.

In addition to stubs and ties, the [USFF tool can generate either Remote Method
Invocation (RMI) interfaces, or Web Services Description Language (WSDL)
documents. If the tool’s input is a WSDL document, then it produces RMI inter-
faces. If the input is a set of RMI interfaces, then it creates WSDL documents.
You specify the files to be generated in the [USFF configuration file.

For an example of how to run the tool, see Generating the Stubs and
Ties (page 336).

In This Chapter
Syntax 519
Configuration File 521

Starting With RMI Interfaces 521
Starting With a WSDL Document 523
Specifying the Type Mapping 524

Syntax
The [USFF tool is a command-line utility with the following syntax:
519

Bios.html

520 THE XRPCC TOOL
UNIX:

[USFF�VK�[options@�config-file-name

Windows:

[USFF�EDW�>options@�config-file-name

Table 1 lists the tool’s options. If no option is specified, the tool displays usage
information.

* If this file is specified in the tool’s configuration file, then this file will be gen-
erated even if the command-line option is not specified.

Table 1 Options of xrpcc

Option Description

�FOLHQW
*HQHUDWHV�FOLHQW�VLGH�ILOHV��VWXEV��VHUYLFH�
LQWHUIDFH��LPSOHPHQWDWLRQ�FODVVHV��UHPRWH�
LQWHUIDFH

�VHUYHU
*HQHUDWHV�VHUYHU�VLGH�ILOHV��WLHV��VHUYHU�
FRQILJXUDWLRQ�ILOH��:6'/�ILOH
��VHUYLFH�GHIL�
QLWLRQ�LQWHUIDFH

�ERWK *HQHUDWHV�ERWK�WKH�FOLHQW�VLGH�DQG�VHUYHU�
VLGH�ILOHV

�FODVVSDWK�classpath 6HWV�WKH�WRRO·V�FODVVSDWK

�G�directory-name
6SHFLILHV�WKH�RXWSXW�GLUHFWRU\�IRU�WKH�JHQHU�
DWHG�ILOHV

�NHHS 'RHV�QRW�GHOHWH�WKH�JHQHUDWHG��MDYD�ILOHV�
DIWHU�WKH\�DUH�FRPSLOHG

�YHUVLRQ 'LVSOD\V�YHUVLRQ�QXPEHU�RI�-$;�53&

STARTING WITH RMI INTERFACES 521
Configuration File
The [USFF tool reads an XML configuration file which specifies the files to be
generated. The configuration file has two different formats, depending on
whether you are starting with RMI interfaces or a WSDL document. The file can
have one format or the other, but not both. The file’s �FRQILJXUDWLRQ! element
must have either one <UPL> element or one <ZVGO> element.

Note: Although required for the reference implementation of JAX-RPC, the config-
uration file and [USFF tool are not defined in the specifications. Their syntax and
usage may change in future releases.

Starting With RMI Interfaces
If you are starting with RMI interfaces, the tool can generate stubs, ties, a server
configuration file, and a WSDL document. In this case, the tool’s configuration
file must have the following form:

�"[PO�YHUVLRQ ������HQFRGLQJ �87)���"!�
��FRQILJXUDWLRQ
�[POQV �KWWS���MDYD�VXQ�FRP�MD[�USF�UL�[USFF�FRQILJ�!�
����UPL�QDPH �>�@��
��������WDUJHW1DPHVSDFH �>�@��
��������W\SH1DPHVSDFH �>�@�!�
������VHUYLFH�QDPH �>�@��
��������������SDFNDJH1DPH �>�@�!�
����������LQWHUIDFH�QDPH �>�@��
��������������������VHUYDQW1DPH �>�@��
��������������������VRDS$FWLRQ �>�@��
��������������������VRDS$FWLRQ%DVH �>�@��!�
�������VHUYLFH!�
����W\SH0DSSLQJ5HJLVWU\!�
�����>��@�
�����W\SH0DSSLQJ5HJLVWU\!�
�����UPL!�
���FRQILJXUDWLRQ!

The integers in the preceding syntax indicate the following:

1. Model name

2. Target namespace for the generated WSDL document

522 THE XRPCC TOOL
3. Target namespace for the schema portion of the generated WSDL docu-
ment

4. Service name

5. Package name for the generated classes (for example, the service interface
that extends MDYD[�[PO�USF�6HUYLFH)

6. Fully qualified name of an interface

7. Fully qualified name of a servant class that implements the interface in [5]

8. Optional - string to be used as the 62$3$FWLRQ for all operations in the cor-
responding port

9. Optional - string to be used as a prefix for the 62$3$FWLRQ strings for the
operations in the corresponding port

10.Optional - type mapping information, see Specifying the Type
Mapping (page 524)

For RMI interfaces, the �FRQILJXUDWLRQ! element must have just one �UPL!
element. The �UPL! element may contain multiple �VHUYLFH! elements, which
may contain multiple �LQWHUIDFH! elements.

SOAPAction Elements
If you are an advanced user you might be interested in the following information
about 62$3$FWLRQ elements: If the VRDS$FWLRQ attribute is specified, all the
operations in the generated port will use that string as the 62$3$FWLRQ�� If the
VRDS$FWLRQ%DVH attribute is specified, its value will be used as a prefix for the
generated 62$3$FWLRQ strings. The suffix will be a unique string; in the current
implementation it is the operation name. For example, if VRDS$FWLRQ%DVH is set
to KWWS���KHOOR� and the port has two operations, RS$ and RS%, their 62$3$F�
WLRQ strings will be KWWS���KHOOR�RS$ and KWWS���KHOOR�RS% respectively. If
neither VRDS$FWLRQ nor VRDS$FWLRQ%DVH are specified, the 62$3$FWLRQ for all
operations will be the empty string. Notice that this version of the reference
implementation does not rely on the 62$3$FWLRQ HTTP header for dispatching.

STARTING WITH A WSDL DOCUMENT 523
Starting With a WSDL Document
If you are starting with a WSDL document, the tool can generate stubs, ties, a
server configuration file, and RMI interfaces. The tool’s configuration file must
have the following form:

�"[PO�YHUVLRQ ������HQFRGLQJ �87)���"!�
��FRQILJXUDWLRQ
�[POQV �KWWS���MDYD�VXQ�FRP�MD[�USF�UL�[USFF�FRQILJ�!�
����ZVGO�QDPH �>�@��
���������ORFDWLRQ �>�@��
���������SDFNDJH1DPH �>�@�!�
������W\SH0DSSLQJ5HJLVWU\!�
�������>�@�
�������W\SH0DSSLQJ5HJLVWU\!�
�����ZVGO!�
���FRQILJXUDWLRQ!

The integers in the preceding syntax indicate the following:

1. Model name

2. URL pointing to a WSDL document

3. Fully qualified name of the package for the generated classes and inter-
faces

4. Optional: type mapping information, see Specifying the Type
Mapping (page 524)

For WSDL documents, the �FRQILJXUDWLRQ! element must have just one
�ZVGO!�element.

Server Configuration File
The xrpcc tool also generates a server configuration file for Tomcat. The name of
the file is specified by the� �LQLW�SDUDP! element of the ZHE�[PO file. (The
ZHE�[PO file is the deployment descriptor for a Web application that’s packaged
in a WAR file.) For example, the ZHE�[Pl file might contain the following
�LQLW�SDUDP! element:

�LQLW�SDUDP!�
��������SDUDP�QDPH!FRQILJXUDWLRQ�ILOH��SDUDP�QDPH!�
��������SDUDP�YDOXH!�:(%�,1)�FRQILJ�SURSHUWLHV��SDUDP�YDOXH!�
�������LQLW�SDUDP!�

524 THE XRPCC TOOL
Here’s an example of a server configuration file that is generated by the [USFF
tool:

SRUW��WLH KHOOR�+HOOR,)B7LH
SRUW��VHUYDQW KHOOR�+HOOR,PSO
SRUW��QDPH +HOOR,)
SRUW��ZVGO�WDUJHW1DPHVSDFH KWWS���KHOOR�RUJ�ZVGO
SRUW��ZVGO�VHUYLFH1DPH +HOOR:RUOG
SRUW��ZVGO�SRUW1DPH +HOOR,)3RUW
SRUWFRXQW �

For the��LQLW�SDUDP! example shown previously, the server configuration file
should be copied to the :(%�,1)�FRQILJ�SURSHUWLHV file in the Tomcat instal-
lation.

Specifying the Type Mapping
Intended for advanced users, this section describes the �W\SH0DSSLQJ5HJLVWU\!
element of the tool’s configuration file. Here’s an example:

�W\SH0DSSLQJ5HJLVWU\!�
����W\SH0DSSLQJ
�����HQFRGLQJ6W\OH �KWWS���VFKHPDV�[POVRDS�RUJ�VRDS�HQFRGLQJ��!�
�������HQWU\�VFKHPD7\SH �QV��6DPSOH7\SH��
���������MDYD7\SH �RUJ�WHPSXUL�:HOO.QRZQ&ODVV��
���������VHULDOL]HU)DFWRU\
������������RUJ�WHPSXUL�:HOO.QRZQ&ODVV6HULDOL]DWLRQ)DFWRU\��
����������GHVHULDOL]HU)DFWRU\
������������RUJ�WHPSXUL�:HOO.QRZQ&ODVV'HVHULDOL]DWLRQ)DFWRU\��
����������[POQV�QV� �KWWS���HFKRVHUYLFH�RUJ�W\SHV��!�
������W\SH0DSSLQJ!�
���W\SH0DSSLQJ5HJLVWU\!

A type mapping registry can have multiple type mappings (for different encod-
ing styles). Each mapping consists of multiple entries and all attributes on an
entry are mandatory. For more information, see the JAX-RPC Specifications.

HTTP Overview
Stephanie Bodoff

MOST Web clients use the HTTP protocol to communicate with a J2EE
server. HTTP defines the requests that a client can send to a server and responses
that the server can send in reply. Each request contains a URL, which is a string
that identifies a Web component or a static object such as an HTML page or
image file.

The J2EE server converts an HTTP request to an HTTP request object and deliv-
ers it to the Web component identified by the request URL. The Web component
fills in an HTTP response object, which the server converts to an HTTP response
and sends to the client.

This appendix provides some introductory material on the HTTP protocol. For
further information on this protocol, see the Internet RFCs: HTTP/1.0 - RFC
1945, HTTP/1.1 - RFC 2616, which can be downloaded from

KWWS���ZZZ�UIF�HGLWRU�RUJ�UIF�KWPO

In This Chapter
HTTP Requests . 526
HTTP Responses . 526
525

Bios.html
ftp://ftp.isi.edu/in-notes/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.rfc-editor.org/rfc.html

526 HTTP OVERVIEW
HTTP Requests
An HTTP request consists of a request method, a request URL, header fields,
and a body. HTTP 1.1 defines the following request methods:

• *(7 - retrieves the resource identified by the request URL.

• +($' - returns the headers identified by the request URL.

• 3267 - sends data of unlimited length to the Web server.

• 387 - stores a resource under the request URL.

• '(/(7(- removes the resource identified by the request URL.

• 237,216 - returns the HTTP methods the server supports.

• 75$&(- returns the header fields sent with the TRACE request.

HTTP 1.0 includes only the GET, HEAD, and POST methods. Although J2EE
servers are only required to support HTTP 1.0, in practice many servers, includ-
ing the Java WSDP, support HTTP 1.1.

HTTP Responses
An HTTP response contains a result code, header fields, and a body.

The HTTP protocol expects the result code and all header fields to be returned
before any body content.

Some commonly used status codes include:

• ��� - indicates that the requested resource is not available.

• ��� - indicates that the request requires HTTP authentication.

• ��� - indicates an error inside the HTTP server which prevented it from
fulfilling the request.

• ��� - indicates that the HTTP server is temporarily overloaded, and unable
to handle the request.

Java™ Encoding
Schemes

This appendix describes the character-encoding schemes that are supported by
the Java platform.

US-ASCII
US-ASCII is a 7-bit encoding scheme that covers the English-language
alphabet. It is not large enough to cover the characters used in other lan-
guages, however, so it is not very useful for internationalization.

UTF-8
UTF-8 is an 8-bit encoding scheme. Characters from the English-language
alphabet are all encoded using an 8-bit bytes. Characters for other languages
are encoding using 2, 3 or even 4 bytes. UTF-8 therefore produces compact
documents for the English language, but very large documents for other lan-
guages. If the majority of a document’s text is in English, then UTF-8 is a
good choice because it allows for internationalization while still minimizing
the space required for encoding.

UTF-16
UTF-16 is a 16-bit encoding scheme. It is large enough to encode all the
characters from all the alphabets in the world, with the exception of ideo-
gram-based languages like Chinese. All characters in UTF-16 are encoded
using 2 bytes. An English-language document that uses UTF-16 will be
twice as large as the same document encoded using UTF-8. Documents writ-
ten in other languages, however, will be far smaller using UTF-16.
527

528 JAVA™ ENCODING SCHEMES

Bios For Contributing
Authors

Java API for XML Processing
Eric Armstrong has been programming and writing professionally since
before there were personal computers. His production experience includes
artificial intelligence (AI) programs, system libraries, real-time programs,
and business applications in a variety of languages. He works as a consultant
at Sun’s Java Software division in the Bay Area, and he is a contributor to
JavaWorld. He wrote The JBuilder2 Bible, as well as Sun’s Java XML pro-
gramming tutorial. For a time, Eric was involved in efforts to design next-
generation collaborative discussion/decision systems. His learn-by-ear, see-
the-fingering music teaching program is currently on hold while he finishes
a weight training book. His Web site is KWWS���ZZZ�WUHHOLJKW�FRP.

Web Applications and Technology
Stephanie Bodoff is a staff writer at Sun Microsystems. She has been
involved with object-oriented enterprise software since graduating from
Columbia University with an M.S. in electrical engineering. For several
years she worked as a software engineer on distributed computing and tele-
communications systems and object-oriented software development meth-
ods. Since her conversion to technical writing, Stephanie has documented
object-oriented databases, application servers, and enterprise application
development methods. She is a co-author of The J2EE Tutorial, Designing
Enterprise Applications with the Java™ 2 Platform, Enterprise Edition, and
Object-Oriented Software Development: The Fusion Method.

Getting Started
Debbie Carson is a staff writer with Sun Microsystems, where she docu-
ments both the J2EE™ and J2SE™ platforms. In previous positions, she
documented creating database applications using C++ and Java™ technolo-
529

www.treelight.com

530
gies and creating distributed applications using Java technology. In addition
to this chapter, she currently writes about the CORBA technologies Java™
IDL and Java™ Remote Method Invocation over Internet InterORB Proto-
col (“RMI-IIOP”), Web services security, and Web services tools.

Java API for XML Messaging, Introduction to Web Services
Maydene Fisher has documented various Java™ APIs at Sun Microsystems
for the last five years. She authored two books on the JDBC™ API, JDBC™
Database Access with Java: A Tutorial and Annotated Reference and
JDBC™ API Tutorial and Reference, Second Edition: Universal Data
Access for the Java™ 2 Platform. Before joining Sun, she helped document
the object-oriented programming language ScriptX at Kaleida Labs and
worked on Wall Street, where she wrote developer and user manuals for
complex financial computer models written in C++. In previous lives, she
has been an English teacher, a shopkeeper in Mendocino, and a financial
planner.

Java API for RPC-based XML
Dale Green is a staff writer with Sun Microsystems, where he documents
the J2EE™ platform and the Java API for RPC-based XML. In previous
positions he programmed business applications, designed databases, taught
technical classes, and documented RDBMS products. He wrote the Interna-
tionalization and Reflection trails for the Java Tutorial Continued, and co-
authored The J2EE Tutorial.

Java API for XML Registries, Java WSDP Registry Server
Kim Haase is a staff writer with Sun Microsystems, where she documents
the J2EE platform. In previous positions she has documented compilers,
debuggers, and floating-point programming. She currently writes about the
Java Message Service, the Java API for XML Registries, and J2EE SDK
tools.

	Contents
	Preface
	Who Should Use This Tutorial
	About the Examples
	Prerequisites for the Examples
	Running the Examples
	Required Software
	Building the Examples
	Deploying the Examples
	Running Tomcat
	Reloading the Examples

	Related Information
	How to Print This Tutorial
	Typographical Conventions

	Introduction to Web Services
	The Role of XML and the Java™ Platform
	What Is XML?
	What Makes XML Portable?

	Overview of the Java APIs for XML
	JAXP
	The SAX API
	The DOM API
	XML Namespaces

	The XSLT API
	Transforming a DOM Tree to an XML Document
	Transforming an XML Document to an HTML Document

	JAX-RPC
	Using JAX-RPC

	JAXM
	Getting a Connection
	Getting a Point-to-Point Connection
	Getting a Connection to the Messaging Provider

	Creating a Message
	Populating a Message
	Populating the SOAP Part of a Message
	Populating the Attachment Part of a Message

	Sending a Message

	JAXR
	Using JAXR
	Registering a Business
	Searching a Registry

	Sample Scenario
	Scenario
	Compare Prices and Order Coffees
	Selling Coffees on the Internet

	Conclusion

	Understanding XML
	Introduction to XML
	What Is XML?
	Tags and Attributes
	Empty Tags
	Comments in XML Files
	The XML Prolog
	Processing Instructions

	Why Is XML Important?
	Plain Text
	Data Identification
	Stylability
	Inline Reusability
	Linkability
	Easily Processed
	Hierarchical

	How Can You Use XML?
	Traditional Data Processing
	Document-Driven Programming (DDP)
	Binding
	Archiving
	Summary

	XML and Related Specs: Digesting the Alphabet Soup
	Basic Standards
	SAX
	DOM
	DTD
	Namespaces
	XSL
	XSLT (+XPATH)

	Schema Standards
	XML Schema
	RELAX
	SOX
	TREX
	Schematron

	Linking and Presentation Standards
	XML Linking
	XHTML

	Knowledge Standards
	RDF
	RDF Schema
	XTM

	Standards That Build on XML
	Extended Document Standards
	eCommerce Standards

	Summary

	Designing an XML Data Structure
	Saving Yourself Some Work
	Attributes and Elements
	Forced Choices
	Stylistic Choices

	Normalizing Data
	Normalizing DTDs

	Getting Started With Tomcat
	Setting Up
	Getting the Example Code
	Checking the Environment Variables

	Creating the Getting Started Application
	The Converter Class
	Coding the Converter Class

	The Web Client
	Coding the Web Client

	Building and Deploying the Getting Started Application Using Ant
	Setting the CLASSPATH
	Creating the Build File for Ant
	Compiling the Source Files
	Deploying the Application

	Running the Getting Started Application
	Starting Tomcat
	Running the Web Client
	Shutting Down Tomcat

	Modifying the Application
	Modifying a Class File
	Modifying the Web Client
	Reloading the Application

	Common Problems and Their Solutions
	Cannot Start the Tomcat Server
	Compilation Errors
	Deployment Errors

	Java™ API for XML Processing
	The JAXP APIs
	An Overview of the Packages
	The Simple API for XML (SAX) APIs
	The SAX Packages

	The Document Object Model (DOM) APIs
	The DOM Packages

	The XML Stylesheet Language for Transformation (XSLT) APIs
	The XSLT Packages

	Compiling and Running the Programs
	Where Do You Go from Here?

	Simple API for XML
	Writing a Simple XML File
	Creating the File
	Writing the Declaration
	Adding a Comment
	Defining the Root Element
	Adding Attributes to an Element

	Adding Nested Elements
	Adding HTML-Style Text
	Adding an Empty Element
	The Finished Product

	Echoing an XML File with the SAX Parser
	Creating the Skeleton
	Importing Classes
	Setting up for I/O
	Implementing the ContentHandler Interface
	Setting up the Parser
	Writing the Output
	Spacing the Output
	Handling Content Events
	Compiling and Running the Program
	Checking the Output
	Identifying the Events
	Compressing the Output
	Inspecting the Output
	Documents and Data

	Adding Additional Event Handlers
	Identifying the Document’s Location
	Handling Processing Instructions
	Summary

	Handling Errors with the Nonvalidating Parser
	Introducing an Error
	Handling a SAXParseException
	Handling a SAXException
	Improving the SAXParseException Handler
	Handling a ParserConfigurationException
	Handling an IOException
	Understanding NonFatal Errors
	Handling Nonfatal Errors
	Handling Warnings

	Substituting and Inserting Text
	Handling Special Characters
	Predefined Entities
	Character References

	Using an Entity Reference in an XML Document
	Handling Text with XML-Style Syntax
	Handling CDATA and Other Characters

	Creating a Document Type Definition (DTD)
	Basic DTD Definitions
	Defining Text and Nested Elements
	Limitations of DTDs
	Special Element Values in the DTD
	Referencing the DTD

	DTD’s Effect on the Nonvalidating Parser
	Tracking Ignorable Whitespace
	Cleanup
	Documents and Data
	Empty Elements, Revisited

	Defining Attributes and Entities in the DTD
	Defining Attributes in the DTD
	Defining Entities in the DTD
	Echoing the Entity References
	Additional Useful Entities
	Referencing External Entities
	Echoing the External Entity
	Summarizing Entities

	Referencing Binary Entities
	Using a MIME Data Type
	The Alternative: Using Entity References

	Using the Validating Parser
	Configuring the Factory
	Changing the Environment Variable
	Experimenting with Validation Errors
	Error Handling in the Validating Parser

	Defining Parameter Entities and Conditional Sections
	Creating and Referencing a Parameter Entity
	Conditional Sections

	Parsing the Parameterized DTD
	DTD Warnings

	Handling Lexical Events
	How the LexicalHandler Works
	Working with a LexicalHandler
	Echoing Comments
	Echoing Other Lexical Information

	Using the DTDHandler and EntityResolver
	The DTDHandler API
	The EntityResolver API

	Document Object Model
	Reading XML Data into a DOM
	Creating the Program
	Create the Skeleton
	Import the Required Classes
	Declare the DOM
	Handle Errors
	Instantiate the Factory
	Get a Parser and Parse the File
	Run the Program

	Additional Information
	Configuring the Factory
	Handling Validation Errors

	Looking Ahead

	Displaying a DOM Hierarchy
	Echoing Tree Nodes
	Convert DomEcho to a GUI App
	Add Import Statements
	Create the GUI Framework
	Add the Display Components

	Create Adapters to Display the DOM in a JTree
	Define the AdapterNode Class
	Define the TreeModel Adapter

	Finishing Up

	Examining the Structure of a DOM
	Displaying A Simple Tree
	Displaying a More Complex Tree
	Finishing Up

	Constructing a User-Friendly JTree from a DOM
	Compressing the Tree View
	Make the Operation Selectable
	Identify “Tree” Nodes
	Control Node Visibility
	Control Child Access
	Check the Results
	Extra Credit

	Acting on Tree Selections
	Identify Node Types
	Concatenate Subnodes to Define Element Content
	Display the Content in the JTree
	Wire the JTree to the JEditorPane
	Run the App
	Extra Credit

	Handling Modifications
	Finishing Up

	Creating and Manipulating a DOM
	Obtaining a DOM from the Factory
	Modify the Code
	Create Element and Text Nodes
	Run the App

	Normalizing the DOM
	Other Operations
	Traversing Nodes
	Creating Attributes
	Removing and Changing Nodes

	Finishing Up

	Using Namespaces
	Defining a Namespace
	Referencing a Namespace
	Defining a Namespace Prefix

	XML Stylesheet Language for Transformations
	Introducing XSLT and XPath
	The XSLT Packages
	How XPath Works
	Basic XPath Addressing
	Basic XPath Expressions
	Combining Index Addresses
	Wildcards
	Extended-Path Addressing
	XPath Data Types and Operators
	String-Value of an Element
	XPath Functions
	Node-set functions
	Positional functions
	String functions
	Boolean functions
	Numeric functions
	Conversion functions
	Namespace functions

	Summary

	Writing Out a DOM as an XML File
	Reading the XML
	Creating a Transformer
	Writing the XML
	Writing Out a Subtree of the DOM
	Clean Up

	Summary

	Generating XML from an Arbitrary Data Structure
	Creating a Simple File
	Creating a Simple Parser
	Modifying the Parser to Generate SAX Events
	Using the Parser as a SAXSource
	Doing the Conversion

	Transforming XML Data with XSLT
	Defining an Ultra-Simple article Document Type
	Creating a Test Document
	Writing an XSLT Transform
	Processing the Basic Structure Elements
	Process the <TITLE> Element
	Process Headings
	Generate a Runtime Message

	Writing the Basic Program
	Trimming the Whitespace
	Processing the Remaining Structure Elements
	Modify <PARA> handling
	Process <LIST> and <ITEM> elements
	Ordering Templates in a Stylesheet
	Process <NOTE> Elements
	Run the Program

	Process Inline (Content) Elements
	Run the Program

	Printing the HTML
	What Else Can XSLT Do?
	The XSLT/XPath Data Model
	The Trouble with Variables
	Next...

	Concatenating XSLT Transformations with a Filter Chain
	Writing the Program
	Understanding How it Works
	Testing the Program
	Conclusion

	Java™ API for XML Messaging
	Overview of JAXM
	Messages
	The Structure of an XML Document
	What Is in a Message?

	Connections
	SOAPConnection
	ProviderConnection

	Messaging Providers
	Transparency
	Profiles
	Continuously Active
	Intermediate Destinations
	When to Use a Messaging Provider
	Messaging with and without a Provider

	Running the Samples
	The Sample Programs
	The Provider Administration Tool

	Tutorial
	Client without a Messaging Provider
	Getting a SOAPConnection Object
	Creating a Message
	Sending a Message
	Getting the Content of a Message

	Client with a Messaging Provider
	Getting a ProviderConnection Object
	Creating a Message
	Sending the Message

	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object
	Summary

	Code Examples
	Request.java
	MyUddiPing.java
	Adding New Code
	Conclusion

	Java™ API for XML-based RPC
	What is JAX-RPC?
	A Simple Example: HelloWorld
	HelloWorld at Runtime
	HelloWorld Files
	Overview of Steps
	Setting Up
	Required Software
	Environment Variables
	Setting build.xml Properties

	Coding the Service Definition Interface and Implementation Class
	Compiling the Service Definition Code
	Creating the Configuration File
	Generating the Stubs and Ties
	Creating the Deployment Descriptor
	Packaging the Service Definition
	Deploying the Service Definition
	Coding the Client
	Compiling the Client Code
	Running the Client

	The Dynamic Invocation Interface
	When to Use DII
	A DII Client Example
	DII Classes and Interfaces
	DII HelloClient Listing
	Building and Running the DII Example

	Java™ API for XML Registries
	Overview of JAXR
	What is a Registry?
	What Is JAXR?
	JAXR Architecture

	Implementing a JAXR Client
	Establishing a Connection
	Preliminaries: Getting Access to a Registry
	Creating or Looking Up a Connection Factory
	Creating a Connection
	Obtaining and Using a RegistryService Object

	Querying a Registry
	Finding Organizations by Name
	Finding Organizations by Classification
	Finding Services and ServiceBindings

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Adding Services and Service Bindings to an Organization
	Saving an Organization
	Removing Data from the Registry

	Running the Client Examples

	Using the Registry Browser
	Querying a Registry
	Querying by Name
	Querying by Classification

	Managing Registry Data
	Adding an Organization
	Adding Services to an Organization
	Adding Service Bindings to a Service
	Adding and Removing Classifications
	Submitting the Data

	The Java™ WSDP Registry Server
	Setting Up the Registry Server
	Using the JAXR Registry Browser with the Registry Server
	Adding Organizations
	Querying the Registry

	Using the Command Line Client Scripts with the Registry Server
	Using the JAXR API to Access the Registry Server
	Using the Indri Tool to Access the Registry Server Database

	Web Applications
	Web Application Life Cycle
	Web Application Archives
	Creating a WAR File

	Web Application Deployment Descriptors
	Prolog
	Context Parameters
	Filter Mappings
	Event Listeners
	Alias Paths
	Error Mappings
	References to Environment Entries, Resource Environment Entries, or Resources

	Deploying Web Applications
	Specifying the Web Application Context
	Example

	Running Web Applications
	Updating Web Applications
	Internationalizing and Localizing Web Applications
	Accessing Databases from Web Applications
	The Examples
	Downloading and Starting the Database Server
	Populating the Database
	Configuring the Web Application to Use the Database
	Configuring the Server to Recognize the Database

	Java™ Servlet Technology
	What is a Servlet?
	The Example Servlets
	Troubleshooting

	Servlet Life Cycle
	Handling Servlet Life Cycle Events
	Defining The Listener Class
	Specifying Event Listener Classes

	Handling Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources
	Accessing Databases

	Initializing a Servlet
	Writing Service Methods
	Getting Information From Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Attributes with a Session
	Notifying Objects That Are Associated with a Session

	Session Management
	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	JavaServer Pages™ Technology
	What is a JSP Page?
	The Example JSP Pages
	The Life Cycle of a JSP Page
	Translation and Compilation
	Execution
	Buffering
	Handling Errors

	Initializing and Finalizing a JSP Page
	Creating Static Content
	Creating Dynamic Content
	Using Objects Within JSP Pages
	Implicit Objects
	Application-Specific Objects
	Shared Objects

	JSP Scripting Elements
	Declarations
	Scriptlets
	Expressions

	Including Content in a JSP Page
	Transferring Control to Another Web Component
	Param Element

	Including an Applet
	Extending the JSP Language

	JavaBeans™ Components in JSP™ Pages
	JavaBeans Component Design Conventions
	Why Use a JavaBeans Component?
	Creating and Using a JavaBeans Component
	Setting JavaBeans Component Properties
	Retrieving JavaBeans Component Properties

	Custom Tags in JSP™ Pages
	What is a Custom Tag?
	The Example JSP Pages
	Using Tags
	Declaring Tag Libraries
	Making the Tag Library Implementation Available
	Types of Tags
	Simple Tags
	Tags With Attributes
	Tags With Bodies
	Choosing Between Passing Information as Attributes or Body
	Tags That Define Scripting Variables
	Cooperating Tags

	Defining Tags
	Tag Handlers
	Tag Library Descriptors
	Listener Element
	Tag Element

	Simple Tags
	Tag Handlers
	Body-content Element

	Tags With Attributes
	Defining Attributes in a Tag Handler
	Attribute Element
	Attribute Validation

	Tags With Bodies
	Tag Handlers
	Body-content Element

	Tags That Define Scripting Variables
	Tag Handlers
	Providing Information About the Scripting Variable

	Cooperating Tags

	Examples
	An Iteration Tag
	JSP Page
	Tag Handler
	Tag Extra Info Class

	A Template Tag Library
	JSP Page
	Tag Handlers

	How Is a Tag Handler Invoked?

	JavaServer Pages™ Standard Tag Library
	The Example JSP Pages
	Using JSTL
	Expression Language Support
	Twin Libraries
	Specifying an Expression Language Evaluator
	Simplest Possible Expression Language (SPEL)
	Attributes
	Relational Operators

	Tag Collaboration

	Core Tags
	Expression Tags
	Flow Control Tags
	Iterator Tags
	Conditional Tags

	Import Tags

	XML Tags
	Core Tags
	Flow Control Tags
	Transformation Tags

	Internationalization Tags
	Messaging Tags
	Specifying a Bundle
	Message Tags

	Formatting Tags

	SQL Tags
	query Tag Result-Related Interfaces

	The xrpcc Tool
	Syntax
	Configuration File
	Starting With RMI Interfaces
	SOAPAction Elements

	Starting With a WSDL Document
	Server Configuration File

	Specifying the Type Mapping

	HTTP Overview
	HTTP Requests
	HTTP Responses

	Java™ Encoding Schemes
	Bios For Contributing Authors

