The Java™ Web
Services Tutorial

Eric Armstrong
Stephanie Bodoff
Debbie Carson
Maydene Fisher
Dae Green

Kim Haase

February 4, 2002

Copyright © 2002 by Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013(c)(1)(iii) and FAR 52.227-19.

The release described in this book may be protected by one or more U.S. patents, foreign patents, or pending applica
tions.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, Java, JavaSoft, Java Software, JavaScript, JDBC, JDBC Compliant, JavaOS, JavaBeans, Enterprise
JavaBeans, JavaServer, JavaServer Pages, J2EE, J2SE, JavaMail, Java Naming and Directory Interface, EJB, and JSP
are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® isa registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. All other product names mentioned
herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THISPUBLICATION AT ANY TIME.

Chapter 1:

Contents'

Preface. ...

Who Should Use This Tutorial

About the Examples
Prerequisites for the Examples
Running the Examples

Related Information

How to Print This Tutorial

Typographical Conventions

Introduction to Web Services...........

The Role of XML and the Java™ Platform
What IsXML?

What Makes XML Portable?
Overview of the Java APIsfor XML
JAXP

The SAX API

The DOM API

The XSLT API
JAX-RPC

Using JAX-RPC
JAXM

Getting a Connection

Creating a Message

Populating a Message

Sending a Message
JAXR

Using JAXR
Sample Scenario

Scenario

XVi
XVi
XVi
XVi
XiX

XX

XX

0o ~NOO O BN

10
13
16
16
17
19
21
21
24
24
25
27
28

Conclusion 29

Chapter2: Understanding XML 31
Introduction to XML 31
What IsXML? 32
Why Is XML Important? 37
How Can You Use XML? 39
XML and Related Specs: Digesting the Alphabet Soup 42
Basic Standards 43
Schema Standards 45
Linking and Presentation Standards 48
Knowledge Standards 49
Standards That Build on XML 50
Summary 52
Designing an XML Data Structure 53
Saving Y ourself Some Work 53
Attributes and Elements 53
Normalizing Data 56
Normalizing DTDs 57
Chapter 3: Getting Started WithTomeat.................... 59
Setting Up 60
Getting the Example Code 60
Checking the Environment Variables 61
Creating the Getting Started Application 61
The Converter Class 61
The Web Client 62
Building and Deploying the Getting Started Application Using Ant 64
Setting the CLASSPATH 64
Creating the Build File for Ant 64
Compiling the Source Files 66
Deploying the Application 66
Running the Getting Started Application 67
Starting Tomcat 67
Running the Web Client 67
Shutting Down Tomcat 68

M odifying the Application 68
Modifying a Class File 69

Modifying the Web Client 69

Reloading the Application 69

Common Problems and Their Solutions 70
Compilation Errors 70
Deployment Errors 71

Chapter 4: Java™ API for XML Processing. 73

The JAXP APIs 74

An Overview of the Packages 74

The Simple API for XML (SAX) APIs 75
The SAX Packages 78

The Document Object Model (DOM) APIs 78
The DOM Packages 80

The XML Stylesheet Language for Transformation (XSLT) APIs 81
The XSLT Packages 82

Where Do You Go from Here? 82

Chapter 5: Simple APIforXML............................ 85

Writing a Simple XML File 86
Creating the File 87
Writing the Declaration 87
Adding a Comment 87
Adding Nested Elements 89
Adding HTML-Style Text 89
Adding an Empty Element 90
The Finished Product 91

Echoing an XML Filewith the SAX Parser 91
Creating the Skeleton 92
Importing Classes 93
Setting up for I/O 93
Implementing the ContentHandler Interface 94
Setting up the Parser 95
Writing the Output 96
Spacing the Output 97
Handling Content Events 97
Compiling and Running the Program 100
Command Scripts 100
Checking the Output 101
Identifying the Events 101

Compressing the Output 103

Vi

Inspecting the Output
Documents and Data
Adding Additional Event Handlers
Identifying the Document’s L ocation
Handling Processing Instructions
Summary
Handling Errorswith the Nonvalidating Par ser
Substituting and Inserting Text
Handling Special Characters
Using an Entity Referencein an XML Document
Handling Text with XML-Style Syntax
Handling CDATA and Other Characters
Creating a Document Type Definition (DTD)
Basic DTD Definitions
Defining Text and Nested Elements
Limitations of DTDs
Specia Element Valuesinthe DTD
Referencing the DTD
DTD’s Effect on the Nonvalidating Par ser
Tracking Ignorable Whitespace
Cleanup
Documents and Data
Empty Elements, Revisited
Defining Attributes and Entitiesin the DTD
Defining Attributesin the DTD
Defining Entitiesin the DTD
Echoing the Entity References
Additional Useful Entities
Referencing External Entities
Echoing the Externa Entity
Summarizing Entities
Referencing Binary Entities
Using aMIME Data Type
The Alternative: Using Entity References
Using the Validating Par ser
Configuring the Factory
Changing the Environment Variable
Experimenting with Validation Errors
Error Handling in the Validating Parser
Defining Parameter Entitiesand Conditional Sections
Creating and Referencing a Parameter Entity

105
106
107
107
108
110
11
120
120
121
122
124
124
124
126
127
128
128
129
130
132
132
133
133
133
135
137
138
138
139
140
140
140
142
142
142
143
143
145
146
146

Vii

Conditional Sections 148
Parsing the Parameterized DTD 149
DTD Warnings 151
Handling L exical Events 152
How the LexicalHandler Works 153
Working with a LexicalHandler 153
Using the DTDHandler and EntityResolver 159
The DTDHandler API 159
The EntityResolver API 161
Chapter 6: Document ObjectModel 163
Reading XML Dataintoa DOM 164
Creating the Program 164
Additional Information 168
Looking Ahead 171
Displaying a DOM Hierarchy 171
Echoing Tree Nodes 171
Convert DomEcho to aGUI App 171
Create Adapters to Display the DOM ina JTree 177
Finishing Up 187
Examining the Structure of a DOM 187
Displaying A Simple Tree 187
Displaying aMore Complex Tree 190
Finishing Up 194
Constructing a User-Friendly JTree from a DOM 195
Compressing the Tree View 195
Acting on Tree Selections 200
Handling Modifications 209
Finishing Up 209
Creating and M anipulatinga DOM 209
Obtaining a DOM from the Factory 209
Normalizing the DOM 213
Other Operations 214
Finishing Up 215
Using Namespaces 215
Defining a Namespace 216
Referencing a Namespace 217

Defining a Namespace Prefix 217

viii

Chapter 8: Java™ API for XML Messaging

Introducing XSLT and XPath
The XSLT Packages
How XPath Works
Summary
Writing Out aDOM asan XML File
Reading the XML
Creating a Transformer
Writing the XML
Writing Out a Subtree of the DOM
Summary
Generating XML from an Arbitrary Data Structure
Creating aSimple File
Creating a Simple Parser
Modifying the Parser to Generate SAX Events
Using the Parser as a SAX Source
Doing the Conversion
Transforming XML Datawith XSLT
Defining an Ultra-Simple article Document Type
Creating a Test Document
Writing an XSLT Transform
Processing the Basic Structure Elements
Writing the Basic Program
Trimming the Whitespace
Processing the Remaining Structure Elements
Process Inline (Content) Elements
Printing the HTML
What Else Can XSLT Do?
Concatenating XSLT Transformationswith a Filter Chain
Writing the Program
Understanding How it Works
Testing the Program
Conclusion

Overview of JAXM
Messages
Connections
Messaging Providers

Running the Samples

Chapter 7: XML Stylesheet Language for Transformations221

222
222
223
232
232
232
234
236
237
238
238
239
241
244
250
252
252
253
255
256
257
261
263
266
271
275
275
278
278
281
283
285

288
288
291
293
295

The Sample Programs 296

The Provider Administration Tool 297
Tutorial 299
Client without a Messaging Provider 299
Client with a Messaging Provider 306
Adding Attachments 312
Code Examples 315
Request.java 316
MyUddiPing.java 318

Chapter 9: Java™ API for
XML-based RPC329

What is JAX-RPC? 330
A Simple Example: Helloworld 331
Helloworld at Runtime 331
Helloworld Files 333
Overview of Steps 333
Setting Up 333
Coding the Service Definition Interface and Implementation Class 334
Compiling the Service Definition Code 335
Creating the Configuration File 335
Generating the Stubs and Ties 336
Creating the Deployment Descriptor 337
Packaging the Service Definition 338
Deploying the Service Definition 339
Coding the Client 340
Compiling the Client Code 341
Running the Client 341
The Dynamic Invocation I nterface 342
When to Use DI 342

A DIl Client Example 343
Chapter 10: Java™ API for XML Registries 347
Overview of JAXR 348
What is a Registry? 348
What 1s JAXR? 348
JAXR Architecture 349
Implementing a JAXR Client 350

Establishing a Connection 351

Chapter 11:

Chapter 12:

Querying a Registry 353

Managing Registry Data 355
Running the Client Examples 360
Using the Registry Browser 362
Querying a Registry 362
Managing Registry Data 363
The Java™ WSDP Registry Server. 367
Setting Up the Registry Server 368
Using the JAXR Registry Browser with the Registry Server 369
Adding Organizations 369
Querying the Registry 369
Using the Command Line Client Scriptswith the Registry Server 370
Using the JAXR API to Accessthe Registry Server 371
Using theIndri Tool to Accessthe Registry Server Database 372
Web Applications, 375
Web Application Life Cycle 376
Web Application Archives 378
Creating aWAR File 379
Web Application Deployment Descriptors 379
Prolog 380
Context Parameters 380
Filter Mappings 381
Event Listeners 381
Alias Paths 381
Error Mappings 382
References to Environment Entries, Resource Environment Entries, or
Resources 383
Deploying Web Applications 383
Specifying the Web Application Context 384
Example 385
Running Web Applications 385
Updating Web Applications 385
I nternationalizing and L ocalizing Web Applications 386
Accessing Databases from Web Applications 388
The Examples 388
Downloading and Starting the Database Server 389

Populating the Database 389

Configuring the Web Application to Use the Database 390

Configuring the Server to Recognize the Database 390
Chapter 13: Java™ Servlet Technology 393
What isa Servlet? 3%
The Example Servlets 395
Troubleshooting 396
Servlet Life Cycle 397
Handling Servlet Life Cycle Events 397
Handling Errors 399
Sharing I nformation 400
Using Scope Objects 400
Controlling Concurrent Access to Shared Resources 402
Accessing Databases 403
Initializing a Servlet 404
Writing Service M ethods 405
Getting Information From Requests 406
Constructing Responses 408
Filtering Requests and Responses 410
Programming Filters 411
Programming Customized Requests and Responses 413
Specifying Filter Mappings 415
Invoking Other Web Resour ces 417
Including Other Resources in the Response 418
Transferring Control to Another Web Component 420
Accessing the Web Context 421
Maintaining Client State 422
Accessing a Session 422
Associating Attributes with a Session 422
Session Management 423
Session Tracking 424
Finalizing a Servlet 425
Tracking Service Requests 425
Notifying Methods to Shut Down 426
Creating Polite Long-Running Methods 427
Chapter 14: JavaServer Pages™ Technology 429
What isa JSP Page? 430

The Example JSP Pages 432

Xii

The Life Cycle of a JSP Page 434

Trandlation and Compilation 435
Execution 436
Initializing and Finalizing a JSP Page 437
Creating Static Content 438
Creating Dynamic Content 438
Using Objects Within JSP Pages 438

JSP Scripting Elements 441
Including Content in a JSP Page 444
Transferring Control to Another Web Component 445
Param Element 446
Including an Applet 446
Extending the JSP L anguage 448
Chapter 15: JavaBeans™ Components in JSP™™ Pages. 451
JavaBeans Component Design Conventions 452
Why Use a JavaBeans Component? 453
Creating and Using a JavaBeans Component 454
Setting JavaBeans Component Properties 455
Retrieving JavaBeans Component Properties 458
Chapter 16: Custom Tags in JSSP™™ Pages. 461
What isa Custom Tag? 462
The Example JSP Pages 463
Using Tags 465
Declaring Tag Libraries 465
Making the Tag Library Implementation Available 466
Types of Tags 466
Defining Tags 469
Tag Handlers 469
Tag Library Descriptors 471
Simple Tags 473
Tags With Attributes 474
Tags With Bodies 477
Tags That Define Scripting Variables 479
Cooperating Tags 483
Examples 485
An Iteration Tag 485

A Template Tag Library 489

How Is aTag Handler Invoked? 494

Chapter 17: JavaServer Pages™ Standard Tag Library. 497
The Example JSP Pages 498

Using JSTL 499

Expression L anguage Support 501

Twin Libraries 502

Specifying an Expression Language Evaluator 503

Simplest Possible Expression Language (SPEL) 504

Tag Collaboration 505

CoreTags 506

Expression Tags 506

Flow Control Tags 507

Import Tags 509

XML Tags 509

Core Tags 510

Flow Control Tags 511

Transformation Tags 511

Internationalization Tags 512

Messaging Tags 512

Formatting Tags 513

SQL Tags 514

query Tag Result-Related Interfaces 515

Chapter 18: The xrpccTool. 519
Syntax 519

Configuration File 521

Starting With RMI Interfaces 521

Starting With aWSDL Document 523

Specifying the Type Mapping 524

Chapter 19: HTTPOverview. oo oo i 525
HTTP Requests 526

HTTP Responses 526

Chapter 20: Java™ Encoding Schemes 527

Bios For Contributing Authors. 529

Xiii

Xiv

Preface

T HE Java™ Web Services Tutorial is a beginner’s guide to developing Web
services and Web applications using the Java™ Web Services Developer Pack
(“JavaWSDP"). The Java WSDP is an all-in-one download containing key tech-
nologies to simplify building of Web services using the Java 2 Platform. The
technologies available on the Java WSDP are;
» Java Servlets
» JavaServer Pages™ (JSP™)
» JSP Standard Tag Library (“JSTL")
» Java XML Pack, which includes:
» JavaAPI for XML Messaging (“JAXM”)
» JavaAPI for XML Processing (“JAXP")
» JavaAPI for XML Registries (“JAXR")
» JavaAPI for XML-based RPC (“JAX-RPC")
To provide a development and deployment environment, the Java WSDP
includes the:
» Tomcat servlet and JSP container
 ant build tool
» JavaWSDP Registry Server

Here we cover all the things you need to know to make the best use of the Java
Web Services Tutorial.

Who Should UseThisTutorial XVi
AbouttheExamples ... XVi
Related Information XiX
Howto Print ThisTutorial XX
Typographical Conventionsc. i, XX

XVi

Who Should Use This Tutorial

Thistutorial isintended for programmers interested in developing and deploying
Web services and Web applications on the Java WSDP.

About the Examples

This tutoria includes many complete, working examples.

Prerequisites for the Examples

To understand the examples you will need a good knowledge of the Java pro-
gramming language, SQL, and relational database concepts. The following top-
icsinthe Java Tutorial are particularly relevant:

Topic Java Tutorial

JDBC™ http://java.sun.com/docs/books/tutorial/jdbc

Threads http://java.sun.com/docs/books/tutorial/essential/threads
JavaBeans™ http://java.sun.com/docs/books/tutorial/javabeans

Security http://java.sun.com/docs/books/tutorial/securityl.?2

Running the Examples

This section tells you everything you need to know to obtain, build, deploy, and
run the examples.

Required Software

If you are viewing this online, you need to download the Java Web Services
Tutoria from:

http://java.sun.com/webservices/downloads/webservicestutorial.html

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/essential/threads
http://java.sun.com/docs/books/tutorial/javabeans
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/webservices/downloads/webservicestutorial.html

RUNNING THE EXAMPLES

Once you have installed the tutorial bundle, the example source code is in the
<JWSDP_HOME>/docs/tutorial/examples directory, with subdirectories for
each of the technologies included in the pack.

This tutorial documents the Java WSDP EA1. To build, deploy, and run the
examples you need a copy of the Java WSDP and the Java™ 2 Platform, Stan-
dard Edition (J2SE™) SDK 1.3.1 or 1.4. You can download the Java WSDP
from:

http://java.sun.com/webservices/downloads/webservicespack.html
the J2SE 1.3.1 SDK from

http://java.sun.com/j2se/1.3/
or the J2SE 1.4 SDK from

http://java.sun.com/j2se/1.4/

Set the environment variables to the values noted in Table 1.

Table 1 Required Environment Variables

Environment Variable | Value

JAVA_HOME The location of the J2SE SDK installation.

Thelocation of the Java WSDP installation. Thisvariableisused

JWSDP_HOME by the example build files.
Add the bin directories of the Java WSDP and J2SE SDK instal-
PATH lationsto the front. The Java WSDP bin directory containsthe

startup scripts for Tomcat, ant, and the registry server as well as
other tools.

Building the Examples

Most of the examples are distributed with a configuration file for version 1.4.1 of
ant, a portable build tool contained in the Java WSDP. Directions for building
the examples are provided in each chapter.

XVii

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.4/
http://java.sun.com/webservices/downloads/webservicespack.html

XViii

Deploying the Examples

Most of the Java WSDP examples run on Tomcat. Before you can run an exam-
ple you must first deploy it on Tomcat. To deploy an application execute ant
deploy. The deploy task usually copies some files into the
<JWSDP_HOME>/webapps directory. Some things you need to keep in mind:

« For this release of the Java WSDP you must be running Tomcat on the
same machine that you are developing on.

e Thefirst time an application is deployed you must start or restart Tomcat
(see next section). Thereafter, when you modify an application, you can
build, deploy, and then reload the exampl e, as described in the next section.

Running Tomcat

You run Tomcat by executing the startup script in atermina window.

Reloading the Examples

You reload an application with the command:
http://localhost:8080/manager/reload?path=/target

This command invokes the manager Web application. Before you can use this
application you must add your user name and password combination and associ-
ate the role name manager with it to <JWSDP_HOME>/conf/tomcat-users.xml,
which can be edited with any text editor. This file contains an element <user>
for each individual user, which might look something like this:

<user name="adeveloper" password="secret" roles="manager" />

The Tomcat reference documentation distributed with the Java WSDP contains
information about the manager application.

Related Information

For further information on the technologies discussed in this tutorial see the ref-
erence documentation contained in the Java WSDP

(<IWSDP_HOME>/docs/index.htm1) and the Web sites listed in Table 2. Refer-

RUNNING THE EXAMPLES

ences to individual technology homes listed in some chapters map as follows:

* JAXM-HOME to JWSDP_HOME/docs/jaxm/index.html
e JAXP-HOME to JWSDP_HOME/docs/jaxp/index.html
* JAXR-HOME to JWSDP_HOME/docs/jaxr/index.html
e JAXRPC-HOME to JWSDP_HOME/docs/jaxrpc/index.html

Table2 Related Information

Technology Web Site

Java Servlets http://java.sun.com/products/serviet/index.html
JavaServer http://java.sun.com/products/jsp/index.htm]l
Pages

isaz ﬁﬂpgsrd http://java.sun.com/products/jsp/taglibraries.html#jst]
JAXM http://java.sun.com/xml/jaxm/index.html

JAXP http://java.sun.com/xml/jaxp/index.html

JAXR http://java.sun.com/xml/jaxr/index.html
JAX-RPC http://java.sun.com/xml/jaxrpc/index.html
Tomcat http://jakarta.apache.org/tomcat/index.html

ant http://jakarta.apache.org/ant/index.html

How to Print This Tutorial

To print thistutorial, follow these steps:

« Ensure that Adobe Acrobat Reader is installed on your system.
¢ Open the PDF version of this book.
¢ Click the printer icon in Adobe Acrobat Reader.

http://java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/taglibraries.html#jstl
http://java.sun.com/products/servlet/index.html
JavaWSTutorial.pdf
http://java.sun.com/xml/jaxm/index.html
http://java.sun.com/xml/jaxp/index.html
http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/xml/jaxrpc/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/ant/index.html

XX

Typographical Conventions

The following table lists the typographical conventions used in thistutorial.

Font Style Uses

italic Emphasis, titles, first occurrence of terms
URLSs, code examples, file names, command

monospace

names, programming language keywords

italic monospace

Programming variables, variable file names

Introduction to Web
Services

Maydene Fisher

WEB services, as the name implies, are services offered viathe Web. In atyp-
ical Web services scenario, a business application sends a regquest to a service at
a given URL using the SOAP protocol over HTTP. The service receives the
request, processes it, and returns a response. An often-cited example of a Web
serviceis that of a stock quote service, in which the request asks for the current
price of a specified stock, and the response gives the stock price. Thisis one of
the simplest forms of a Web service in that the request is filled almost immedi-
ately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route for the deliv-
ery of goods. In this case, a business sends a request containing the delivery des-
tinations, which the service processes to determine the most cost-effective
delivery route. The time it takes to return the response depends on the complex-
ity of the routing, but the response will probably be sent as an operation that is
separate from the request.

Web services and consumers of Web services are typically businesses, making
Web services predominantly business-to-business (B-to-B) transactions. An
enterprise can be the provider of Web services and also the consumer of other
Web services. For example, awholesale distributor of spices could be in the con-
sumer role when it uses a Web service to check on the availability of vanilla
beans and in the provider role when it supplies prospective customers with dif-
ferent vendors prices for vanilla beans.

INTRODUCTION TO WEB SERVICES

In This Chapter
The Role of XML and the Java™ Platform 2
What IsXML? 4
What Makes XML Portable? 5
Overview of the Java APIsfor XML 6
JAXP 7
The SAX API 8
The DOM API 10
The XSLT API 13
JAX-RPC 16
Using JAX-RPC 16
JAXM 17
Getting a Connection 19
Creating a Message 21
Populating a Message 21
Sending a Message 24
JAXR 24
Using JAXR 25
Sample Scenario 27
Scenario 28
Conclusion 29

The Role of XML and the Java™
Plaiform

Web services depend on the ability of parties to communicate with each other
even if they are using different information systems and different data formats.
XML, a markup language that makes data portable, is a key technology in
addressing this need. Enterprises have discovered the benefits of using XML for
the integration of data both internally for sharing legacy data among departments
and externally for sharing data with other enterprises. As aresult, Web services
areincreasingly being used for enterprise integration applications, both in tightly
coupled and loosely coupled systems. Because of this data integration ability,
XML has become the underpinning for Web-related computing.

Web services also depend on the ability of enterprises using different computing
platforms to communicate with each other. This requirement makes the Java™
platform, which makes code portable, the natural choice for devel oping Web ser-
vices. This choice is even more attractive asthe new Java APIsfor XML become

available, making it easier and easier to use XML from the Java programming
language. These APIs are summarized later in this introduction and explained in
detail in the tutorials for each API.

In addition to data portability and code portability, Web services need to be scal-
able, secure, and efficient, especially as they grow. The Java™ 2 Platform,
Enterprise Edition (J2EE™), is specifically designed to fill just such needs. It
facilitates the really hard part of developing Web services, which is program-
ming the infrastructure, or “plumbing.” This infrastructure includes features
such as security, distributed transaction management, and connection pool man-
agement, al of which are essential for industrial strength Web services. And
because components are reusable, development time is substantially reduced.

XML and the Java platform, being such an ideal combination, have cometo play
a central role in Web services. In fact, the advantages offered by the Java APls
for XML and the J2EE platform make them the ideal combination for deploying
Web services.

The APIs described in this tutorial complement and layer on top of the J2EE
APIs. These APIs enable the Java community, developers, tool and container
vendors, to start developing Web services applications and products using stan-
dard Java APIs that maintain the fundamental Write Once, Run Anywhere™
proposition of Java technology. The Java Web Services Developer Pack (“Java
WSDP”) makes all these APIs available into a single bundle. The Java WSDP
includes JAR filesimplementing these APIs as well as documentation and exam-
ples. The examplesin the Java WSDP will run in the Tomcat container (included
in the Java WSDP to help with ease of use), aswell as in a J2EE container once
the Java WSDP JAR files are installed in the J2EE SDK. Instructions on how to
install the JAR files on the J2EE SDK will be available with the 1.3.1 release of
the J2EE SDK.

The remainder of this introduction first gives a quick look at XML and how it
makes data portable. Then it gives an overview of the Java APIs for XML,
explaining what they do and how they make writing Web applications easier. It
describes each of the APIs individually and then presents a scenario that illus-
trates how they can work together.

The tutorials that follow give more detailed explanations and walk you through
how to use the Java APIs for XML to build applications for Web services. They
also provide sample applications that you can run.

INTRODUCTION TO WEB SERVICES

What Is XML?

The chapter Understanding XML (page 31) includes a more thorough and
detailed explanation of XML and how to process it. The goal of this sectionisto
give you a quick introduction to what XML is and how it makes data portable so
that you have some background for reading the summaries of the Java APIs for
XML that follow.

XML (Extensible Markup Language) is an industry-standard, system-indepen-
dent way of representing data. Like HTML (HyperText Markup Language),
XML encloses datain tags, but there are significant differences between the two
markup languages. First, XML tags relate to the meaning of the enclosed text,
whereas HTML tags specify how to display the enclosed text. The following
XML example shows a price list with the name and price of two coffees.

<pricelList>
<coffee>
<nhame>Mocha Java</name>
<price>11.95</price>
</coffee>
<coffee>
<hame>Sumatra</name>
<price>12.50</price>
</coffee>
</priceList>

The <coffee> and </coffee> tagstell a parser that the information between them
is about a coffee. The two other tags inside the <coffee> tags specify that the
enclosed information is the coffee’s name and its price per pound. Because XML
tags indicate the content and structure of the data they enclose, they make it pos-
sible to do things like archiving and searching.

A second major difference between XML and HTML is that XML tags are
extensible, allowing you to write your own XML tags to describe your content.
With HTML, you are limited to using only those tags that have been predefined
in the HTML specification.

With the extensibility that XML provides, you can create the tags you need for a
particular type of document. You define the tags using an XML schema lan-
guage. A schema describes the structure of a set of XML documents and can be
used to constrain the contents of the XML documents. Probably the most-widely
used schema language is still the Document Type Definition schema language
because it is an integral part of the XML 1.0 specification. A schema written in

WHAT MAKES XML PORTABLE?

thislanguageiscalled aDTD. The DTD that follows defines the tags used in the
price list XML document. It specifies four tags (elements) and further specifies
which tags may occur (or are required to occur) in other tags. The DTD aso
defines the hierarchical structure of an XML document, including the order in
which the tags must occur.

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

The first line in the example gives the highest level element, priceList, which
meansthat all the other tags in the document will come between the <priceList>
and </pricelList> tags. Thefirst line also says that the priceList element must
contain one or more coffee elements (indicated by the plus sign). The second
line specifies that each coffee element must contain both a name element and a
price element, in that order. The third and fourth lines specify that the data
between the tags <name> and </name> and between <price> and </price> is
character data that should be parsed. The name and price of each coffee are the
actual text that makes up the pricelist.

Another popular schemalanguage is XML schema, which is being developed by
the World Wide Web (W3C) consortium. XML Schema is a significantly more
powerful language than DTD, and with its passage into a W3C Recommendation
in May of 2001, its use and implementations have increased. The community of
developers using the Java platform has recognized this, and the expert group for
the Java™ API for XML Processing (“JAXP”) has been working on adding sup-
port for XML Schema to the JAXP 1.2 specification. This release of the Java™
Web Services Developer Pack (“Java WSDP’) includes support for XML
Schema.

What Makes XML Portable?

A schemagives XML dataits portability. The priceList DTD, discussed previ-
ously, isasimple example of aschema. If an applicationissent apriceList doc-
ument in XML format and hasthe priceList DTD, it can process the document
according to the rules specified in the DTD. For example, given the priceList
DTD, aparser will know the structure and type of content for any XML docu-
ment based on that DTD. If the parser is avalidating parser, it will know that the
document is not valid if it contains an element not included in the DTD, such as

INTRODUCTION TO WEB SERVICES

the element <tea>, oOr if the elements are not in the prescribed order, such as hav-
ing the price element precede the name element.

Other features also contribute to the popularity of XML as a method for data
interchange. For one thing, it is written in a text format, which is readable by
both human beings and text-editing software. Applications can parse and process
XML documents, and human beings can also read them in case there is an error
in processing. Another feature is that because an XML document does not
include formatting instructions, it can be displayed in various ways. Keeping
data separate from formatting instructions means that the same data can be pub-
lished to different media.

XML enables document portability, but it cannot do the job in avacuum; that is,
parties who use XML must agree to certain conditions. For example, in addition
to agreeing to use XML for communicating, two applications must agree to what
set of elements they will use and what those elements mean. For them to use
Web services, they must also agree on what Web services methods they will use,
what those methods do, and when more than one method is needed, the order in
which they are invoked.

Enterprises have several technologies available to help satisfy these require-
ments. They can use DTDs and XML schemas to describe the valid terms and
XML documentsthey will use in communicating with each other. Registries pro-
vide a means for describing Web services and their methods. For higher level
concepts, enterprises can use partner agreements and workflow charts and chore-
ographies. There will be more about schemas and registries later in this docu-
ment.

Overview of the Java APIs for XML

The Java APIsfor XML let you write your Web applications entirely in the Java
programming language. They fall into two broad categories. those that deal
directly with processing XML documents and those that deal with procedures.

* Document-oriented

« Java™ API for XML Processing (“JAXP’) — processes XML docu-
ments using various parsers

¢ Procedure-oriented

« Java™ API for XML Messaging (“JAXM”) — sends SOAP messages
over the Internet in a standard way

WHAT MAKES XML PORTABLE?

« Java™ API for XML Registries (“JAXR") — provides a standard way
to access business registries and share information

» Java™ API for XML-based RPC (“ JAX-RPC") — sends SOAP method
calls to remote parties over the Internet and receives the results

Perhaps the most important feature of the Java APIsfor XML isthat they all sup-
port industry standards, thus ensuring interoperability. Various network interop-
erability standards groups, such as the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured Information Standards
(OASIS), have been defining standard ways of doing things so that businesses
who follow these standards can make their data and applications work together.

Another feature of the Java APIsfor XML isthat they allow agreat deal of flex-
ibility. Users have flexibility in how they use the APIs. For example, JAXP code
can use various tools for processing an XML document, and JAXM code can use
various messaging protocols on top of SOAP. Implementers have flexibility as
well. The Java APIs for XML define strict compatibility requirements to ensure
that al implementations deliver the standard functionality, but they also give
developers a great deal of freedom to provide implementations tailored to spe-
cific uses.

The following sections discuss each of these APIs, giving an overview and afeel
for how to use them.

JAXP

The Java™ API for XML Processing (page 73) (“JAXP") makes it easy to pro-
cess XML data using applications written in the Java programming language.
JAXP leverages the parser standards SAX (Simple APl for XML Parsing) and
DOM (Document Object Model) so that you can choose to parse your data as a
stream of events or to build an object representation of it. The latest versions of
JAXP aso supports the XSLT (XML Stylesheet Language Transformations)
standard, giving you control over the presentation of the data and enabling you
to convert the data to other XML documents or to other formats, such asHTML.
JAXP also provides namespace support, alowing you to work with XML Sche-
mas that might otherwise have naming conflicts.

Designed to be flexible, JAXP alows you to use any XML-compliant parser
from within your application. It does thiswith what is called a pluggability layer,
which alows you to plug in an implementation of the SAX or DOM APIs. The

INTRODUCTION TO WEB SERVICES

pluggability layer also allows you to plug in an XSL processor, letting you con-
trol how your XML datais displayed.

Thelatest version of JAXP is JAXP 1.2, amaintenance rel ease that adds support
for XML Schema. This version is currently being finalized through the Java
Community Process™ (JSR-63). An early access version of JAXP 1.2 is
included in this Java WSDP release and is also available in the Java XML Pack.

The SAX API

The Simple API for XML (page 85) defines an API for an event-based parser.
Being event-based means that the parser reads an XML document from begin-
ning to end, and each time it recognizes a syntax construction, it notifies the
application that is running it. The SAX parser notifies the application by calling
methods from the ContentHandler interface. For example, when the parser
comes to a less than symbol (“<”), it calls the startElement method; when it
comes to character data, it calls the characters method; when it comes to the
less than symbol followed by a dash (“</"), it calls the endETement method, and
so on. To illustrate, let’s look at part of the example XML document from the
first section and walk through what the parser does for each line. (For simplicity,
callsto the method ignorablewhiteSpace are not included.)

<pricelList>[parser calls startElement]
<coffee> [parser calls startElement]
<nhame>Mocha Java</name> [parser calls startElement,
characters, and endElement]

<price>11.95</price> [parser calls startElement,
characters, and endElement]
</coffee> [parser calls endElement]

The default implementations of the methods that the parser calls do nothing, so
you need to write a subclass implementing the appropriate methods to get the
functionality you want. For example, suppose you want to get the price per
pound for Mocha Java. You would write a class extending befaultHandler (the
default implementation of ContentHandler) in which you write your own imple-
mentations of the methods startElement and characters.

You first need to create a SAxParser object from a SAXParserFactory oObject.
You would call the method parse onit, passing it the price list and an instance of
your new handler class (with its new implementations of the methods startEle-
ment and characters). In this example, the price list is a file, but the parse

http://java.sun.com/xml/downloads/javaxmlpack.html

THE SAX API

method can also take a variety of other input sources, including an InputStream
object, aURL, and an InputSource oObject.

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();
saxParser.parse("priceList.xml", handler);

The result of calling the method parse depends, of course, on how the methods
in handler were implemented. The SAX parser will go through the file
priceList.xml1 line by line, calling the appropriate methods. In addition to the
methods already mentioned, the parser will call other methods such as start-
Document, endDocument, ignorableWwhiteSpace, and processingInstructions,
but these methods still have their default implementations and thus do nothing.

The following method definitions show one way to implement the methods
characters and startElement SO that they find the price for Mocha Java and
print it out. Because of the way the SAX parser works, these two methods work
together to look for the name element, the characters “Mocha Java’, and the
price element immediately following Mocha Java. These methods use three
flags to keep track of which conditions have been met. Note that the SAX parser
will have to invoke both methods more than once before the conditionsfor print-
ing the price are met.

public void startElement(..., String elementName, ...){
if(elementName.equals("name")){
inName = true;
} else if(elementName.equals("price") && inMochalava){
inPrice = true;
inName = false;

}

public void characters(char [] buf, int offset, int len) {

String s = new String(buf, offset, len);

if (inName && s.equals("Mocha Java")) {
inMochaJava = true;
inName = false;

1 else if (inPrice) {
System.out.println("The price of Mocha Java is:
inMochalava = false;
inPrice = false;

}

+ S);

10

INTRODUCTION TO WEB SERVICES

Once the parser has come to the Mocha Java coffee element, here is the relevant
state after the following method calls:

next invocation of startElement -- inName iS true
next invocation of characters -- inMochaJava IS true
next invocation of startElement -- inPrice iStrue
next invocation of characters -- prints price

The SAX parser can perform validation while it is parsing XML data, which
means that it checks that the data follows the rules specified in the XML docu-
ment’'s DTD. A SAX parser will be validating if it is created by a SAXParserFac-
tory object that has had validation turned on. This is done for the
SAXParserFactory object factory inthefollowing line of code.

factory.setValidating(true);

So that the parser knows which DTD to use for validation, the XML document
must refer tothe DTD in itsboCTYPE declaration. The boCTYPE declaration should
be similar to this;

<!DOCTYPE PriceList SYSTEM "pricelList.DTD">

The DOM API

The Document Object Model (page 163), defined by the W3C DOM Working
Group, isaset of interfaces for building an object representation, in the form of a
tree, of aparsed XML document. Once you build the DOM, you can manipulate
it with DOM methods such as insert and remove, just as you would manipulate
any other tree data structure. Thus, unlike a SAX parser, a DOM parser allows
random access to particular pieces of datain an XML document. Another differ-
ence is that with a SAX parser, you can only read an XML document, but with a
DOM parser, you can build an object representation of the document and manip-
ulate it in memory, adding a new element or deleting an existing one.

In the previous example, we used a SAX parser to look for just one piece of data
in adocument. Using a DOM parser would have required having the whole doc-
ument object model in memory, which is generally less efficient for searches
involving just afew items, especialy if the document is large. In the next exam-
ple, we add a new coffee to the price list using a DOM parser. We cannot use a
SAX parser for modifying the price list because it only reads data.

THE DOM API

Let's suppose that you want to add Kona coffee to the price list. You would read
the XML pricelist fileinto aDOM and then insert the new coffee element, with
its name and price. The following code fragment creates a DocumentBuilderFac-
tory object, which is then used to create the DocumentBuilder object buiider.
The code then cals the parse method on builder, passing it the file
pricelList.xml.

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse("priceList.xml");

At this point, document isa DOM representation of the price list sitting in mem-
ory. The following code fragment adds a new coffee (with the name “Kona’ and
the price 13.50) to the price list document. Because we want to add the new cof-
feeright before the coffee whose name is “Mocha Java’, thefirst step isto get a
list of the name elements and iterate through the list to find “Mocha Java’. Using
the Node interface included in the org.w3c.dom package, the code then creates a
Node object for the new coffee element and aso new nodes for the name and
price elements. The name and price elements contain character data, so the code
creates a TextNode object for each of them and appends the text nodes to the
nodes representing the name and price elements.

NodelList 1list = document.getElementsByTagName("name™);
Node thisNode = Tist.item(0);

// loop through 1ist
Node thisChild = thisNode.getChildNode();

1

12

INTRODUCTION TO WEB SERVICES

if (thisNode.getFirstChild() instanceof org.w3c.dom.TextNode)
{

}

String data = thisNode.getFirstChild().getData(Q;

if (data.equals("Mocha Java")) {
// new node will be inserted before Mocha Java
Node newNode = document.createElement("coffee");
Node nameNode = document.createElement("name™);
TextNode textNode = document.createTextNode("Kona™);
nameNode . appendChild(textNode);

Node priceNode = document.createElement("price");
TextNode tpNode = document.createTextNode("13.50");
priceNode.appendChild(tpNode);

newNode. appendChild(nameNode) ;
newNode.appendChild(priceNode);
thisNode.insertBefore(newNode, thisNode);

}

You get aDOM parser that is validating the same way you get a SAX parser that
is validating: You call setvalidating(true) on a DOM parser factory before
using it to create your DOM parser, and you make sure that the XML document
being parsed refersto its DTD in the DOCTY PE declaration.

XML Namespaces

All the namesin aDTD are unique, thus avoiding ambiguity. However, if a par-
ticular XML document references more than one DTD, there is a possibility that
two or more DTDs contain the same name. Therefore, the document needs to
specify a namespace for each DTD so that the parser knows which definition to
use when it is parsing an instance of aparticular DTD.

There is a standard notation for declaring an XML Namespace, which is usualy
done in the root element of an XML document. In the following example
namespace declaration, the notation xm1ns identifies nsName as a namespace, and
nsName iS set to the URL of the actual namespace:

<pricelList xmlns:nsName="myDTD.dtd"
xmlns:otherNsName="myOtherDTD.dtd">

</priceList>

THE XSLT API

Within the document, you can specify which namespace an element belongs to
asfollows:

<nsName:price> ...

To make your SAX or DOM parser able to recognize namespaces, you call the
method setNamespaceAware(true) ON YoOUr ParserFactory instance. After this
method call, any parser that the parser factory creates will be namespace aware.

The XSLT API

XML Stylesheet Language for Transformations (page 221), defined by the W3C
XSL Working Group, describes a language for transforming XML documents
into other XML documents or into other formats. To perform the transformation,
you usually need to supply a style sheet, which iswritten in the XML Stylesheet
Language (XSL). The XSL style sheet specifies how the XML data will be dis-
played. XSLT uses the formatting instructions in the style sheet to perform the
transformation. The converted document can be another XML document or a
document in another format, such asHTML.

JAXP supports XSLT with the javax.xm1.transform package, which allowsyou
to plug in an XSLT transformer to perform transformations. The subpackages
have SAX-, DOM-, and stream-specific APIsthat allow you to perform transfor-
mations directly from DOM trees and SAX events. The following two examples
illustrate how to create an XML document from a DOM tree and how to trans-
form the resulting XML document into HTML using an XSL style sheet.

Transforming a DOM Tree to an XML
Document

To transform the DOM tree created in the previous section to an XML document,
the following code fragment first creates a Transformer object that will perform
the transformation.

TransformerFactory transFactory =
TransformerFactory.newInstance();
Transformer transformer = transFactory.newTransformer();

13

14

INTRODUCTION TO WEB SERVICES

Using the DOM tree root node, the following line of code constructs a DOM-
Source object as the source of the transformation.

DOMSource source = new DOMSource(document);

The following code fragment creates a StreamResult object to take the results
of the transformation and transforms the tree to XML.

File newXML = new File("newXML.xm1");
FileQutputStream os = new FileQutputStream(newXML) ;
StreamResult result = new StreamResult(os);
transformer.transform(source, result);

Transforming an XML Document to an HTML
Document

You can also use XSLT to convert the new XML document, newxML.xml, to
HTML using a style sheet. When writing a style sheet, you use XML
Namespaces to reference the X SL constructs. For example, each style sheet has a
root element identifying the style sheet language, as shown in the following line
of code.

<xs1:stylesheet version="1.0" xmlns:xsl=
"http://waww.w3.0rg/1999/XSL/Transform">

When referring to a particular construct in the style sheet language, you use the
namespace prefix followed by a colon and the particular construct to apply. For
example, the following piece of style sheet indicates that the name data must be
inserted into arow of an HTML table.

<xs1:template match="name">
<tr><td>
<xs1:apply-templates/>
</td></tr>
</xsT1:template>

The following style sheet specifies that the XML datais convertedtoHTML and
that the coffee entries are inserted into arow in atable.

<xs1:stylesheet version="1.0"
xmlns:xs1="http://www.w3.0rg/1999/XSL/Transform">
<xs1:template match="priceList">
<htmT><head>Coffee Prices</head>

THE XSLT API

<body>
<table>
<xs1:apply-templates />
</table>
</body>
</html>
</xsT1:template>
<xs1:template match="name">
<tr><td>
<xs1:apply-templates />
</td></tr>
</xsT1:template>
<xs1:template match="price">
<tr><td>
<xs1:apply-templates />
</td></tr>
</xsT1:template>
</xs1:stylesheet>

To perform the transformation, you need to obtain an XSLT transformer and use
it to apply the style sheet to the XML data. The following code fragment obtains
atransformer by instantiating aTransformerFactory object, reading in the style
sheet and XML files, creating a file for the HTML output, and then finally
obtaining the Transformer Object transformer from the TransformerFactory
object tFactory.

TransformerFactory tFactory =
TransformerFactory.newInstance();

String stylesheet = "prices.xsl1";
String sourceld = "newXML.xml1";
File pricesHTML = new File("pricesHTML.htm1");
FileOutputStream os = new FileQutputStream(pricesHTML);
Transformer transformer =

tFactory.newTransformer(new StreamSource(stylesheet));

The transformation is accomplished by invoking the transform method, passing
it the data and the output stream.

transformer.transform(
new StreamSource(sourceId), new StreamResult(os));

15

16

INTRODUCTION TO WEB SERVICES

JAX-RPC

The Java™ API for XML -based RPC (page 329) (“JAX-RPC") makes it possi-
ble to write an application in the Java programming language that uses SOAP to
make a remote procedure call (RPC). JAX-RPC can aso be used to send
request-response messages and, in some cases, one-way messages. In addition to
these conventional uses, JAX-RPC makes it possible for an application to define
itsown XML schemaand to use that schemato send XML documents and XML
fragments. The result of this combination of JAX-RPC and XML Schemais a
powerful computing tool.

The Java programming language already has two other APIs for making remote
procedure calls, Java IDL and Remote Method Invocation (RMI). All three have
an APl for marshalling and unmarshalling arguments and for transmitting and
receiving procedure cals. The difference is that JAX-RPC is based on SOAP
and is geared to Web services. JavalDL isbased on the Common Object Request
Broker Architecture (CORBA) and uses the Object Management Group’s Inter-
face Definition Language (OMG IDL). RMI is based on RPC where both the
method calls and the methods being invoked are in the Java programming lan-
guage--athough with RMI over I1OP, the methods being invoked may be in
another language. Sun will continue its support of CORBA and RMI in addition
to developing JAX-RPC, as each serves a distinct need and has its own set of
users.

All varieties of RPC are fairly complex underneath, involving the mapping and
reverse mapping of data types and the marshalling and unmarshalling of argu-
ments. However, these take place behind the scenes and are not visible to the
user. JAX-RPC continues this model, which means that a client using XML-
based RPC can invoke remote procedures or do SOAP messaging by simply
making Java method calls.

Using JAX-RPC

JAX-RPC makes using a Web service easier, and it also makes devel oping a Web
service easier, especialy if you use the J2EE platform. An RPC-based Web ser-
vice is basically a collection of procedures that can be called by a remote client
over the Internet. The service itself is a server application deployed on a server-
side container that implements the procedures that are available for clients to
call. For example, atypical RPC-based Web service is a stock quote service that

UsING JAX-RPC

takes a SOAP request for the price of a specified stock and returns the price via
SOAP.

A Web service needs to make itself available to potentia clients, which it can do,
for instance, by describing itself using the Web Services Description Language
(WSDL). A consumer (Web client) can then do alookup of the WSDL document
to access the service.

Interoperability across clients and servers that have been described using WSDL
is key to JAX-RPC. A consumer using the Java programming language can use
JAX-RPC to send its request to a service that may or may not have been defined
and deployed on a Java platform. The converse is aso possible, that is, a client
using another programming language can send its request to a service that has
been defined and deployed on a Java platform. This interoperability is aprimary
strength of JAX-RPC.

Although JAX-RPC implements a remote procedure call as a request-response
SOAP message, a user of JAX-RPC is shielded from this level of detail. So,
underneath the covers, JAX-RPC is based on SOA P messaging.

JAX-RPC is the main client and server Web services API, largely because of its
simplicity. The JAX-RPC API is simple to use and requires no set up. Also,
JAX-RPC focuses on point-to-point SOAP messaging, the basic mechanism that
most Web services clients use. Although it can provide asynchronous messaging
and can be extended to provide higher quality support, JAX-RPC concentrates
on being easy to use for the most common tasks. Thus, JAX-RPC is a good
choice for applications that wish to avoid the more complex aspects of SOAP
messaging and for those that find communication using the RPC model a good
fit.

JAX-RPC is not yet final. The specification is still being fine tuned, and the lat-
est draft includes features such as interceptors and Servlet JAX-RPC endpoints.
In future releases of the Java WSDR this introductory overview will be
expanded to reflect JAX-RPC morefully.

JAXM

The Java™ API for XML Messaging (page 287) (“JAXM") provides a standard
way to send XML documents over the Internet from the Java platform. It is
based on the SOAP 1.1 and SOAP with Attachments specifications and can be
extended to work with higher level messaging protocols such as ebXML Trans-
port, Routing, and Packaging that are built on top of SOAP.

17

18

INTRODUCTION TO WEB SERVICES

Typically, a business uses a messaging provider service, which does the behind-
the-scenes work required to transport and route messages. When a messaging
provider is used, all JAXM messages go through it, so when a business sends a
message, the message first goes to the sender’s messaging provider, then to the
recipient’s messaging provider, and finally to the intended recipient. It is also
possible to route a message to go to intermediate recipients before it goes to the
ultimate destination.

Because messages go through it, a messaging provider can take care of house-
keeping details like assigning message identifiers, storing messages, and keeping
track of whether a message has been delivered before. A messaging provider can
also try resending a message that did not reach its destination on the first attempt
a delivery. The beauty of a messaging provider is that the client using JAXM
technology (“JAXM client”) is totally unaware of what the provider is doing in
the background. The JAXM client simply makes Java method calls, and the mes-
saging provider in conjunction with the messaging infrastructure makes every-
thing happen behind the scenes.

Though in the typical scenario a business uses a messaging provider, it is also
possible to do JAXM messaging without using a messaging provider. In this
case, the JAXM client (called a standalone client) is limited to sending point-to-
point messages directly to a Web service that is implemented for request-
response messaging. Request-response messaging is synchronous, meaning that
areguest is sent and its response is received in the same operation. A request-
response message is sent over a SOAPConnection object via the method soap-
Connection.call, which sends the message and blocks until it receives a
response. A standalone client can operate only in aclient role, that is, it can only
send requests and receive their responses. In contrast, a JAXM client that uses a
messaging provider may act in either the client or server (service) role. In thecli-
ent role, it can send requests; in the server role, it can receive requests, process
them, and send responses.

Though it is not required, JAXM messaging usually takes place within a con-
tainer, generally a servlet or a J2EE™ container. A Web service that uses a mes-
saging provider and is deployed in a container has the capability of doing one-
way messaging, meaning that it can receive arequest as a one-way message and
can return aresponse some time later as another one-way message.

Because of the features that a messaging provider can supply, JAXM can some-
times be a better choice for SOAP messaging than JAX-RPC. The following list

GETTING A CONNECTION

includes features that JAXM can provide and that RPC, including JAX-RPC,
does not generally provide:

« One-way (asynchronous) messaging
* Routing of a message to more than one party
* Reliable messaging with features such as guaranteed delivery

A JAXM message is made up of two parts, arequired SOAP part and an optional
attachment part. The SOAP part, which consists of a SOAPEnveTope object con-
taining a SOAPHeader object and a SOAPBody object. The S0APBody object can
hold XML fragments as the content of the message being sent. If you want to
send content that isnot in XML format or that isan entire XML document, your
message will need to contain an attachment part in addition to the SOAP part.
There is no limitation on the content in the attachment part, so it can include
images or any other kind of content, including XML fragments and documents.

Getting a Connection

The first thing a JAXM client needs to do is get a connection, either a S0APCon-
nection Object or a ProviderConnection object.

Getting a Point-to-Point Connection

A standalone client islimited to using a SOAPConnection object, which is a point-
to-point connection that goes directly from the sender to the recipient. All JAXM
connections are created by a connection factory. In the case of a SOAPConnection
object, the factory is a SOAPConnectionFactory object. A client obtains the
default implementation for SOAPConnectionFactory by calling the following line
of code.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

The client can use factory to create a SOAPConnection object.

SOAPConnection con = factory.createConnection();

19

20

INTRODUCTION TO WEB SERVICES

Getting a Connection to the Messaging
Provider

In order to use a messaging provider, an application must obtain a ProviderCon-
nection oObject, which is a connection to the messaging provider rather than to a
specified recipient. There are two ways to get a ProviderConnection object, the
first being similar to the way a standalone client gets a SOAPConnection object.
This way involves obtaining an instance of the default implementation for Pro-
viderConnectionFactory, which isthen used to create the connection.

ProviderConnectionFactory pcFactory =
ProviderConnectionFactory.newInstance();
ProviderConnection pcCon = pcFactory.createConnection();

The variable pcCon represents a connection to the default implementation of a
JAXM messaging provider.

The second way to create a ProviderConnection object is to retrieve a Pro-
viderConnectionFactory object that is implemented to create connections to a
specific messaging provider. The following code demonstrates getting such a
ProviderConnectionFactory Object and using it to create a connection. The first
two lines use the INDI API to retrieve the appropriate ProviderConnectionFac-
tory object from the naming service where it has been registered with the name
“CoffeeBreakProvider”. When this logical name is passed as an argument, the
method Tookup returns the ProviderConnectionFactory object to which the log-
ical name was bound. The value returned is a Java Object, which must be nar-
rowed to a ProviderConnectionFactory oObject so that it can be used to create a
connection. The third line uses a JAXM method to actually get the connection.

Context ctx = getInitialContext();
ProviderConnectionFactory pcFactory =

(ProviderConnectionFactory)ctx. lookup("CoffeeBreakProvider");

ProviderConnection con = pcFactory.createConnection();

The ProviderConnection instance con represents a connection to The Coffee
Break’s messaging provider.

CREATING A MESSAGE

Creating a Message

Asistrue with connections, messages are created by afactory. And similar to the
case with connection factories, MessageFactory objects can be obtained in two
ways. The first way is to get an instance of the default implementation for the
MessageFactory class. Thisinstance can then be used to create abasic SOAPMes -
sage object.

MessageFactory messageFactory = MessageFactory.newInstance();
SOAPMessage m = messageFactory.createMessage();

All of the SOAPMessage Objects that messageFactory creates, including min the
previous line of code, will be basic SOAP messages. This means that they will
have no pre-defined headers.

Part of the flexibility of the JAXM API is that it allows a specific usage of a
SOAP header. For example, protocols such as ebXML can be built on top of
SOAP messaging. This usage of SOAP by a given standards group or industry is
called a profile. In the second way to create a MessageFactory oObject, you use
the ProviderConnection method createMessageFactory and give it a profile.
The soAPMessage objects produced by the resulting MessageFactory object will
support the specified profile. For example, in the following code fragment, in
which schemaURI is the URI of the schema for the desired profile, m2 will sup-
port the messaging profile that is supplied to createMessageFactory.

MessageFactory messageFactory?2 =
con.createMessageFactory(<schemaURI>);
SOAPMessage m2 = messageFactory2.createMessage();

Each of the new SOAPMessage objects m and m2 automatically contains the
reguired elements SOAPPart, SOAPEnvelope, and SOAPBody, plus the optional ele-
ment SOAPHeader (which is included for convenience). The SOAPHeader and
SOAPBody objects are initially empty, and the following sections will illustrate
some of the typical waysto add content.

Populating a Message

Content can be added to the soAPPart object, to one or more AttachmentPart
objects, or to both parts of a message.

21

22

INTRODUCTION TO WEB SERVICES

Populating the SOAP Part of a Message

As stated earlier, all messages have a soAppart object, which has a SOAPEnve-
Tope Object containing a SOAPHeader Object and a SOAPBody oObject. One way to
add content to the SOAP part of a message is to create a SOAPHeaderElement
object or a SOAPBodyETement object and add an XML document that you build
with the method S0APETement.addTextNode. The first three lines of the follow-
ing code fragment access the S0APBody object body, which is used to create a
new SOAPBodyElement Object and add it to body. The argument passed to the
createName method is a Name object identifying the SOAPBodyElement being
added. The lagt line adds the XML string passed to the method addTextNode.

SOAPPart sp = m.getSOAPPart();

SOAPEnvelope envelope = sp.getSOAPEnvelope();

SOAPBody body = envelope.getSOAPBody();

SOAPBodyETement bodyElement = body.addBodyETement(
envelope.createName("text", "hotitems",
"http://hotitems.com/products/gizmo");

bodyETement.addTextNode("some-xml-text");

Another way is to add content to the SoAPPart object by passing it a
javax.xml.transform.Source object, which may be a SAXSource, DOMSource, Of
StreamSource object. The Source object contains content for the SOAP part of
the message and also the information needed for it to act as source input. A
StreamSource object will contain the content as an XML document; the SAX-
Source Or DOMSource object will contain content and instructions for transform-
ing it into an XML document.

The following code fragments illustrates adding content as a boMSource object.
Thefirst step isto get the S0APPart object from the S0OAPMessage object. Next the
code uses methods from the Java™ API for XML Processing (“JAXP”) to build
the XML document to be added. It uses a DocumentBuilderFactory object to get
aDocumentBuilder object. Then it parses the given file to produce the document

POPULATING A MESSAGE

that will be used to initialize a new DoMSource object. Finally, the code passesthe
DOMSource Object domSource to the method SOAPPart.setContent.

SOAPPart soapPart = message.getSOAPPart();

DocumentBuilderFactory dbf=

DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("file:///foo.bar/soap.xml");
DOMSource domSource = new DOMSource(doc);

soapPart.setContent(domSource);

Populating the Attachment Part of a Message

A Message object may have no attachment parts, but if it isto contain anything
that is not in XML format, that content must be contained in an attachment part.
There may be any number of attachment parts, and they may contain anything
from plain text to image files. In the following code fragment, the content is an
image in a JPEG file, whose URL is used to initialize the javax.activa-
tion.DataHandler object dh. The Message Object m creates the AttachmentPart
object attachPart, which is initialized with the data handler containing the
URL for the image. Finally, the message adds attachPart to itself.

URL ur1l = new URL("http://foo.bar/img.ipg");
DataHandler dh = new DataHandler(url);

AttachmentPart attachPart = m.createAttachmentPart(dh);
m.addAttachmentPart(attachPart);

A SOAPMessage Object can also give content to an AttachmentPart object by
passing an Object and its content type to the method createAttachmentPart.

AttachmentPart attachPart =
m.createAttachmentPart("content-string"”, "text/plain™);
m.addAttachmentPart(attachPart);

A third alternative is to create an empty AttachmentPart object and then to pass
the AttachmentPart.setContent method an Object and its content type. In this

23

24

INTRODUCTION TO WEB SERVICES

code fragment, the Object is a ByteArrayInputStream initialized with a jpeg
image.

AttachmentPart ap = m.createAttachmentPart();

byte[] jpegData = ...;

ap.setContent(new ByteArrayInputStream(jpegData),
"image/jpeg");

m.addAttachmentPart(ap);

Sending a Message

Once you have populated a SOAPMessage Object, you are ready to send it. A stan-
dalone client uses the SoAPConnection method call to send a message. This
method sends the message and then blocks until it gets back a response. The
arguments to the method ca11 are the message being sent and an Endpoint object
that contains the URL of the receiver.

SOAPMessage response =
soapConnection.call(message, urlEndpoint);

An application that is using a messaging provider uses the ProviderConnection
method send to send a message. This method sends the message asynchronously,
meaning that it sends the message and returns immediately. The response, if any,
will be sent as a separate operation at a later time. Note that this method takes
only one parameter, the message being sent. The messaging provider will use
header information to determine the destination.

providerConnection.send(message);

JAXR

The Java™ API for XML Reqistries (page 347) (“JAXR") provides a convenient
way to access standard business registries over the Internet. Business registries
are often described as electronic yellow pages because they contain listings of
businesses and the products or services the businesses offer. JAXR gives devel-
opers writing applications in the Java programming language a uniform way to
use business registries that are based on open standards (such as ebXML) or
industry consortium-led specifications (such as UDDI).

Businesses can register themselves with a registry or discover other businesses
with which they might want to do business. In addition, they can submit material

UsING JAXR

to be shared and search for material that others have submitted. Standards groups
have developed DTDs for particular kinds of XML documents, and two busi-
nesses might, for example, agree to use the DTD for their industry’s standard
purchase order form. Because the DTD is stored in a standard business registry,
both parties can use JAXR to accessiit.

Registries are becoming an increasingly important component of Web services
because they allow businesses to collaborate with each other dynamicaly in a
loosely coupled way. Accordingly, the need for JAXR, which enables enterprises
to access standard business registries from the Java programming language, is
also growing.

Using JAXR

The following sections give examples of two of the typical ways a business reg-
istry is used. They are meant to give you an idea of how to use JAXR rather than
to be complete or exhaustive.

Registering a Business

An organization that uses the Java platform for its electronic business would use
JAXR to register itself in astandard registry. It would supply its name, a descrip-
tion of itself, and some classification concepts to facilitate searching for it. This
is shown in the following code fragment, which first creates the RegistrySer-
vice object rs and then usesit to create the BusinessLifeCycleManager object
Tcm and the BusinessQueryManager object bgm. The business, a chain of coffee
houses called The Coffee Break, is represented by the organization object org,
to which The Coffee Break adds its name, a description of itself, and its classifi-
cation within the North American Industry Classification System (NAICS).
Then org, which now contains the properties and classifications for The Coffee

25

INTRODUCTION TO WEB SERVICES

Break, is added to the Collection object orgs. Finaly, orgs is saved by 7cm,
which will manage the life cycle of the 0rganization objects contained in orgs.

RegistryService rs = connection.getRegistryService();

BusinessLifeCycleManager Tcm =
rs.getBusinessLifeCycleManager();

BusinessQueryManager bgm =
rs.getBusinessQueryManager();

Organization org = lcm.createOrganization("The Coffee Break™);
org.setDescription(
"Purveyor of only the finest coffees. Established 1895");

ClassificationScheme cScheme =
bgm.findClassificationSchemeByName("ntis-gov:naics™);

Classification classification =
(Classification)lcm.createClassification(cScheme,
"Snack and Nonalcoholic Beverage Bars", "722213");

Collection classifications = new ArraylList();
classifications.add(classification);

org.addClassifications(classifications);
Collection orgs = new ArrayList(Q);
orgs.add(org);
Tcm.saveOrganizations(orgs);

Searching a Registry

A business can also use JAXR to search aregistry for other businesses. The fol-
lowing code fragment uses the BusinessQueryManager object bgm to search for
The Coffee Break. Before bgm can invoke the method findOrganizations, the
code needsto define the search criteriato be used. In this case, three of the possi-
ble six search parameters are supplied to findOrganizations; because nul1 is
supplied for the third, fifth, and sixth parameters, those criteria are not used to
limit the search. The first, second, and fourth arguments are al Collection
objects, with findQualifiers and namePatterns being defined here. The only
element in findQualifiers iS a String specifying that no organization be
returned unless its name is a case-sensitive match to one of the names in the
namePatterns parameter. This parameter, which isalso aCollection object with
only one element, says that businesses with “ Coffee” in their names are a match.
The other Collection object is classifications, which was defined when The

UsING JAXR

Coffee Break registered itself. The previous code fragment, in which the indus-
try for The Coffee Break was provided, is an example of defining classifications.

BusinessQueryManager bgm = rs.getBusinessQueryManager();

//Define find qualifiers

Collection findQualifiers = new ArraylList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArraylList();
namePatterns.add("%Coffee%"); // Find orgs with name containing
"Coffee’

//Find using only the name and the classifications
BulkResponse response = bgm.findOrganizations(findQualifiers,

namePatterns, null, classifications, null, null);
Collection orgs = response.getCollection();

JAXR also supports using an SQL query to search aregistry. Thisisdoneusing a
DeclarativeQueryManager object, as the following code fragment demon-
Strates.

DeclarativeQueryManager dgm = rs.getDeclarativeQueryManager();
Query query = dgm.createQuery(Query.QUERY_TYPE_SQL,
"SELECT id FROM RegistryEntry WHERE name LIKE %Coffee¥% " +
"AND majorVersion >= 1 AND " +
"(majorVersion >= 2 OR minorVersion >= 3)");
BulkResponse response2 = dgm.executeQuery(query);

The BulkResponse object response2 will contain a value for id (a uuid) for
each entry in RegistryEntry that has “Coffee” in its name and that also has a
version number of 1.3 or greater.

To ensure interoperable communication between a JAXR client and a registry
implementation, the messaging is done using JAXM. This is done completely
behind the scenes, so as auser of JAXR, you are not even aware of it.

Sample Scenario

The following scenario is an example of how the Java APIs for XML might be
used and how they work together. Part of the richness of the Java APIs for XML
isthat in many cases they offer alternate ways of doing something and thus let
you tailor your code to meet individual needs. This section will point out some

27

28

INTRODUCTION TO WEB SERVICES

instances in which an aternate API could have been used and will also give the
reasons why one API or the other might be a better choice.

Scenario

Suppose that the owner of a chain of coffee houses, called The Coffee Break,
wants to expand the line of coffees that he sells. He instructs his business man-
ager to find some new coffee suppliers, get their wholesale prices, and then
arrange for orders to be placed as the need arises. The Coffee Break can analyze
the prices and decide which new coffees it wants to carry and which companies
it wants to buy them from. The business manager assigns the task to the com-
pany’s software engineer, who decides that the best way to locate new coffee
suppliers is to search a Universal Description, Discovery, and Integration
(UDDI) registry, where The Coffee Break has already registered itself.

The engineer uses JAXR to send a query searching for wholesale coffee suppli-
ers. JAXR sends messages using JAXM in the background, which ensures that
the registry will be able to receive and understand it.

The UDDI registry will receive the query and apply the search criteria transmit-
ted in the JAXR codeto the information it has about the organizations registered
with it. When the search is completed, the registry will send back information on
how to contact the whol esal e coffee distributors that met the specified criteria.

The engineer’s next step is to draft a request for price lists and send it to each of
the coffee distributors using JAXM. She writes an application that gets a connec-
tion to the company’s messaging service so that she can send the requests. She
then creates a JAXM message, adds the request, and sends it.

Each coffee distributor receives the request, and before sending out current
prices, checks with its stock quote service using JAX-RPC to get the latest
guotes for the relevant coffee futures. Based on the figures they get back, the dis-
tributors send The Coffee Break their newly revised prices in an XML price
sheet. The vendors use an agreed upon XML schema for their price sheets
because that way they can use aformat that is convenient for them and that their
buyers can process easily.

Compare Prices and Order Coffees

The engineer processes the price lists using SAX. After her application gets the
price quoted by the different vendors, it compares them and displays the results.

CONCLUSION

When the owner and business manager decide which suppliers to do business
with, based on the engineer’s price comparisons, they are ready to send ordersto
the suppliers. The orders are sent via JAXM, and each supplier will acknowledge
receipt of the order via JAXM.

Selling Coffees on the Internet

Meanwhile, The Coffee Break has been preparing for its expanded coffee line. It
will need to publish a new price list/order form in HTML for its Web site. But
before that can be done, the company needs to determine what prices it will
charge. The engineer writes an application that will multiply each price by 125%
to arrive at the price that The Coffee Break will charge. With a few modifica-
tions, the list of retail prices will become the online order form.

The engineer uses JavaServer Pages™ (JSP™) technology to create an HTML
order form that customers can use to order coffee online. From the JSP page, she
uses SAX to access the name and the price of each coffee, and then she inserts
them into an HTML table on the JSP page. The customer enters the quantity of
each coffee he or she wants to order and clicks the Submit button to send the
order.

Conclusion

Although this scenario is simplified for the sake of brevity, it illustrates how per-
vasive XML technologies are becoming in the world of Web services. And now,
with the Java APIs for XML and the J2EE platform, it keeps getting easier to
implement Web services and to write applications that are the consumers of Web
services.

29

30

INTRODUCTION TO WEB SERVICES

Understanding XML

Eric Armstrong

THlS chapter describes the Extensible Markup Language (XML) and its
related specifications.

In This Chapter
Introduction to XML 31
What Is XML? 32
Why Is XML Important? 37
How Can You Use XML? 39
XML and Related Specs. Digesting the Alphabet Soup 42
Basic Standards 43
Schema Standards 45
Linking and Presentation Standards 48
Knowledge Standards 49
Standards That Build on XML 50
Summary 52
Designing an XML Data Structure 53
Saving Y ourself Some Work 53
Attributes and Elements 53
Normalizing Data 56
Normalizing DTDs 57

Infroduction to XML

This section coversthe basics of XML. The goal isto give you just enough infor-
mation to get started, so you understand what XML is all about. (You'll learn

31

Bios.html#ericArmstrong

32

UNDERSTANDING XML

about XML in later sections of the tutorial.) We then outline the mgjor features
that make XML great for information storage and interchange, and give you a
general idea of how XML can be used.

What Is XML?

XML is atext-based markup language that is fast becoming the standard for data
interchange on the Web. Aswith HTML, you identify data using tags (identifiers
enclosed in angle brackets, like this: <. . .>). Collectively, the tags are known as
“markup”.

But unlike HTML, XML tags identify the data, rather than specifying how to dis-
play it. Where an HTML tag says something like “display this datain bold font”
(...), an XML tag actslike afield namein your program. It puts a label
on apiece of data that identifiesit (for example: <message>. . .</message>).

Note: Sinceidentifying the data gives you some sense of what means (how to inter-
pret it, what you should do with it), XML is sometimes described as a mechanism
for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on the
tag names they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress . com</from>
<subject>XML Is Really Cool</subject>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to be in bold!

WHAT IS XML?

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. Asin HTML, the <to>
tag has a matching end tag: </to>. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
<to> tag is entirely contained within the scope of the <message>. . </message>
tag. It is this ability for one tag to contain others that gives XML its ability to
represent hierarchical data structures.

Once again, as with HTML, whitespace is essentially irrelevant, so you can for-
mat the data for readability and yet still processit easily with a program. Unlike
HTML, however, in XML you could easily search a data set for messages con-
taining “cool” in the subject, because the XML tags identify the content of the
data, rather than specifying its representation.

Tags and Attributes

Tags can also contain attributes—additional information included as part of the
tag itself, within the tag's angle brackets. The following example shows an email
message structure that uses attributes for the "to", "from”, and "subject”
fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Asin HTML, the attribute name is followed by an equa sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored—if present, they generate an
error.

Since you could design a data structure like <message> equally well using either
attributes or tags, it can take a considerable amount of thought to figure out
which design is best for your purposes. Designing an XML Data
Structure (page 53), includes ideas to help you decide when to use attributes and
when to use tags.

33

34

UNDERSTANDING XML

Empty Tags

Oneredly big difference between XML and HTML isthat an XML document is
always constrained to be well formed. There are several rules that determine
when a document is well-formed, but one of the most important is that every tag
has aclosing tag. So, in XML, the </to> tag is not optional. The <to> element is
never terminated by any tag other than </to>.

Note: Another important aspect of awell-formed document is that al tags are com-
pletely nested. Soyou canhave <message>. . <to>. .</to>. .</message>, but never
<message>..<to>..</message>..</to>. A complete list of requirements is con-
tained in the list of XML Frequently Asked Questions (FAQ) at
http://www.ucc.ie/xm1/#FAQ-VALIDWF. (ThisFAQ isonthew3c “Recommended
Reading” list at http://www.w3.0rg/XML/.)

Sometimes, though, it makes sense to have atag that stands by itself. For exam-
ple, you might want to add a "flag" tag that marks message as important. A tag
like that doesn’t enclose any content, so it’s known as an “empty tag”. You can
create an empty tag by ending it with /> instead of >. For example, the following
message contains such atag:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<flag/>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Theempty tag savesyou from having to code <f1ag></f1ag> in order to have
awell-formed document. You can control which tags are allowed to be empty by
creating a Document Type Definition, or DTD. We'll talk about that in a few
moments. If thereis no DTD, then the document can contain any kinds of tags you
want, as long as the document is well-formed.

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

WHAT Is XML? 35

Comments in XML Files

XML commentslook just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com’
subject="XML Is Really Cool">
<!-- Thisisa comment -->
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

The XML Prolog

To complete this journeyman’s introduction to XML, note that an XML file
always starts with aprolog. The minimal prolog contains a declaration that iden-
tifies the document as an XML document, like this:

<?xml version="1.0"7>
The declaration may also contain additional information, like this:
<?xm1 version="1.0" encoding="IS0-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <htm1>,
except that it uses <7. . 7> and it may contain the following attributes:

version
Identifies the version of the XML markup language used in the data. This
attribute is not optional.

encoding
I dentifies the character set used to encode the data. “1S0O-8859-1" is “Latin-
1" the Western European and English language character set. (The default is
compressed Unicode; UTF-8.)

standalone
Tells whether or not this document references an external entity or an exter-
nal data type specification (see below). If there are no external references,
then “yes’ is appropriate
The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are vaid in the document, both declared in a Document Type Definition
(DTD) that can be defined directly within the prolog, as well as with pointers to

36

UNDERSTANDING XML

externa specification files. But those are the subject of later tutorials. For more
information on these and many other aspects of XML, see the Recommended
Reading list of thew3c XML page at http://www.w3.org/XML/.

Note: The declaration is actually optional. But it's a good idea to include it when-
ever you create an XML file. The declaration should have the version number, a a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future, and if the data ever needs to be localized
for different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

Processing Instructions

An XML file can also contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

<?target instructions?>

where the target is the name of the application that is expected to do the process-
ing, and instructions is a string of characters that embodies the information or
commands for the application to process.

Since the instructions are application specific, an XML file could have multiple
processing ingtructions that tell different applications to do similar things,
though in different ways. The XML file for a slideshow, for example, could have
processing instructions that let the speaker specify a technical or executive-level
version of the presentation. If multiple presentation programs were used, the pro-
gram might need multiple versions of the processing instructions (although it
would be nicer if such applications recognized standard instructions).

Note: The target name “xml” (in any combination of upper or lowercase |etters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you' re working with the parser |ater,
you'll see that the method for handling processing instructions never sees the dec-
laration.)

http://www.w3.org/XML/

WHY IS XML IMPORTANT?

Why Is XML Important?

There are anumber of reasons for XML’s surging acceptance. This section listsa
few of the most prominent.

Plain Text

Since XML is not a binary format, you can create and edit files with anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and makes it useful for storing small amounts of
data. At the other end of the spectrum, an XML front end to a database makes it
possible to efficiently store large amounts of XML data as well. So XML pro-
vides scalability for anything from small configuration files to a company-wide
data repository.

Data Identification

XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break up the data into parts, an email
program can process it, a search program can look for messages sent to particu-
lar people, and an address book can extract the address information from the rest
of the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

Stylability

When display is important, the stylesheet standard, XSL (page 45), lets you dic-
tate how to portray the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:
1. Start anew line.
2. Display “To:” in bold, followed by a space
3. Display the destination data.

Which produces:

To: you@yourAddress

37

38

UNDERSTANDING XML

Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, since XML isinherently style-free, you can use a
completely different stylesheet to produce output in postscript, TEX, PDF, or
some new format that hasn't even been invented yet. That flexibility amounts to
what one author described as “future-proofing” your information. The XML
documents you author today can be used in future document-delivery systems
that haven't even been imagined yet.

Inline Reusability

One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can be included “in line” in a document.
The included sections look like a normal part of the document—you can search
the whole document at one time or download it in one piece. That lets you mod-
ularize your documents without resorting to links. You can single-source a sec-
tion so that an edit to it is reflected everywhere the section is used, and yet a
document composed from such pieces looks for al the world like a one-piece
document.

Linkability

Thanksto HTML, the ability to define links between documentsis now regarded
as a necessity. The next section of thistutorial, XML and Related Specs: Digest-
ing the Alphabet Soup (page 42), discusses the link-specification initiative. This
initiative lets you define two-way links, multiple-target links, “expanding” links
(whereclicking alink causes the targeted information to appear inline), and links
between two existing documents that are defined in a third.

Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be delim-
ited by </dt>, another <dt>, <dd>, or </d1>. That makes for some difficult pro-
gramming. But in XML, the <dt> tag must aways have a </dt> terminator, or
elseit will be defined as a <dt/> tag. That restriction isacritical part of the con-
straints that make an XML document well-formed. (Otherwise, the XML parser
won’'t be able to read the data.) And since XML is avendor-neutral standard, you

How CAN You Use XML?

can choose among several XML parsers, any one of which takes the work out of
processing XML data.

Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, like stepping through atable of contents. They are also eas-
ier to rearrange, because each piece is delimited. In a document, for example,
you could move a heading to a new location and drag everything under it along
with the heading, instead of having to page down to make a selection, cut, and
then paste the selection into a new location.

How Can You Use XML?

There are several basic ways to make use of XML:

« Traditional dataprocessing, where XML encodesthe datafor a program to
process

¢ Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components

¢ Archiving—the foundation for document-driven programming, where the
customized version of a component is saved (archived) so it can be used
later

e Binding, where the DTD or schemathat defines an XML data structureis
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing

XML isfast becoming the data representation of choice for the Web. It's terrific
when used in conjunction with network-centric Java-platform programs that
send and retrieve information. So a client/server application, for example, could
transmit XM L-encoded data back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an e-mail program expect to see tags named <FIRST> and <LAST>, Of
<FIRSTNAME> and <LASTNAME>) The need for common standards will generate a

39

40

UNDERSTANDING XML

lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “trandate” the tagsin an XML document will be
important. Such mechanisms include projects like the RDF (page 49) initiative,
which defines “meat tags’, and the XSL (page 45) specification, which lets you
translate XML tags into other XML tags.

Document-Driven Programming (DDP)

The newest approach to using XML is to construct a document that describes
how an application page should look. The document, rather than simply being
displayed, consists of referencesto user interface components and business-logic
components that are “hooked together” to create an application on the fly.

Of course, it makes sense to utilize the Java platform for such components. Both
JavaBeans™ for interfaces and Enterprise Java Beans'™™ for business logic can
be used to construct such applications. Although none of the efforts undertaken
so far are ready for commercial use, much preliminary work has aready been
done.

Note: The Java programming language is also excellent for writing XM L-process-
ing toolsthat are as portable as XML. Severa Visual XML editors have been writ-
ten for the Java platform. For alisting of editors, processing tools, and other XML
resources, see the “ Software” section of Robin Cover's SGML/XML Web Page at
http://www.oasis-open.org/cover/.

Binding

Once you have defined the structure of XML data using either aDTD or the one
of the schema standards, alarge part of the processing you need to do has aready
been defined. For example, if the schema says that the text data in a <date> ele-
ment must follow one of the recognized date formats, then one aspect of the val-
idation criteria for the data has been defined—it only remains to write the code.
Although a DTD specification cannot go the same level of detail, aDTD (like a
schema) provides a grammar that tells which data structures can occur, in what
sequences. That specification tells you how to write the high-level code that pro-
cesses the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That processis
known as binding—creating classes that recognize and process different data

http://www.oasis-open.org/cover/

How CAN You Use XML?

elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, so you can focus on the programming that is unique to
your application.

Archiving

The Holy Grail of programming is the construction of reusable, modular compo-
nents. Idedlly, you'd like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it in and instantiate it using its saved parameters. (For exam-
ple, if you saved atable component, its parameters might be the number of rows
and columns to display.) Archived components can aso be shuffled around the
Web and used in avariety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classesif you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that’s
hard to do with abinary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object's state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “search and replace”.

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For all of these reasons, XM L -based
archiving is likely to become an important force in the not-too-distant future.

Summary

XML is pretty simple, and very flexible. It has many uses yet to be discovered—
we are just beginning to scratch the surface of its potential. It is the foundation
for a great many standards yet to come, providing a common language that dif-
ferent computer systems can use to exchange data with one another. As each
industry-group comes up with standards for what they want to say, computers
will begin to link to each other in ways previously unimaginable.

4

UNDERSTANDING XML

For more information on the background and motivation of XML, see this great
articlein Scientific American at

http://www.sciam.com/1999/05991issue/0599bosak.html.

XML and Related Specs: Digesting the
Alphabet Soup

Now that you have a basic understanding of XML, it makes sense to get a high-
level overview of the various XML-related acronyms and what they mean. There
isalot of work going on around XML, so thereisalot to learn.

The current APIs for accessing XML documents either serially or in random
access mode are, respectively, SAX (page 43) and DOM (page 43). The specifi-
cations for ensuring the validity of XML documents are DTD (page 44) (the
origina mechanism, defined as part of the XML specification) and various
Schema Standards (page 45) proposals (newer mechanisms that use XML syntax
to do thejob of describing validation criteria).

Other future standards that are nearing completion include the XSL (page 45)
standard—a mechanism for setting up translations of XML documents (for
example to HTML or other XML) and for dictating how the document is ren-
dered. The transformation part of that standard, XSLT (+XPATH) (page 45), is
completed and covered in this tutorial. Another effort nearing completion is the
XML Link Language specification (XML Linking (page 48)), which enables
links between XML documents.

Those are the major initiatives you will want to be familiar with. This section
also surveys a number of other interesting proposals, including the HTML-
lookalike standard, XHTML (page 49), and the meta-standard for describing the
information an XML document contains, RDF (page 49). There are also stan-
dards efforts that aim to extend XML, including XLink, and XPointer.

Finally, there are a number of interesting standards and standards-proposals that
build on XML, including Synchronized Multimedia Integration Language
(SMIL (page 51)), Mathematical Markup Language (MathML (page 51)), Scal-
able Vector Graphics (SVG (page 51)), and DrawML (page 51), as well as a
number of eCommerce standards.

http://www.sciam.com/1999/0599issue/0599bosak.html

BASIC STANDARDS

The remainder of this section gives you a more detailed description of these ini-
tiatives. To help keep things straight, it’s divided into:

« Basic Standards (page 43)

« Schema Standards (page 45)

« Linking and Presentation Standards (page 48)

« Knowledge Standards (page 49)

» Standards That Build on XML (page 50)

Skim the terms once, so you know what’s here, and keep a copy of this document
handy so you can refer to it whenever you see one of these terms in something
you're reading. Pretty soon, you'll have them all committed to memory, and
you'll be at least “conversant” with XML!

Basic Standards

These are the basic standards you need to be familiar with. They come up in
pretty much any discussion of XML.

SAX

Simple APl for XML

This API was actually a product of collaboration on the XML-DEV mailing list,
rather than a product of the W3C. It's included here because it has the same
“final” characteristics as a W3C recommendation.

You can also think of this standard as the “serial access’ protocol for XML. This
is the fast-to-execute mechanism you would use to read and write XML datain a
server, for example. This is also called an event-driven protocol, because the
technique is to register your handler with a SAX parser, after which the parser
invokes your callback methods whenever it sees anew XML tag (or encounters
an error, or wantsto tell you anything else).

For more information on the SAX protocol, see Simple APl for XML (page 85).

DOM

Document Object Model

43

UNDERSTANDING XML

The Document Object Model protocol converts an XML document into a collec-
tion of objectsin your program. You can then manipulate the object model in any
way that makes sense. This mechanism is aso known as the “random access’
protocol, because you can visit any part of the data at any time. You can then
modify the data, remove it, or insert new data. For more information on the
DOM specification, see Document Object Model (page 163).

DTD

Document Type Definition

The DTD specification is actually part of the XML specification, rather than a
separate entity. On the other hand, it is optional—you can write an XML docu-
ment without it. And there are a number of Schema Standards (page 45) propos-
asthat offer more flexible aternatives. So it is treated here as though it were a
separate specification.

A DTD specifies the kinds of tags that can be included in your XML document,
and the valid arrangements of those tags. You can use the DTD to make sure you
don't create an invalid XML structure. You can also use it to make sure that the
XML structure you are reading (or that got sent over the net) isindeed valid.

Unfortunately, it is difficult to specify aDTD for a complex document in such a
way that it prevents all invalid combinations and allows all the valid ones. So
constructing aDTD is something of an art. The DTD can exi<t at the front of the
document, as part of the prolog. It can also exist as a separate entity, or it can be
split between the document prolog and one or more additional entities.

However, while the DTD mechanism was the first method defined for specifying
valid document structure, it was not the last. Several newer schema specifica-
tions have been devised. You'll learn about those momentarily.

For more information, see Creating a Document Type Definition
(DTD) (page 124).

Namespaces

The namespace standard lets you write an XML document that uses two or more
sets of XML tags in modular fashion. Suppose for example that you created an
XML-based parts list that uses XML descriptions of parts supplied by other
manufacturers (online!). The “price” data supplied by the subcomponents would
be amounts you want to total up, while the “price” data for the structure as a

SCHEMA STANDARDS

whole would be something you want to display. The namespace specification
defines mechanisms for qualifying the names so as to eliminate ambiguity. That
lets you write programs that use information from other sources and do the right
things with it.

The latest information on namespaces can be found at
http://www.w3.0org/TR/REC-xmT-names.

XSL

Extensible Stylesheet Language

The XML standard specifies how to identify data, not how to display it. HTML,
on the other hand, told how things should be displayed without identifying what
they were. The XSL standard has two parts, XSLT (the transformation standard,
described next) and X SL-FO (the part that covers formatting objects, also known
as flow objects). XSL-FO gives you the ability to define multiple areas on a page
and then link them together. When a text stream is directed at the collection, it
fills the first area and then “flows” into the second when the first area is filled.
Such objects are used by newdetters, catalogs, and periodica publications.

The latest W3C work on XSL isat http://www.w3.0org/TR/WD-xs1.

XSLT (+XPATH)

Extensible Stylesheet Language for Transformations

The XSLT transformation standard is essentially a translation mechanism that
lets you specify what to convert an XML tag into so that it can be displayed—for
example, in HTML. Different XSL formats can then be used to display the same
datain different ways, for different uses. (The XPATH standard is an addressing
mechanism that you use when constructing transformation instructions, in order
to specify the parts of the XML structure you want to transform.)

For more information, see XML Stylesheet Language for
Transformations (page 221).

Schema Standards

A DTD makesit possible to validate the structure of relatively simple XML doc-
uments, but that's as far as it goes.

45

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-xsl

46

UNDERSTANDING XML

A DTD can't redtrict the content of elements, and it can’t specify complex rela-
tionships. For example, it isimpossible to specify with aDTD that a <heading>
for a<book> must have both a <title> and an <author>, while a <heading> for a
<chapter> only needs a<title>. InaDTD, once you only get to specify the struc-
ture of the <heading> element one time. There is no context-sensitivity.

Thisissue stems from the fact that aDTD specification is not hierarchical. For a
mailing address that contained several “parsed character data’ (PCDATA) ele-
ments, for example, the DTD might look something like this:

<!ELEMENT mailAddress (name, address, zipcode)>
<! ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

As you can see, the specifications are linear. That fact forces you to come up
with new names for similar elements in different settings. So if you wanted to
add another “name” element to the DTD that contained the <firstname>, <mid-
dlelnitial>, and <lastName>, then you would have to come up with another iden-
tifier. You could not simply call it “name” without conflicting with the <name>
element defined for use in a <mailAddress>.

Another problem with the non hierarchical nature of DTD specificationsisthat it
is not clear what comments are meant to explain. A comment at the top like <! -
- Address used for mailing via the postal system --> would apply to
al of the elements that constitute a mailing address. But a comment like <! --
Addressee --> would apply to the name element only. On the other hand, a
comment like <!-- A 5-digit string --> would apply specificaly to the
#PCDATA part of the zipcode element, to describe the valid formats. Finally,
DTDs do not allow you to formally specify field-validation criteria, such as the
5-digit (or 5 and 4) limitation for the zipcode field.

Finally, aDTD uses syntax which substantially different from XML, so it can’t
be processed with a standard XML parser. That meansyou can’t read aDTD into
aDOM, for example, modify it, and then write it back out again.

To remedy these shortcomings, a number of proposals have been made for a
more database-like, hierarchical “schema’ that specifies validation criteria. The
major proposals are shown below.

SCHEMA STANDARDS

XML Schema

A large, complex standard that has two parts. One part specifies structure rela-
tionships. (This is the largest and most complex part.) The other part specifies
mechanisms for validating the content of XML elements by specifying a (poten-
tially very sophisticated) datatype for each element. The good newsis that XML
Schemafor Structures lets you specify any kind of relationship you can conceive
of. The bad news is that it takes a lot of work to implement, and it takes a bit of
learning to use. Most of the alternatives provide for simpler structure definitions,
while incorporating the XML Schema datatype standard.

For more information on the XML Schema proposal, see the W3C specs XML
Schema (Structures) and XML Schema (Datatypes).

RELAX

Regular Language description for XML

Simpler than XML Structure Schema, RELAX uses XML syntax to express the
structure relationships that are present in a DTD, and adds the XML Datatype
Schema mechanisms, as well. IncludesaDTD to RELAX converter.

For more information on Relax, see http://www.xml.gr.jp/relax/.

SOX

Schema for Object-oriented XML

SOX is a schema proposal that includes extensible data types, namespaces, and
embedded documentation.

For more information on SOX, see http://www.w3.org/TR/NOTE-SOX.

TREX

Tree Regular Expressions for XML

A means of expressing validation criteria by describing a pattern for the struc-
ture and content of an XML document. Includesa RELAX to TREX converter.

For moreinformation on TREX, see http://www.thaiopensource.com/trex/.

47

http://www.xml.gr.jp/relax/
http://www.w3.org/TR/NOTE-SOX
http://www.thaiopensource.com/trex/

48

UNDERSTANDING XML

Schematron
Schemafor Object-oriented XML

An assertion-based schema mechanism that allows for sophisticated validation.

For more information on Schematron, see
http://www.ascc.net/xml/resource/schematron/schematron.html.

Linking and Presentation Standards

Arguably the two greatest benefits provided by HTML were the ability to link
between documents, and the ability to create simple formatted documents (and,
eventualy, very complex formatted documents). The following standards aim at
preserving the benefits of HTML in the XML arena, and to adding additional
functionality, as well.

XML Linking

These specifications provide a variety of powerful linking mechanisms, and are
sure to have a big impact on how XML documents are used.

XLink

The XLink protocol is a proposed specification to handle links between
XML documents. This specification alows for some pretty sophisticated
linking, including two-way links, links to multiple documents, “expanding”
links that insert the linked information into your document rather than
replacing your document with a new page, links between two documents
that are created in a third, independent document, and indirect links (so you
can point to an “address book” rather than directly to the target document—
updating the address book then automatically changes any links that use it).

XML Base
This standard defines an attribute for XML documents that defines a “base”
address, that is used when evaluating a relative address specified in the doc-
ument. (So, for example, a simple file name would be found in the base-
address directory.)

XPointer
In general, the XLink specification targets a document or document-segment
using its ID. The X Pointer specification defines mechanisms for “addressing
into the internal structures of XML documents”, without requiring the author
of the document to have defined an ID for that segment. To quote the spec, it

http://www.ascc.net/xml/resource/schematron/schematron.html

KNOWLEDGE STANDARDS

provides for “reference to elements, character strings, and other parts of
XML documents, whether or not they bear an explicit ID attribute”.

For more information on the XML Linking standards, see
http://www.w3.0org/XML/Linking.

XHTML

The XHTML specificationisaway of making XML documents that look and act
like HTML documents. Since an XML document can contain any tags you care
to define, why not define a set of tags that look like HTML? That's the thinking
behind the XHTML specification, at any rate. The result of this specificationisa
document that can be displayed in browsers and also treated as XML data. The
datamay not be quite asidentifiable as “pure” XML, but it will be aheck of alot
easier to manipulate than standard HTML, because XML specifies a good deal
more regularity and consistency.

For example, every tag in a well-formed XML document must either have an
end-tag associated with it or it must end in />. So you might see <p>...</p>, Or
you might see <p/>, but you will never see <p> standing by itself. The upshot of
that requirement is that you never have to program for the weird kinds of cases
you seein HTML where, for example, a <dt> tag might be terminated by </DT>,
by another <DT>, by <dd>, or by </d1>. That makesit alot easier to write code!

The XHTML specification isareformulation of HTML 4.0into XML. The latest
informationisat http://www.w3.0org/TR/xhtm11.

Knowledge Standards

When you start looking down the road five or six years, and visualize how the
information on the Web will begin to turn into one huge knowledge base (the
“semantic Web”). For the latest on the semantic Web, visit
http://www.w3.0rg/2001/sw/.

I n the meantime, here are the fundamental standardsyou’ Il want to know about:

RDF

Resource Description Framework

RDF is a proposed standard for defining data about data. Used in conjunction
with the XHTML specification, for example, or with HTML pages, RDF could

49

http://www.w3.org/XML/Linking
http://www.w3.org/TR/xhtml1
http://www.w3.org/2001/sw/

50

UNDERSTANDING XML

be used to describe the content of the pages. For example, if your browser stored
your 1D information as FIRSTNAME, LASTNAME, and EMAIL, an RDF description
could make it possible to transfer data to an application that wanted NAME and
EMAILADDRESS. Just think: One day you may not need to type your name and
address at every Web site you visit!

For the latest information on RDF, see http://www.w3.0org/TR/REC-rdf-syn-
tax.

RDF Schema

The RDF Schema proposal allows the specification of consistency rules and
additional information that describe how the statements in a Resource Descrip-
tion Framework (RDF) should be interpreted.

For more information on the RDF Schema recommendation, see
http://www.w3.0rg/TR/rdf-schema.

XT™M
XML Topic Maps

In many ways a simpler, more readily usable knowledge-representation than
RDF, the topic maps standard is one worth watching. So far, RDF is the W3C
standard for knowledge representation, but topic maps could possibly become
the “developer’s choice” among knowledge representation standards.

For more information on XML Topic Maps, http://www.topic-
maps.org/xtm/index.html. For information on topic maps and the Web, see
http://www.topicmaps.org/.

Standards That Build on XML

The following standards and proposals build on XML. Since XML isbasicaly a
language-definition tool, these specifications use it to define standardized lan-
guages for specialized purposes.

Extended Document Standards

These standards define mechanisms for producing extremely complex docu-
ments—books, journals, magazines, and the like—using XML.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/

STANDARDS THAT BUILD ON XML

SMIL
Synchronized Multimedia Integration Language

SMIL is a W3C recommendation that covers audio, video, and animations. It
also addresses the difficult issue of synchronizing the playback of such elements.

For more information on SMIL, see http://www.w3.0org/TR/REC-smiT.

MathML
Mathematical Markup Language

MathML is aW3C recommendation that deals with the representation of mathe-
matical formulas.

For more information on MathML, see http://www.w3.0org/TR/REC-MathML.

SVG
Scalable Vector Graphics

SVG is a W3C working draft that covers the representation of vector graphic
images. (Vector graphic images that are built from commands that say things like
“draw aline (square, circle) from point xi to point m,n” rather than encoding the
image as a series of bits. Such images are more easily scalable, although they
typically require more processing time to render.)

For more information on SVG, see http://www.w3.org/TR/WD-SVC.

DrawML
Drawing Meta Language

DrawML isaW3C note that covers 2D images for technical illustrations. It also
addresses the problem of updating and refining such images.

For more information on DrawML, see http://www.w3.0rg/TR/NOTE-drawm1.

eCommerce Standards

These standards are aimed at using XML in the world of business-to-business
(B2B) and business-to-consumer (B2C) commerce.

ICE

I nformation and Content Exchange

51

http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/WD-SVG
http://www.w3.org/TR/NOTE-drawml

52

UNDERSTANDING XML

ICE isaprotocol for use by content syndicators and their subscribers. It focuses
on “automating content exchange and reuse, both in traditional publishing con-
texts and in business-to-business relationships”.

For more information on ICE, see http://www.w3.0rg/TR/NOTE-ice.

ebXML

Electronic Business with XML

This standard aims at creating a modular electronic business framework using
XML. It isthe product of ajoint initiative by the United Nations (UN/CEFACT)

and the Organization for the Advancement of Structured Information Systems
(CASIS).

For more information on ebXML, see http://www.ebxml.org/.

cxml

Commerce XML

cxml is a RosettaNet (www. rosettanet.org) standard for setting up interactive
online catalogs for different buyers, where the pricing and product offerings are

company specific. Includes mechanisms to handle purchase orders, change
orders, status updates, and shipping notifications.

For moreinformation on cxml, see http://www.cxml.org/

CBL

Common Business Library

CBL is a library of element and attribute definitions maintained by Com-
merceNet (www. commerce. net).

For more information on CBL and a variety of other initiatives that work
together to enable eCommerce applications, see http://www.com-
merce.net/projects/current-
projects/eco/wg/eCo_Framework_Specifications.html.

Summary

XML is becoming a widely-adopted standard that is being used in a dizzying
variety of application areas.

http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/
http://www.cxml.org/
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html

SAVING YOURSELF SOME WORK

Designing an XML Data Structure

This section covers some heuristics you can use when making XML design deci-
sions.

Saving Yourself Some Work

Whenever possible, use an existing DTD. It's usually a lot easier to ignore the
things you don’t need than to design your own from scratch. In addition, using a
standard DTD makes data interchange possible, and may make it possible to use
data-aware tools developed by others.

So, if an industry standard exists, consider referencing that DTD with an external
parameter entity. One place to look for industry-standard DTDs is at the reposi-
tory created by the Organization for the Advancement of Structured Information
Standards (OASIS) at http://www.XML.org. Another place to check is Com-
merceOne's XML Exchange at http://www.xm1x.com, which is described as“a
repository for creating and sharing document type definitions”.

Note: Many more good thoughts on the design of XML structures are at the OASIS
page, http://www.oasis-open.org/cover/elementsAndAttrs.html.

Atiributes and Elements

One of the issues you will encounter frequently when designing an XML struc-
ture iswhether to model a given dataitem as a subelement or as an attribute of an
existing element. For example, you could model the title of a slide either as:

<sTide>
<title>This is the title</title>
</slide>
or as.

<sTlide title="This is the title">...</slide>

In some cases, the different characteristics of attributes and elements make it
easy to choose. Let's consider those cases first, and then move on to the cases
where the choice is more ambiguous.

53

http://www.XML.org
http://www.xmlx.com
http://www.oasis-open.org/cover/elementsAndAttrs.html

54

UNDERSTANDING XML

Forced Choices

Sometimes, the choice between an attribute and an element is forced on you by
the nature of attributes and elements. Let's look at afew of those considerations;

The data contains substructures
In this case, the data item must be modeled as an element. It can’t be mod-
eled as an attribute, because attributes take only simple strings. So if thetitle
can contain emphasized text likethis; The Best Choice, then the
title must be an element.

The data contains multiple lines
Here, it also makes sense to use an element. Attributes need to be simple,
short strings or el se they become unreadable, if not unusable.

The data changes frequently
When the data will be frequently modified, especially by the end user, then it
makes sense to model it as an element. XM L-aware editors tend to make it
very easy to find and modify element data. Attributes can be somewhat
harder to get to, and therefore somewhat more difficult to modify.

Thedataisasmall, simplestring that rarely if ever changes
This is data that can be modeled as an attribute. However, just because you
can does not mean that you should. Check the “Stylistic Choices’ section
next, to be sure.

Thedatais confined to a small number of fixed choices

Here is one time when it really makes sense to use an attribute. Using the
DTD, the attribute can be prevented from taking on any value that is not in
the preapproved list. An XML-aware editor can even provide those choices
in a drop-down list. Note, though, that the gain in validity restriction comes
at a cost in extensibility. The author of the XML document cannot use any
value that is not part of the DTD. If another value becomes useful in the
future, the DTD will have to be modified before the document author can
make use of it.

Stylistic Choices

As often as not, the choices are not as cut and dried as those shown above. When
the choice is not forced, you need a sense of “style” to guide your thinking. The
guestion to answer, then, is what makes good XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as
defining “style” when it comes to art or music. There are afew waysto approach

ATTRIBUTES AND ELEMENTS

it, however. The goa of this section is to give you some useful thoughts on the

subject of “XML style”.

Visibility
The first heuristic for thinking about XML elements and attributes uses the
concept of visibility. If the datais intended to be shown—to be displayed to
some end user—then it should be modeled as an element. On the other hand,
if the information guides XML processing but is never displayed, then it
may be better to model it as an attribute. For example, in order-entry datafor
shoes, shoe size would definitely be an element. On the other hand, a manu-
facturer’s code number would be reasonably modeled as an attribute.

Consumer / Provider

Another way of thinking about the visibility heuristic is to ask who is the
consumer and/or provider of the information. The shoe size is entered by a
human sales clerk, so it’s an element. The manufacturer’s code number for a
given shoe model, on the other hand, may be wired into the application or
stored in a database, so that would be an attribute. (If it were entered by the
clerk, though, it should perhaps be an element.) You can aso think in terms
of who or what is processing the information. Things can get a bit murky at
that end of the process, however. If the information “consumers’ are order-
filling clerks, will they need to see the manufacturer’s code number? Or, if
an order-filling program is doing all the processing, which data items should
be elements in that case? Such philosophical distinctions leave alot of room
for differencesin style.

Container vs. Contents
Another way of thinking about elements and attributes is to think of an ele-
ment as a container. To reason by analogy, the contents of the container
(water or milk) correspond to XML data modeled as elements. On the other
hand, characteristics of the container (blue or white, pitcher or can) corre-
spond to XML data modeled as attributes. Good XML style will, in some
consistent way, separate each container’s contents from its characteristics.

To show these heuristics at work: In a slideshow the type of the slide (executive
or technical) is best modeled as an attribute. It is a characteristic of the slide that
lets it be selected or rejected for a particular audience. The title of the slide, on
the other hand, is part of its contents. The visibility heuristic is also satisfied
here. When the slide is displayed, thetitle is shown but the type of the slideisn’t.
Finally, in this example, the consumer of the title information is the presentation
audience, while the consumer of the type information is the presentation pro-
gram.

55

56

UNDERSTANDING XML

Normalizing Data

The section Designing an XML Data Structure (page 53) shows how to create an
externa entity that you can reference in an XML document. Such an entity has
al the advantages of a modularized routine—changing that one copy affects
every document that references it. The process of eliminating redundancies is
known as normalizing, so defining entities is one good way to normalize your
data.

Inan HTML file, the only way to achieve that kind of modularity iswith HTML
links—but of course the document is then fragmented, rather than whole. XML
entities, on the other hand, suffer no such fragmentation. The entity reference
acts like a macro—the entity’s contents are expanded in place, producing a
whole document, rather than afragmented one. And when the entity is defined in
an external file, multiple documents can referenceit.

The considerations for defining an entity reference, then, are pretty much the
same as those you would apply to modularized program code:

« Whenever you find yourself writing the same thing more than once, think
entity. That lets you write it one place and reference it multiple places.

« |f the information is likely to change, especidly if it is used in more than
one place, definitely think in terms of defining an entity. An example is
defining productName as an entity so that you can easily change the doc-
uments when the product name changes.

 |f the entity will never be referenced anywhere except in the current file,
defineit in the local_subset of the document’s DTD, much as you would
define amethod or inner class in a program.

« |f the entity will be referenced from multiple documents, define it as an
external entity, the same way that would define any generally usable class
as an external class.

External entities produce modular XML that is smaller, easier to update and
maintain. They can also make the resulting document somewhat more difficult to
visualize, much as a good OO design can be easy to change, once you under-
stand it, but harder to wrap your head around at first.

You can also go overboard with entities. At an extreme, you could make an
entity reference for the word “the”—it wouldn’t buy you much, but you could do
it.

NORMALIZING DTDs

Note: The larger an entity is, the less likely it is that changing it will have unin-
tended effects. When you define an external entity that covers a whole section on
installation instructions, for example, making changes to the section is unlikely to
make any of the documents that depend on it come out wrong. Small inline substi-
tutions can be more problematic, though. For example, if productName isdefined
as an entity, the name change can be to a different part of speech, and that can kill
you! Suppose the product nameis something like“HtmIEdit”. That'saverb. Soyou
write, “You can HtmlIEdit your file...”. Then, when the official nameis decided, it's
“Killer”. After substitution, that becomes “You can Killer your file...”. Argh. $till,
even if such simple substitutions can sometimes get you in trouble, they can also
save alot of work. To betotally safe, though, you could set up entities named pro-
ductNoun, productVerb, productAdj, and productAdverb!

Normalizing DTDs

Just as you can normalize your XML document, you can also normalize your
DTD declarations by factoring out common pieces and referencing them with a
parameter entity. This process is described in the SAX tutorial in Defining
Parameter Entities and Conditional Sections (page 146). Factoring out the DTDs
(also known as modularizing or normalizing) gives the same advantages and dis-
advantages as normalized XML—easier to change, somewhat more difficult to
follow.

You can also set up conditionalized DTDs, as described in the SAX tutorial sec-
tion Conditional Sections (page 148). If the number and size of the conditional
sectionsis small relative to the size of the DTD as awhole, that can let you “sin-
gle source” aDTD that you can use for multiple purposes. If the number of con-
ditional sections gets large, though, the result can be a complex document that is
difficult to edit.

57

58

UNDERSTANDING XML

Getting Started With
Tomcat

Debbie Carson

T HIS chapter shows you how to develop, deploy, and run a simple Web appli-
cation that consists of a currency conversion class and a Web page client created
with JavaServer Pages™ technology (JSP™). This application will be deployed
to and run on Tomcat, the Java™ Servlet and JSP container included with the
Java Web Services Developer Pack (“Java WSDP”). This chapter is intended as
an introduction to using Tomcat to deploy Web services and Web applications.
The materia in this chapter provides a basis for other chaptersin this tutorial.

In This Chapter
Setting Up 60
Getting the Example Code 60
Checking the Environment Variables 61
Creating the Getting Started Application 61
The Converter Class 61
The Web Client 62
Building and Deploying the Getting Started Application Using Ant 64
Setting the CLASSPATH 64
Creating the Build File for Ant 64
Compiling the Source Files 66
Deploying the Application 66
Running the Getting Started Application 67
Starting Tomcat 67
Running the Web Client 67

59

Bios.html#debbieCarson

60

GETTING STARTED WITH TOMCAT

Shutting Down Tomcat 68
M odifying the Application 68
Modifying a Class File 69
Modifying the Web Client 69
Reloading the Application 69
Common Problems and Their Solutions 70
Compilation Errors 70
Deployment Errors 71

Setting Up

Before you start developing the example application, you should follow the
instructionsin this section and in About the Examples (page xvi).

Getting the Example Code

The source code for the example is in
<JWDSP_HOME>/docs/tutorial/examples/gs/, a directory that is created
when you unzip the tutorial bundle. If you are viewing this tutorial online, you
can download the tutorial bundle from:

http://java.sun.com/webservices/downloads/webservicestutorial.html

The example application at <JWDSP_HOME>/docs/tutorial/examples/gs/
consists of the following files.

e Converter.java - The Javaclassthat contains the methods do1larToYen
and yenToEuro. These methods are used to convert U.S. dollars to Yen,
then convert Yen to Euros.

* 1index.jsp - The Web client, whichisaJavaServer Pages page that accepts
the value to be converted, the buttons to submit the value, and the result of
the conversion.

e build.xml - The build file that uses the ant tool to build and deploy the
Web application.

Therest of this document shows how this example application was created, built,
deployed, and run. If you would like to skip the information on creating the
example application, you can go directly to the sections describing how to build,
deploy, and run the example application, starting with Building and Deploying
the Getting Started A pplication Using Ant (page 64).

http://java.sun.com/webservices/downloads/webservicestutorial.html

CHECKING THE ENVIRONMENT VARIABLES

Checking the Environment Variables

The ingallation instructions for the Java Web Services Developer Pack explain

how to set the required environment variables. Please verify that the environ-
ment variables have been set to the values noted in the following table.

Table 1 Required Environment Variables

Environment
Variable Value
; ™ iti ™
JAVA_HOME The Iocz_:m on of theJava™ 2 Platform, Standard Edition (J2SE™)
installation.
JWSDP_HOME The location of the Java Web Services Developer Pack installation.
Should include the b1 n directories of the Java Web Services Devel oper
PATH Pack and J2SE installations. Make sure that these directories are located
a the front of your path statement.

Creating the Getting Started

Application

The example application contains a Converter class and a Web component. For
this example, we will create atop-level project source directory named gs/. All
of thefiles in this example application are created in this directory.

The Converter Class

The Converter class used in the example application is used in conjunction with
a JavaServer Pages page. The resulting application is aform that enables you to

convert American dollars to Euros or Yen. The source code for the Converter

classisinthe <JwbsP_HOME>/docs/examples/gs/ directory.

Coding the Converter Class

The Converter class for this example implements two methods, do11arToYen
and yenToEuro. The source code for the Converter class follows.

62

GETTING STARTED WITH TOMCAT

import java.math.*;
public class Converter {

static BigDecimal yenRate = new BigDecimal(“138.7800");
static BigDecimal euroRate = new BigDecimal(“0.0084”);

pubTlic static BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2,BigDecimal.ROUND_UP);

}

pubTlic static BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2,BigDecimal.ROUND_UP);

}

public Converter() {}

The Web Client

The Web client is contained in the JSP page
<JWDSP_HOME>/docs/tutorials/examples/gs/index.jsp. A JSP page is a
text-based document that contains both static and dynamic content. The static
content is the template data that can be expressed in any text-based format, such
asHTML, WML, or XML. JSP elements construct the dynamic content.

Coding the Web Client

The JSP page, index. jsp, isused to create the form that will appear in the Web
browser when the application client is running. This JSP page is a typical mix-
ture of static HTML markup and JSP elements. If you have developed Web
pages, you are probably familiar with the HTML document structure statements
(<head>, <body>, and so on) and the HTML statements that create a form

THE WEB CLIENT

<form> and amenu <select>. The highlighted lines in the example contain the
following types of JSP constructs:

» Directives (<% @page ... %>) import classesin the Converter class, and set
the content type returned by the page.

e Scriptlets (<% ... %>) retrieve the value of the amount request parameter,
convert it to aBigbecimal, and convert the value to Yen or Euro.

e EXpressions (<%= ...%>) insert the value of the amount into the response.
The source code for index. jsp follows.

<% @ page import="Converter,java.math.*" %>
<% @ page contentType="text/html; char set=| SO-8859-1" % >
<html>
<head>
<title>Converter</title>
</head>

<body bgcolor="white">
<hl><center>Converter</center></hl>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<%
String amount = request.getParameter (" amount™);
if (amount != null & & amount.length() >0) {
BigDecimal d = new BigDecimal (amount);
%>
<p><%=amount %> dollars are
<%= Converter.dollarToYen(d) %> Yen.
<p><%=amount %> Yen are
<%= Converter.yenToEuro(d) %> Euro.
<%
}
%>
</body>
</html>

GETTING STARTED WITH TOMCAT

Building and Deploying the Getting
Started Application Using Ant

Now the example Web application is ready to build and deploy.

Setting the CLASSPATH

To build and run the example code, you will need to set the CLASSPATH vari-
able properly. Instructions for setting up the CLASSPATH can be found online at

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/classpath.html

For this example, the CLASSPATH, which will need to include the
<JWSDP_HOME>/webapps/gs/WEB-INF/classes directory, is set in the build
file described in the next section. Information on what directories need to be
included in the CLASSPATH can be found at “Managing Files’ in the Java™
Tutorial, which can be viewed from:

http://java.sun.com/docs/books/tutorial/java/interpack/managing-
files.html

Creating the Build File for Ant

This release of the Java Web Services Developer Pack includes ant, a make tool
that is portable across platforms. Documentation for the ant tool can befound in
the file index.htm1 from the <JWbsP_HOME>/docs/ant/ directory of your Java
WSDP installation.

To use ant for this example, create the file build.xm1 in the gs/ directory. The
code for thisfile follows:

<!-- Setting up the Getting Started exampleto prepareto build
and deploy -->
<project name="wspack-getting-started-example"” default=""
basedir=".">
<target name="1init">
<tstamp/>
</target>

<l-- Thissection setsproperties used in the rest of this
build file -->
<property name="build" value="build" />

http://java.sun.com/docs/books/tutorial/java/interpack/managingfiles.html
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/classpath.html

CREATING THE BUILD FILE FOR ANT

<property environment="myenv" />

<l--Theselibrariesneed to beincluded in the CLASSPATH -->
<path id="classpath">

<fileset dir="${myenv.JWSDP_HOME}/common/1ib">
<include name="*.jar"/>

</fileset>

</path>

<!-- This section preparesthe directory structure needed
for Web applications-->
<target name="prepare" depends="init"
description="Create build directories.">
<mkdir dir="${build}/WEB-INF/classes" />
</target>

<!-- This section compilesthe Java filesand copiesthe
HTML and JSP pagesto the appropriate locations -->
<target name="build" depends="prepare"

description="Compile app Java files and copy HTML and JSP

pages" >
<javac srcdir="." destdir="${build}/WEB-INF/classes">
<include name="*%*/*_java" />
<classpath refid="classpath"/>
</javac>
<copy todir="${build}">
<fileset dir=".">
<include name="*.html1" />
<include name="%*.jsp" />
</fileset>
</copy>
</target>

<!-- This section deploysthe application by copying the
appropriate filesto the webappg directory -->
<target name="deploy" depends="build"
description="Deploy app to webapps.">
<copy todir="${myenv.JWSDP_HOME} /webapps/gs">
<fileset dir="${build}" />
</copy>
</target>

</project>

65

66

GETTING STARTED WITH TOMCAT

Compiling the Source Files

Tomcat automatically compiles JSP pages. The steps for compiling the Java
class (Converter.java) follows.

1. Inaterminal window, go to the gs/ directory if you are creating the appli-
cation on your own, or go to the
<JWDSP_HOME>/docs/tutorial/examples/gs/ directory if you are com-
piling the exampl e files downloaded with the tutorial.

2. Type thefollowing command to build the Javafiles:
ant build

This command compiles the source files for the Converter class. It places the
resulting class files in the gs/bui1d/WEB-INF/classes/ directory as specified
in the build target in build.xm1.

Deploying the Application

A Web application is defined as a hierarchy of directories and files in a standard
layout. In this example, the hierarchy is accessed in an “unpacked” form, where
each directory and file existsin the file system separately. In later releases of the
Java Web Services Developer Pack, this chapter will discuss creating a Web
ARchive (WAR) file for deploying your application and handling security issues.
This section includes information for deploying your application. For informa-
tion on handling security issuesin thisrelease, read Security Manager How-Toin
<JWDSP_HOME>/docs/tomcat/security-manager-howto.html.

The build.xm1 file includes commands for deploying the Web application. The
steps for deploying this Web application follow.

1. Inaterminal window, go to the gs/ directory.
2. Type the following command to deploy the Web application files:

ant deploy

This command copies the Web client file, 1index.jsp, to
<JWSDP_HOME>/webapps/gs/ and copies the Java classfile, Converter.class,
10 <JWSDP_HOME>/webapps/gs/WEB-INF/classes/.

STARTING TOMCAT

Running the Getting Started
Application

To run the application, you need to start Tomcat, then run the JSP page from a
Web browser. Documentation for Tomcat can be found at
<JWDSP_HOME>/docs/tomcat/index.html.

Starting Tomcat

To start Tomcat, type the following command in a terminal window. This com-
mand uses the environment variable JWSDP_HOME.

$IWSDP_HOME /bin/startup.sh (Unix platform)
%JWSDP_HOME%\bin\startup (Microsoft Windows)

The startup script starts the task in the background and then returns the user to
the command line prompt immediately. Even though you are returned to the
command line, the startup script may not have completely started Tomcat. If the
Web Client does not run immediately, wait up to a minute and then retry to load
the Web client.

Running the Web Client

After Tomcat is started, you can run the Web client by pointing your browser at
the following URL. Replace <host> with the name or |P address of the host run-
ning Tomcat. If your browser is running on the same host as Tomcat, you may
replace <host> with Tocalhost.

http://<host>:8080/gs

You should see the following after entering 100 in the input field and clicking
Submit:

68 GETTING STARTED WITH TOMCAT

| Bagk Feeod Relead Humie Bearch Neisoaps Prigd Secun
‘E -d‘h:i:—ﬂ- .!. L T BT B e e &) [T LS s E e TETTT LR .

Camvirien

Erifiar ari astivuinl ba conaerd

[
Submit| Reset

100 dodlaen arw 131 RE0 Fen
T0H e os OB Eura

fa| I i A @8

Figurel Converter Web Client

Shutting Down Tomcat
When you are finished testing and developing your application, you should shut

down Tomcat.
$IWSDP_HOME/bin/shutdown.sh (Unix platform)
%JWSDP_HOME%\b1in\shutdown (Microsoft Windows)

Modifying the Application

Since the Java Web Services Developer Pack is intended for experimentation, it
supports iterative development. Whenever you make a change to an application,
you must redeploy and reload the application.

MODIFYING A CLASS FILE

Modifying a Class File

To modify aclass file in a Java component, you change the source code, recom-
pile it, and redeploy the application. For example, suppose that you want to
change the exchange rate in the do11arToYen method of the Converter class:

1. Edit Converter.java in the source directory.

2. Recompile Converter.java by typing ant build.

3. Redeploy Converter.java by typing ant deploy.

4. Restart the Web application.

5. Reload the JSP page in the Web browser.

Modifying the Web Client

To modify the Web client:
1. Edit index. jsp in the source directory.
2. Redeploy index.jsp by typing ant deploy.
3. Reload the Web application.
4. Reload the application in the Web browser.

Reloading the Application
You reload an application with the command:

http://localhost:8080/manager/reload?path=/target

This command invokes the manager Web application. Before you can use this
application you must add your user name/password combination and associate
the role name manager with it to <JWSDP_HOME>/conf/tomcat-users.xml,
which can be edited with any text editor. This file contains an element <user>
for each individual user, which might look something like this:

<user name="adeveloper" password="secret" roles="manager" />

The Tomcat reference documentation distributed with the Java WSDP contains
information about the manager application.

69

70

GETTING STARTED WITH TOMCAT

Common Problems and Their Solutions

Cannot Start the Tomcat Server

“Out of Environment Space” Error

Symptom: An “out of environment space” error when running the startup and
shutdown batch files in Microsoft Windows 9X/M E-based operating systems.

Solution: In the Microsoft Windows Explorer, right-click on the startup.bat
and shutdown.bat files. Select Properties, then select the Memory tab. Increase
the Initial Environment field to something like 4096. Select Apply.

After you select Apply, shortcuts will be created in the directory you use to start
and stop the container.

Compilation Errors

Ant Cannot Locate the Build File
Symptom: When you type ant build, these messages appear:

Buildfile: build.xml does not exist!
Build failed.

Solution: Start ant from the <JWSDP_HOME>/docs/tutorial/examples/gs/
directory, or from the directory where you created the application. If you want to
run ant from your current directory, then you must specify the build file on the
command line. For example, on Microsoft Windows operating systems, you
would type this command on asingleline:

ant -buildfile C:\wspackl.O\docs\examples\src\gs\build.xm]l
build

DEPLOYMENT ERRORS 71

The Compiler Cannot Resolve Symbols

Symptom: When you type ant bui1d, the compiler reports many errors, includ-
ing these:

cannot resolve symbol
BUILD FAILED

éorhp‘i'le failed, messages should have been provided

Solution: Make sure that you' ve set the IWSDP_HOME environment variable
correctly. See Checking the Environment Variables (page 61).

Deployment Errors

Failure to run client application
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: The startup script starts the task in the background and then returns the
user to the command line prompt immediately. Even though you are returned to
the command line, the startup script may not have completely started Tomcat. If
the Web Client does not run immediately, wait up to a minute and then retry to
load the Web client.

The localhost Machine Is Not Found
Symptom: The browser reports that the page cannot be found (HTTP 404).
Solution: Sometimes when you are behind a proxy and the firewall will not let

you access the TocaTlhost machine. To fix this, change the proxy setting so that
it does not use the proxy to access Tocalhost.

To do this in the Netscape Navigator™ browser, select Edit -> Preferences ->
Advanced -> Proxies and select No Proxy for: Tocalhost. In Internet
Explorer, select Tools -> Internet Options -> Connections -> LAN Settings.

The Application Has Not Been Deployed
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Deploy the application. For more detail, see Deploying the
Application (page 66).

72

GETTING STARTED WITH TOMCAT

Java™ API for XML
Processing

Eric Armstrong

THE Java™ API for XML Processing (“JAXP") isfor processing XML data
using applications written in the Java programming language. JAXP leverages
the parser standards SAX (Simple APl for XML Parsing) and DOM (Document
Object Model) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP also supports the XSLT (XML
Stylesheet Language Transformations) standard, giving you control over the pre-
sentation of the data and enabling you to convert the data to other XML docu-
ments or to other formats, such as HTML. JAXP also provides namespace
support, alowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP alows you to use any XML-compliant parser
from within your application. It does thiswith what is called a pluggability layer,
which alows you to plug in an implementation of the SAX or DOM APIs. The
pluggability layer also allows you to plug in an XSL processor, |etting you con-
trol how your XML datais displayed.

In This Chapter
The JAXP APIs 74
An Overview of the Packages 74
The Simple API for XML (SAX) APIs 75
The SAX Packages 78
The Document Object Model (DOM) APIs 78
The DOM Packages 80

73

Bios.html#ericArmstrong

JAVA™ AP| FOR XML PROCESSING

The XML Stylesheet Language for Transformation (XSLT) APIs 8l
The XSLT Packages 82
Where Do You Go from Here? 82

The JAXP APIs

The main JAXP APIs are defined in the javax.xm1.parsers package. That
package contains two vendor-neutral factory classes. SAXParserFactory and
DocumentBuilderFactory that give you a SAXParser and a DocumentBuilder,
respectively. The DocumentBuilder, in turn, creates DOM-compliant Document
object.

The factory APIs give you the ability to plug in an XML implementation offered
by another vendor without changing your source code. The implementation you
get depends on the setting of the javax.xm1.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory system properties. The defeult
values (unless overridden at runtime) point to the reference implementation.

The remainder of this section shows how the different JAXP APIs work when
you write an application.

An Overview of the Packages

The SAX and DOM APIs are defined by XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are;

javax.xml.parsers
The JAXP APIs, which provide a common interface for different vendors
SAX and DOM parsers.

org.w3c.dom
Defines the Document class (aDOM), aswell as classes for all of the compo-
nents of a DOM.

org.xml.sax

Defines the basic SAX APIs.
javax.xml.transform

Definesthe XSLT APIsthat let you transform XML into other forms.
The“Simple API” for XML (SAX) isthe event-driven, serial-access mechanism
that does element-by-element processing. The API for this level reads and writes
XML to a data repository or the Web. For server-side and high-performance

apps, you will want to fully understand this level. But for many applications, a
minimal understanding will suffice.

The DOM API isgenerally an easier API to use. It provides a relatively familiar
tree structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object modd is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU and memory
intensive. For that reason, the SAX API will tend to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in javax.xm1.transform let you write XML
data to afile or convert it into other forms. And, as you'll seein the XSLT sec-
tion, of this tutorial, you can even use it in conjunction with the SAX APls to
convert legacy datato XML.

The Simple API for XML (SAX) APIs

The basic outline of the SAX parsing APIs are shown at right. To start the pro-
cess, an instance of the SAXParserFactory classed is used to generate an
instance of the parser.

75

JAVA™ AP| FOR XML PROCESSING

sﬁﬂ:iul Content
! = Handler
Error
SAXParser | Handler
SAX

DTD
Handler

Y : Reader

Entity
Resolver

AR

Figurel SAX APIs

The parser wraps a SAXReader object. When the parser’s parse() method is
invoked, the reader invokes one of several callback methodsimplemented in the
application. Those methods are defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Hereisasummary of the key SAX APIs:

SAXParserFactory
A SAXParserFactory object creates an instance of the parser determined by
the system property, javax.xml.parsers.SAXParserFactory.

SAXParser
The SAXParser interface defines several kinds of parse() methods. In gen-
eral, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methodsin the
handler object.

SAXReader
The SAXParser wraps a SAXReader. Typically, you don't care about that, but
every once in awhile you need to get hold of it using SAXParser’s getXML-
Reader(), S0 you can configure it. It is the SAXReader which carries on the
conversation with the SAX event handlers you define.

DefaultHandler
Not shown in the diagram, a DefaultHandler implements the Con-
tentHandler, ErrorHandler, DTDHandTer, and EntityResolver interfaces
(with null methods), so you can override only the ones you' re interested in.

ContentHandler
Methods like startDocument, endDocument, startElement, and endEle-
ment are invoked when an XML tag is recognized. This interface also
defines methods characters and processingInstruction, which are
invoked when the parser encountersthe text in an XML element or an inline
processing instruction, respectively.

ErrorHandler
Methods error, fatalError, and warning are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That’s one rea
son you need to know something about the SAX parser, evenif you areusing
the DOM. Sometimes, the application may be able to recover from avalida
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you'll need to supply your own error handler to the parser.

DTDHandler
Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

EntityResolver
The resolveEntity method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is simply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by aURN—a public identifier, or name, that is unique in the Web space.
The public identifier may be specified in addition to the URL. The Entity-
Resolver can then use the public identifier instead of the URL to find the
document, for example to access alocal copy of the document if one exists.

A typical application implements most of the ContentHandler methods, a a
minimum. Since the default implementations of the interfaces ignore all inputs
except for fatal errors, a robust implementation may want to implement the
ErrorHandler methods, aswell.

77

78

JAVA™ AP| FOR XML PROCESSING

The SAX Packages

The SAX parser is defined in the following packages listed in Table 1.

Tablel SAX Packages

Package

org.xml.sax

org.xml.sax.ext

org.xml.sax.helpers

javax.xml.parsers

Description

Definesthe SAX interfaces. The name org.xm1 isthe pack-
age prefix that was settled on by the group that defined the
SAX API.

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process adocu-
ment type definitions (DTD) or to see the detailed syntax for a
file

Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null-methods
for al of theinterfaces, so you only need to override the ones
you actually want to implement.

Definesthe SAXParserFactory class which returns the
SAXParser. Also defines exception classes for reporting
errors.

The Document Object Model (DOM)

APlIs

Figure 2 showsthe JAXP APIsin action:

THE SAX PACKAGES

DocumentBuilder
Factory

[l

o Document (DOM)
Document Q @
Q Bl].ildel'

Figure2 DOM APIs

You use the javax.xml.parsers.DocumentBuilderFactory classto get aDoc-
umentBuilder instance, and use that to produce a Document (a DOM) that con-
forms to the DOM specification. The builder you get, in fact, is determined by
the System property, javax.xml.parsers.DocumentBuilderFactory, which
selects the factory implementation that is used to produce the builder. (The plat-
form's default value can be overridden from the command line.)

You can also use the DocumentBuilder newDocument() method to create an
empty Document that implements the org.w3c.dom.Document interface. Alter-
natively, you can use one of the builder’s parse methods to create a Document
from existing XML data. The result is a DOM tree like that shown in the dia
gram.

Note: Although they are called objects, the entries in the DOM tree are actualy
fairly low-level datastructures. For example, under every element node (which cor-
responds to an XML element) there is a text node which contains the name of the
element tag! Thisissuewill beexplored at lengthinthe DOM section of thetutorial,
but users who are expecting objects are usualy surprised to find that invoking the
text () method on an element object returns nothing! For a truly object-oriented
tree, seethe JDOM API at http://www.jdom.org.

79

80

JAVA™ AP| FOR XML PROCESSING

The DOM Packages

The Document Object Model implementation is defined in the following pack-

ages:

Table2 DOM Packages

Package

org.w3c.dom

javax.xml.parsers

Description

Defines the DOM programming interfaces for XML (and, option-
aly, HTML) documents, as specified by the W3C.

Defines the DocumentBuilderFactory class and the Docu-
mentBuilder class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the javax.xm1.parsers system prop-
erty, which can be set from the command line or overridden when
invoking the new Instance method. This package aso defines
the ParserConfigurationException classfor reporting
errors.

THE DOM PACKAGES 81

The XML Stylesheet Language for
Transformation (XSLT) APIs

Figure 3 showsthe XSLT APIsin action.

Transformer
Factory

[l

Transformation
Instructions

Figure3 XSLT APIs

A TransformerFactory object is instantiated, and used to create a Trans-
former. The source object is the input to the transformation process. A source
object can be created from SAX reader, from aDOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, aDOM, or an output stream.

When the transformer is created, it may be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.

82 JAVA™ AP| FOR XML PROCESSING

The XSLT Packages

The XSLT APIs are defined in the following packages.

Table3 XSLT Packages
Package Description

Definesthe TransformerFactory and
Transformer classes, which you useto get a
object capable of doing transformations. After
creating atransformer object, you invoke its
transftorm() method, providing it with an
input (source) and output (result).

javax.xml.transform

Classes to create input (source) and output

javax.xml.transform.dom (result) objects from a DOM.

Classes to create input (source) from a SAX
javax.xml.transform.sax parser and output (result) objects from a SAX
event handler.

Classes to create input (source) and output

j xml.t form.st .
javax.xmi.transtorm. stream (result) objects from an I/O stream.

Compiling and Running the Programs

In the Java WSDP, the JAXP libraries are distributed in the directory
<JWSDP_HOME>/common/11ib. To compile and run the sample programs, you'll
first need to install the JAXP libraries in the appropriate location. (The location
depends on which version of the VM you are using.) See the JAXP release
notes at <JWSDP_HOME>/docs/jaxp/ReleaseNotes.html for details.

Where Do You Go from Here?

At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step from here depends on what you want
to accomplish. You might want to go to:

THE XSLT PACKAGES 83

The XML Thread
If you want to learn more about XML, spending as little time as possible on
the Java APIs. You will see all of the XML sections in the normal course of
the tutorial. Follow this thread if you want to bypass the API programming

steps:

Introduction to XML (page 31)

Writing a Simple XML File (page 86)

Substituting and Inserting Text (page 120)

Creating a Document Type Definition (DTD) (page 124)
Defining Attributes and Entitiesin the DTD (page 133)
Referencing Binary Entities (page 140)

Defining Parameter Entities and Conditional Sections (page 146)

Designing an XML Data Structure (page 53)

If you are creating XML data structures for an application and want some
tips on how to proceed. (Thisisthe next step in the XML overview.)

Simple APl for XML (page 85)

If the data structures have aready been determined, and you are writing a
server application or an XML filter that needs to do the fastest possible pro-
cessing. This section also takes you step by step through the process of con-
structing an XML document.

Document Object Model (page 163)

If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objectsto XML. This part
of the tutorial ends with a section on namespaces.

XML Stylesheet L anguage for Transformations (page 221)

If you need to transform XML tagsinto some other form, if you want to gen-
erate XML output, or if you want to convert legacy data structuresto XML.

84

JAVA™ AP| FOR XML PROCESSING

Simple API for XML

Eric Armstrong

I N this chapter we focus on the Simple API for XML (SAX), an event-driven,
serial-access mechanism for accessing XML documents. Thisisthe protocol that
most servlets and network-oriented programs will want to use to transmit and
receive XML documents, because it's the fastest and least memory-intensive
mechanism that is currently available for dealing with XML documents.

The SAX protocol requires alot more programming than the Document Object
Model (DOM). It's an event-driven model (you provide the callback methods,
and the parser invokes them as it reads the XML data), which makesit harder to
visualize. Finally, you can't “back up” to an earlier part of the document, or rear-
rangeit, any more than you can back up a serial data stream or rearrange charac-
tersyou have read from that stream.

For those reasons, developers who are writing a user-oriented application that
displays an XML document and possibly modifies it will want to use the DOM
mechanism described in the next part of the tutorial, Document Object
Model (page 163).

However, even if you plan to do build DOM apps exclusively, there are several
important reasons for familiarizing yourself with the SAX model:
e Same Error Handling
When parsing a document for a DOM, the same kinds of exceptions are
generated, so the error handling for JAXP SAX and DOM apps are identi-
cal.
» Handling Validation Errors

By default, the specifications require that validation errors (which you'll
be learning more about in this part of the tutorial) are ignored. If you want

85

Bios.html#ericArmstrong

86

SIMPLE API FOR XML

to throw an exception in the event of a validation error (and you probably
do) then you need to understand how the SAX error handling works.

e Converting Existing Data

Asyou'll seein the DOM section of the tutorial, Sun’s reference imple-
mentation provides a mechanism you can use to convert an existing data
set to XML—however, taking advantage of that mechanism requires an
understanding the SAX model.

In This Chapter
Writinga Simple XML File 86
Echoing an XML Filewith the SAX Parser 91
Adding Additional Event Handlers 107
Handling Errorswith the Nonvalidating Par ser 11
Substituting and Inserting Text 120
Creating a Document Type Definition (DTD) 124
DTD’s Effect on the Nonvalidating Par ser 129
Defining Attributes and Entitiesin the DTD 133
Referencing Binary Entities 140
Using the Validating Par ser 142
Defining Parameter Entitiesand Conditional Sections 146
Parsing the Parameterized DTD 149
Handling L exical Events 152
Using the DTDHandler and EntityResolver 159

Writing a Simple XML File

Let’s start out by writing up a simple version of the kind of XML data you could
use for a slide presentation. In this exercise, you' Il use your text editor to create
the data in order to become comfortable with the basic format of an XML file.
You'll be using thisfile and extending it in later exercises.

Note: The examples in this chapter can be found in docs/tutorial/exam-
ples/jaxp/sax/samples.

CREATING THE FILE

Creating the File

Using a standard text editor, create afile caled s1ideSampTle.xm1.

Note: Hereisaversion of it that already exists: sT1ideSamp1e01.xm1. (The brows-
able version is sTideSample01-xm1.htm1.) You can use this version to compare
your work, or just review it as you read this guide.

Writing the Declaration

Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters "<?", which isthe standard XML identifier
for a processor instruction. (You'll see other processor instructions later on in
thistutorial.)

<?xml version='1.0"' encoding="utf-8'?>

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification, and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Java™ Encoding
Schemes (page 527).)

Since the document has not been specified as “standalone”, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as “ standalone’, see The XML Prolog (page 35).

Adding a Comment

Comments are ignored by XML parsers. You never see them in fact, unless you
activate special settings in the parser. You'll see how to do that later on in the
tutorial, when we discuss Handling L exical Events (page 152). For now, add the
text highlighted below to put a comment into thefile.

<?xm1 version='1.0" encoding="utf-8'?>

<!-- A SAMPLE set of slides -->

87

88

SIMPLE API FOR XML

Defining the Root Element

After the declaration, every XML file defines exactly one element, known as the
root element. Any other elements in the file are contained within that element.
Enter the text highlighted below to define the root element for thisfile, s1ide-
show:

<?xml version='1.0" encoding="utf-8'7>
<!-- A SAMPLE set of slides -->
<s1ideshow>

</sTideshow>

Note: XML element names are case-sensitive. The end-tag must exactly match the
start-tag.

Adding Attributes to an Element

A dlide presentation has a number of associated data items, none of which
require any structure. So it is natural to define them as attributes of the s1ide-
show element. Add the text highlighted below to set up some attributes:

<sTideshow
title=" Sample Slide Show"
date=" Date of publication"
author="Yours Truly"
>

</sTideshow>

When you create a name for a tag or an attribute, you can use hyphens ("-"),
underscores ("_"), colons (":"), and periods (".") in addition to characters and
numbers. Unlike HTML, values for XML attributes are always in quotation
marks, and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided altogether, because they are used
when defining the namespace for an XML document.

ADDING NESTED ELEMENTS

Adding Nested Elements

XML alowsfor hierarchicaly structured data, which means that an element can
contain other elements. Add the text highlighted below to define a slide element
and atitle element contained within it:

<s1ideshow
>
<I--TITLE SLIDE -->
<didetype="all" >

<title>Wake up to Wonder Widgets! </title>
</dlide>

</sTideshow>

Here you have a so added atype attribute to the slide. The idea of thisattributeis
that slides could be earmarked for a mostly technical or mostly executive audi-
ence with type="tech" or type="exec", or identified as suitable for both with
type="all".

More importantly, though, this example illustrates the difference between things
that are more usefully defined as elements (the title element) and things that are
more suitable as attributes (the type attribute). The visibility heuristic is prima-
rily at work here. Thetitle is something the audience will see. So it isan element.
The type, on the other hand, is something that never gets presented, so it is an
attribute. Another way to think about that distinction is that an element is a con-
tainer, like abottle. The typeisacharacteristic of the container (isit tall or short,
wide or narrow). Thetitle is a characteristic of the contents (water, milk, or tea).
These are not hard and fast rules, of course, but they can help when you design
your own XML structures.

Adding HTML-Style Text

Since XML lets you define any tags you want, it makes sense to define a set of
tags that look like HTML. The XHTML standard does exactly that, in fact.
You'll see more about that towards the end of the SAX tutoria. For now, typethe

89

90 SIMPLE APl FOR XML

text highlighted below to define a slide with a couple of list item entries that use
an HTML-style tag for emphasis (usually rendered as italicized text):

<!-- TITLE SLIDE -->
<sTlide type="all">

<title>Wake up to WonderWidgets!</title>
</s1lide>

<l-- OVERVIEW -->
<dlidetype="all" >
<title>Over view</title>
<item>Why Wonder Widgets are great</item>
<item>Who buys WonderWidgets</item>
</dide>

</sTideshow>

WEe'll see later that defining a title element conflicts with the XHTML element
that uses the same name. We'll discuss the mechanism that produces the conflict
(the DTD) and severa possible solutions when we cover Parsing the Parameter-
ized DTD (page 149).

Adding an Empty Element

One magjor difference between HTML and XML, though, is that all XML must
be well-formed -- which means that every tag must have an ending tag or be an
empty tag. You're getting pretty comfortable with ending tags, by now. Add the
text highlighted below to define an empty list item element with no contents:

<!-- OVERVIEW -->
<sTlide type="all">
<title>0Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</s1lide>

</sTideshow>

Note that any element can be empty element. All it takes is ending the tag with
"/>" instead of ">". You could do the same thing by entering <item></1item>,
which is equivaent.

THE FINISHED PRODUCT

Note: Another factor that makes an XML file well-formed is proper nesting. So
<i>some_text</i> is well-formed, because the <i>...</i> sequence is
completely nested within the . . tag. This sequence, on the other hand, is
not well-formed: <i>some_text</i>.

The Finished Product

Here is the completed version of the XML file:
<?xm1 version='1.0" encoding="utf-8'?>
<!-- A SAMPLE set of slides -->

<sTlideshow
title="Sample STlide Show"
date="Date of publication”
author="Yours Truly"
>

<!-— TITLE SLIDE -->
<sTlide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<sTlide type="all">
<title>0Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</sTlide
</sTideshow>

Now that you' ve created afile to work with, you' re ready to write a program to
echo it using the SAX parser. You'll do that in the next section.

Echoing an XML File with the SAX
Parser

In redl life, you are going to have little need to echo an XML file with a SAX
parser. Usually, you'll want to process the datain some way in order to do some-

92

SIMPLE API FOR XML

thing useful with it. (If you want to echo it, it's easier to build a DOM tree and
use that for output.) But echoing an XML structure is a great way to see the SAX
parser in action, and it can be useful for debugging.

In this exercise, you'll echo SAX parser events to System.out. Consider it the
“Hello World” version of an XM L-processing program. It shows you how to use
the SAX parser to get at the data, and then echoes it to show you what you’'ve
got.

Note: The code discussed in this section isin Echo01. java. Thefile it operates on
iSsTideSample01.xm1. (The browsable version is s1ideSample01-xm1.htm1.)

Creating the Skeleton

Start by creating afile named Echo. java and enter the skeleton for the applica-
tion:

public class Echo

{
public static void main(String argv[])
{
}

}

Since we're going to run it standalone, we need a main method. And we need
command-line arguments so we can tell the app which file to echo.

IMPORTING CLASSES 93

Importing Classes

Next, add the import statements for the classes the app will use:

import java.io.¥*;

import org.xml.sax.¥*;

import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo

{

The classes in java.io, of course, are needed to do output. The org.xml.sax
package defines al the interfaces we use for the SAX parser. The SAX-
ParserFactory class creates the instance we use. It throws a ParserConfigu-
rationException if it is unable to produce a parser that matches the specified
configuration of options. (You’ll see more about the configuration options later.)
The SAXParser iswhat the factory returns for parsing, and the DefaultHandler
defines the class that will handle the SAX events that the parser generates.

Setting up for I/O

The first order of business is to process the command line argument, get the
name of the file to echo, and set up the output stream. Add the text highlighted
below to take care of those tasks and do a bit of additional housekeeping:

public static void main(String argv[])

{
if (argv.length 1=1) {
System.err.printin(" Usage: cmd filename");
System.exit(1);

94

SIMPLE API FOR XML

}

try {
/I Set up output stream
out = new OutputStreamWriter (System.out, " UTF8");

} catch (Throwablet) {
t.printStack Trace();

}
System.exit(0);
}

static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character
encoding. We could aso have chosen US-ASCII, or UTF-16, which the Java
platform also supports. For more information on these character sets, see Java™
Encoding Schemes (page 527).

Implementing the ContentHandler
Interface

The most important interface for our current purposes is the ContentHandler
interface. That interface requires a number of methods that the SAX parser
invokes in response to different parsing events. The major event handling meth-
ods are: startDocument, endDocument, startElement, endElement, and char-
acters.

The easiest way to implement that interface is to extend the DefaultHandler
class, defined in the org.xml.sax.helpers package. That class provides do-
nothing methods for al of the ContentHandler events. Enter the code high-
lighted below to extend that class:

public class Echo extendsDefaultHandler

{
3

Note: DefaultHandler also defines do-nothing methods for the other major events,
defined in the DTDHandler, EntityResolver, and ErrorHandler interfaces. You'll
learn more about those methods as we go along.

SETTING UP THE PARSER

Each of these methods is required by the interface to throw a SAXException. An
exception thrown here is sent back to the parser, which sends it on to the code
that invoked the parser. In the current program, that means it winds up back at
the Throwab1e exception handler at the bottom of the main method.

When a dtart tag or end tag is encountered, the name of the tag is passed as a
String to the startElement or endE1ement method, as appropriate. When a start
tag is encountered, any attributes it defines are also passed in an Attributes list.
Characters found within the element are passed as an array of characters, along
with the number of characters (Tength) and an offset into the array that pointsto
the first character.

Setting up the Parser

Now (at last) you're ready to set up the parser. Add the text highlighted below to
set it up and get it sarted:

public static void main(String argv[])
{
if (argv.length !'= 1) {
System.err.println("Usage: cmd filename");
System.exit(l);

/I Use an instance of ourselves asthe SAX event handler
DefaultHandler handler = new Echo();

/I Use the default (non-validating) par ser
SAXParserFactory factory = SAXPar ser Factory.newl nstance();
try {
// Set up output stream
out = new QutputStreamwWriter(System.out, "UTF8");

/I Parsetheinput
SAXPar ser saxParser = factory.newSAXPar ser ();
saxPar ser.par se(new File(argv[0]), handler);

} catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

95

96

SIMPLE API FOR XML

With these lines of code, you created a SAXParserFactory instance, as deter-
mined by the setting of the javax.xml.parsers.SAXParserFactory system
property. You then got a parser from the factory and gave the parser an instance
of this classto handle the parsing events, telling it which input file to process.

Note: The javax.xm1.parsers.SAXParser classisawrapper that definesanumber
of convenience methods. It wraps the (somewhat-less friendly)
org.xml.sax.Parser object. If needed, you can obtain that parser using the SAX-
Parser’s getParser() method.

For now, you are simply catching any exception that the parser might throw.
You'll learn more about error processing in a later section of the tutorial, Han-
dling Errors with the Nonvalidating Parser (page 111).

Writing the Output

The ContentHandler methods throw SAXExceptions but not I0Exceptions,
which can occur while writing. The SAXException can wrap another exception,
though, so it makes sense to do the output in a method that takes care of the
exception-handling details. Add the code highlighted below to define an emit
method that does that:

static private Writer out;

private void emit(String s)
throws SAXException

{
try {
out.write(s);
out.flush();
} catch (IOException e) {
throw new SAXException("I/0 error", e);
}

When emit is called, any 1/O error is wrapped in SAXException aong with a
message that identifiesit. That exception is then thrown back to the SAX parser.
You'll learn more about SAX exceptions later on. For now, keep in mind that
emit isasmall method that handles the string output. (You'll seeit called alotin
the code ahead.)

SPACING THE OUTPUT

Spacing the Output

Thereisonelast bit of infrastructure we need before doing some real processing.
Add the code highlighted below to define a n1() method that writes the kind of
line-ending character used by the current system:

private void emit(String s)

}

private void nl()
throws SAXEXxception
{
Sring lineEnd = System.getProperty(" line.separator");
try {
out.write(lineEnd);
} catch (IOException €) {
throw new SAXException(" I/O error”, €);

}
3

Note: Although it seems like a bit of a nuisance, you will be invoking n1() many
timesin the code ahead. Defining it now will simplify the code later on. It also pro-
vides a place to indent the output when we get to that section of the tutorial.

Handling Content Events

Finally, let's write some code that actually processes the ContentHandler
events. Add the code highlighted below to handle the start-document and end-
document events:

static private Writer out;

public void startDocument()

throws SAXEXxception

{
emit(" <?xml version="1.0" encoding="UTF-8 ?>");
niQ);

}

public void endDocument()
throws SAXEXxception

{

97

98 SIMPLE APl FOR XML

try {
niQ);
out.flush();
} catch (1OException €) {
throw new SAXException("1/0O error", €);
}
}

private void emit(String s)

Here, you are echoing an XML declaration when the parser encounters the start
of the document. Since you set up the QutputStreamWriter using the UTF-8
encoding, you include that specification as part of the declaration.

Note: However, the 10 classes don’t understand the hyphenated encoding names,
so you specified “UTF8” rather than “UTF-8".

At the end of the document, you simply put out afinal newline and flush the out-
put stream. Not much going on there. Now for the interesting stuff. Add the code
highlighted below to process the start-element and end-element events:

public void startElement(String namespaceURI,
String sName, // simple name (localName)
String gName, // qualified name
Attributes attrs)

throws SAXException

{
String eName = sName; // element name

if ("".equals(eName)) eName = gName; // namespaceAware =
false

emit(“<“+eName);
if (attrs '= null) {
for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if (““.equals(aName)) aName = attrs.getQName(i);
emit("");
emit(aName+”=\"+attra.getvalue(i)+"\"");

HANDLING CONTENT EVENTS 99

}
}
emit(“>");

3}

public void endElement(String namespaceURI,
String sName, // simple name
String gName // qualified name

)
throws SAXException
{
emit("</"+sName+">");
}

private void emit(String s)

With this code, you echoed the element tags, including any attributes defined in
the start tag. Note that when the startETlement() method is invoked, the simple
name (“local name”) for elements and attributes could turn out to be the empty
string, if namespace processing was not enabled. The code handles that case by
using the qualified name whenever the simple name is the empty string.

To finish this version of the program, add the code highlighted below to echo the
characters the parser sees:

public void characters(char buf[], int offset, int len)
throws SAXException
{

String s = new String(buf, offset, Tlen);

emit(s);

}

private void emit(String s)

Congratulations! You've just written a SAX parser application. The next step is
to compile and run it.

Note: To be strictly accurate, the character handler should scan the buffer for
ampersand characters (‘&) ; and left-angle bracket characters (‘<) and replacethem
with the strings "& ;" or "&1t;", as appropriate. You'll find out more about that

100

SIMPLE API FOR XML

kind of processing when we discuss entity references in Substituting and | nsert-
ing Text (page 120).

Compiling and Running the Program

In the Java WSDP, the JAXP libraries are distributed in the directory
<JWSDP_HOME>/common/1ib. To compile the program you created, you'll first
need to install the JAXP JAR filesin the appropriate location. (The names of the
JAR files and their location depends on which version of JAXP you are using.
Seethe Java XML release notes for details.) Then you can execute the following
command:

javac -cp jaxp-jar-files Echo.java

where javac isaversion 1.2 or later Java platform compiler.

To run the program, execute the command below:

java -cp jaxp-jar-files Echo slideSample.xm]l

Checking the Output

The program’s output as shown in Echo01-01. Here is part of it, showing some
of its weird-looking spacing:

<s1ideshow title="Sample S1ide Show" date="Date of publication”
author="Yours Truly">

<sTlide type="all">
<title>Wake up to WonderWidgets!</title>
</s1lide>

Looking at this output, a number of questions arise. Namely, where is the excess
vertical whitespace coming from? And why is it that the elements are indented
properly, when the code isn't doing it? We'll answer those questions in a
moment. First, though, there are afew points to note about the output:

¢ The comment defined at the top of the file

<!-- A SAMPLE set of slides -->

IDENTIFYING THE EVENTS

does not appear in the listing. Comments are ignored by definition, unless

you implement a LexicalHandler. You'll see more about that later on in

thistutorial.

« Element attributes are listed all together on a single line. If your window
isn’t really wide, you won't see them all.

« The single-tag empty element you defined (<item/>) istreated exactly the
same asatwo-tag empty element (<item></item>). Itis, for al intentsand
purposes, identical. (It's just easier to type and consumes less space.)

Identifying the Events

This version of the echo program might be useful for displaying an XML file,
but it's not telling you much about what's going on in the parser. The next step is
to modify the program so that you see where the spaces and vertical lines are
coming from.

Note: The code discussed in this section is in Echo02. java. The output it pro-
ducesisshownin Echo02-01.

Make the changes highlighted below to identify the events as they occur:

public void startDocument()
throws SAXException
{
niQ);
niQ);
emit(" START DOCUMENT");
niQ);
emit("<?xml version='1.0' encoding="UTF-8'7>");
Linnay
}

public void endDocument()
throws SAXException

{
nl(); emit(" END DOCUMENT");

try {
}

public void startElement(...)
throws SAXException

101

102

SIMPLE API FOR XML

nl(); emit(" ELEMENT: ");
emit("<"+sName);
if (attrs '= null) {

for (int i = 0; i < attrs.getLength(); i++) {

EliEE" "a!

nlQ);
emit(" ATTR:");
emit(attrs.getL ocalName(i));
emit("\"");
emit(attrs.getValue(i));
emit("\"");
}

}

if (attrs.getLength() > 0) nl();

emit(">");

}

public void endElement(...)
throws SAXException

{
niQ);
emit(" END_ELM: ");
emit("</"+sName+">");
}

public void characters(char buf[], int offset, int Len)
throws SAXException

{
nl(); emit(" CHARS: |');
String s = new String(buf, offset, Len);
emit(s);
emit("");
}

Compile and run this version of the program to produce a more informative out-
put listing. The attributes are now shown one per line, which is nice. But, more
importantly, output lines like this one:

CHARS: |

show that the characters method is responsible for echoing both the spaces that
create the indentation and the multiple newlines that separate the attributes.

COMPRESSING THE OUTPUT 103

Note: The XML specification requires al input line separators to be normalized to
a single newline. The newline character is specified asin Java, C, and UNIX sys-
tems, but goes by the alias “linefeed” in Windows systems.

Compressing the Output

To make the output more readable, modify the program so that it only outputs
characters containing something other than whitespace.

Note: The code discussed in this sectionisin Echo03. java.

Make the changes shown below to suppress output of characters that are all
whitespace:

public void characters(char buf[], int offset, int Len)
throws SAXException
{

I Ea! EliEE"EI;IIES' "a!

nl(); emit(" CHARS: ");

String s = new String(buf, offset, Len);

emte(s)

E li EE" "a H

if (Istrim().equals("")) emit(s);

104 SIMPLE APl FOR XML

If you run the program now, you will see that you have eliminated the indenta-
tion as well, because the indent space is part of the whitespace that precedes the
start of an element. Add the code highlighted below to manage the indentation:

static private Writer out;

private Sring indentSring=""; // Amount to indent
privateint indentLevel = 0;

public void startElement(...)
throws SAXException

{

indentL evel++;
n1Q); emit("ELEMENT: ");
}

public void endElement(...)
throws SAXException

{
n1Q;
emit("END_ELM: "™);
emit("</"+sName+">");
indentL evel--;

}

private void n1(Q)
throws SAXException

{
try {
out.write(lineEnd);
for (int i=0; i <indentLevd; i++) out.write(indentSring);
} catch (I0Exception e) {
}

This code sets up an indent string, keeps track of the current indent level, and
outputs the indent string whenever the n1 method is called. If you set the indent
string to "", the output will be un-indented (Try it. You'll see why it's worth the
work to add the indentation.)

INSPECTING THE OUTPUT

You'll be happy to know that you have reached the end of the “mechanica” code
you have to add to the Echo program. From here on, you'll be doing things that
give you more insight into how the parser works. The steps you'’ ve taken so far,
though, have given you alot of insight into how the parser seesthe XML data it
processes. It's also given you a helpful debugging tool you can use to see what
the parser sees.

Inspecting the Output

The complete output for thisversion of the program is shown in Echo03-01. Part
of that output is shown here:

ELEMENT: <slideshow
CHARS:
CHARS:

ELEMENT: <slide

END_ELM: </slide>
CHARS:
CHARS:

Note that the characters method was invoked twice in a row. Inspecting the
source file sTideSampTe01.xm1 shows that there is a comment before the first
dlide. Thefirgt call to characters comes before that comment. The second call
comes after. (Later on, you’'ll see how to be notified when the parser encounters
a comment, although in most cases you won't need such notifications.)

Note, too, that the characters method isinvoked after the first slide element, as
well as before. When you are thinking in terms of hierarchically structured data,
that seems odd. After all, you intended for the s1ideshow element to contain
sTide elements, not text. Later on, you'll see how to restrict the sTideshow ele-
ment using aDTD. When you do that, the characters method will no longer be
invoked.

In the absence of aDTD, though, the parser must assume that any element it sees
contains text like that in the first item element of the overview slide:

<item>Why WonderWidgets are great</item>

105

106 SIMPLE APl FOR XML

Here, the hierarchica structure looks like this;

ELEMENT: <item>
CHARS: Why
ELEMENT:
CHARS: WonderWidgets
END_ELM:
CHARS: are great
END_ELM: </item>

Documents and Data

In this example, it's clear that there are characters intermixed with the hierarchi-
cal structure of the elements. The fact that text can surround elements (or be pre-
vented from doing so with a DTD or schema) helps to explain why you
sometimes hear talk about “XML data” and other times hear about “XML docu-
ments’. XML comfortably handles both structured data and text documents that
include markup. The only difference between the two is whether or not text is
allowed between the elements.

Note: In an upcoming section of this tutorial, you will work with the ignorable-
Whitespace method in the ContentHandler interface. This method can only be
invoked whenaDTD ispresent. If aDTD specifiesthat s1ideshow does not contain
text, then all of the whitespace surrounding the s1ide elements is by definition
ignorable. On the other hand, if s1ideshow can contain text (which must be
assumed to be true in the absence of a DTD), then the parser must assume that
spaces and linesit sees between the s11 de elements are significant parts of the doc-
ument.

Adding Additional Event Handlers

Besides ignorableWhitespace, there are two other ContentHandler methods
that can find uses in even simple applications. setDocumentLocator and pro-
cessingInstruction. Inthissection of the tutorial, you' Il implement those two
event handlers.

IDENTIFYING THE DOCUMENT’S LOCATION

Identifying the Document’s Location

A locator is an object that contains the information necessary to find the docu-
ment. The Locator class encapsulates a system ID (URL) or a public identifier
(URN), or both. You would need that information if you wanted to find some-
thing relative to the current document—in the same way, for example, that an
HTML browser processes an href="anotherFile" attribute in an anchor tag—
the browser uses the location of the current document to find anotherFile.

You could also use the locator to print out good diagnostic messages. In addition
to the document’s location and public identifier, the locator contains methods
that give the column and line number of the most recently-processed event. The
setDocumentLocator method is called only once at the beginning of the parse,
though. To get the current line or column number, you would save the locator
when setDocumentLocator is invoked and then use it in the other event-han-
dling methods.

Note: The code discussed in this section isin Echo04. java. Its output is stored at
Echo04-01.

Add the method below to the Echo program to get the document locator and use
it to echo the document’s system ID.

private String indentString = "s // Amount to indent
private int indentLevel = 0;

public void setDocumentlLocator(Locator 1)

{
try {
out.write("LOCATOR");
out.write("SYS ID: " + T.getSystemId());
out.flush(Q;
} catch (I0Exception e) {
// Ignore errors
}
}

public void startDocument()

107

108

SIMPLE API FOR XML

Notes:

» Thismethod, in contrast to every other ContentHand1er method, does not
return a SAXException. So, rather than using emit for output, this code
writes directly to System.out. (Thismethod is generally expected to sim-
ply save the Locator for later use, rather than do the kind of processing
that generates an exception, as here.)

e The spelling of these methods is "Id", not "ID". So you have getSys-
temId and getPublicId.

When you compile and run the program on s1ideSamp1e01.xm1, hereisthe sig-
nificant part of the output:

LOCATOR
SYS ID: file:<path>/../samples/s1ideSample0l.xm]l

START DOCUMENT
<?xml version='1.0" encoding="UTF-8'?>

Here, it is apparent that setDocumentLocator is called before startDocument.
That can make a difference if you do any initiaization in the event handling
code.

Handling Processing Instructions

It sometimes makes sense to code application-specific processing instructionsin
the XML data. In this exercise, you'll add a processing instruction to your
slideSample.xm1 file and then modify the Echo program to display it.

Note: The code discussed in this section isin Echo05. java. Thefile it operates on
iSsTlideSample02.xml1. (The browsable versionis s1ideSample02-xm1.htm1.) The
output is stored at Echo05-02.

As you saw in Introduction to XML (page 31), the format for a processing
instruction is <?target data?>, Where “target” is the target application that is
expected to do the processing, and “data’ is the instruction or information for it
to process. Add the text highlighted below to add a processing instruction for a

HANDLING PROCESSING | NSTRUCTIONS 109

mythical slide presentation program that will query the user to find out which
slides to display (technical, executive-level, or all):

<s1ideshow
>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY =" exec, tech, all" 7>

<!-- TITLE SLIDE -->

Notes:

e The"data’ portion of the processing instruction can contain spaces, or may
even be null. But there cannot be any space between the initial <? and the
target identifier.

« The data begins after the first space.

¢ Fully quaifying the target with the complete Web-unique package prefix
makes sense, so as to preclude any conflict with other programs that might
process the same data.

« For readability, it seems like a good idea to include a colon (:) after the
name of the application, likethis:

<?my.presentation.Program: QUERY="..."7>

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, while the w3c spec alows
":" in atarget name, some versions of 1E5 consider it an error. For this tuto-
rial, then, we avoid using a colon in the target name.

110 SIMPLE APl FOR XML
Now that you have a processing instruction to work with, add the code high-
lighted below to the Echo app:
public void characters(char buf[], int offset, int Ten)

i--

public void processingInstruction(String target, String data)
throws SAXException

{
n1Q;
emit("PROCESS: ");
emit("<?"+target+" "+data+"?7>");
}

private void emit(String s)

When your edits are complete, compile and run the program. The relevant part of
the output should look like this:

CHARS:
CHARS:
PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
CHARS:
CHARS:

Now that you’ve had a chance to work with the processing instruction, you can
remove that instruction from the XML file. You won’t be needing it any more.

Summary

With the minor exception of ignorableWhitespace, you have used most of the
ContentHandler methods that you need to handle the most commonly useful
SAX events. You'll see ignorableWhitespace a little later on. Next, though,
you' |l get deeper insight into how you handle errorsin the SAX parsing process.

SUMMARY 111

Handling Errors with the Nonvalidating
Parser

This version of the Echo program uses the nonvalidating parser. So it can’t tell if
the XML document contains the right tags, or if those tags are in the right
sequence. In other words, it can't tell you if the document is valid. It can, how-
ever, tell whether or not the document is well-formed.

In this section of the tutorial, you’'ll modify the slideshow file to generate differ-
ent kinds of errors and see how the parser handles them. You'll aso find out
which error conditions are ignored, by default, and see how to handle them.

Infroducing an Error

The parser can generate one of three kinds of errors: fatal error, error, and warn-
ing. In thisexercise, you'll make a simple modification to the XML file to intro-
duce afatal error. Then you’ll see how it’s handled in the Echo app.

Note: The XML structureyou’'ll createinthisexerciseisin s1ideSampleBadl.xm1.
(The browsable version is s1ideSampleBad1-xm1.htm1.) The output iSin Echo05-
Badl.

One easy way to introduce a fata error is to remove the final "/" from the
empty 1item element to create a tag that does not have a corresponding end tag.
That constitutes afatal error, because all XML documents must, by definition, be
well formed. Do the following:

1. Copy sTideSample.xml to badSample.xm1.
2. Edit badSample.xm1 and remove the character shown below:

<!-- OVERVIEW -->
<sTlide type="all">
<title>0Overview</title>
<item>Why WonderWidgets are great</item>
<itemé>
<item>Who buys WonderWidgets</item>
</slide>

112 SIMPLE APl FOR XML

to produce:

<item>Why WonderWidgets are great</item>
<item>

<item>Who buys WonderWidgets</item>

3. Run the Echo program on the new file.
The output you get now looks like this;

ELEMENT: <item>

CHARS: The
ELEMENT:
CHARS: Only
END_ELM:

CHARS: Section
END_ELM: </item>
CHARS:
END_ELM:

CHARS: org.xml.sax.SAXPar seException: Expected " </item>"
to terminate element starting on line 20.

at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)

at Echo05.main(Echo05.java:61)

When afatal error occurs, the parser is unable to continue. So, if the application
does not generate an exception (which you'll see how to do a moment), then the
default error-event handler generates one. The stack trace is generated by the

Throwab1le exception handler in your main method:

} catch (Throwable t) {
t.printStackTrace();
}

That stack trace is not too useful, though. Next, you'll see how to generate better

diagnostics when an error occurs.

SUMMARY

Handling a SAXParseException

When the error was encountered, the parser generated a SAXParseException—a
subclass of SAXException that identifies the file and location where the error
occurred.

Note: The code you'll create in this exercise is in Echo06.java. The output isin
Echo06-Badl.

Add the code highlighted below to generate a better diagnostic message when
the exception occurs:

} catch (SAXPar seException spe) {
/I Error generated by the parser
System.out.printin("* Parsingerror”
+",line" + spe.getLineNumber ()
+",uri" + gpegetSystemld());
System.out.printin(" " + spe.getM essage());

} catch (Throwable t) {
t.printStackTrace();

}

Running the program now generates an error message which is a bit more help-
ful, likethis:

%% Parsing error, line 22, uri file:<path>/sTideSampleBadl.xm]l
Next character must be...

Note: Catching all throwables like this is not a good idea for production applica-
tions. We're just doing it now so we can build up to full error handling gradualy.

Handling a SAXException

A more general SAXException instance may sometimes be generated by the
parser, but it more frequently occurs when an error originates in one of applica
tion’s event handling methods. For example, the signature of the startDocument

113

114 SIMPLE APl FOR XML

method in the ContentHandler interface is defined as returning a SAXExcep-
tion:

public void startDocument() throws SAXException

All of the ContentHandler methods (except for setDocumentlLocator) have
that signature declaration.

A SAXException can be constructed using a message, another exception, or
both. So, for example, when Echo.startDocument outputs a string using the
emit method, any 1/0 exception that occurs is wrapped in a SAXException and
sent back to the parser:

private void emit(String s)
throws SAXException

{
try {
out.write(s);
out.flush();
} catch (IOException €) {
throw new SAXException("1/O error", €);
}
}

Note: If you saved the Locator object when setDocumentLocator was invoked,
you could use it to generate a SAXParseException, identifying the document and
location, instead of generating a SAXException.

When the parser delivers the exception back to the code that invoked the parser,
it makes sense to use the original exception to generate the stack trace. Add the
code highlighted below to do that:

} catch (SAXParseException err) {
System.out.println("** Parsing error"”

+ ", Tine " + err.getLineNumber()
+ ", uri " + err.getSystemId());
System.out.println(" " + err.getMessage());

} catch (SAXEXxception sxe) {
/I Error generated by this application
Il (or a parser-initialization error)
Exception X = sxe;
if (sxe.getException() !'=null)

SUMMARY

X = sxe.getException();
X.printStack Trace();

} catch (Throwable t) {
t.printStackTrace();

}

This code tests to see if the SAXException iswrapping another exception. If so,
it generates a stack trace originating from where that exception occurred to make
it easier to pinpoint the code responsible for the error. If the exception contains
only a message, the code prints the stack trace starting from the location where
the exception was generated.

Improving the SAXParseException Handler

Since the SAXParseException can also wrap another exception, add the code
highlighted below to useit for the stack trace:

} catch (SAXParseException err) {
System.out.println("** Parsing error"
+ ", Tine " + err.getLineNumber()
" + err.getSystemId());
System.out.printin{" " + err.getMessage());

+ ", uri

// Unpack the delivered exception to get the exception it
contains
Exception X = spe;
if (spe.getException() !'= null)
X = spe.getException();
X.printStackTrace();

} catch (SAXException e) {
// Error generated by this application
// (or a parser-initialization error)
Exception X = e;
if (e.getException() !'= null)
X = e.getException();
X.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}

115

116

SIMPLE API FOR XML

The program is now ready to handle any SAX parsing exceptionsit sees. You've
seen that the parser generates exceptions for fatal errors. But for nonfatal errors
and warnings, exceptions are never generated by the default error handler, and
no messages are displayed. Next, you'll learn more about errors and warnings
and find out how to supply an error handler to process them.

Handling a ParserConfigurationException

Finally, recall that the SAXParserFactory class could throw an exception if it
were for unable to create a parser. Such an error might occur if the factory could
not find the class needed to create the parser (class not found error), was not per-
mitted to accessit (illegal access exception), or could not instantiate it (instantia-
tion error).

Add the code highlighted below to handle such errors:

} catch (SAXException e) {
Exception X = e;
if (e.getException() != null)
X = e.getException();
X.printStackTrace();

} catch (Parser ConfigurationException pce) {
/l Parser with specified options can’t be built
pceprintStack Trace();

} catch (Throwable t) {
t.printStackTrace();

This code, like the SAXException handler, takesinto account the possibility that
the reported exception might be wrapping another exception. (Admittedly, there
are quite a few error handlers here. But at least now you know the kinds of
exceptions that can occur.)

Note: A javax.xml.parsers.FactoryConfigurationError could also be thrown
if the factory class specified by the system property cannot be found or instantiated.
That isanon-trappable error, since the program is not expected to be able to recover
fromit.

SUMMARY

Handling an IOException

Finally, while we're at it, let’s stop intercepting all Throwab1e objects and catch
the only remaining exceptions there isto catch, I0Exceptions:

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (Throwable t) {
tprintStackTrace O+
} catch (IOException ioe) {
/'O error
ioeprintStack Trace();

Understanding NonFatal Errors

In general, anonfatal error occurs when an XML document fails a validity con-
straint. If the parser finds that the document is not valid (which means that it
contains an invalid tag or atag in location that is disallowed), then an error event
is generated. In general, then, errors are generated by a validating parser, given a
DTD that tells it which tags are valid. There is one kind of error, though, that is
generated by the nonvalidating parser you have been working with so far. You'll
experiment with that error next.

Note: Thefileyou'll createin this exerciseis s1ideSampleBad2.xm1. (The brows-
able versionis s1ideSampleBad2-xm1.htm1.) The output iSin Echo06-Bad2.

The SAX specification requires an error event to be generated if the XML docu-
ment uses a version of XML that the parser does not support. To generate such
an error, make the changes shown below to alter your XML file so it specifies
version="1.2".

<?xml version='1.62"' encoding="utf-8'?>

Now run your version of the Echo program on that file. What happens? (See
below for the answer.)

Answer: Nothing happens! By default, the error isignored. The output from the
Echo program looks the same as if version="1.0" had been properly specified.

117

118

SIMPLE API FOR XML

To do something else, you need to supply your own error handler. You'll do that
next.

Handling Nonfatal Errors

A standard treatment for “nonfatal” errorsis to treat them as if they were fatal.
After dl, if avalidation error occursin adocument you are processing, you prob-
ably don’'t want to continue processing it. In this exercise, you' Il do exactly that.

Note: Thecodefor theprogramyou'll createin thisexerciseisin Echo07. java. The
output isin Echo07-Bad?2.

To take over error handling, you override the DefaultHandler methods that
handle fatal errors, nonfatal errors, and warnings as part of the ErrorHandler
interface. The SAX parser delivers a SAXParseException to each of these meth-
ods, so generating an exception when an error occurs is as simple as throwing it
back.

Add the code highlighted below to override the handlers for errors:

public void processingInstruction(String target, String data)
throws SAXException

{
n1Q;
emit("PROCESS: ");
emit("<?"+target+" "+data+"?7>");
}

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException

{
3

throw e;

Now when you run your app on the file with the faulty version number, you get
an exception, as shown here (but slightly reformatted for readability):

START DOCUMENT

<?xml version='1.0" encoding="UTF-8'7>
** Parsing error, line 1, uri file:/<path>/dideSampleBad2.xml
XML version " 1.0" isrecognized, but not " 1.2".

SUMMARY

org.xml.sax.SAXPar seException: XML version " 1.0" isrecognized, but not " 1.2" .

at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
at Echo07.main(Echo07.java:61)

Note: The error actually occurs after the startDocument event has been generated.
The document header that the program “echoes” isthe one it creates on the assump-
tion that everything is ok, rather than the one that is actually in thefile.

Handling Warnings

Warnings, too, are ignored by default. Warnings are informative, and require a
DTD. For example, if an element is defined twicein aDTD, awarning is gener-
ated—it’s not illegal, and it doesn’'t cause problems, but it's something you
might like to know about since it might not have been intentional.

Add the code highlighted below to generate a message when awarning occurs.

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException

{
3

throw e;

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException

{
System.out.printTn("** Warning"
+ ", Tine " + err.getLineNumber()
+ ", uri " + err.getSystemId());
System.out.printin{" " + err.getMessage());
}

Since there is no good way to generate a warning without a DTD, you won't be
seeing any just yet. But when one does occur, you' re ready!

Note: By default, DefaultHandler throws an exception when afatal error occurs.
You could override the fatalError method to throw a different exception, if you
like. But if your code doesn’t, the reference implementation’s SAX parser will.

119

120 SIMPLE APl FOR XML

Substituting and Inserting Text

The next thing we want to do with the parser is to customize it a bit, so you can
see how to get information it usually ignores. But before we can do that, you're
going to need to learn a few more important XML concepts. In this section,
you' Il learn about:

» Handling Special Characters ("<", "&", and so on)
e Handling Text with XML-style syntax

Handling Special Characters

In XML, an entity isan XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

&entityName;

Later, when you learn how to write a DTD, you'll see that you can define your
own entities, so that &yourEntityName; expandsto al the text you defined for
that entity. For now, though, we' Il focus on the predefined entities and character
references that don't require any special definitions.

Predefined Entities

An entity reference like & contains a name (in this case, “amp”) between the
start and end delimiters. The text it refersto (&) is substituted for the name, like
amacroin aC or C++ program. Table 1 shows the predefined entities for special
characters.

Table1l Predefined Entities

Character Reference
& &
< <

> &agt;

USING AN ENTITY REFERENCE IN AN XML Document 121

Table1l Predefined Entities
"

& apos,

Character References

A character reference like “ contains a hash mark (#) followed by a num-
ber. The number is the Unicode value for a single character, such as 65 for the
letter “A”, 147 for the left-curly quote, or 148 for the right-curly quote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

Using an Entity Reference in an XML
Document

Suppose you wanted to insert aline like this in your XML document:

Market Size < predicted

The problem with putting that line into an XML file directly is that when the
parser sees the left-angle bracket (<), it starts looking for a tag name, which
throws off the parse. To get around that problem, you put &1t; inthefile, instead
of "<".

Note: Theresults of the modifications below are contained in s1ideSamp1e03.xm1.
(The browsable version is s1ideSamp1e03-xm1.htm1.) The results of processing it
are shown in Echo07-03.

122 SIMPLE APl FOR XML

If you are following the programming tutorial, add the text highlighted below to
your sT1ideSample.xm1 file:

<!-- OVERVIEW -->
<sTlide type="all">
<title>0Overview</title>

</sTide>

<sTlide type="exec">
<title>Financial Forecast</title>
<item>Market Size &l1t; predicted</item>
<item>Anticipated Penetration</item>
<item>Expected Revenues</item>
<item>Profit Margin </item>

</s1lide>

</sTideshow>

When you run the Echo program on your XML file, you see the following out-
put:

ELEMENT: <item>
CHARS: Market Size
CHARS: <

CHARS: predicted
END_ELM: </item>

The parser converted the reference into the entity it represents, and passed the
entity to the application.

Handling Text with XML-Style Syntax

When you are handling large blocks of XML or HTML that include many of the
specia characters, it would be inconvenient to replace each of them with the
appropriate entity reference. For those situations, you can use a CDATA section.

Note: Theresults of the modifications below are contained in s1ideSamp1e04.xm1.
(The browsable version is s1ideSample04-xm1.htm1.) The results of processing it
are shown in Echo07-04.

HANDLING TEXT WITH XML-STYLE SYNTAX 123

A CDATA section works like <pre>...</pre> in HTML, only more so—all
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <! [CDATA[and ends with]1>. Add
the text highlighted below to your s1ideSampe.xm1 file to define a CDATA sec-
tion for afictitioustechnical dide:

<sTlide type="tech">
<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>
<item><![CDATA[Diagram:

frobmorten <-----—--------—-—--—-———————- fuznaten
| <3> A
| <1> | <1> = fozzle
Y | <2> = framboze
Staten+ <3> = frenzle
<2>

11></item>
</slide>
</sTideshow>

When you run the Echo program on the new file, you see the following outpult:

ELEMENT: <item>
CHARS: Diagram:

frobmorten <-----—--——--—- ——————— fuznaten
| <3> A
| <1> | <1> = fozzle
Y | <2> = framboze
Staten+ <3> = frenzle
<2>

END_ELM: </item>

You can see here that the text in the CDATA section arrived as one entirely unin-
terpreted character string.

124

SIMPLE API FOR XML

Handling CDATA and Other Characters

The existence of CDATA makes the proper echoing of XML a bit tricky. If the
text to be output is not in a CDATA section, then any angle brackets, amper-
sands, and other special charactersin the text should be replaced with the appro-
priate entity reference. (Replacing left angle brackets and ampersands is most
important, other characters will be interpreted properly without mideading the
parser.)

But if the output text is in a CDATA section, then the substitutions should not
occur, to produce text like that in the example above. In a simple program like
our Echo application, it's not a big deal. But many XML-filtering applications
will want to keep track of whether the text appearsin a CDATA section, in order
to treat specia characters properly.

One other areato watch for is attributes. The text of an attribute value could also
contain angle brackets and semicolons that need to be replaced by entity refer-
ences. (Attribute text can never bein a CDATA section, though, so thereis never
any question about doing that substitution.)

Later in this tutorial, you will see how to use a LexicalHandler to find out
whether or not you are processing a CDATA section. Next, though, you will see
how to defineaDTD.

Creating a Document Type Definition
(DTD)

After the XML declaration, the document prolog can include a DTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid, and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it seesis sig-
nificant or ignorable.

Basic DTD Definitions

When you were parsing the slide show, for example, you saw that the charac-
ters method was invoked multiple times before and after comments and slide
elements. In those cases, the whitespace consisted of the line endings and inden-

BAsic DTD DEFINITIONS

tation surrounding the markup. The goal was to make the XML document read-
able—the whitespace was not in any way part of the document contents. To
begin learning about DTD definitions, let's start by telling the parser where
whitespace isignorable.

Note: The DTD defined in this section is contained in s1ideshowla.dtd. (The
browsable version is s1ideshowla-dtd.htm1.)

Start by creating afile named s1ideshow.dtd. Enter an XML declaration and a
comment to identify the file, as shown below:

<?xm1 version='1.0" encoding="utf-8'?>
<!-- DTD for a simple "slide show". -->

Next, add the text highlighted below to specify that a s1ideshow element con-
tains s11ide elements and nothing else;

<!-- DTD for a simple "slide show". -->

<VELEMENT sTlideshow (slide+)>

Asyou can see, the DTD tag starts with <! followed by the tag name (ELEMENT).
After the tag name comes the name of the element that is being defined (s11ide-
show) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a s11ideshow consists of one or
more s11ide elements.

Without the plus sign, the definition would be saying that a s11ideshow consists
of asingle s1ide element. Here are the qualifiers you can add to an element def-
inition:

Table2 DTD Element Quadlifiers
Qualifier Name M eaning

? Question Mark Optional (zero or one)

* Asterisk Zero or more

125

126

SIMPLE API FOR XML

Table2 DTD Element Qualifiers

+ Plus Sign One or more

You can include multiple elements inside the parentheses in a comma separated
list, and use a qualifier on each element to indicate how many instances of that
element may occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can aso nest parentheses to group multiple items. For an example, after
defining an image element (coming up shortly), you could declare that every
image element must be paired with a title element in a slide by specifying
((image, title)+). Here, the plus sign applies to the image/title pair to
indicate that one or more pairs of the specified items can occur.

Defining Text and Nested Elements

Now that you have told the parser something about where not to expect text, let's
see how to tell it where text can occur. Add the text highlighted below to define
the sTide, title, item, and Tist elements:

<!ELEMENT slideshow (slide+)>
<JELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<VELEMENT item (#PCDATA | item)* >

Thefirst line you added saysthat a slide consists of a tit1e followed by zero or
more 1item elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (PCDATA). That's known as “text” in most parts
of the country, but in XML-speak it's called “ parsed character data’. (That dis-
tinguishes it from CDATA sections, which contain character data that is not
parsed.) The "#" that precedes PCDATA indicates that what follows is a special
word, rather than an element name.

The last line introduces the vertical bar (1), which indicates an or condition. In
this case, either PCDATA or an item can occur. The asterisk at the end says that
either one can occur zero or more times in succession. The result of this specifi-
cation is known as a mixed-content model, because any number of item ele-
ments can be interspersed with the text. Such models must always be defined
with #pCDATA specified first, some number of alternate items divided by vertical
bars (1), and an asterisk (*) at the end.

LIMITATIONS OF DTDs

Limitations of DTDs

It would be nice if we could specify that an item contains either text, or text fol-
lowed by one or more list items. But that kind of specification turns out to be
hard to achieve in aDTD. For example, you might be tempted to define an item
likethis:

<!ELEMENT item (#PCDATA | (#PCDATA, item+)) >

That would certainly be accurate, but as soon as the parser sees #PCDATA and
the vertical bar, it requires the remaining definition to conform to the mixed-con-
tent model. This specification doesn’'t, so you get can error that says. I11egal
mixed content model for 'item'. Found (..., wherethehex char-
acter 28 isthe angle bracket the ends the definition.

Trying to double-define the item element doesn’'t work, either. A specification
likethis:

<!ELEMENT item (#PCDATA) >
<!ELEMENT item (#PCDATA, item+) >

produces a “duplicate definition” warning when the validating parser runs. The
second definition is, in fact, ignored. So it seems that defining a mixed content
model (which alows item elements to be interspersed in text) is about as good
aswe can do.

In addition to the limitations of the mixed content model mentioned above, there
is no way to further qualify the kind of text that can occur where PCDATA has
been specified. Should it contain only numbers? Should be in a date format, or
possibly a monetary format? There is no way to say in the context of aDTD.

Finally, note that the DTD offers no sense of hierarchy. The definition for the
title element applies equally to a s1ide title and to an item title. When we
expand the DTD to alow HTML-style markup in addition to plain text, it would
make sense to restrict the size of an +item title compared to a s1ide title, for
example. But the only way to do that would be to give one of them a different
name, such as“item-title”. The bottom lineisthat the lack of hierarchy in the
DTD forces you to introduce a “hyphenation hierarchy” (or its equivaent) in
your namespace. All of these limitations are fundamental motivations behind the
development of schema-specification standards.

127

128

SIMPLE API FOR XML

Special Element Values in the DTD

Rather than specifying a parenthesized list of elements, the element definition
could use one of two specia values. ANY or EMPTY. The ANY specification says
that the element may contain any other defined element, or PCDATA. Such a spec-
ification is usually used for the root element of a general-purpose XML docu-
ment such as you might create with a word processor. Textual elements could
occur in any order in such a document, so specifying ANY makes sense.

The EMPTY specification says that the element contains no contents. So the DTD
for e-mail messages that let you “flag” the message with <f1ag/> might have a
line like thisin the DTD:

<!ELEMENT flag EMPTY>

Referencing the DTD

In this case, the DTD definition is in a separate file from the XML document.
That means you have to reference it from the XML document, which makes the
DTD file part of the external subset of the full Document Type Definition (DTD)
for the XML file. As you'll see later on, you can also include parts of the DTD
within the document. Such definitions constitute the local subset of the DTD.

Note: The XML written in this section is contained in s1ideSamp1e05.xm1. (The
browsable version is s1ideSample05-xm1.htm1.)

To reference the DTD file you just created, add the line highlighted below to
your sT1ideSample.xm1 file:

<!-- A SAMPLE set of slides -->
<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

<sTideshow

REFERENCING THE DTD 129

Again, the DTD tag starts with "<!". In this case, the tag name, DOCTYPE, says
that the document is a s11deshow, which means that the document consists of the
sTideshow element and everything within it:

<s1ideshow>
</s'| ideshow>

This tag defines the s1ideshow element as the root element for the document.
An XML document must have exactly one root element. This is where that ele-
ment is specified. In other words, this tag identifies the document content as a
s1ideshow.

The DOCTYPE tag occurs after the XML declaration and before the root element.
The SYSTEM identifier specifies the location of the DTD file. Since it does not
start with a prefix like http:/ or file:/, the path is relative to the location of
the XML document. Remember the setDocumentlLocator method? The parser
is using that information to find the DTD file, just as your application would to
find afilerelative to the XML document. A PUBLIC identifier could also be used
to specify the DTD file using a unique name—but the parser would have to be
abletoresolve it

The pocTyPE specification could also contain DTD definitions within the XML
document, rather than referring to an external DTD file. Such definitions would
be contained in square brackets, like this:

<!DOCTYPE sTideshow SYSTEM "slideshowl.dtd" [
..local subset definitionshere...
1>

You'll take advantage of that facility later on to define some entities that can be
used in the document.

DTD’s Effect on the Nonvalidating
Parser

In the last section, you defined a rudimentary document type and used it in your
XML file. In this section, you'll use the Echo program to see how the data
appears to the SAX parser when the DTD isincluded.

130

SIMPLE API FOR XML

Note: The output shown in this section is contained in Echo07-05.

Running the Echo program on your latest version of sTideSample.xm1 shows
that many of the superfluous calls to the characters method have now disap-
peared:

ELEMENT: <slideshow
ATTR:
>
PROCESS:
ELEMENT: <slide
ATTR:
>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>
END_ELM: </s1lide>
ELEMENT: <slide
ATTR:
>

It is evident here that the whitespace characters which were formerly being ech-
oed around the s1ide elements are no longer appearing, because the DTD
declaresthat s1ideshow consists solely of s1ide elements:

<!ELEMENT slideshow (slide+)>

Tracking Ignorable Whitespace

Now that the DTD is present, the parser is no longer the characters method
with whitespace that it knows to beirrelevant. From the standpoint of an applica-
tion that is only interested in processing the XML data, that is great. The applica-
tion is never bothered with whitespace that exists purely to make the XML file
readable.

On the other hand, if you were writing an application that was filtering an XML
data file, and you wanted to output an equally readable version of the file, then
that whitespace would no longer be irrelevant—it would be essential. To get
those characters, you need to add the ignorableWhitespace method to your
application. You'll do that next.

TRACKING | GNORABLE WHITESPACE 131

Note: The code written in this section is contained in Echo08. java. The output is
in Echo08-05.

To process the (generally) ignorable whitespace that the parser is seeing, add the
code highlighted below to implement the ignorableWhitespace event handler
in your version of the Echo program:

public void characters (char buf[], int offset, int len)

public void ignorableWhitespace(char buf[], int offset, 1int
Len)
throws SAXException

{
3

nT(Q); emit("IGNORABLE™);

public void processingInstruction(String target, String data)

This code simply generates a message to let you know that ignorable whitespace
was seen.

Note: Again, not al parsers are created equal. The SAX specification does not
require this method to be invoked. The Java XML implementation does so when-
ever the DTD makes it possible.

When you run the Echo application now, your output looks like this:

ELEMENT: <slideshow
ATTR:
>
IGNORABLE
IGNORABLE
PROCESS: ;
IGNORABLE
IGNORABLE
ELEMENT: <slide
ATTR:
>
IGNORABLE
ELEMENT: <title>
CHARS: Wake up to ...

132

SIMPLE API FOR XML

END_ELM: </title>
IGNORABLE
END_ELM: </s1lide>
IGNORABLE
IGNORABLE
ELEMENT: <slide
ATTR: ...
>

Here, it is apparent that the ignorableéWhitespace is being invoked before and
after comments and slide elements, where characters was being invoked before
therewasaDTD.

Cleanup

Now that you have seen ignorable whitespace echoed, remove that code from
your version of the Echo program—you won't be needing it any more in the
exercises ahead.

Note: That change has been made in Echo09. java.

Documents and Data

Earlier, you learned that one reason you hear about XML documents, on the one
hand, and XML data, on the other, is that XML handles both comfortably,
depending on whether text is or is not allowed between elementsin the structure.

In the sample file you have been working with, the sTideshow element is an
example of a data element—it contains only subelements with no intervening
text. The item element, on the other hand, might be termed a document element,
because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of
the title element to include HTML-style markup, which will turn it into a docu-
ment element as well.

EMPTY ELEMENTS, REVISITED 133

Empty Elements, Revisited

Now that you understand how certain instances of whitespace can be ignorable,
it istime revise the definition of an “empty” element. That definition can now be
expanded to include

<foo> </foo>

where there is whitespace between the tags and the DTD defines that whitespace
asignorable.

Defining Attributes and Entities in the
DTD

The DTD you've defined so far is fine for use with the nonvalidating parser. It
tells where text is expected and where it isn’'t, which is al the nonvalidating
parser is going to pay attention to. But for use with the validating parser, the
DTD needs to specify the valid attributes for the different elements. You'll do
that in this section, after which you'll define one internal entity and one external
entity that you can reference in your XML file.

Defining Attributes in the DTD

Let's start by defining the attributes for the elementsin the slide presentation.

Note: The XML written in this section is contained in s1ideshowlb.dtd. (The
browsable version is s1ideshowlb-dtd.htm1.)

Add the text highlighted below to define the attributes for the s1ideshow ele-
ment:

<VELEMENT sTlideshow (slide+)>
<IATTLIST slideshow
title CDATA #REQUIRED
date CDATA # MPLIED
author CDATA "unknown"
>
<!ELEMENT sTide (title, item*)>

134

SIMPLE API FOR XML

The DTD tag ATTLIST begins the series of attribute definitions. The name that
follows ATTLIST specifies the element for which the attributes are being defined.
In this case, the element is the s1ideshow element. (Note once again the lack of
hierarchy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas
and other separators are not allowed, so formatting the definitions as shown
above is helpful for readability. The first element in each line is the name of the
atribute: title, date, or author, in this case. The second element indicates the
type of the data: CDATA is character data—unparsed data, once again, in which a
left-angle bracket (<) will never be construed as part of an XML tag. Table 3 pre-
sents the valid choices for the attribute type.

Table 3 Attribute Types
Attribute Type

(valuel | value2 | ...)
CDATA

ID

IDREF

IDREFS

ENTITY

ENTITIES
NMTOKEN
NMTOKENS

NOTATION

Specifies...

A list of values separated by vertical bars. (Example below)
“Unparsed character data’. (For normal people, atext string.)
A name that no other ID attribute shares.

A reference to an ID defined elsewhere in the document.

A space-separated list containing one or more ID references.
The name of an entity defined inthe DTD.

A space-separated list of entities.

A valid XML name composed of letters, numbers, hyphens,
underscores, and colons.

A space-separated list of names.

The name of a DTD-specified notation, which describes a
non-XML data format, such as those used for image files.*

*This is a rapidly obsolescing specification which will be discussed in greater
length towards the end of this section.

DEFINING ENTITIESIN THE DTD 135

When the attribute type consists of a parenthesized list of choices separated by
vertical bars, the attribute must use one of the specified values. For an example,
add the text highlighted below to the DTD:

<!ELEMENT sTide (title, item*)>
<IATTLIST dlide

type (tech|exec|all)# MPLIED
>

<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

This specification says that the s11ide element’s type attribute must be given as
type="tech", type="exec", Or type="all1". No other values are acceptable.
(DTD-aware XML editors can use such specifications to present a pop-up list of
choices.)

The last entry in the attribute specification determines the attributes default
value, if any, and tells whether or not the attribute is required. Table 4 shows the
possible choices.

Table 4 Attribute-Specification Parameters

Specification Specifies...
#REQUIRED The attribute value must be specified in the document.
4TMPLIED The value need not be specified in the document. If itisn’t, the
application will have adefault value it uses.
“defaultvalue’ The default value to use, if avalueis not specified in the doc-

ument.

The value to use. If the document specifies any value at all, it

#FIXED “fixedValue must be the same.

Defining Entities in the DTD

So far, you've seen predefined entities like & and you've seen that an
attribute can reference an entity. It's time now for you to learn how to define
entities of your own.

136 SIMPLE APl FOR XML

Note: The XML defined hereis contained in s1ideSamp1e06.xm1. (The browsable
version is s1ideSample06-xm1.htm1.) The output is shown in Echo09-06.

Add the text highlighted below to the DOCTYPE tag in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshowl.dtd" [
<IENTITY product "WonderWidget" >
<IENTITY products" Wonder Widgets" >

1>

The ENTITY tag name says that you are defining an entity. Next comes the name
of the entity and its definition. In this case, you are defining an entity named
“product” that will take the place of the product name. Later when the product
name changes (as it most certainly will), you will only have to change the name
one place, and all your slides will reflect the new value.

Thelast part is the substitution string that replaces the entity name whenever itis
referenced in the XML document. The substitution string is defined in quotes,
which are not included when the text is inserted into the document.

Just for good measure, we defined two versions, one singular and one plural, so
that when the marketing mavens come up with “Wally” for a product name, you
will be prepared to enter the plural as“Wallies’” and have it substituted correctly.

Note: Truth betold, thisisthe kind of thing that really belongsin an external DTD.
That way, al your documents can reference the new name when it changes. But,
hey, thisis an example...

ECHOING THE ENTITY REFERENCES

Now that you have the entities defined, the next step is to reference them in the
slide show. Make the changes highlighted below to do that:

<s1ideshow

title="WonderWidget&product; S1ide Show"

<!-- TITLE SLIDE -->
<sTlide type="all">
<title>Wake up to WondetrWidgets&products !</title>

</slide>

<!-- OVERVIEW -->
<sTlide type="all">
<title>0Overview</title>

<item>Why WonderWidgets&products, are

great</item>
<item/>
<item>Who buys WonderWidgets& products;</item>
</slide>

The pointsto notice here are that entities you define are referenced with the same
syntax (&entityName;) that you use for predefined entities, and that the entity
can be referenced in an attribute value as well asin an element’s contents.

Echoing the Entity References

When you run the Echo program on this version of the file, here is the kind of
thing you see:

ELEMENT: <title>
CHARS: Wake up to
CHARS: WonderWidgets
CHARS: !

END_ELM: </title>

Note that the existence of the entity reference generates an extra call to the char-
acters method, and that the text you see is what results from the substitution.

137

138

SIMPLE API FOR XML

Additional Useful Entities

Here are several other examples for entity definitions that you might find useful
when you write an XML document:

<!ENTITY Tldquo "“"> <!-- Left Double Quote -->
<!ENTITY rdquo "”"> <!-- Right Double Quote -->
<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->
<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->
<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing External Entities

You can aso use the SYSTEM or PUBLIC identifier to name an entity that is
defined in an external file. You’ll do that now.

Note: The XML defined here is contained in s1ideSamp1e07.xm1 and in copy-
right.xml1. (The browsable versions are s1lideSample07-xm1.html and copy-
right-xm1.htm1.) The Echo output is shown in Echo09-07.

To reference an external entity, add the text highlighted below to the DOCTYPE
statement in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">
<IENTITY copyright SYSTEM " copyright.xml|" >

1>

This definition references a copyright message contained in a file named copy-
right.xml. Create that file and put some interesting text in it, perhaps some-
thing likethis:

<!-- A SAMPLE copyright -->

This 1is the standard copyright message that our Tlawyers
make us put everywhere so we don't have to shell out a
milTion bucks every time someone spills hot coffee in their
Tlap...

ECHOING THE EXTERNAL ENTITY 139

Finally, add the text highlighted below to your sTideSample.xm1 file to refer-
ence the external entity:

<!-— TITLE SLIDE -->
</slide>

<!-- COPYRIGHT SLIDE -->
<sTlide type="all">

<item>©right;</item>
</slide>

You could also use an external entity declaration to access a servlet that produces
the current date using a definition something like this:

<!ENTITY currentDate SYSTEM
"http://www.example.com/servlet/CurrentDate? fmt=dd-MMM-
yyyy">

You would then reference that entity the same as any other entity:

Today's date 1is ¤tDate;.

Echoing the External Entity

When you run the Echo program on your latest version of the slide presentation,
here is what you see:

END_ELM: </slide>
ELEMENT: <slide

ATTR: type "all"
>

ELEMENT: <item>

CHARS:
This 1is the standard copyright message that our Tlawyers
make us put everywhere so we don't have to shell out a
milTion bucks every time someone spills hot coffee in their
Tlap...

END_ELM: </item>
END_ELM: </slide>

140

SIMPLE API FOR XML

Note that the newline which follows the comment in the file is echoed as a char-
acter, but that the comment itself isignored. That is the reason that the copyright
message appears to start on the next line after the CHARS : label, instead of imme-
diately after the label—the first character echoed is actually the newline that fol-
lows the comment.

Summarizing Entities

An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity which contains XML (text and markup), and which istherefore parsed,
is known as a parsed entity. An entity which contains binary data (like images) is
known as an unparsed entity. (By its very nature, it must be external.) We'll be
discussing references to unparsed entitiesin the next section of thistutorial.

Referencing Binary Entities

This section contains no programming exercises. Instead, it discusses the options
for referencing binary files like image files and multimedia data files.

Using a MIME Data Type

There are two ways to go about referencing an unparsed entity like a binary
image file. One is to use the DTD’s NOTATION-specification mechanism. How-
ever, that mechanism is a complex, non-intuitive holdover that mostly exists for
compatibility with SGML documents. We will have occasion to discussit in abit
more depth when we look at the DTDHand1er API, but suffice it for now to say
that the combination of the recently defined XML namespaces standard, in con-
junction with the MIME data types defined for electronic messaging attach-
ments, together provide a much more useful, understandable, and extensible
mechanism for referencing unparsed external entities.

Note: The XML described hereisin s1ideshowlb.dtd. Wewon't actually be echo-
ing any images. That's beyond the scope of this tutoria’s Echo program. This sec-
tion is simply for understanding how such references can be made. It assumes that

USING A MIME DATA TYPE

the application which will be processing the XML data knows how to handle such
references.

To set up the slideshow to use image files, add the text highlighted below to your
sTlideshow.dtd file

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST sTide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* »>
<IELEMENT image EMPTY>
<IATTLIST image

alt CDATA # MPLIED

src CDATA #REQUIRED

type CDATA "image/gif"
>

These modifications declare image as an optional elementinaslide, defineit as
empty element, and define the attributes it requires. The image tag is patterned
after the HTML 4.0 tag, img, with the addition of an image-type specifier, type.
(The img tag is defined in the HTML 4.0 Specification.)

The image tag's attributes are defined by the ATTLIST entry. The a1t attribute,
which defines alternate text to display in case the image can’t be found, accepts
character data (CDATA). It hasan “implied” value, which meansthat it is optional,
and that the program processing the data knows enough to substitute something
like “Image not found”. On the other hand, the src attribute, which names the
image to display, is required.

The type attribute is intended for the specification of a MIME data type, as
defined at ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/.
It has a default value: image/gif.

Note: Itisunderstood herethat the character data (CDATA) used for thetype attribute
will be one of the MIME data types. The two most common formats are:
image/gif, and image/jpeg. Giventhat fact, it might be niceto specify an attribute
list here, using something like:

type ("image/gif", "image/jpeg")

That won't work, however, because attribute lists are restricted to name tokens. The
forward slashisn't part of the valid set of name-token characters, so thisdeclaration

141

142

SIMPLE API FOR XML

fails. Besidesthat, creating an attributelist in the DTD would limit the valid MIME
types to those defined today. Leaving it as CDATA leaves things more open ended,
so that the declaration will continue to be valid as additional types are defined.

In the document, a reference to an image named “intro-pic” might look some-
thing likethis:

<image src="1image/intro-pic.gif", alt="Intro Pic",
type="image/gif" />

The Alternative: Using Entity References

Using a MIME data type as an attribute of an element is a mechanism that is
flexible and expandable. To create an external ENTITY reference using the nota-
tion mechanism, you need DTD NOTATION elements for jpeg and gif data. Those
can of course be obtained from some central repository. But then you need to
define a different ENTITY element for each image you intend to reference! In
other words, adding a new image to your document always requires both a new
entity definition in the DTD and a reference to it in the document. Given the
anticipated ubiquity of the HTML 4.0 specification, the newer standard is to use
the MIME data types and a declaration like image, which assumes the applica-
tion knows how to process such elements.

Using the Validating Parser

By now, you have done alot of experimenting with the nonvalidating parser. It's
timeto have alook at the validating parser and find out what happens when you
use it to parse the sample presentation.

Two things to understand about the validating parser at the outset are:

e TheDTD isrequired.

e Sincethe DTD is present, the ignorableWhitespace method is invoked
whenever the DTD makes that possible.

Configuring the Factory

The first step is modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

CHANGING THE ENVIRONMENT VARIABLE

Note: The codein this section is contained in Echo10. java.

To use the validating parser, make the changes highlighted below:

public static void main(String argv[])

{
if (argv.length !'= 1) {

}

Ly I Faute— —vati e

/I Use the validating parser

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

try {

Here, you configured the factory so that it will produce a validating parser when
newSAXParser is invoked. You can also configure it to return a namespace-
aware parser using setNamespaceAware(true). The reference implementation
supports any combination of configuration options. If the combination of.

Changing the Environment Variable

If no other factory class is specified, the default SAXParserFactory class is
used. To use a different manufacturer’s parser, you can change the value of the
environment variable that points to it. You can do that from the command line,
likethis:

java -Djavax.xml.parsers.SAXParserFactory=yourFactoryHere ...

The factory name you specify must be afully qualified class name (all package
prefixes included). For more information, see the documentation in the newIn-
stance() method of the SAXParserFactory class.

Experimenting with Validation Errors

To see what happens when the XML document does not specify a DTD, remove
the DOCTYPE statement from the XML file and run the Echo program onit.

143

144

SIMPLE API FOR XML

Note: The output shown hereis contained in Echo10-01.

Theresult you see looks likethis:

<7xm1 version='1.0" encoding="UTF-8'7>
* Warning, Tine 5, uri file:
Valid documents must have a <!DOCTYPE declaration.
*% Parsing error, line 5, uri file:
ETement type "slideshow" is not declared.

So now you know that aDTD is arequirement for a valid document. That makes
sense. (Note, though, that the lack of atype declaration only generates a warn-
ing, as specified in the standard. On the other hand, any attempt to actually parse
the document isimmediately greeted with an error! Oh well...)

So what happens when you run the parser on your current version of the slide
presentation, with the DTD specified?

Note: The output shown hereis contained in Echo10-07.

This time, the parser gives the following error message:

*% Parsing error, line 28, uri file:...
Element "sTide" does not allow "item" here.

This error occurs because the definition of the s1ide element requires a title.
That element is not optional, and the copyright slide does not have one. To fix
the problem, add the question mark highlighted below to make title an
optional element:

<!ELEMENT sTide (image?, title?, item*)>

Now what happens when you run the program?

Note: You could also remove the copyright slide, which produces the same result
shown below, as reflected in Echo10-06.

ERROR HANDLING IN THE VALIDATING PARSER

The answer is that everything runs fine, until the parser runs into the tag
contained in the overview slide. Since that tag was not defined in the DTD, the
attempt to validate the document fails. The output looks like this:

ELEMENT: <title>

CHARS: Overview

END_ELM: </title>

ELEMENT: <item>

CHARS: Why ** Parsingerror,line24, uri file:...
Element "item" doesnot allow "em" -- (#PCDATA|item)
org.xml.sax.SAXParseException: Element "item"” does not allow
"em" -- (#PCDATA|1item)

at com.sun.xml.parser.Parser.error(Parser.java:2798)

The error message identifies the part of the DTD that caused validation to fail. In
thiscaseit istheline that defines an i tem element as (#PCDATA | item).

Exercise: Make a copy of the file and remove all occurrences of from
it. Can the file be validated now? (In the next section, you'll learn how to
define parameter entries so that we can use XHTML in the elements we are
defining as part of the dide presentation.)

Error Handling in the Validating Parser

It isimportant to recognize that the only reason an exception is thrown when the
file fails validation is as a result of the error-handling code you entered in the
early stages of thistutorial. That code is reproduced below:

public void error(SAXParseException e)
throws SAXParseException

{

throw g

}

If that exception is not thrown, the validation errors are simply ignored.

Exercise: Try commenting out the line that throws the exception. What hap-
pens when you run the parser now?

In general, a SAX parsing error isavalidation error, although we have seen that

it can also be generated if the file specifies a version of XML that the parser is
not prepared to handle. The thing to remember is that your application will not

145

146 SIMPLE APl FOR XML

generate a validation exception unless you supply an error handler like the one
above.

Defining Parameter Entities and
Conditional Sections

Just as a general entity lets you reuse XML datain multiple places, a parameter
entity letsyou reuse parts of aDTD in multiple places. In this section of the tuto-
rial, you'll see how to define and use parameter entities. You'll also see how to
use parameter entities with conditional sectionsin aDTD.

Creating and Referencing a Parameter
Entity

Recall that the existing version of the slide presentation could not be validated
because the document used tags, and those are not part of the DTD. In gen-
eral, we'd like to use a whole variety of HTML-style tags in the text of a slide,
not just one or two, so it makes more sense to use an existing DTD for XHTML
than it does to define all the tags we might ever need. A parameter entity is
intended for exactly that kind of purpose.

Note: The DTD specifications shown here are contained in s1ideshow2.dtd. The
XML file that references it is sTideSamp1e08.xm1. (The browsable versions are
slideshow2-dtd.html and sT1ideSamp1e08-xm1.htm1.)

Open your DTD filefor the slide presentation and add the text highlighted below
to define a parameter entity that references an external DTD file:

<!ELEMENT sTide (image?, title?, item*)>
<!ATTLIST slide

>

<IENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT title ...

CREATING AND REFERENCING A PARAMETER ENTITY 147

Here, you used an <!ENTITY> tag to define a parameter entity, just as for a gen-
era entity, but using a somewhat different syntax. You included a percent sign
(%) before the entity name when you defined the entity, and you used the percent
sign instead of an ampersand when you referenced it.

Also, note that there are always two steps for using a parameter entity. The first
is to define the entity name. The second is to reference the entity name, which
actually does the work of including the external definitions in the current DTD.
Since the URI for an externa entity could contain slashes (/) or other characters
that are not valid in an XML name, the definition step allows avalid XML name
to be associated with an actual document. (This same technique is used in the
definition of namespaces, and anywhere else that XML constructs need to refer-
ence external documents.)

Notes:

e The DTD file referenced by this definition is xhtm1.dtd. You can either
copy that file to your system or modify the SYSTEM identifier in the
<!ENTITY> tag to point to the correct URL.

e Thisfileisasmall subset of the XHTML specification, loosely modeled
after the Modularized XHTML draft, which aims at breaking up the DTD
for XHTML into bite-sized chunks, which can then be combined to create
different XHTML subsets for different purposes. When work on the mod-
ularized XHTML draft has been completed, this version of the DTD
should be replaced with something better. For now, thisversion will suffice
for our purposes.

The whole point of using an XHTML-based DTD wasto gain access to an entity
it defines that covers HTML-style tags like and . Looking through
xhtm1.dtd reveasthe following entity, which does exactly what we want:

<IENTITY % inline "#PCDATA|em|b|a|img|br">

This entity is a simpler version of those defined in the Modularized XHTML
draft. It definesthe HTML-style tags we are most likely to want to use -- empha
sis, bold, and break, plus a couple of others for images and anchors that we may
or may not use in a slide presentation. To use the inTline entity, make the
changes highlighted below in your DTD file:

<IELEMENT title (#PEPATA %inline;)¥>
<ELEMENT item (#PEDATA %inline; | item)* >

148

SIMPLE API FOR XML

These changes replaced the simple #PCDATA item with the inTine entity. It is
important to notice that #PCDATA is first in the inT11ine entity, and that inline is
first wherever we useit. That is required by XML’s definition of a mixed-content
model. To be in accord with that model, you aso had to add an asterisk at the end
of the titTe definition. (In the next two sections, you’ll see that our definition of
the title element actually conflicts with a version defined in xhtm1.dtd, and
see different ways to resolve the problem.)

Note: The Modularized XHTML DTD defines both in1ine and Inline entities,
and does so somewhat differently. Rather than specifying #PCDATA |em|b|a|img|Br,
their definitionsaremore like (#PCDATA |em|b|a| img|Br)*. Using one of those def-
initions, therefore, looks more like this:

<!ELEMENT title %Inline; >

Conditional Sections

Before we proceed with the next programming exercise, it is worth mentioning
the use of parameter entities to control conditional sections. Although you can-
not conditionalize the content of an XML document, you can define conditional
sectionsin a DTD that become part of the DTD only if you specify include. If
you specify ignore, on the other hand, then the conditional section is not
included.

Suppose, for example, that you wanted to use dlightly different versions of a
DTD, depending on whether you were treating the document as an XML docu-
ment or as a SGML document. You could do that with DTD definitions like the
following:

someExternal.dtd:
<![INCLUDE [
. XML-only definitions

11>
<![IGNORE [
. SGML-onTy definitions

11>

. common definitions

The conditional sections are introduced by "<![", followed by the INCLUDE or
IGNORE keyword and another "[". After that comes the contents of the condi-
tional section, followed by the terminator: "]11>". In this case, the XML defini-

CONDITIONAL SECTIONS 149

tions are included, and the SGML definitions are excluded. That's fine for XML
documents, but you can’t use the DTD for SGML documents. You could change
the keywords, of course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the INCLUDE
and IGNORE keywords:

someExternal.dtd:
<[%XML; [
. XML-only definitions
11>
<[%SGML; [
. SGML-onTy definitions
11>

. common definitions

Then each document that uses the DTD can set up the appropriate entity defini-
tions:

<!DOCTYPE foo SYSTEM "someExternal.dtd" [
<IENTITY % XML "INCLUDE" >
<IENTITY % SGML "IGNORE" >

1>

<foo>

</foo>
This procedure puts each document in control of the DTD. It also replaces the
INCLUDE and IGNORE keywords with variable names that more accurately reflect

the purpose of the conditional section, producing a more readable, self-docu-
menting version of the DTD.

Parsing the Parameterized DTD

This section uses the Echo program to see what happens when you reference
xhtm1.dtd in sTideshow. dtd. It also covers the kinds of warnings that are gen-
erated by the SAX parser when aDTD is present.

Note: The output described in this section is contained in Echo10-08.

150

SIMPLE API FOR XML

When you try to echo the slide presentation, you find that it now contains a new
error. Therelevant part of the output is shown here (formatted for readability):

<?xml version='1.0" encoding="UTF-8'7>
%% Parsing error, line 22,

uri file:.../slideshow.dtd
ETement "title" was already declared.
org.xml.sax.SAXParseException:

It seemsthat xhtm1.dtd definesatitle element whichisentirely different from
the tit1e element defined in the dideshow DTD. Because there is no hierarchy
in the DTD, these two definitions conflict.

Note: TheModularized XHTML DTD also definesatit1e element that isintended
to be the document title, so we can’t avoid the conflict by changing xhtm1.dtd—
the problem would only come back to haunt us later.

You could aso use XML namespaces to resolve the conflict, or use one of the
more hierarchical schema proposals described in Schema Standards (page 45).
For now, though, let's simply rename the title element in s11ideshow. dtd.

Notee The XML shown here is contained in slideshow3.dtd and
sTideSamp1e09.xm1, which references copyright.xm1 and xhtml.dtd. (The
browsable versions are s1ideshow3-dtd.htm1, sTideSamp1e09-xm1.html, copy-
right-xm1.htm1, and xhtm1-dtd.html1.) The results of processing are shown in
Echo10-09.

To keep the two title elements separate, we'll resort to a “hyphenation hierar-
chy”. Make the changes highlighted below to change the name of the title ele-
ment in sTideshow.dtd to sTide-title:

<!ELEMENT slide (image?, dlide-title?, item*)>
<!IATTLIST slide
type (tech | exec | all) #IMPLIED

>
<!-- Defines the %inline; declaration -->
<IENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT dide-title (%inline;)*>

DTD WARNINGS

The next step isto modify the XML file to use the new element name. To do that,
make the changes highlighted below:

<sTlide type="all">
<dlide-title>Wake up to ... </didetitle>
</slide>

<!-- OVERVIEW -->

<sTlide type="all">
<dide-title>0verview</didetitle>
<item>...

Now run the Echo program on this version of the slide presentation. It should run
to completion and display output like that shown in Echo10-09.

Congratulations! You have now read a fully validated XML document. The
changes you made had the effect of putting your DTD’s title element into a
slideshow “namespace” that you artificially constructed by hyphenating the
name. Now the title element in the “slideshow namespace’ (s1ide-title,
really) no longer conflicts with the title element in xhtm1.dtd. In the next sec-
tion of the tutorial, you’'ll see how to do that without renaming the definition. To
finish off this section, we'll take alook at the kinds of warnings that the validat-
ing parser can produce when processing the DTD.

DTD Warnings

As mentioned earlier in this tutorial, warnings are generated only when the SAX
parser is processing a DTD. Some warnhings are generated only by the validating
parser. The nonvalidating parser’s main goal isoperate as rapidly as possible, but
it too generates some warnings. (The explanations that follow tell which does
what.)

The XML specification suggests that warnings should be generated as result of:

« Providing additional declarations for entities, attributes, or notations.
(Such declarations areignored. Only thefirst is used. Also, note that dupli-
cate definitions of elements always produce a fatal error when validating,
asyou saw earlier.)

» Referencing an undeclared element type.

151

152

SIMPLE API FOR XML

(A validity error occurs only if the undeclared type is actually used in the
XML document. A warning results when the undeclared element is refer-
enced inthe DTD.)

« Declaring attributes for undeclared element types.
The Java XML SAX parser also emits warnings in other cases, such as:

¢ No<IDOCTY PE ...> when validating.
« Referencing an undefined parameter entity when not validating.

(When validating, an error results. Although nonvalidating parsers are not
required to read parameter entities, the Java XML parser does so. Since it
is not a requirement, the Java XML parser generates a warning, rather
than an error.)

e Certain cases where the character-encoding declaration does not look
right.

At this point, you have digested many XML concepts, including DTDs, external
entities. You have also learned your way around the SAX parser. The remainder
of the SAX tutorial covers advanced topics that you will only need to understand
if you are writing SAX-based applications. If your primary goa is to write
DOM -based apps, you can skip ahead to Document Object Model (page 163).

Handling Lexical Events

You saw earlier that if you are writing text out as XML, you need to know if you
are in a CDATA section. If you are, then angle brackets (<) and ampersands (&)
should be output unchanged. But if you're not in a CDATA section, they should be
replaced by the predefined entities &1t; and &. But how do you know if
you’ re processing a CDATA section?

Then again, if you are filtering XML in some way, you would want to pass com-
ments along. Normally the parser ignores comments. How can you get com-
ments so that you can echo them?

Finaly, there are the parsed entity definitions. If an XML-filtering app sees
&myEntity; it needsto echo the same string—not the text that is inserted in its
place. How do you go about doing that?

This section of the tutorial answers those questions. It shows you how to use
org.xml.sax.ext.lLexicalHandler t0 identify comments, CDATA sections, and ref-
erences to parsed entities.

How THE LEXICALHANDLER WORKS 153

Comments, CDATA tags, and references to parsed entities constitute lexical infor-
mation—that is, information that concerns the text of the XML itself, rather than
the XML's information content. Most applications, of course, are concerned only
with the content of an XML document. Such apps will not use the LexicalEv-
entListener API. But apps that output XML text will find it invaluable.

Note: Lexica event handling is a optional parser feature. Parser implementations
are not required to support it. (The reference implementation does so.) This discus-
sion assumes that the parser you are using does so, as well.

How the LexicalHandler Works

To beinformed when the SAX parser seeslexica information, you configure the
Xm1Reader that underlies the parser with a LexicalHandler. The LexicalHan-
d1er interface defines these even-handling methods:

comment(String comment)
Passes comments to the application.

startCDATA(), endCDATAQ)
Tells when a CDATA section is starting and ending, which tells your applica-
tion what kind of charactersto expect the next time characters() iscaled.
startEntity(String name), endEntity(String name)
Gives the name of a parsed entity.

startDTD(String name, String publicId, String systemId), endDTD()
Tellswhen aDTD is being processed, and identifiesit.

Working with a LexicalHandler

In the remainder of this section, you'll convert the Echo app into a lexical han-
dier and play with its features.

Note: The code shown in this section isin Echol1.java. The output is shown in
Echol11-09.

154 SIMPLE APl FOR XML

To start, add the code highlighted below to implement the LexicalHandler
interface and add the appropriate methods.

import org.xml.sax.ext.L exicalHandler;

public class Echo extends HandlerBase
implements L exicalHandler
{

public static void main(String argv[])

{

// Use an instance of ourselves as the SAX event
handler

PefauttHandter—thandter—=—rewEtchol1 O~
Echo handler = new Echo();

At this point, the Echo class extends one class and implements an additional
interface. You changed the class of the handler variable accordingly, so you can

use the same instance as either a DefaultHandler or a LexicalHandler, as appro-
priate.

Next, add the code highlighted below to get the XMLReader that the parser dele-
gatesto, and configure it to send lexical eventsto your lexical handler:

public static void main(String argv[])

{
try {
// Parse the 1input
SAXParser saxParser = factory.newSAXParser();

XML Reader xmlIReader = saxPar ser.getXM L Reader ();
xmlReader.setProperty(

" http://xml.org/sax/properties/lexical-handler" ,
handler

);
saxParser.parse(new File(argv[0]), handler);
} catch (SAXParseException spe) {

Here, you configured the XMLReader using the setProperty() method defined
in the XMLReader class. The property name, defined as part of the SAX stan-
dard, isthe URL, http://xml1.org/sax/properties/lexical-handler.

WORKING WITH A LEXICALHANDLER 155

Finally, add the code highlighted below to define the appropriate methods that
implement the interface.

public void processingInstruction(String target, String data)
}

public void comment(char[] ch, int start, int length)throws
SAXException

{
3

public void startCDATA(Q)
throws SAXException

{

}

public void endCDATA(Q)
throws SAXException

{

}

public void startEntity(String name)
throws SAXException

public void endEntity(String name)
throws SAXException

{

}

public void startDTD(String name, String publicId, String
systemId)

throws SAXException

{

}

public void endDTD()
throws SAXException
{
}

private void emit(String s)

156

SIMPLE API FOR XML

You have now turned the Echo class into a lexical handler. In the next section,
you' |l start experimenting with lexical events.

Echoing Comments

The next step is to do something with one of the new methods. Add the code
highlighted below to echo comments in the XML file:

public void comment(char[] ch, int start, int length)
throws SAXException

{
Sring text = new Sring(ch, start, length);
nl(); emit(" COMMENT: " +text);

}

When you compile the Echo program and run it on your XML file, the result
looks something like this:

COMMENT : A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT :

DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT :

Theline endings in the comments are passed as part of the comment string, once
again normalized to newlines (). You can also see that commentsin the DTD are
echoed along with comments from the file. (That can pose problems when you
want to echo only comments that are in the data file. To get around that problem,
you can use the startDTD and endDTD methods.)

Echoing Other Lexical Information

To finish up this section, you'll exercise the remaining LexicalHandler meth-
ods.

Note: The code shown in this section isin Echo12.java. Thefileit operatesonis
slideSamplel0.xm1. (The browsable version is s1ideSample10-xm1.htm1.) The
results of processing arein Echo12-10.

WORKING WITH A LEXICALHANDLER 157

Make the changes highlighted below to remove the comment echo (you don’t
need that any more) and echo the other events:

public void comment(char[] ch, int start, int Tength)

throws SAXException

{

}

public void startCDATA(Q)

throws SAXException

{
3

nl(); emit(" START CDATA SECTION");

public void endCDATA(Q)
throws SAXException

{
3

nl(); emit(" END CDATA SECTION");

public void startEntity(String name)
throws SAXException

{
3

nl(); emit(" START ENTITY: " +name);

public void endEntity(String name)
throws SAXException

{
3

nl(); emit("END ENTITY: " +name);

public void startDTD(String name, String publicId, String
systemId)
throws SAXException

{

158 SIMPLE APl FOR XML

n1Q); emit("START DTD: "+name
+" publicId=" + publicId
" + systemlId);

+ systemId=

}
public void endDTD()
throws SAXException

{
3

nTQ); emit("END DTD");

Hereiswhat you see when the DTD is processed:

START DTD: sTideshow
publicId=null
systemId=file:/..../samples/slideshow3.dtd
END DTD

Note: To see events that occur while the DTD is being processed, use
org.xml.sax.ext.DecTHandler.

Here is what happens when the internally defined products entity is processed
with the latest version of the program:

ELEMENT: <slide-title>

CHARS: Wake up to

START ENTITY: products

CHARS: WonderWidgets

END ENTITY: products, INCLUDED=true
CHARS: !

END_ELM: </sTlide-title>

And hereisthe result of processing the external copyright entity:

START ENTITY: copyright
CHARS:

This 1is the standard copyright message ...
END ENTITY: copyright

THE DTDHANDLER API 159

Finally, you get output like this for the CDATA section:
START CDATA SECTION

CHARS: Diagram:

frobmorten <---——-————————- fuznaten
| <3> A
| <1> | <1> = fozzle
Y | <2> = framboze
staten —----——-----——-————-—-———- + <3> = frenzle
<2>

END CDATA SECTION

In summary, the LexicalHandler gives you the event-notifications you need to
produce an accurate reflection of the origina XML text.

Using the DTDHandler and
EntityResolver

In this section of the tutorial, we'll carry on a short discussion of the two remain-
ing SAX event handlers. DTDHandTer and EntityResolver. The DTDHandler is
invoked when the DTD encounters an unparsed entity or a notation declaration.
The EntityResolver comesinto play when a URN (public ID) must be resolved
toaURL (system ID).

The DTDHandler API

In the section Referencing Binary Entities (page 140) you saw a method for ref-
erencing a file that contains binary data, like an image file, using MIME data
types. That is the simplest, most extensible mechanism to use. For compatibility
with older SGML-style data, though, it is also possible to define an unparsed
entity.

160

SIMPLE API FOR XML

The NDATA keyword defines an unparsed entity, like this:
<!ENTITY myEntity SYSTEM "..URL.." NDATA gif>

The NDATA keyword saysthat the datain this entity isnot parsable XML data, but
is instead data that uses some other notation. In this case, the notation is named
“gif”. The DTD must then include a declaration for that notation, which would
look something like this:

<!NOTATION gif SYSTEM "..URL..">

When the parser sees an unparsed entity or a notation declaration, it does nothing
with the information except to passit along to the application using the DTDHan-
dler interface. That interface defines two methods:

notationDecl (String name, String publicId, String systemId)

unpar sedEntityDecl (String name, String publicld,
String systemId, String notationName)

The notationDec] method is passed the name of the notation and either the
public or system identifier, or both, depending on which is declared in the DTD.
The unparsedEntityDec] method is passed the name of the entity, the appropri-
ate identifiers, and the name of the notation it uses.

Note: The DTDHandler interface isimplemented by the DefaultHandler class.

Notations can also be used in attribute declarations. For example, the following
declaration requires notations for the GIF and PNG image-file formats:

<!ENTITY image EMPTY>
<!ATTLIST image

type NOTATION (gif | png) " gif"
>

Here, the type is declared as being either gif, or png. The default, if neither is
specified, isgi f.

Whether the notation reference is used to describe an unparsed entity or an
attribute, it is up to the application to do the appropriate processing. The parser
knows nothing at all about the semantics of the notations. It only passes on the
declarations.

THE ENTITYRESOLVER API

The EntityResolver API

The EntityResolver API letsyou convert a public ID (URN) into a system ID
(URL). Your application may need to do that, for example, to convert something
likehref="urn:/someName" into "http://someURL".

The EntityResolver interface defines a single method:
resolveEntity (String publicId, String systemId)

This method returns an InputSource object, which can be used to access the
entity’s contents. Converting an URL into an InputSource is easy enough. But
the URL that is passed as the system ID will be the location of the original docu-
ment which is, as likely as not, somewhere out on the Web. To access a local
copy, if thereis one, you must maintain a catalog somewhere on the system that
maps names (public IDs) into local URLSs.

161

162 SIMPLE APl FOR XML

Document Object
Model

Eric Armstrong

I N the SAX chapter, you wrote an XML file that contains dides for a presenta-
tion. You then used the SAX API to echo the XML to your display.

In this chapter, you'll use the Document Object Model (DOM) to build a small
SlideShow application. You'll start by constructing a DOM and inspecting it,
then see how to write a DOM as an XML structure, display it in a GUI, and
manipulate the tree structure.

A Document Object Model is a garden-variety tree structure, where each node
contains one of the components from an XML structure. The two most common
types of nodes are element nodes and text nodes. Using DOM functions lets you
create nodes, remove nodes, change their contents, and traverse the node hierar-
chy.

In this chapter, you'll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a user-friendly JTree,
and explore the syntax of namespaces. You'll also create a DOM from scratch,
and see how to use some of the implementation-specific features in Sun’s JAXP
reference implementation to convert an existing data set to XML.

Note: The examples in this chapter can be found in docs/tutorial/exam-
ples/jaxp/dom/samples.

163

Bios.html#ericArmstrong

164

DOCUMENT OBJECT MODEL

In This Chapter
Reading XML Dataintoa DOM 164
Displaying a DOM Hierarchy 171
Examining the Structure of aDOM 187
Constructing a User-Friendly JTreefrom aDOM =95
Creating and Manipulatinga DOM 209
Using Namespaces 215

Reading XML Data into a DOM

In this section of the tutorial, you’ll construct a Document Object Model (DOM)
by reading in an existing XML file. In the following sections, you’ll see how to
display the XML in a Swing tree component and practice manipulating the
DOM.

Note: In the next part of the tutorial, XML Stylesheet Language for
Transformations (page 221), you'll see how to write out a DOM as an XML file.
(You'll aso see how to convert an existing datafile into XML with relative ease.)

Creating the Program

The Document Object Model (DOM) provides APIs that let you create nodes,
modify them, delete and rearrange them. So it isrelatively easy to create a DOM,
as you'll seein later in section 5 of this tutorial, Creating and Manipulating a
DOM (page 209).

Before you try to create a DOM, however, it is helpful to understand how a
DOM is structured. This series of exercises will make DOM internals visible by
displaying them in a Swing JTree.

Create the Skeleton

Now that you've had a quick overview of how to create a DOM, let’s build a
simple program to read an XML document into a DOM then write it back out

again.

CREATING THE PROGRAM 165

Note: The code discussed in this section isin DomEcho01. java. Thefileit operates
onisslideSample0l.xml1. (The browsable version is sT1ideSample01-xm1.htm1.)

Start with a normal basic logic for an app, and check to make sure that an argu-
ment has been supplied on the command line:

public class DomEcho {
public static void main(String argv[])

{
if (argv.length !'= 1) {
System.err.println("Usage: java DomEcho
filename™);
System.exit(l);
}
}// main
}// DomEcho

Import the Required Classes

In this section, you’ re going to see al the classes individually named. That’s so
you can see where each class comes from when you want to reference the API
documentation. In your own apps, you may well want to replace import state-
ments like those below with the shorter form: javax.xml.parsers.*.

Add these lines to import the JAXP APIsyou'll be using:

import javax.xml.par sers.DocumentBuilder;

import javax.xml.par sers.DocumentBuilder Factory;
import javax.xml.par sers.FactoryConfigurationError;
import javax.xml.par sers.Par ser Configur ationException;

Add these lines for the exceptions that can be thrown when the XML document
is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXPar seException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.l OException;

166 DOCUMENT OBJECT MODEL

Finally, import the W3C definition for aDOM and DOM exceptions.

import or g.w3c.dom.Document;
import org.w3c.dom.DOM Exception;

Note: A DOMException is only thrown when traversing or manipulating a DOM.
Errors that occur during parsing are reporting using a different mechanism that is
covered below.

Declare the DOM

The org.w3c.dom.Document class is the W3C name for a Document Object
Model (DOM). Whether you parse an XML document or create one, a Docu-
ment instance will result. We'll want to reference that object from another
method later on in the tutorial, so defineit as a global object here:

public class DomEcho

{

static Document document;

public static void main(String argv[])

{

It needs to be static, because you're going to generate its contents from the
main method in afew minutes.

Handle Errors

Next, put in the error handling logic. This code is very similar to the logic you
saw in Handling Errors with the Nonvalidating Parser (page 111) in the SAX
tutorial, sowewon't gointoitin detail here. The major point worth noting isthat
a JAXP-conformant document builder is required to report SAX exceptions
when it has trouble parsing the XML document. The DOM parser does not have
to actually use a SAX parser internally, but since the SAX standard was already
there, it seemed to make senseto useit for reporting errors. Asaresult, the error-
handling code for DOM and SAX applications are very similar:

public static void main(String argv[])

{
if (argv.length != 1) {

CREATING THE PROGRAM

}

try {

} catch (SAXEXxception sxe) {
/I Error generated during parsing
Exception X = sxe;
if (sxe.getException() !'= null)
X = sxe.getException();
x.printStack Trace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException 1ioe) {
// I/0 error
ioe.printStackTrace();
}
1// main

The major difference between this code and the SAX error-handling code is that
the DOM parser does not throw SAXParseExceptions, but only SAXExceptions.

Instantiate the Factory

Next, add the code highlighted below to obtain an instance of a factory that can
give us a document builder:

public static void main(String argv[])

{
if (argv.length !'= 1) {

}

DocumentBuilder Factory factory =
DocumentBuilder Factory.newl nstance();

try {

167

168

DOCUMENT OBJECT MODEL

Get a Parser and Parse the File

Now, add the code highlighted below to get a instance of a builder, and use it to
parse the specified file:

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.par se(new File(argv[Q]));

} catch (SAXParseException spe) {

Save ThisFilel
By now, you should be getting the idea that every JAXP application starts
pretty much the same way. You're right! Save this version of the file as a
template. You'll useit later on as the basisfor XSLT transformation app.

Run the Program

Throughout most of the DOM tutorial, you'll be using the sample slideshows
you created in the SAX section. In particular, you'll use s1ideSample01.xm1, a
simple XML filewith nothing much init, and s1ideSamp1e10.xm1, amore com-
plex examplethat includesaDTD, processing instructions, entity references, and
a CDATA section.

For instructions on how to compile and run your program, see Compiling and
Running the Program and Run the Program, from the SAX tutorial. Substitute
“DomEcho” for “Echo” asthe name of the program, and you're ready to roll.

For now, just run the program on s1ideSample0l.xm1. If it ran without error,
you have successfully parsed an XML document and constructed a DOM. Con-
gratulations!

Note: You'll have to take my word for it, for the moment, because at this point you
don’t have any way to display the results. But that is feature is coming shortly...

Additional Information

Now that you have successfully read in aDOM, there are one or two more things
you need to know in order to use DocumentBuilder effectively. Namely, you
need to know about:

e -Configuring the Factory

ADDITIONAL |NFORMATION

e -Handling Validation Errors

Configuring the Factory

By default, the factory returns a nonvalidating parser that knows nothing about
namespaces. To get a validating parser, and/or one that understands namespaces,
you configure the factory to set either or both of those options using the com-
mand(s) highlighted below:

public static void main(String argv[])

{
if (argv.length !'= 1) {

}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setValidating(true);

factory.setNamespaceAwar e(tr ue);

try {

Note: JAXP-conformant parsers are not required to support al combinations of
those options, even though the reference parser does. If you specify aninvalid com-
bination of options, the factory generates aParserConfigurationException when
you attempt to obtain a parser instance.

You'll be learning more about how to use namespaces in the last section of the
DOM tutorial, Using Namespaces (page 215). To complete this section, though,
you' [l want to learn something about...

Handling Validation Errors

Remember when you were wading through the SAX tutorial, and all you realy
wanted to do was construct a DOM? Well, here's when that information begins
to pay off.

Recall that the default response to a validation error, as dictated by the SAX
standard, is to do nothing. The JAXP standard requires throwing SAX excep-
tions, so you exactly the same error handling mechanisms as you used for a SAX
app. In particular, you need to use the DocumentBuilder’s setErrorHandler

170

DOCUMENT OBJECT MODEL

method to supply it with an object that implements the SAX ErrorHandler
interface.

Note: DocumentBuilder also has a setEntityResolver method you can use

The code below uses an anonymous inner class adapter to provide that
ErrorHandler. The highlighted code is the part that makes sure validation errors
generate an exception.

builder.setErrorHandler(
new org.xml.sax.ErrorHandler() {

// ignore fatal errors (an exception 1is guaranteed)
public void fatalError(SAXParseException exception)
throws SAXException {
}
/ treat validation errorsasfatal
public void error (SAXParseException €)
throws SAXPar seException

{
}

throw g

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException

{
System.out.println("** Warning"
+ ", Tine " + err.getLineNumber()
+ ", uri " + err.getSystemId());
System.out.println(" " + err.getMessage());
}

)N

This code uses an anonymous inner classto generate an instance of an object that
implementsthe ErrorHandler interface. Since it has no class name, it's “anony-
mous’. You can think of it as an “ErrorHandler” instance, although technically
it's a no-name instance that implements the specified interface. The code is sub-
stantially the same as that described the Handling Errors with the Nonvalidating
Parser (page 111) section of the SAX tutorial. For a more background on valida-
tion issues, refer to Using the Validating Parser (page 142) in that part of the
tutorial.

LOOKING AHEAD 171

Looking Ahead

In the next section, you'll display the DOM structure in a JTree and begin
explore its structure. For example, you'll see how entity references and CDATA
sections appear in the DOM. And perhaps most importantly, you'll see how text
nodes (which contain the actual data) reside under element nodesin a DOM.

Displaying a DOM Hierarchy

To create a Document Object Hierarchy (DOM) or manipulate one, it helps to
have a clear idea of how nodes in a DOM are structured. In this section of the
tutorial, you'll expose the internal structure of a DOM.

Echoing Tree Nodes

What you need at this point is a way to expose the nodes in a DOM so can see
what it contains. To do that, you'll convert a DOM into a JTreeModel and dis-
play the full DOM in a JTree. It's going to take a bit of work, but the end result
will be a diagnostic tool you can use in the future, as well as something you can
use to learn about DOM structure now.

Convert DomEcho to a GUI App

Sincethe DOM isatree, and the Swing 1Tree component is all about displaying
trees, it makes sense to stuff the DOM into a JTree, so you can look it. The first
step in that process is to hack up the DomEche program so it becomes a GUI
application.

Note: The code discussed in this section isin DomEcho02. java.

172

DOCUMENT OBJECT MODEL

Add Import Statements

Start by importing the GUI components you’ re going to need to set up the appli-
cation and display a IJTree:

// GUI components and Tayouts
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.J]ScrollPane;
import javax.swing.J]Tree;

Later on in the DOM tutorial, we'll going to tailor the DOM display to generate
a user-friendly version of the 1Tree display. When the user selects an element in
that tree, you'll be displaying subelements in an adjacent editor pane. So, while
we're doing the setup work here, import the components you need to set up a
divided view (1Sp11itPane) and to display the text of the subelements (1Ed+itor-
Pane):

import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

Add a few support classes you’ re going to need to get this thing off the ground:

// GUI support classes

import java.awt.BorderlLayout;

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

Finally, import some classes to make a fancy border:

// For creating borders

import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

(These are optional. You can skip them and the code that depends on them if you
want to simplify things.)

CONVERT DOMECHO TO A GUI APP

Create the GUI Framework

The next step is to convert the app into a GUI application. To do that, the static
main method will create an instance of the main class, which will have become a
GUI pane.

Start by converting the class into a GUI pane by extending the Swing JPane]
class:

public class DomEcho02 extends JPanel

{

// Global value so it can be ref'd by the tree-adapter
static Document document;

While you' re there, define afew constants you' Il use to control window sizes:

public class DomEcho02 extends JPanel

{

// Global value so it can be ref'd by the tree-adapter
static Document document;

static final int windowHeight = 460;

static final int leftWidth = 300;

static final int rightWidth = 340;

static final int windowWidth = TeftWidth + rightWidth;

Now, in the main method, invoke a method that will create the outer frame that
the GUI panewill sitin:

public static void main(String argv[])

{

DocumentBuilderFactory factory ...

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));
makeFrame();

} catch (SAXParseException spe) {

173

174 DOCUMENT OBJECT MODEL

Next, you' Il need to define the makeFrame method itself. It contains the standard
code to create a frame, handle the exit condition gracefully, give it an instance of
the main panel, sizeit, locate it on the screen, and makeit visible:

1 // main
public static void makeFrame()
{
// Set up a GUI framework
JFrame frame = new JFrame("DOM Echo");
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e)
{System.exit(0);}
s

// Set up the tree, the views, and display it all
final DomEcho02 echoPanel = new DomEcho02();
frame.getContentPane().add("Center", echoPanel);
frame.pack();
Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();
int w = windowWidth + 10;
int h = windowHeight + 10;
frame.setlLocation(screenSize.width/3 - w/2,
screenSize.height/2 - h/2);
frame.setSize(w, h);
frame.setVisible(true)
1 // makeFrame

Add the Display Components

The only thing left in the effort to convert the program to a GUI app is create the
class constructor and make it create the panel’s contents. Here is the constructor:

public class DomEcho02 extends JPane

{

static final int windowWidth = TeftWidth + rightWidth;

public DomEcho02()
{

} // Constructor

CONVERT DOMECHO TO A GUI APP

Here, you make use of the border classes you imported earlier to make a regal
border (optional):

public DomEcho02()

{
// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder cb = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(ch,eb));

} // Constructor

Next, create an empty tree and put it a JScrol1Pane SO USers can see its contents
asit getslarge:

public DomEcho02(
{

// Set up the tree
JTree tree = new JTree();

// Build Teft-side view
JScrolTPane treeView = new JScroll1Pane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

} // Constructor

Now create a non-editable JEditPane that will eventually hold the contents
pointed to by selected JTree nodes:

public DomEcho02(
{

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditabTle(false);
JScrolTPane htmlView = new JScrol1Pane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

} // Constructor

175

176 DOCUMENT OBJECT MODEL

With the left-side 1Tree and the right-side JEditorPane constructed, create a
JSp1itPane to hold them:

public DomEcho02()
{

// Build split-pane view

JSpTitPane splitPane = new JSplitPane(
JSp1itPane.HORIZONTAL_SPLIT,

treeView, htmlView);

splitPane.setContinuousLayout(true);

splitPane.setDividerLocation(leftWidth);

splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

} // Constructor

With this code, you set up the 1SpT1itPane so with a vertical divider. That pro-
duces a “horizontal split” between the tree and the editor pane. (More of a hori-
zontal layout, really.) You also set the location of the divider so that the tree got
the width it prefers, with the remainder of the window width allocated to the edi-
tor pane.

Finally, specify the layout for the panel and add the split pane:

public DomEcho02()
{

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Congratulations! The program is now a GUI app. You can run it now to see what
the general layout will look like on screen. For reference, here is the completed
constructor:

public DomEcho02()

{
// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder CB = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(CB,eb));
// Set up the tree

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTRee 177

JTree tree = new JTree();
// Build Teft-side view
JScrolTPane treeView = new JScroll1Pane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));
// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditabTle(false);
JScrolTPane htmlView = new JScrol1Pane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));
// Build split-pane view
JSpTitPane splitPane = new JSplitPane(

JSplitPane.HORIZONTAL_SPLIT,

treeView, htmlView)

splitPane.setContinuouslLayout(true);
splitPane.setDividerLocation(TeftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));
// Add GUI components
this.setlLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Create Adapters to Display the DOM in a
JTree

Now that you have a GUI framework to display a JTree in, the next step is get
the JTree to display the DOM. But a JTree wants to display a TreeModel. A
DOM isatree, but it’'snot aTreeModel. So you'll need to create an adapter class
that makes the DOM look likeaTreeModel to a IJTree.

Now, when the TreeMode1 passes nodes to the JTree, JTree usesthe toString
function of those nodes to get the text to display in the tree. The standard
toString function isn’t going to be very pretty, so you'll need to wrap the DOM
nodes in an AdapterNode that returns the text we want. What the TreeMode1
gives to the JTree, then, will in fact be AdapterNode objects that wrap DOM
nodes.

Note: The classes that follow are defined as inner classes. If you are coding for the
1.1 platform, you will need to define these class as external classes.

178

DOCUMENT OBJECT MODEL

Define the AdapterNode Class

Start by importing the tree, event, and utility classes you're going to need to
make thiswork:

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.¥;
import java.util.*;

public class DomEcho extends JPanel

{

Moving back down to the end of the program, define a set of strings for the node
element types:

1 // makeFrame

// An array of names for DOM node-types
// (Array indexes = nodeType() values.)
static final String[] typeName = {

"none",

"Element",

"Attr",

"Text",

"CDATA",

"EntityRef",

"Entity",

"ProcInstr",

"Comment",

"Document”,

"DocType",

"DocFragment",

"Notation",

s
} // DomEcho

These are the strings that will be displayed in the JTree. The specification of
these nodes types can be found in the Document Object Model (DOM) Level 2
Core Specification at http://www.w3.0org/TR/2000/REC-DOM/Level-2-Core-
20001113, under the specification for Node. That tableis reproduced below, with
the headings modified for clarity, and with the nodeType() column added:

Node

Attr

CDATASection

Comment

Document

DocumentFragment

DocumentType

Element

Entity

EntityReference

Notation

Processinglnstruction

Text

Table 1. Node Types

nodeName()

name of
attribute

#cdata-section

#comment

#document

#document-
fragment

document type
name

tag name

entity name

name of entity
referenced

notation name

target

#Htext

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 179

nodeValue()

va ue of
attribute

content of the
CDATA Sec-
tion

content of the
comment

null

null

null

null
null
null

null

entire content
excluding
the target

content of the
text node

nodeT
attributes ype()
null 2
null 4
null 8
null 9
null 11
null 10
NamedNo- 1
deMap
null 6
null 5
null 12
null 7
null 3

180 DOCUMENT OBJECT MODEL

Suggestion:
Print this table and keep it handy. You need it when working with the DOM,
because al of these typesareintermixed ina DOM tree. So your code isfor-
ever asking, “Isthisthe kind of node I’ m interested in?".

Next, define the AdapterNode wrapper for DOM nodes:

static final String[] typeName = {
1

public class AdapterNode
{

org.w3c.dom.Node domNode;

// Construct an Adapter node from a DOM node
public AdapterNode(org.w3c.dom.Node node) {
domNode = node;

}

// Return a string that identifies this node in the tree
// **%* Refer to table at top of org.w3c.dom.Node #*#*%
public String toString() {

String s = typeName[domNode.getNodeType()];

String nodeName = domNode.getNodeName();

if (! nodeName.startsWith("#")) {

S += " + nodeName;
}
if (domNode.getNodeValue() !'= null) {
if (s.startsWith("ProcInstr"))
s += ", ";
else
S += "1 "
// Trim the value to get rid of NL's at the front
String t = domNode.getNodeValue().trim();
int x = t.index0f(");
if (x >= 0) t = t.substring(0, x);
S 4= t;
}
return s;
}
} // AdapterNode

1 // DomEcho

This class declares a variable to hold the DOM node, and requires it to be speci-
fied as a constructor argument. It then defines the toString operation, which

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTReEE 181

returns the node type from the string array, and then adds to that additional
information from the node, to further identify it.

Asyou can seein the table of node typesin org.w3c.dom.Node, every node has
a type, and name, and a value, which may or may not be empty. In those cases
where the node name starts with “#”, that field duplicates the node type, so there
isin pointinincluding it. That explainsthe lines that read:

if (! nodeName.startsWith("#")) {

S += ": + nodeName;

}

The remainder of the toString method deserves a couple of notes, as well. For
instance, these lines:

if (s.startsWith("ProcInstr"))

s +=", "
else
S +=": "

Merely provide alittle “syntactic sugar”. Thetype field for a Processing I nstruc-
tions end with acolon () anyway, so those codes keep from doubling the colon.

The other interesting lines are:

String t = domNode.getNodeValue().trim();
int x = t.index0f(");

if (x >= 0) t = t.substring(0, x);

S += t;

Those lines trim the value field down to the first newline (linefeed) character in
thefield. If you leave those lines out, you will see some funny characters (square
boxes, typically) inthe JTree.

Note: Recall that XML stipulates that al line endings are normalized to newlines,
regardless of the system the data comes from. That makes programming quite abit
simpler.

Wrapping a DomNode and returning the desired string are the AdapterNode’s
magjor functions. But since the TreeMode1 adapter will need to answer questions
like “How many children does this node have?’ and satisfy commands like
“Give me this node's Nth child”, it will be helpful to define afew additional util-

182 DOCUMENT OBJECT MODEL

ity methods. (The adapter could always access the DOM node and get that infor-
mation for itself, but this way things are more encapsulated.)

Add the code highlighted below to return the index of a specified child, the child
that corresponds to a given index, and the count of child nodes:

public class AdapterNode
{

public String toString() {
}

public int index(AdapterNode child) {
//System.err.println("Looking for index of " + child);
int count = childCount();
for (int i=0; i<count; i++) {
AdapterNode n = this.child(i);
if (child == n) return 1i;
}

return -1; // Should never get here.

}

public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.
org.w3c.dom.Node node =
domNode.getChildNodes () .item(searchIndex);
return new AdapterNode(node);

}

public int childCount() {
return domNode.getChildNodes().getlLength();

}
} // AdapterNode

1 // DomEcho

Note: During development, it was only after | started writing the TreeMode1 adapter
that | realized these were needed, and went back to add them. In just a moment,
you'll see why.

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 183

Define the TreeModel Adapter

Now, at last, you are ready to write the TreeMode adapter. One of the really nice
things about the JTree model is the relative ease with which you convert an
existing tree for display. One of the reasons for that is the clear separation
between the displayable view, which 1Tree uses, and the modifiable view, which
the application uses. For more on that separation, see Understanding the Tree-
M odel at http://java.sun.com/products/jfc/tsc/arti-
cles/jtree/index.html. For now, the important point is that to satisfy the
TreeModeT interface we only need to (a) provide methods to access and report on
children and (b) register the appropriate JTree listener, so it knows to update its
view when the underlying model changes.

Add the code highlighted below to create the TreeMode1 adapter and specify the
child-processing methods:

} // AdapterNode

// This adapter converts the current Document (a DOM) into
// a JTree model.

public class DomToTreeModelAdapter implements
javax.swing.tree.TreeModel

{
// Basic TreeModel operations
public Object getRoot() {
//System.err.printTn("Returning root: " +document);
return new AdapterNode(document);

}

public boolean isLeaf(Object aNode) {
// Determines whether the icon shows up to the Teft.
// Return true for any node with no children
AdapterNode node = (AdapterNode) aNode;
if (node.childCount() > 0) return false;
return true;

}

public 1int getChildCount(Object parent)
AdapterNode node = (AdapterNode) parent;
return node.childCount();

}

public Object getChild(Object parent, int index) {
AdapterNode node = (AdapterNode) parent;
return node.child(index);

}

184

DOCUMENT OBJECT MODEL

public int getIndex0fChild(Object parent, Object child) {
AdapterNode node = (AdapterNode) parent;
return node.index((AdapterNode) child);

}
public void valueForPathChanged(TreePath path, Object

newValue) {
// Null. We won't be making changes in the GUI
// If we did, we would ensure the new value was really new
// and then fire a TreeNodesChanged event.

}
} // DomToTreeModelAdapter
} // DomEcho

In this code, the getRoot method returns the root node of the DOM, wrapped as
an AdapterNode object. From here on, al nodes returned by the adapter will be
AdapterNodes that wrap DOM nodes. By the same token, whenever the JTree
asks for the child of agiven parent, the number of children that parent has, etc.,
the JTree will be passing us an AdapterNode. We know that, because we control
every node the JTree sees, starting with the root node.

JTree usesthe isLeaf method to determine whether or not to display aclickable
expand/contract icon to the left of the node, so that method returns true only if
the node has children. In this method, we see the cast from the generic object
JTree sends us to the AdapterNode object we know it has to be. We know it is
sending us an adapter object, but the interface, to be general, defines objects, so
we have to do the casts.

The next three methods return the number of children for a given node, the child
that lives at a given index, and the index of a given child, respectively. That's all
pretty straightforward.

The last method isinvoked when the user changes avalue stored in the JTree. In
this app, we won't support that. But if we did, the app would have to make the
change to the underlying model and then inform any listeners that a change had
occurred. (The JTree might not be the only listener. In many an application it
isn't, in fact.)

To inform listeners that a change occurred, you'll need the ability to register
them. That brings us to the last two methods required to implement the Tree-
Model interface. Add the code highlighted below to define them:

public class DomToTreeModelAdapter ...
{

public void valueForPathChanged(TreePath path, Object
newValue) {

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 185

}
private Vector listenerList = new Vector();
public void addTreeModelListener(
TreeModeTlListener listener) {
if (Tistener !'= null && ! TlistenerlList.contains(
Tistener)) {
TistenerList.addElement(Tistener);
}
}

public void removeTreeModelListener(TreeModelListener
Tistener) {
if (Tistener !'= null) {
TistenerList.removeElement(Tistener);
}
}
} // DomToTreeModeTlAdapter

Since this app won't be making changes to the tree, these methods will go
unused, for now. However, they’ll be there in the future, when you need them.

Note: Thisexample usesVector soit will work with 1.1 apps. If coding for 1.2 or
|ater, though, I’ d use the excellent collections framework instead:

private LinkedList TistenerList = new LinkedList();

The operationson the List arethen add and remove. To iterate over thelist, asin
the operations below, you would use:

Iterator it = listenerList.iterator();
while (it.hasNext()) {
TreeModelListener Tistener = (TreeModellListener) it.next();

}

Here, too, are some optional methods you won’t be using in this app. At this
point, though, you have constructed a reasonable template for a TreeModel
adapter. In the interests of completeness, you might want to add the code high-

186 DOCUMENT OBJECT MODEL

lighted below. You can then invoke them whenever you need to notify JTree lis-
teners of a change:

public void removeTreeModelListener(TreeModelListener
Tistener) {

}
public void fireTreeNodesChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreETlements()) {
TreeModelListener Tistener = (TreeModellListener)
Tisteners.nextElement();
Tistener.treeNodesChanged(e);
}
}
public void fireTreeNodesInserted(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreETlements()) {
TreeModelListener Tistener = (TreeModellListener)
Tisteners.nextElement();
Tistener.treeNodesInserted(e);
}
}
public void fireTreeNodesRemoved(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreETlements()) {
TreeModelListener Tistener = (TreeModellListener)
Tisteners.nextElement();
Tistener.treeNodesRemoved(e);
}
}
public void fireTreeStructureChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreETlements()) {
TreeModelListener Tistener = (TreeModellListener)
Tisteners.nextElement();
Tistener.treeStructureChanged(e);
}

}
} // DomToTreeModelAdapter

Note: These methods are taken from the TreeModelSupport class described in
Understanding the TreeM odel. That architecture was produced by Tom Santos and
Steve Wilson, and isalot more elegant than the quick hack going on here. It seemed
worthwhile to put them here, though, so they would be immediately at hand when
and if they’ re needed.

FINISHING UP 187

Finishing Up

At this point, you are basically done. All you need to do is jump back to the con-
structor and add the code to construct an adapter and deliver it to the JTree as
the TreeMode1:

// Set up the tree
JTree tree = new JTree(new DomToTreeModelAdapter());

You can now compile and run the code on an XML file. In the next section, you
will do that, and explore the DOM structures that result.

Examining the Structure of a DOM

In this section, you'll use the GUI-fied DomEcho app you created in the last sec-
tion to visualy examine a DOM. You'll see what hodes make up the DOM, and
how they are arranged. With the understanding you acquire, you'll be well pre-
pared to construct and modify Document Object Model structuresin the future.

Displaying A Simple Tree

We'll start out by displaying a simple file, so you get an idea of basic DOM
structure. Then we'll look at the structure that results when you include some of
the more advanced XML elements.

Note: The code used to create the figuresin this section isin DomEcho02 . java. The
file displayed is s1ideSamp1e01.xm1. (The browsable version is sT1ideSample01-
xm1.htm1.)

188

DOCUMENT OBJECT MODEL

Figure 1 shows the tree you see when you run the DomEcho program on the first
XML fileyou created in the DOM tutorial.

] Decument
E‘| Comment. A SAMPLE set of slides
@~ 7] Element: slideshow

Figurel Figure 1. Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element type. After
that comes the element name, if any, and then the element value. This view
shows three element types. Document, Comment, and Element. There is only
Document type for the whole tree—that is the root node. The Comment node dis-
plays the value attribute, while the Element node displays the element name,
“slideshow”.

Compare the Table 1: with the code in the AdapterNode’s toString method to
see whether the name or value is being displayed for a particular node. If you
need to make it more clear, modify the program to indicate which property is
being displayed (for example, with N: name, V: value).

DISPLAYING A SIMPLE TREE

Expanding the dideshow element brings up the display shown in Figure 2.

[Document
D Comment: A SAMPLE set of slides
Q@ [T Element: slideshow

D Text:

[y comment: TITLE SLIDE

D Text:

@ [Element: slide

D Text:

[} comment: OWERVIEW

D Text:

@ [Element; slide

D Text:

Figure2 Element Node Expanded, No Attribute Nodes Showing

Here, you can see the Text nodes and Comment nodes that are interspersed
between Slide elements. The empty Text nodes exist because thereisno DTD to
tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be ETement and Text nodes.)

Important!

Text nodes exist under element nodes in a DOM, and data is always stored in
text nodes. Perhaps the most common error in DOM processing is to navigate to
an element node and expect it to contain the data that is stored in the XML file.
Not so! Even the simplest element node has a text node under it. For example,
given <size>12</size>, thereisan element node (size), and a text node under
it which contains the actual data (12).

Notably absent from this picture are the Attribute nodes. An inspection of the
table in org.w3c.dom.Node shows that there is indeed an Attribute node type.
But they are not included as children in the DOM hierarchy. They are instead
obtained viathe Node interface getAttributes method.

189

190

DOCUMENT OBJECT MODEL

Note: The display of thetext nodesis the reason for including the lines below in the
AdapterNode’s toString method. If your remove them, you'll see the funny char-
acters (typicaly square blocks) that are generated by the newline characters that are
in the text.

String t = domNode.getNodeValue().trim();
int x = t.index0f(");

if (x >= 0) t = t.substring(0, x);

S 4= t;

Displaying a More Complex Tree

Here, you'll display the example XML file you created at the end of the SAX
tutorial, to see how entity references, processing instructions, and CDATA sec-
tions appear in the DOM.

Note: The file displayed in this section is slideSamplel0.xm1. The
s1ideSample10.xm1 file references s1ideshow3.dtd which, in turn, references
copyright.xml and a (very simplistic) xhtm1.dtd. (The browsable versions are
s1ideSamplel0-xm1.html, s1lideshow3-dtd.htm1, copyright-xml.html, and
xhtm1-dtd.htm1.)

DISPLAYING A MORE COMPLEX TREE 191

Figure 3 shows the result of running the DomEcho app on s1ideSamplel0.xm1,
which includes aDOCTYPE entry that identifies the document’'s DTD.

3 Document
D Comment: A SAMPLE set of slides

D DocType: slideshow B
[comment: SUBSTITUTIONS WORK IN ATT|
&] Element; slideshow :

4]

Figure3 DocType Node Displayed

The DocType interface is actually an extension of w3c.org.dom.Node. It defines
a getEntities method that you would use to obtain Entity nodes—the nodes
that define entities like the product entity, which has the value “WonderWid-
gets’. Like Attribute nodes, Entity nodes do not appear as children of DOM

nodes.

192

DOCUMENT OBJECT MODEL

When you expand the s11ideshow node, you get the display shown in Figure 4.

|j Document
D Comment: A SAMPLE set of slides
D DocType: slideshow
D Comment: SUBSTITUTIONS WORK IN
@ [Elerment: slideshow
D Text:
D Comment: PROCESSING INSTRUC
D Text:
D Proclnstr, my. presentation. Frogram:,
D Text:
[} comment: TITLE SLIDE
D Text:
lB-lj Element: slide
D Text:
[} comment: TITLE SLIDE
D Text:
@-Ij Element: slide
D Text:
[} comment: OWVE RWIEW
D Text: —
il
4 |§:§: [»]

Figure4 Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do
appear in the tree. The name property contains the target-specification, which
identifies the app that the instruction is directed to. The value property contains
the text of the instruction.

Note that empty text nodes are also shown here, even though the DTD specifies
that a sTideshow can contain s1ide elements only, never text. Logically, then,
you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated <ignorableWhitespace
events, rather than character events.)

The empty text elements are included because by default, DocumentBui1der cre-
atesa DOM that includes all the lexical information necessary to reconstruct the
original document, init'soriginal form. That includes comment nodes as well as
text nodes. There is as yet no standard mechanism for eliminating such lexical
information in the DOM so you are left with the logical structure.

Moving down to the second s1ide element and opening the 1 tem element under
it brings up the display shown in Figure 5.

DISPLAYING A MORE COMPLEX TREE

| -

&=] Element: slide

@ []Element: slide

T T T T O T T T e T TG T]

@ [Element: slideshow

D Text:

D Comment: PROCESSING INSTRUCTI

D Text:

D Frocinstr: my. presentation. Program:,

D Text:

[y comment: TITLE SLIDE

D Text:
D Text:

[} comment: TITLE sLIDE

D Text:
D Text:

@ [JElement: itern
@ [EntityRef: copyright
D Comment; A SAMPLE copyi
D Text: This is the standand cog

D Text:

| »

[Text:

B

[

[4]

Figure5 Entity Reference Node Displayed

Here, the Entity Reference node is highlighted. Note that the entity reference
contains multiple nodes under it. This example shows only comment and a text
nodes, but the entity could conceivable contain other element nodes, as well.

193

194 DOCUMENT OBJECT MODEL

Moving down to the last item element under the last s11de brings up the display
shown in Figure 6.

[Text:

@ [Element; slide
D Text:

[y comment: OVERVIEW

D Text:

& [Element: slide

D Text:

@ [CJ Element: slide

D Text:

& [Element: slide-title

D Text:

@ [Element: item

D Text:

@ [Element: itern

D Text:

@ 3 Element: item

D Text:

@ [] Element: itern
[CDATA: Diagram:
D Text:
D Text:

| »

[E

Figure6 CDATA Node Displayed

Here, the CDATA node is highlighted. Note that there are no nodes under it. Since
a CDATA section is entirely uninterpreted, al of its contents are contained in the
node’'s value property.

Finishing Up

At this point, you have seen most of the nodes you will ever encounter ina DOM
tree. There are one or two more that we'll mention in the next section, but you
now know what you need to know to create or modify a DOM structure. In the
next section, you’ll see how to convert aDOM into a JTree that issuitable for an
interactive GUI. Or, if you prefer, you can skip ahead to the 5th section of the
DOM tutorial, Creating and Manipulating a DOM (page 209), whereyou’ll learn
how to create a DOM from scratch.

COMPRESSING THE TREE VIEW 195

Constructing a User-Friendly JTree from
a DOM

Now that you know what a DOM looks like internally, you’'ll be better prepared
to modify aDOM or construct one from scratch. Before going on to that, though,
this section presents some modifications to the JTreeMode1 that et you produce
amore user-friendly version of the JTree suitable for usein a GUI.

Compressing the Tree View

Displaying the DOM in tree formis al very well for experimenting and to learn
how a DOM works. But it’s not the kind of “friendly” display that most users
want to see in a JTree. However, it turns out that very few modifications are
needed to turn the TreeModel adapter into something that will present a user-
friendly display. In this section, you' Il make those modifications.

Note: The code discussed in this section isin DomEcho03. java. Thefileit operates
onisslideSample0l.xml1. (The browsable version is sT1ideSample01-xm1.htm1.)

Make the Operation Selectable

When you modify the adapter, you're going to compress the view of the DOM,
eliminating all but the nodes you really want to display. Start by defining a bool-
ean variable that controls whether you want the compressed or uncompressed
view of the DOM:

public class DomEcho extends JPanel
{
static Document document;
Boolean compress = true;
static final int windowHeight = 460;

196

DOCUMENT OBJECT MODEL

Identify “Tree” Nodes

The next step isto identify the nodes you want to show up in the tree. To do that,
go to the area where you defined the names of all the element types (in the type-
Name array), and add the code highlighted below:

public class DomEcho extends JPanel

{

public static void makeFrame() {

}
// An array of names for DOM node-type

static String[] typeName = {

s

final int ELEMENT_TYPE = 1;

/l Thelist of elementsto display in thetree
static Sring[] treeElementNames ={

" dideshow" ,

"dide",

"title", /I For slideshow #1
"dide-title", // For slideshow #10
"item",

b
Boolean treeElement(String elementName) {
for (int i=0; i<treeElementNames.length; i++) {
if (elementName.equals(treeElementNames][i]))
return true;

}

return false

}

With this code, you set up a constant you can use to identify the ELEMENT node
type, declared the names of the elements you want in the tree, and created a
method tells whether or not a given element name is a “tree element”. Since
sTlideSample0l.xm] has title elements and s1ideSamplel0.xm1 has s1ide-
title elements, you set up the contents of this arrays so it would work with
either datafile.

Note: The mechanism you are creating here depends on the fact that structure nodes
like sTideshow and s1ide never contain text, while text usualy does appear in con-
tent nodes like i tem. Although those “content” nodes may contain subelementsin
slideShow10.xm1, the DTD constrains those subelements to be XHTML nodes.

COMPRESSING THE TREE VIEW 197

Because they are XHTML nodes (an XML version of HTML that is constrained to
be well-formed), the entire substructure under an item node can be combined into
a single string and displayed in the htm1Pane that makes up the other half of the
application window. In the second part of this section, you'll do that concatenation,
displaying the text and XHTML as content in the htm1Pane.

Control Node Visibility

The next step is to modify the AdapterNode”s childCount function so that it
only counts “tree element” nodes—nodes which are designated as displayable in
the IJTree. Make the modifications highlighted below to do that:

public class DomEcho extends JPanel

{

public class AdapterNode

{
public AdapterNode child(int searchIndex) {

}
public int childCount() {

if ('compress) {
/I Indent this
return domNode.getChildNodes().getLength(Q);
}
int count = 0;
for (int i=0;
i<domNode.getChildNodes().getL ength(); i++) {
org.w3c.dom.Node node =
domNode.getChildNodes().item(i);
if (node.getNodeType() == ELEMENT_TYPE
& & treeElement(node.getNodeName()))

{
}

++count;

}

return count;

}
} // AdapterNode

The only tricky part about this code is checking to make sure the node is an ele-
ment node before comparing the node. The DocType node makes that necessary,
because it has the same name, “slideshow”, asthe s11ideshow element.

198 DOCUMENT OBJECT MODEL

Control Child Access

Finally, you need to modify the AdapterNode’s child function to return the Nth
item from the list of displayable nodes, rather than the Nth item from all nodesin
the list. Add the code highlighted below to do that:

public class DomEcho extends JPanel

{

public class AdapterNode
{

public int index(AdapterNode child) {

}
public AdapterNode child(int searchIndex) {

//Note: JTree index is zero-based.
org.w3c.dom.Node node =
domNode.getChildNodes () Item(searchIndex);
if (compress) {
/I Return Nth displayable node
int elementNodel ndex = 0;
for (int i=0;
i<domNode.get ChildNodes().getL ength(); i++) {
node = domNode.getChildNodes()I tem(i);
if (node.getNodeType() == ELEMENT_TYPE
& & treeElement(node.getNodeName())
& & elementNodel ndex++ == searchindex) {
break;
}
}
}

return new AdapterNode(node);
} // child
} // AdapterNode

There's nothing special going on here. It's a dightly modified version the same
logic you used when returning the child count.

Check the Results

When you compile and run this version of the app on s1ideSampl1e01.xm1, and
then expand the nodes in the tree, you see the results shown in Figure 7. The only
nodes remaining in the tree are the high-level “ structure” nodes.

COMPRESSING THE TREE VIEW

[—7 Docurent
@ [Elernent: slideshow
@ [Element: slide
[y Element: title
@ [Elemeant: slide
[y Element: title
D Element: itern
D Elernent: itern
D Element: itern

Figure7 Tree View with a Collapsed Hierarchy

Extra Credit

The way the app stands now, the information that tells the app how to compress
the tree for display is “hard-coded”. Here are some ways you could consider
extending the app:

Use a Command-Line Argument
Whether you compress or don’'t compress the tree could be determined by a
command line argument, rather than being a hard-coded Boolean variable.
On the other hand, the list the list of elements that goes into the tree is still
hard coded, so maybe that option doesn’t make much sense, unless...

Read the treeElement list from afile
If you read the list of elements to include in the tree from an externa file,
that would make the whole app command driven. That would be good. But
wouldn’t it be redly nice to derive that information from the DTD or
schema, instead? So you might want to consider...

Automatically Build the List
Watch out, though! As things stand right now, there are no standard DTD
parsers! If you use a DTD, then, you'll need to write your parser to make
sense out of its somewhat arcane syntax. You'll probably have better luck if
you use a schema, instead of a DTD. The nice thing about schemas is that

199

200

DOCUMENT OBJECT MODEL

use XML syntax, so you can use an XML parser to read the schemathe same
way you use any other file.

Asyou anayze the schema, note that the 1Tree-displayable structure nodes
are those that have no text, while the content nodes may contain text and,
optionally, XHTML subnodes. That distinction works for this example, and
will likely work for a large body of real-world applications. It's pretty easy
to construct cases that will create a problem, though, so you'll have to be on
the lookout for schema/DTD specifications that embed non-XHTML ele-
ments in text-capable nodes, and take the appropriate action.

Acting on Tree Selections

Now that the tree is being displayed properly, the next step is to concatenate the
subtrees under selected nodes to display them in the htm1Pane. While you're at
it, you'll use the concatenated text to put node-identifying information back in
the JTree.

Note: The code discussed in this section isin DomEcho04. java.

Identify Node Types

When you concatenate the sub nodes under an element, the processing you dois
going to depend on the type of node. So the first thing to is to define constants
for the remaining node types. Add the code highlighted below to do that:

public class DomEcho extends JPanel

{

// An array of names for DOM node-types
static String[] typeName = {

s

static final int ELEMENT_TYPE = 1;
gtaticfinal int ATTR_TYPE= 2;

gtaticfinal int TEXT_TYPE = 3;

staticfinal int CDATA_TYPE = 4;

gtaticfinal int ENTITYREF_TYPE =5;
gtaticfinal int ENTITY_TYPE = 6;

gtatic final int PROCINSTR_TYPE = 7;

gtatic final int COMMENT_TYPE = 8;

ACTING ON TREE SELECTIONS 201

static final int DOCUMENT_TYPE = 9;
static final int DOCTYPE_TYPE = 10;
static final int DOCFRAG_TYPE = 11;
static final int NOTATION_TYPE =12;

Concatenate Subnodes to Define Element
Content

Next, you need to define add the method that concatenates the text and subnodes
for an element and returns it as the element’s “ content”. To define the content
method, you’ll need to add the big chunk of code highlighted below, but thisis
the last big chunk of code in the DOM tutorial!.

public class DomEcho extends JPanel

{

public class AdapterNode
{

public String toString() {

}
public Sring content() {
Srings="";
org.w3c.dom.NodeL ist nodeList =
domNode.getChildNodes();
for (int i=0; i<nodeL ist.getL ength(); i++) {
org.w3c.dom.Node node = nodeL ist.item(i);
int type = node.getNodeType();
Adapter Node adpNode = new Adapter Node(node);
if (type==ELEMENT_TYPE) {
if (treeElement(node.getNodeName()))
continue;
s+="<" +node.getNodeName() + " >";
s+=adpNode.content();
s+="</" + node.getNodeName() + " >";
} elseif (type==TEXT_TYPE) {
s+=node.getNodeValue();
} elseif (type==ENTITYREF_TYPE) {
/I The content isin the TEXT node under it
s+=adpNode.content();
} elseif (type== CDATA_TYPE) {
SringBuffer sb = new SringBuffer(
node.getNodeValug());
for (int j=0; j<sb.length(); j++) {
if (sh.charAt(j) =="'<") {

202

DOCUMENT OBJECT MODEL

sh.setCharAt(j, '&’);
sh.insert(j+1, " It;");
j+=3
} elseif (sh.charAt(j) =="&") {
sh.setCharAt(j, '&’);
sh.insert(j+1, " amp;");
j+=4
}
}
s+="<pre>" + s +" </pre>";
}
}

returns;

}

Yy // Ada-p-t-er‘Node

This is not the most efficient code anyone ever wrote, but it works and will do
fine for our purposes. In this code, you are recognizing and dealing with the fol-
lowing data types:

Element
For elements with names likethe XHTML “em” node, you return the node’s
content sandwiched between the appropriate and tags. However,
when processing the content for the s1ideshow element, for example, you
don't include tags for the s1ide elements it contains so, when returning a
node’'s content, you skip any subelements that are themselves displayed in
the tree.

Text
No surprise here. For atext node, you simply return the node’'s value.

Entity Reference
Unlike CDATA nodes, Entity References can contain multiple subelements.
So the strategy here is to return the concatenation of those subelements.

CDATA
Like atext node, you return the node’'s value. However, since thetext in this
case may contain angle brackets and ampersands, you need to convert them
to aform that displays properly in an HTML pane. Unlikethe XML CDATA
tag, the HTML <pre> tag does not prevent the parsing of character-format
tags, break tags and the like. So you have to convert left-angle brackets (<)
and ampersands (&) to get them to display properly.

On the other hand, there are quite afew node types you are not processing with

the code above. It's worth a moment to examine them and understand why:

ACTING ON TREE SELECTIONS

Attribute
These nodes do not appear in the DOM, but are obtained by invoking
getAttributes on element nodes.

Entity
These nodes also do not appear in the DOM. They are obtained by invoking
getEntities onDocType nodes.

Processing Instruction
These nodes don't contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document
Thisisthe root node for the DOM. There's no datato display for that.

DocType
The DocType node contains the DTD specification, with or without external
pointers. It only appears under the root node, and has no data to display in
thetree.

Document Fragment
This node is equivaent to a document node. It's a root node that the DOM
specification intends for holding intermediate results during cut/paste opera-
tions, for example. Like a document node, there's no data to display.
Notation
We'rejust flat out ignoring this one. These nodes are used to include binary
data in the DOM. As discussed earlier in Referencing Binary Entities and
Using the DTDHandler and EntityResolver (page 159), the MIME types (in
conjunction with namespaces) make a better mechanism for that.

Display the Content in the JTree

With the content-concatenation out of the way, only a few small programming
steps remain. The first is to modify toString so that it uses the node's content
for identifying information. Add the code highlighted below to do that:

public class DomEcho extends JPanel

{

public class AdapterNode
{

public String toString() {

203

204

DOCUMENT OBJECT MODEL

if (! nodeName.startsWith("#")) {

S += " + nodeName;
}
if (compress) {
Sring t = content().trim();
int x = t.indexOf(");
if (x>=0)t=t.substring(0, x);
s+=""+t
returns;
}
if (domNode.getNodeValue() !'= null) {

}

return s;

Wire the JTree to the JEditorPane

Returning now to the app’s constructor, create a tree selection listener and use to
wirethe JTree to the JEdi torPane:

public class DomEcho extends JPanel

{

pub'l ic DomEcho()
{

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html1","");
html1Pane.setEditable(false);
JScrol1Pane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));
tree.addTreeSelectionListener (

new TreeSelectionListener () {

public void valueChanged(TreeSelectionEvent €)

{
TreePath p = e.getNewL eadSelectionPath();
if (p!=null){
Adapter Node adpNode =
(AdapterNode)
p.getL astPathComponent();
htmlPane.set Text(adpNode.content());
}
}

ACTING ON TREE SELECTIONS 205

Now, when aJTree nodeisselected, it'scontents are delivered to the htm1Pane.

Note: The TreeSelectionListener inthisexampleis created using an anonymous
inner-class adapter. If you are programming for the 1.1 version of the platform,
you' |l need to define an external classfor this purpose.

If you compile this version of the app, you'll discover immediately that the htm-
TPane needs to be specified as final to be referenced in an inner class, so add
the keyword highlighted below:

public DomEcho04()
{

// Build right-side view
final JEditorPane htmlPane = new
JEditorPane("text/html1","");
htmlPane.setEditabTle(false);
JScrolTPane htmlView = new JScrol1Pane(htmlPane);
htmlView.setPreferredSize(
new Dimension(rightWidth, windowHeight));

Run the App

When you compile the app and run it on sT1ideSample10.xm1 (the browsable
version is sTideSamplel0-xml.htm1), you get a display like that shown in Fig-

206

DOCUMENT OBJECT MODEL

ure 8. Expanding the hierarchy shows that the 1Tree now includes identifying
text for a node whenever possible.

|j Docurment

@ [Element: slideshow
Lo Ij Element: slide
Lo |j Element: slide
@ [JElement: slide

D Element: slide-title Cverview

D Elerment: itern Why <em=>Wonder!idg
D Elernent: item

D Element: item ¥Wheo buys<fem=> i
@ [Elemant: slide

l

o

Figure8 Collapsed Hierarchy Showing Text in Nodes

Selecting an item that includes XHTML subelements produces a display like that

shown in Figure 9:

ACTING ON TREE SELECTIONS

Ij Document
@ [JElement: slideshow
Lo ﬁ Element: slide
[og) Ij Element: slide
@ [JElemrnent: slide
D Elernent: slide-title Cnerview

D Elernent: iterm

@ [Element: slide

[

D Element: item ¥Why Waonderwidg

D Element: item Who <em=buys<iem:=

¥

Why Fonder Widpeis ate great

Figure9 Node with Tag Selected

Selecting a node that contains an entity reference causes the entity text to be
included, as shown in Figure 10:

Ij Crocument
@ [J Element: slideshow
(=g Ij Elsrnent: slide
@ [CJ Elernent: slide
D Elerment: itern This is the standand o
© [Element; slide
© [Element; slide

B

“| This is the standard copyTight message that our
wyers make us put everywhere so we don't
ve to shell out a million bucks every time
omeone spills hot coffee in their lap...

Figure 10 Node with Entity Reference Selected

207

DOCUMENT OBJECT MODEL

Finally, selecting a node that includes a CDATA section produces results like those
shown in Figure 11.

7 Docurnent -
@ [Elernent: slideshow Diagram:
& [Element: slide
® [Element: slide frobmorten <------------ fuzn
@] Elemant: slide [<3 "
@ [J Element: slide | «<1lx |
[} Element: slide-title How it Works : v I
[} Element: itern First we fozzle the frobr staten--—--------ooooooo oo +
D Element: itern Then we framboze the <2z
D Element; itern Finally, we frenzle the f
D Element: itern < pre=Diagram: :
q] D EEn D

Figure 11 Node with CDATA Component Selected

Extra Credit

Now that you have the app working, here are some ways you might think about
extending it in the future:

UseTitle Text to Identify Slides
Special case the s11ide element so that the contents of the tit1e nodeisused
as the identifying text. When selected, convert the title node’s contents to a
centered H1 tag, and ignore the tit1e element when constructing the tree.

Convert Item Elementsto Lists
Remove item elements from the JTree and convert them to HTML lists
using , <11i>, tags, including them in the slide’s content when the
slideis selected.

HANDLING MODIFICATIONS 209

Handling Modifications

A full discussion of the mechanisms for modifying the JTree’ s underlying data
model is beyond the scope of this tutorial. However, a few words on the subject
arein order.

Most importantly, note that if you allow the user to modifying the structure by
manipulating the JTree, you have take the compression into account when you
figure out where to apply the change. For example, if you are displaying text in
the tree and the user modifies that, the changes would have to be applied to text
subelements, and perhaps require a rearrangement of the XHTML subtree.

When you make those changes, you'll need to understand more about the inter-
actions between a JTree, it's TreeModel, and an underlying data model. That
subject is covered in depth in the Swing Connection article, Understanding the
TreeModel.

Finishing Up

You now understand pretty much what there is know about the structure of a
DOM, and you know how to adapt a DOM to create a user-friendly display in a
JTree. It hastaken quite abit of coding, but in return you have obtained valuable
tools for exposing a DOM’s structure and a template for GUI apps. In the next
section, you’'ll make a couple of minor modifications to the code that turn the
app into a vehicle for experimentation, and then experiment with building and
manipulating aDOM.

Creating and Manipulating a DOM

By now, you understand the structure of the nodes that make upaDOM. A DOM
is actually very easy to create. This section of the DOM tutoria is going to take
much less work than anything you’ve see up to now. All the foregoing work,
however, generated the basic understanding that will make this section a piece of
cake.

Obtaining a DOM from the Factory

In this version of the application, you' re still going to create a document builder
factory, but this time you’re going to tell it create a new DOM instead of parsing

210 DOCUMENT OBJECT MODEL

an existing XML document. You'll keep all the existing functionality intact,
however, and add the new functionality in such a way that you can “flick a
switch” to get back the parsing behavior.

Note: The code discussed in this section isin DomEcho05 . java.

Modify the Code

Start by turning off the compression feature. As you work with the DOM in this
section, you're going to want to see all the nodes:

public class DomEcho05 extends JPanel

{
_ ’

boolean compress = false;

Next, you need to create a buildbDom method that creates the document object.
The easiest way to do that is to create the method and then copy the DOM-con-
struction section from the main method to create the bui1dDom. The modifica-
tions shown below show you the changes you need to make to make that code
suitable for the bui1dDom method.

public class DomEcho05 extends JPanel

{

[-)l-Jl-ﬂ'iC static void makeFrame() {

}

public static void buildDom()

{ DocumentBuilder Factory factory = DocumentBuilder Factory.newl nstance();

™ DocumentBuilder t?uilder = factory.newDocqmentBuiIder();
document:k:uilder.newD;)cument(); // Create from whv;'le

cloth

}——ecatch—(SAXException—sxe)—f

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

OBTAINING A DOM FROM THE FACTORY 211

: h—CTOE on—toe3
3
3

In this code, you replaced the line that does the parsing with one that creates a
DOM. Then, since the code is no longer parsing an existing file, you removed
exceptions which are no longer thrown: SAXException and I0Exception.

And since you are going to be working with ETement objects, add the statement
to import that class at the top of the program:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

Create Element and Text Nodes

Now, for your first experiment, add the Document operations to create a root
node and several children:

public class DomEcho05 extends JPanel

{

public static void buildDom()
{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {
DocumentBuilder builder =
factory.newDocumentBuilder();
document = builder.newDocument();
// Create from whole cloth
Element root =
(Element)
document.createElement(" rootElement");
document.appendChild(root);
root.appendChild(
document.createTextNode(" Some"));
root.appendChild(
document.createTextNode(" "));
root.appendChild(
document.createTextNode(" text"));
} catch (ParserConfigurationException pce) {

212 DOCUMENT OBJECT MODEL

// Parser with specified options can't be built
pce.printStackTrace();

}

Finally, modify the argument-list checking code at the top of the main method so
you invoke buildDom and makeFrame instead of generating an error, as shown

below:
public class DomEcho05 extends JPanel
{
public static void main(String argv[])
{
if (argv.length != 1) {
fitename™)+
Systemexitt+
buildDom();
makeFrame();
return;

}
That's all there is to it! Now, if you supply an argument the specified file is
parsed and, if you don’t, the experimental code that builds a DOM is executed.
Run the App

Compile and run the program with no arguments produces the result shown in
Figure 12

NORMALIZING THE DOM 213

3 cocument
@ 3 Element: rootElement
D Text: Some

D Text:

[Text: text

Figure 12 Element Node and Text Nodes Created

Normalizing the DOM

In this experiment, you’'ll manipulate the DOM you created by normalizing it
after it has been constructed.

Note: The code discussed in this section isin DomEcho06. java.

Add the code highlighted below to normalize the DOM..

public static void buildDom()
{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {

root.appendChild(document.createTextNode("Some™));
root.appendChild(document.createTextNode(" "));
root.appendChild(document.createTextNode("text"));
document.getDocumentElement().nor malize();

} catch (ParserConfigurationException pce) {

214

DOCUMENT OBJECT MODEL

In this code, getDocumentElement returns the document’s root node, and the
normalize operation manipulates the tree under it.

When you compile and run the app now, the result looks like Figure 13:

7 Document
@ [Element: rootElement
D Text: Some text

Figure 13 Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single
node. The normalize operation is one that you will typically want to use after
making modifications to aDOM, to ensure that the resulting DOM is as compact
as possible.

Note: Now that you have this program to experiment with, see what happens to
other combinations of CDATA, entity references, and text nodes when you normalize
the tree.

Other Operations

To complete this section, we'll take a quick look at some of the other operations
you might want to apply to a DOM, including:

e -Traversing nodes
e -Creating attributes

FINISHING UP 215

¢ -Removing nodes

Traversing Nodes

The org.w3c.dom.Node interface defines a number of methods you can use to
traverse nodes, including getFirstChild, getLastChild, getNextSibling,
getPreviousSibling, and getParentNode. Those operations are sufficient to
get from anywhere in the tree to any other location in the tree.

Creating Attributes

The org.w3c.dom.ETlement interface, which extends Node, defines a setAt-
tribute operation, which adds an attribute to that node. (A better name from the
Java platform standpoint would have been addAttribute, since the attribute is
not a property of the class, and since anew object is created.)

You can also use the Document’s createAttribute operation to create an
instance of Attribute, and use an overloaded version of setAttribute to add
that.

Removing and Changing Nodes

To remove a node, you use its parent Node’s removeCh1ild method. To changeit,
you can either use the parent node's replaceChi1d operation or the node's set-
NodeValue operation.

Finishing Up

Congratulations! You've learned how a DOM is structured and how to manipu-
late it. And you now have a DomEcho application that you can use to display a
DOM'’s structure, condense it down to GUI-compatible dimensions, and experi-
ment with to see how various operations affect the structure. Have fun with it!

Using Namespaces

Asyou saw previously, one way or another it is necessary to resolve the conflict
between the title element defined in s1ideshow.dtd and the one defined in
xhtm1.dtd. In the previous exercise, you hyphenated the name in order to put it

216

DOCUMENT OBJECT MODEL

into a different “namespace”. In this section, you'll see how to use the XML
namespace standard to do the same thing without renaming the element.

Note: At this point in time, the Java XML parsers do not support namespaces. This
section isfor information only.

The primary goal of the namespace specification is to let the document author
tell the parser which DTD to use when parsing a given element. The parser can
then consult the appropriate DTD for an element definition. Of course, it isaso
important to keep the parser from aborting when a “duplicate” definition is
found, and yet still generate an error if the document references an element like
title without qualifying it (identifying the DTD to use for the definition).

Note: Namespaces apply to attributes aswell asto elements. In this section, we con-
sider only elements. For more information on attributes, consult the namespace
specification at http://www.w3.org/TR/REC-xm1-names/.

Defining a Namespace

To define a namespace that an element belongs to, it is necessary to add an
attribute to the element’s definition, where the attribute name is xmins (“xml
namespace”). For example, you could do that in sTideshow.dtd by adding an
entry likethe following in the tit1e element’s attribute-list definition:

<JELEMENT title (%inline;)*>
<IATTLIST title

xmlns CDATA #FIXED " http://www.example.com/dideshow"
>

Declaring the attribute as FIXED has severa important features:

|t prevents the document from specifying any non-matching value for the
xm1ns attribute (as described in Defining Attributesin the DTD).

e The element defined in this DTD is made unique (because the parser
understands the xm1ns attribute), so it does not conflict with an element
that hasthe same namein another DTD. That allows multiple DTDsto use
the same element name without generating a parser error.

* When a document specifies the xmins attribute for a tag, the document
selects the element definition with a matching attribute.

REFERENCING A NAMESPACE

To be thorough, every element name in your DTD would get the exact same
attribute, with the same value. (Here, though, we're only concerned about the
title element.) Note, too, that you are using a CDATA string to supply the URI.
In this case, we've specified an URL. But you could also specify a URN, possi-
bly by specifying aprefix likeurn: instead of http:. (URNs are currently being
researched. They're not seeing a lot of action at the moment, but that could
changein the future.)

Referencing a Namespace

When a document uses an element name that exists in only one of the. dtd files
it references, the name does not need to be qualified. But when an element name
that has multiple definitions is used, some sort of qualification is a necessity.

Note: In point of fact, an element name is always qualified by it's default
namespace, as defined by name of the DTD fileit residesin. Aslong asthere asis
only one definition for the name, the qualification isimplicit.

You qualify areference to an element name by specifying the xm1ns attribute, as
shown here:

<title xmIns="http://www.example.com/s1ideshow">
Overview
</title>

The specified namespace applies to that element, and to any elements contained
within it.

Defining a Namespace Prefix

When you only need one namespace reference, it's not such abig deal. But when
you need to make the same reference severa times, adding xmins attributes
becomes unwieldy. It also makes it harder to change the name of the namespace
at alater date.

217

218

DOCUMENT OBJECT MODEL

The dternative is to define a namespace prefix, which as simple as specifying
xmins, acolon () and the prefix name before the attribute value, as shown here:

<sTl:s1lideshow xmIns:SL="http:/www.example.com/slideshow'
>

</SL- :-s-'l ideshow>

This definition sets up SL as a prefix that can be used to qualify the current ele-
ment name and any element within it. Since the prefix can be used on any of the
contained elements, it makes the most sense to define it on the XML document’s
root element, as shown here.

Note: The namespace URI can contain characters which are not valid in an XML
name, so it cannot be used as a prefix directly. The prefix definition associates an
XML name with the URI, which allows the prefix name to be used instead. It also
makes it easier to change references to the URI in the future.

When the prefix is used to qualify an element name, the end-tag also includes the
prefix, as highlighted here:

<SL:sTlideshow xmTns:SL="http:/www.example.com/slideshow’
>

<s1ide>
<SL :title>Overview<SL :title>
</s1lide>

</SL:s1ideshow>

Finally, note that multiple prefixes can be defined in the same element, as shown
here:

<SL:sTlideshow xmTns:SL="http:/www.example.com/slideshow’
xmins:xhtml="urn:...">

</SL- :-s-'l ideshow>

With this kind of arrangement, al of the prefix definitions are together in one
place, and you can use them anywhere they are needed in the document. This
example also suggests the use of URN to define the xhtm1 prefix, instead of an
URL. That definition would conceivably allow the app to reference aloca copy

DEFINING A NAMESPACE PREFIX 219

of the XHTML DTD or some mirrored version, with a potentially beneficial
impact on performance.

220 DOCUMENT OBJECT MODEL

XML Stylesheet
Language for
Transformations

Eric Armstrong

T HE XML Stylesheet Language for Transformations (XSLT) defines mecha-
nisms for addressing XML data (XPath) and for specifying transformations on
the data, in order to convert it into other forms. In this chapter, you'll learn how
to use XSLT to write out aDOM asan XML file. You'll also see how to generate
a DOM from an arbitrary data file in order to convert it to XML. Finaly, you'll
use XSLT to convert XML datainto a different form, unlocking the mysteries of
the X Path addressing mechanism aong the way.

In this chapter, you'll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a user-friendly JTree, and
explore the syntax of namespaces. You'll also create a DOM from scratch, and
see how to use some of the implementation-specific featuresin Sun's JAXP ref-
erence implementation to convert an existing data set to XML.

Note: The examples in this chapter can be found in docs/tutorial/exam-
ples/jaxp/xs1t/samples.

In This Chapter
Introducing XSLT and XPath 222
Writing Out aDOM asan XML File 232

221

Bios.html#ericArmstrong

222 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Generating XML from an Arbitrary Data Structure 238
Transforming XML Datawith XSLT 252
Concatenating XSLT Transformationswith a Filter Chain 278

Infroducing XSLT and XPath

The XML Stylesheet Language (XSL) has three mgjor subcomponents;

XSL-FO
The “flow object” standard. By far the largest subcomponent, this standard
gives mechanisms for describing font sizes, page layouts, and how informa-
tion “flows” from one page to another. This subcomponent is not covered by
JAXP, nor isit included in this tutorial.

XSLT
This the transformation language, which lets you transform XML into some
other format. For example, you might use XSLT to produce HTML, or a dif-
ferent XML structure. You could even use it to produce plain text or to put
the information in some other document format. (And asyou'’ |l see in Gener-
ating XML from an Arbitrary Data Structure, a clever application can press
it into service to manipulate non-XML data, as well.)

XPath

At bottom, XSLT is a language that lets you specify what sorts of things to
do when a particular element is encountered. But to write a program for dif-
ferent parts of an XML data structure, you need to be able to specify the part
of the structure you are talking about at any given time. XPath isthat specifi-
cation language. It is an addressing mechanism that lets you specify a path to
an element so, for example, <article><title> can be distinguished from
<person><title>. That way, you can describe different kinds of transa-
tionsfor the different <title> elements.

The remainder of this section describes the XSLT package structure, and dis-
cusses the X Path addressing mechanism in a bit more depth.

The XSLT Packages

There XSLT packages break down as follows:

javax.xml.transform
This package defines the factory class you use to get a Transformer object.
You then configure the transformer with input (Source) and output (Result)

How XPATH WORKS

objects, and invoke its transform() method to make the transformation
happen. The source and result objects are created using classes from one of
the other three packages.

javax.xml.transform.dom
Defines the DOMSource and DOMResut classesthat let you usea DOM asan
input to or output from a transformation.

javax.xml.transform.sax
Defines the SAXSource and SAXResult classes that let you use a SAX event
generator as input to a transformation, or deliver SAX events as output to a
SAX event processor.

javax.xml.transform.stream
Definesthe StreamSource and StreamResult classesthat let you use an 1/0
stream as an input to or output from a transformation.

How XPath Works

The XPath specification is the foundation for a variety of specifications, includ-
ing XSLT and linking/addressing specifications like X Pointer. So an understand-
ing of XPath is fundamental to a lot of advanced XML usage. This section
provides a thorough introduction to X SLT, so you can refer to as needed later on.

Note: In thistutorial, you won't actualy use X Path until you get to the last page of
this section, Transforming XML Data with XSLT (page 252). So, if you like,
you can skip this section and go on ahead to the next page, Writing Out a DOM
as an XML File (page 232). (When you get to the last page, there will be a note
that refers you back here, so you don't forget!)

In general, an XPath expression specifies a pattern that selects a set of XML
nodes. XSLT templates then use those patterns when applying transformations.
(XPointer, on the other hand, adds mechanisms for defining a point or a range,
so that XPath expressions can be used for addressing.)

223

224

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

The nodes in an XPath expression refer to more than just elements. They also
refer to text and attributes, among other things. In fact, the XPath specification
defines an abstract document model that defines seven different kinds of nodes:

* root

e element

o text

o atribute

* comment

e processing ingtruction

* namespace

Note: The root element of the XML datais modeled by an element node. The XPath
root node contains the document’s root element, as well as other information relat-
ing to the document.

The data model is described in the last section of the XPath Specification, Sec-
tion 5. (Like many specifications, it is frequently helpful to start reading near the
end! Frequently, many of the important terms and underlying assumptions are
documented there. That sequence has often been the “magic key” that unlocks
the contents of a W3C specification.)

In this abstract model, syntactic distinctions disappear, and you are left with a
normalized view of the data. In atext node, for example, it makes no difference
whether the text was defined in a CDATA section, or if it included entity refer-
ences,;. Thetext node will consist of normalized data, as it exists after all parsing
is complete. So the text will contain a < character, regardless of whether an entity
reference like &1t; or a CDATA section was used to includeit. (Similarly for the
& character.)

In this section of the tutorial, we'll deal mostly with element nodes and text
nodes. For the other addressing mechanisms, see the X Path Specification.

Basic XPath Addressing

An XML document is a tree-structured (hierarchical) collection of nodes. Like a
hierarchical directory structure, it is useful to specify a path that points a particu-

http://www.w3.org/TR/xpath

How XPATH WORKS

lar node in the hierarchy. (Hence the name of the specification: XPath). In fact,
much of the notation of directory pathsis carried over intact:
e Theforward slash / is used as a path separator.
An absolute path from the root of the document starts with a/.
A relative path from a given location starts with anything else.
A double period . . indicates the parent of the current node.
A single period . indicates the current node.

In an xXHTML document, for example, the path /h1/h2/ would indicate an h2
element under an hl. (Recall that in XML, element names are case sensitive, so
thiskind of specification works much better in xHTML than it would inHTML.)

In a pattern-matching specification like XSLT, the specification /h1/h2 selects
all h2 elements that lie under an hl element. To select a specific h2 element,
square brackets [] are used for indexing (like those used for arrays). The path
/h1[4]1/h2[5] would therefore select the fifth h2 element under the fourth hl
element.

Note: In xHTML, all element names are in lowercase. But as a matter of style,
uppercase names are easier to read and easier to write about. (Although they are
admittedly harder to write.) For the remainder of XPATH tutorial, then, and for the
section on using XSLT transforms, al XML element names will be in uppercase.
(Attribute names, on the other hand, will remain in lowercase.)

As you've seen, a name in XPath specification refers to an element. To refer to
attribute, you prefix it's name with an @ sign. For example, @type refers to the
type attribute of an element. Assuming you have an XML document with Tist
elements, for example, the expression 1ist/@type selects the type attribute of
the 11 st element.

Note: (Sincethe expression does not begin with /, the reference specifiesalist node
relative to the current context—whatever position in the document that happens to
be.)

Basic XPath Expressions

The full range of XPath expressions takes advantage of the wildcards, operators,
and functions that XPath defines. You'll be learning more about those shortly.

225

226

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Here, we'll take alook at a couple of the most common X Path expressions, sim-
ply to introduce the concept.

The expression @type="unordered" specifies an attribute named type whose
value is “unordered”. So an expression like LIST/@type specifies the type
attribute of aLIST element.

But now for something a little different! In XPath, the square-bracket notation
(r1) normally associated with indexing is extended to specify selection-criteria
For example, the expression LIST[@type="unordered"] selects all LIST ele-
ments whose type valueis “unordered”.

Similar expressions exist for elements, where each element has an associated
string-value. (You'll see how the string-value is determined for a complicated
element in a little while. For now, we'll stick with super-simple elements that
have asingle text string.)

Suppose you model what's going on in your organization with an XML structure
that consists of PROJECT elements and ACTIVITY elements that have a text string
with the project name, multiple PERSON elements to list the people involved and,
optionally, a STATUS element that records the projects status. Here are some more
examples that use the extended square-bracket notation:

e /PROJECT[.="MyProject"] selectsa PROJECT named "MyProject”.

e /PROJECT[STATUS]—selectsall projectsthat havea STATUS child element.

e /PROJECT[STATUS="Critical"]-selectsall projectsthat have a STATUS
child element with the string-value “ Critical”.

Combining Index Addresses

The XPath specification defines quite a few addressing mechanisms, and they
can be combined in many different ways. As a result, XPath delivers a lot of
expressive power for a relatively simple specification. This section illustrates
two more interesting combinations:

e LIST[@type="ordered"][3]—selects all LIST eements of type
“ordered”, and returns the third.

e LIST[3][@type="ordered"]—selectsthethird LIST element, but only if
itisof “ordered” type.

How XPATH WORKS

Note: Many more combinations of address operators are listed in section 2.5 of the
XPath Specification. Thisisarguably the most useful section of the spec for defin-
ing an XSLT transform.

Wildcards

By definition, an unqualified X Path expression selects a set of XML nodes that
matches that specified pattern. For example, /HEAD matches all top-level HEAD
entries, while /HEAD[1] matches only the first. Table 1 lists the wildcards that
can be used in XPath expressions to broaden the scope of the pattern matching.

Tablel XPath Wildcards
* matches any element node (not attributes or text)

matches al nodes of any kind: element nodes, text nodes, attribute

node() nodes, processing instruction nodes, namespace nodes, and comment
nodes.
@* matches al attribute nodes

In the project database example, for instance, /#*/PERSON[.="Fred"] matches
any PROJECT or ACTIVITY element that includes Fred.

Extended-Path Addressing

So far, all of the patterns we' ve seen have specified an exact number of levelsin
the hierarchy. For example, /HEAD specifies any HEAD element at the first level in
the hierarchy, while /*/* specifies any element at the second level in the hierar-
chy. To specify an indeterminate level in the hierarchy, use a double forward
slash (//). For example, the XPath expression //PARA selects all paragraph ele-
ments in a document, wherever they may be found.

The // pattern can aso be used within a path. So the expression
/HEAD/LIST//PARA indicates all paragraph elements in a subtree that begins
from /HEAD/LIST.

227

http://www.w3.org/TR/xpath

228

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

XPath Data Types and Operators

XPath expressions yield either a set of nodes,. a string, a boolean (true/false
value), or a number. Table 2 lists the operations that can be applied in an Xpath
expressions.

Table2 XPath Operators

Alternative. So PARA | LIST selectsall PARA and LIST ele-
ments.

or, and Returns the or/and of two boolean val ues.

Equal or not equal, for booleans, strings, and numbers.

L ess than, greater than, less than or equal to, greater than or

<, > <= >=
o equal to—for numbers.

Add, subtract, multiply, floating-point divide, and modulus

_x di
*,- ", div, mod (remainder) operations (e.g. 6 mod 4 = 2)

Finally, expressions can be grouped in parentheses, so you don’t have to worry
about operator precedence. (Which, for those of you who are good at such
things, is roughly the same as that shown in the table.)

String-Value of an Element

Before going on, it's worthwhile to understand how the string-value of more
complex element is determined. We'll do that now.

The string-value of an element is the concatenation of all descendent text nodes,
no matter how deep. So, for a“mixed-model” XML data element like this:

<PARA>This_paragraph_contains_a_bold_word</PARA>

The string-value of <PARA> is*“ This paragraph contains abold word”. In particu-
lar, note that isa child of <PARA> and that the text contained in all childrenis
concatenated to form the string-val ue.

Also, it isworth understanding that the text in the abstract data model defined by
XPath isfully normalized. So whether the XML structure contains the entity ref-
erence"&1t;" or "<" in aCDATA section, the element’s string-value will contain

How XPATH WORKS

the “<" character. Therefore, when generating HTML or XML with an XSLT
stylesheet, occurrences of "<" will have to be converted to &1t; or enclosed in a
CDATA section. Similarly, occurrence of "&" will need to be converted to
&.

XPath Functions

This section ends with an overview of the XPath functions. You can use XPath
functions to select a collection of nodes in the same way that you would use an
element-specification. Other functions return a string, a number, or a boolean
value. For example, the expression /PROJECT/text() gets the string-value of
project nodes.

Many functions depend on the current context. In the example above, the context
for each invocation of the text () function is the PROJECT node that is currently
selected.

There are many XPath functions—too many to describe in detail here. This sec-
tion provides a quick listing that shows the available X Path functions, along with
asummary of what they do.

Note: Skimthelist of functionsto get anideaof what’sthere. For moreinformation,
see Section 4 of the X Path Specification.

Node-set functions

Many X Path expressions select a set of nodes. In essence, they return a node-set.
One function does that, too.
e id(...)—returnsthe node with the specified id.

(Elements only have an ID when the document has a DTD, which specifies
which attribute has the 1D type.)

229

230 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Positional functions

These functions return positionally-based numeric values.

* Jast()—returnstheindex of thelast element. Ex: /HEAD[Tast ()] selects
the last HEAD element.

¢ position()—returnstheindex position. Ex: /HEAD[position() <= 5]
selects the first five HEAD elements

e count(...)—returns the count of elements. EX: /HEAD[count(HEAD)=0]
selects all HEAD elements that have no subheads.

String functions

These functions operate on or return strings.

e concat(string, string, ...)—concatenates the string values
e starts-with(stringl, string2)—returns true if stringl starts with
string2

e contains(stringl, string2)—returnstrueif stringl contains string2

e substring-before(stringl, string2)—returns the start of stringl
before string2 occursin it

* substring-after(stringl, string2)—returns the remainder of
stringl after string2 occursin it

e substring(string, idx)—returnsthe substring from the index position
to the end, where the index of thefirst char = 1

e substring(string, 1idx, len)—returns the substring from the index
position, of the specified length

¢ string-Tength()—returnsthe size of the context-node's string-value

e string-Tength(string)—returnsthe size of the specified string

* normalize-space()—returns the normalized string-value of the current
node (no leading or trailing whitespace, and sequences of whitespace
characters converted to a single space)

e normalize-space(string)—returns the normalized string-value of the
specified string

e translate(stringl, string2, string3)—convertsstringl, replacing
occurrences of charactersin string2 with the corresponding character from
string3

How XPATH WORKS

Note: XPath defines 3 waysto get the text of an element: text (), string(object),
and the string-value implied by an element name in an expression like this:
/PROJECT[PERSON="Fred"].

Boolean functions

These functions operate on or return boolean val ues:

not(...)—negates the specified boolean value
true()—returnstrue
false()—returnsfalse

Tang(string)—returnstrueif thelanguage of the context node (specified
by xm1:Lang attributes) is the same as (or a sublanguage of) the specified
language. Ex: Lang("en™) is true for
<PARA_xm1:Lang="en">...</PARA>

Numeric functions

These functions operate on or return numeric val ues.

sum(. . .)—returnsthe sum of the numeric value of each nodein the spec-
ified node-set

floor(N)—returns the largest integer that is not greater than N
ceiling(N)—returns the smallest integer that is greater than N
round (N)—returns the integer that is closest to N

Conversion functions

These functions convert one data type to another.

string(...)—returnsthe string value of a number, boolean, or node-set

boolean(. ..)—returns the boolean-equivalent for a number, string, or
node-set

(anon-zero number, a non-empty node-set, and a non-empty string are all true)

number (. ..)—returnsthe numeric value of aboolean, string, or node-set

(true is 1, false is O, a string containing a number becomes that number, the
string-value of a node-set is converted to a number)

232

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Namespace functions

These functions let you determine the namespace-characteristics of a node.

Tocal-name ()—returns the name of the current node, minus the
namespace-extension

Tocal-name(...)—returns the name of the first node in the specified
node set, minus the namespace-extension

namespace-uri (Q)—returns the namespace URI from the current node

namespace-uri (. ..)—returnsthe namespace URI from thefirst nodein
the specified node set

name ()—returns the expanded name (URI + local name) of the current
node

name(...)—returns the expanded name (URI + local name) of the first
node in the specified node set

Summary

XPath operators, functions, wildcards, and node-addressing mechanisms can be
combined in wide variety of ways. The introduction you've had so far should
give you a good head start at specifying the pattern you need for any particular
purpose.

Writing Out a DOM as an XML File

Once you have constructed a DOM, either by parsing an XML file or building it
programmatically, you frequently want to save it as XML. This section shows
you how to do that using the X SLT transform package.

Using that package, you'll create a transformer object to wire a DomSource to a
StreamResult. You'll then invoke the transformer’s transform() method to do
the job!

Reading the XML

The first step isto create a DOM in memory by parsing an XML file. By now,
you should be getting pretty comfortable with the process!

READING THE XML 233

Note: The code discussed in this sectionisin TransformationApp01. java.

The code below provides a basic template to start from. (It should be familiar.
It's basically the same code you wrote at the start of the DOM tutorial. If you
saved it then, that version should be pretty much the equivalent of what you see

below.)

import
import
import
import

import
import
import
import
import
public
{

javax.
javax.
javax.
javax.

org.x
org.x
org.w
org.w
java.
class

xml.parsers.DocumentBuilder;
xml.parsers.DocumentBuilderFactory;
xml.parsers.FactoryConfigurationError;
xml.parsers.ParserConfigurationException;

ml.sax.SAXException;
ml.sax.SAXParseException;
3c.dom.Document;
3c.dom.DOMException;
i0.%;

TransformationApp

static Document document;
public static void main(String argv[])

{

if (argv.length !'= 1) {

filename™);

}

System.err.println ("Usage: java TransformationApp

System.exit (1);

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

//factory.setNamespaceAware(true);
//factory.setValidating(true);

try

{
File f = new File(argv[0]);
DocumentBuilder builder =

factory.newDocumentBuilder();

document = builder.parse(f);

} catch (SAXException sxe) {

// Error generated by this application
// (or a parser-initialization error)
Exception X = sxe;
if (sxe.getException() != null)

X = sxe.getException();
X.printStackTrace();

} catch (ParserConfigurationException pce) {

// Parser with specified options can't be built
pce.printStackTrace();

234 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

} catch (I0Exception ioe) {
// I/0 error
ioe.printStackTrace();
}
1 // main
}

Creating a Transformer

The next step isto create atransformer you can use to transmit the XML to Sys-
tem.out.

Note: The code discussed inthis sectionisin TransformationApp02.java. Thefile
it runs on is slideSample01.xm1. (The browsable version is s1ideSample01-
xm1.htm1.) The output iSin TransformationlLog02.

Start by adding the import statements highlighted bel ow:

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import java.io.*;

Here, you've added a series of classes which should be now be forming a stan-
dard pattern; an entity (Transformer), the factory to create it (TransformerFac-
tory), and the exceptions that can be generated by each. Since a transformation
always has a source and aresult, you then imported the classes necessary to use
aDOM as a source (DomSource), and an output stream for the result (StreamRe-
sult).

Next, add the code to carry out the transformation:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

CREATING A TRANSFORMER

/' Use a Transformer for output
Transformer Factory tFactory =
Transformer Factory.newl nstance();
Transformer transformer = tFactory.newTransformer ();

DOM Sour ce source = new DOM Sour ce(document);
StreamResult result = new StreamResult(System.out);
transformer.transfor m(sour ce, result);

Here, you created a transformer object, used the DOM to construct a source
object, and used System. out to construct aresult object. You then told the trans-
former to operate on the source object and output to the result object.

Note: In this case, the “transformer” isn’t actually changing anything. In XSLT ter-
minology, you are using the identity transform, which means that the “transforma-
tion” generates a copy of the source, unchanged.

Finally, add the code highlighted below to catch the new errorsthat can be gener-
ated:

} catch (Transformer ConfigurationException tce) {
/I Error generated by the parser
System.out.printin ("* Transformer Factory error");
System.out.printin(" " + tce.getMessage());

/I Use the contained exception, if any
Throwable x = tce;
if (tce.getException() '= null)
X = tce.getException();
x.printStack Trace();

} catch (Transformer Exception te) {
/I Error generated by the parser
System.out.printin (" * Transformation error");
System.out.printin(" " + te.getM essage());

/I Use the contained exception, if any
Throwablex = te;
if (te.getException() != null)

X = te.getException();
x.printStack Trace();

} catch (SAXException sxe) {

235

236 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Notes:

e TransformerExceptions arethrown by the transformer object.
e TransformerConfigurationExceptions arethrown by the factory.

Addendum:

Astute reader Macolm Gorman points out that, as it is currently written, the
transformation app won't preserve the XML document’s DOCTYPE setting. He
proposes the following code to remedy the omission:

String systemValue = (new

File(document.getDoctype() .getSystemId())) .getName();

transformer.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,
systemValue);

Writing the XML

For instructions on how to compile and run the program, see Compiling and
Running the Program (page 100) from the SAX tutorial. (Substitute “ Transfor-
mationApp” for “Echo” as the name of the program.). When you run the pro-
gram on s1ideSample01.xm1, thisisthe output you see:

<?xml version="1.0" encoding="UTF-8"7>
<!-- A SAMPLE set of slides -->
<s1ideshow title="Sample S1ide Show" date="Date of publication”
author="Yours Truly">
<!-- TITLE SLIDE -->
<slide type="all">
<title>Wake up to WonderWidgets!</title>
</slide>
<!-- OVERVIEW -->
<slide type="all">
<title>0Overview</title>
<item>Why
WonderWidgets are great
</item>
<item />
<item>Who
buys WonderWidgets
</item>
</slide>
</sTideshow>

WRITING OUT A SUBTREE OF THE DOM 237

Note: See Additional Information to find out more about configuring the factory
and handling validation errors.

Writing Out a Subtree of the DOM

Itis also possible to operate on a subtree of aDOM. In this section of the tutorial,
you' lI experiment with that option.

Note: The codediscussed inthissectionisin TransformationApp03.java. The
output isin TransformationLog03.

The only difference in the process is that now you will create a DOMSource using
anode in the DOM, rather than the entire DOM. The first step will be to import
the classes you need to get the node you want. Add the code highlighted below
to do that:

import org.w3c.dom.DOM Exception;
import org.w3c.dom.Node;
import org.w3c.dom.NodeL ist;

The next step is to find a good node for the experiment. Add the code high-
lighted below to select the first <s1ide> element:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

/I Get thefirst <dide> element in the DOM
NodeL ist list = document.getElementsByTagName(" dide");
Node node = list.item(0);

Finally, make the changes shown below to construct a source object that consists
of the subtree rooted at that node:

boOMSeott+ece—soti~ce—=tew DOMSot+cetdocument)

DOM Sour ce source = new DOM Sour ce(node);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

238

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Now run the app. Your output should look like this:

<?xml version="1.0" encoding="UTF-8"7>
<sTlide type="all">
<title>Wake up to WonderWidgets!</title>
</s1lide>

Clean Up

Because it will be easiest to do now, make the changes shown below to back out
the additions you made in this section. (TransformationApp04.java contains
these changes.)

Import org.w3c.dom.DOMException;

Hport—otrg-w3cdomNodes

POMSetrece—sottrece—=rtrew DOMSotrecethode)
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Summary

At this point, you' ve seen how to use atransformer to write out aDOM, and how
to use a subtree of a DOM as the source object in a transformation. In the next
section, you'll see how to use atransformer to create XML from any data struc-
ture you are capable of parsing.

Generating XML from an Arbitrary Data
Structure

In this section, you'll use an XSLT transformer to converting an arbitrary data
structureto XML.

CREATING A SIMPLE FILE

In general outline, then, you’ re going to:

1. Modify an existing program that reads the data and modify it to generate
SAX events. (Whether that is areal parser or simply a data filter of some
kind isirrelevant for the moment.)

2. You'll then use the SAX “parser” to construct a SAXSource for the trans-
formation.

3. You'll use the same StreamResul+t object you created in the last exercise,
S0 you can see the results. (But note that you could just as easily create a
DOM Result object to create aDOM in memory.)

4. You'll wire the source to the result, using the XSLT transformer object to
make the conversion.

For starters, you need a data set you want to convert and some program which is
capable of reading the data. In the next two sections, you’'ll create a simple data
file and a program that reads it.

Creating a Simple File

We'll start by creating a data set for an address book. You can duplicate the pro-
cess, if you like, or simply make use of the data stored in Personal Address-
Book.Idif.

The file shown below was produced by creating a new address book in Netscape
messenger, giving it some dummy data (one address card) and then exporting it
in LDIF format. Figure 1 shows the address book entry that was created.

239

240 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

L Ix

Add card to: IF'elsonaI.t’-‘-.ddlessB ook,

Mame |Eu:untact| Motes |

Firzt Marme: |Fled

Lazt Mame: |Flintst0ne

Dizplay Mame: IFred Flirtztone

Email: |fred@bameys. house

Mickname: IFTBd
v Prefers to receive rich text [HTML) mail

Wwiork: ISEIE-E!uany

Horne: |SEIEI-E edrockLane

Far | 3665 quawk

Pager: |???-pager

Cellular; |555-Ce||

Q. I Cancel Help

Figurel AddressBook Entry

Exporting the address book produces a file like the one shown below. The parts
of the file that we care about are shown in bold.

dn: cn=Fred Flinstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z

cn: Fred Flinstone

xmozillanickname: Fred

mail: Fred@barneys.house
xmozillausehtmlmail: TRUE

givenname: Fred

sh: Flinstone

telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager

CREATING A SIMPLE PARSER 241

cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

Note that each line of the file contains a variable name, a colon, and a space fol-
lowed by a value for the variable. The “sn” variable contains the person’s sur-
name (last name) and, for some reason, the variable “cn” contains the
DisplayName field from the address book entry.

Note: LDIF stands for LDAP Data Interchange Format, according to the Netscape
pages. And LDAP, turn, stands for Lightweight Directory Access Protocol. | prefer
to think of LDIF asthe “Line Delimited Interchange Format”, since that is pretty
much what it is.

Creating a Simple Parser

The next step is to create a program that parses the data. Again, you can follow
the process to write your own if you like, or simply make a copy of the program
S0 you can use it to do the X SLT-related exercises that follow.

Note: The code discussed in this section is in AddressBookReader01.java. The
output isin AddressBookReaderlLog01.

The text for the program is shown below. It's an absurdly simple program that
doesn’t even loop for multiple entries because, after all, it's just ademo!

import java.io.¥*;

public class AddressBookReaderOl

{

public static void main(String argv[])
{
// Check the arguments
if (argv.length !'= 1) {
System.err.println (
"Usage: java AddressBookReader filename");
System.exit (1);
}

String filename = argv[0];

242 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

File f = new File(filename);
AddressBookReader0l reader = new AddressBookReader01();
reader.parse(f);

}

/** Parse the input */
public void parse(File f)

{

try {
// Get an efficient reader for the file
FileReader r = new FileReader(f);
BufferedReader br = new BufferedReader(r);

// Read the file and display it's contents.
String line = br.readlLine();
while (null !'= (line = br.readLine())) {
if (Tine.startsWith("xmozillanickname: "))
break;
}
output("nickname", "xmozillanickname", Tine);
1ine = br.readLine();
output("email”, "mail", Tine);
1ine = br.readLine();
output("html", "xmozillausehtmImail™, Tine);
1ine = br.readLine();
output("firstname","givenname", Tine);
1ine = br.readLine();
output("lastname", "sn", Tine);
1ine = br.readLine();
output("work", "telephonenumber"”, Tine);
1ine = br.readLine();
output("home", "homephone", Tine);
1ine = br.readLine();
output("fax", "facsimiletelephonenumber”,
Tine);

1ine = br.readLine();
output("pager”, "pagerphone", Tine);
1ine = br.readLine();
output("cell", "cellphone", Tine);

}

catch (Exception e) {
e.printStackTrace();

}

}

void output(String name, String prefix, String Tine)

{

CREATING A SIMPLE PARSER 243

int startIndex = prefix.length() + 2;

// 2=length of ": "

String text = line.substring(startIndex);
System.out.printin(name + ": " + text);

}

This program contains 3 methods:

main
The main method gets the name of the file from the command line, creates
an instance of the parser, and sets it to work parsing the file. This method
will be going away when we convert the program into a SAX parser. (That's
one reason for putting the parsing code into a separate method.)

parse
This method operates on the File object sent to it by the main routine. Asyou
can see, itsabout assimpleasit can get! The only nod to efficiency isthe use
of a BufferedReader, which can become important when you start operat-
ing on large files.

output
The output method contains the smarts about the structure of aline. Starting
from the right It takes 3 arguments. The first argument gives the method a
name to display, so we can output “html” as a variable name, instead of
“xmozillausehtmlimail”. The second argument gives the variable name
stored in the file (xmozillausehtmlmail). The third argument gives the line
containing the data. The routine then strips off the variable name from the
start of the line and outputs the desired name, plus the data.

Running this program on the address book file produces this output:

nickname: Fred

email: Fred@barneys.house
html: TRUE

firstname: Fred

Jastname: Flintstone
work: 999-Quarry

home: 999-BedrockLane
fax: 888-Squawk

pager: 777-pager

cell: 555-cell

| think we can all agree that’s a bit more readabl e!

244

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Modifying the Parser to Generate SAX
Events

The next step isto modify the parser to generate SAX events, so you can useit as
the basisfor a SAXSource object in an XSLT transform.

Note: The code discussed in this section isin AddressBookReader02. java.

Start by extending importing the additional classes you' re going to need:
import java.io.*;

import org.xml.sax.*;
Import org.xml.sax.helpers.AttributesImpl;

Next, modify the application so that it extends Xm1Reader. That converts the app
into a parser that generates the appropriate SAX events.

public class AddressBookReader02
implements XM L Reader

{

Now, remove the main method. You won't be needing that any more.

MODIFYING THE PARSER TO GENERATE SAX EVENTs 245

Add some global variables that will come in handy in afew minutes:
ContentHandler handler;

// We're not doing namespaces, and we have no
// attributes on our elements.

String nsu = ""; // NamespaceURI
Attributes atts = new AttributesImpl();
String rootElement = "addresshook”;
String indent =" "s // for readability!

The SAX ContentHandler isthe thing that is going to get the SAX events the
parser generates. To make the app into an Xm1Reader, you'll be defining a set-
ContentHandler method. The handler variable will hold the result of that con-
figuration step.

And, when the parser generates SAX element events, it will need to supply
namespace and attribute information. Since this is a simple application, you're
defining null values for both of those.

You're aso defining aroot element for the data structure (addressbook), and set-
ting up an indent string to improve the readability of the output.

Next, modify the parse method so that it takes an InputSource as an argument,
rather than a File, and account for the exceptions it can generate:

public void parse(Fite—F)InputSourceinput)
throws | OException, SAXException

Now make the changes shown below to get the reader encapsulated by the
InputSource object:

try {
// Get an efficient reader for the file
FileR _ FiTeR T
java.io.Reader r = input.getCharacter Stream();
BufferedReader Br = new BufferedReader(r);

Note: In the next section, you'll create the input source object and what you put in
it will, in fact, be a buffered reader. But the AddressBookReader could be used
by someone el se, somewhere down the line. This step makes sure that the process-
ing will be efficient, regardless of the reader you are given.

246 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

The next step isto modify the parse method to generate SAX eventsfor the start
of the document and the root element. Add the code highlighted below to do
that:

/** Parse the input */
public void parse(InputSource input)

try {

// Read the file and display 1it's contents.
String line = br.readlLine();
while (null !'= (line = br.readLine())) {
if (line.startsWith("xmozillanickname: ")) break;

}
if (handler==null) {

throw new SAXException(" No content handler");
}

handler.startDocument();
handler.startElement(nsu, rootElement,
rootElement, atts);
output("nickname", "xmozillanickname", Tine);

output("cell", "cellphone", Tine);
handler.ignorableW hitespace(" .toChar Array(),

0, // start index

1 /l'length

);
handler.endElement(nsu, rootElement, rootElement);
handler.endDocument();

}

catch (Exception e) {

Here, you first checked to make sure that the parser was properly configured
with a ContentHandler. (For this app, we don't care about anything else.) You
then generated the events for the start of the document and the root element, and
finished by sending the end-event for the root element and the end-event for the
document.

A couple of items are noteworthy, at this point:

* We haven't bothered to send the setDocumentLocator event, sincethat is
optional. Were it important, that event would be sent immediately before
the startDocument event.

MODIFYING THE PARSER TO GENERATE SAX EVENTs 247

« We've generated an ignorableWhitespace event before the end of the
root element. This, too, is optional, but it drastically improves readability
of the output, asyou’ll seein afew moments. (In this case, the whitespace
consists of asingle newline, which is sent the same way that characters
method are sent: as a character array, a starting index, and alength.)

Now that SAX events are being generated for the document and the root ele-
ment, the next step is to modify the output method to generate the appropriate
element events for each data item. M ake the changes shown below to do that:

void output(String name, String prefix, String line)
throws SAXException

{

int startIndex = prefix.length(Q) + 2; // 2=length of ":
String text = line.substring(startIndex);

int textLength =linelength() - startindex;
handler.ignorableWhitespace(indent.toCharArray(),

0, // start index

indent.length()

);
handler.startElement(nsu, name, name /*" gName" */, atts);
handler.character s(line.toChar Array(),

startl ndex,
textLength);
handler.endElement(nsu, name, name);

}

Sincethe ContentHandler methods can send SAXExceptions back to the parser,
the parser has to be prepared to deal with them. In this case, we don’t expect any,
so we'll simply allow the app to fall on its sword and die if any occur.

You then calculate the length of the data, and once again generate some ignor-
able whitespace for readability. In this case, there is only one level of data, so we
can use afixed indent string. (If the data were more structured, we would have to
calculate how much space to indent, depending on the nesting of the data.)

Note: The indent string makes no difference to the data, but will make the output a
lot easier to read. Once everything isworking, try generating the result without that
string! All of the elements will wind up concatenated end to end, like this:
<addressbook><nickname>Fred</nickname><email>. ..

248 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Next, add the method that configures the parser with the ContentHandler that is
to receive the events it generates:

/%% Allow an application to register a content event handler. */
public void setContentHandler(ContentHandler handler) {
this.handler = handler;

}

/*%* Return the current content handler. */
public ContentHandler getContentHandler() {
return this.handler;

}

There are several more methods that must be implemented in order to satisfy the
XmlReader interface. For the purpose of this exercise, we'll generate null meth-
odsfor al of them. For a production application, though, you may want to con-
sider implementing the error handler methods to produce a more robust app. For
now, though, add the code highlighted below to generate null methods for them:

/** Allow an application to register an error event handler. */
public void setErrorHandler(ErrorHandler handler)

{3

/*%* Return the current error handler. */
public ErrorHandler getErrorHandler()
{ return null; %

MODIFYING THE PARSER TO GENERATE SAX EVENTs 249

Finally, add the code highlighted below to generate null methods for the remain-
der of the XmlIReader interface. (Most of them are of valueto areal SAX parser,
but have little bearing on a data-conversion application like this one.)

/*%* Parse an XML document from a system identifier (URI). */
public void parse(String systemId)
throws IOException, SAXException

{3

/%% Return the current DTD handler. */
public DTDHandler getDTDHandler()
{ return null; }%

/** Return the current entity resolver. */
public EntityResolver getEntityResolver()
{ return null; }%

/%% Allow an application to register an entity resolver. %/
public void setEntityResolver(EntityResolver resolver)

{3

/%% Allow an application to register a DTD event handler. */
public void setDTDHandler(DTDHandler handler)
{1

/** Look up the value of a property. */
public Object getProperty(java.lang.String name)
{ return null; }

/*%* Set the value of a property. */
public void setProperty(java.lang.String name,
java.lang.0Object value)

{3

/** Set the state of a feature. */
pubTlic void setFeature(java.lang.String name, boolean value)

{3

/*%* Look up the value of a feature. */
public boolean getFeature(java.lang.String name)
{ return false; }

Congratulations! You now have a parser you can use to generate SAX events. In
the next section, you' Il use it to construct a SAX source object that will let you
transform the datainto XML.

250

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Using the Parser as a SAXSource

Given a SAX parser to use as an event source, you can (quite easily!) construct a
transformer to produce aresult. In this section, you'll modify the Transformer-
App you’'ve been working with to produce a stream output result, although you
could just as easily produce a DOM resullt.

Note: The code discussed in this section is in TransformationApp04.java. The
results of running it arein TransformationlLog04.

Important!

Be sure to shift gears! Put the AddressBookReader aside and open up the
TransformationApp. The work you do in this section affects the Transforma-
tionApp!

Start by making the changes shown below to import the classes you'll need to
construct a SAXSource object. (You won't be needing the DOM classes at this
point, so they are discarded here, although leaving them in doesn’t do any harm.)

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;

import org.xml.sax.| nputSour ce;

import javax.xml.tr ansfor m.sax.SA X Sour ce;
import javax.xml.transform.stream.StreamResult;

Next, remove a few other holdovers from our DOM-processing days, and add
the code to create an instance of the AddressBookReader:

public class TransformationApp

{
//—6Gtrobat—vatue—so—it—canbe ref'd by the tree—adapter
static Document—doctment;—
public static void main(String argv[])

{

-) _
Bﬁ'ﬁtrmeﬁ'tB'Uﬂq‘d'ef‘Fa'ﬁtOf‘y. frewInstat CeE) ’

USING THE PARSER AS A SAXSOURCE

/A Factory-setNamespaceAwatreCtrue)+
s _ Va4 i -

/I Createthesax " parser".
AddressBookReader saxReader = new AddressBook Reader ();

try {
File f = new File(argv[0]);
1 W _
factotry-newbocumentBuitderO
document—=bhuitder-parsetH+

Guesswhat! You're amost done. Just a couple of stepsto go. Add the code high-
lighted below to construct a SAX Source object:

// Use a Transformer for output
Transformer transformer = tFactory.newTransformer();

/I Usethe parser asa SAX sourcefor input

FileReader fr = new FileReader (f);

BufferedReader br = new BufferedReader (fr);
InputSour ce inputSource = new InputSource(br);

SAX Sour ce sour ce = new SAX Sour ce(saxReader, inputSource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you constructed a buffered reader (as mentioned earlier) and encapsulated
it in an input source object. You then created a SAXSource object, passing it the
reader and the InputSource object, and passed that to the transformer.

When the app runs, the transformer will configure itself asthe ContentHandler
for the SAX parser (the AddressBookReader and tell the parser to operate on the
inputSource object. Events generated by the parser will then go to the trans-
former, which will do the appropriate thing and pass the data on to the result
object.

Finally, remove the exceptions you no longer need to worry about, since the
TransformationApp no longer generates them:

[[3 LI, e hY
77 LUl d pPdrsTr=rrriirartrzactTulr T tutr)y
= ey

LALTPLTUT A= OAE,

x—=—sxegetExceptionO+

251

252 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

You're done! You have no created a transformer which will use a SAXSource as
input, and produce a StreamResult as output.

Doing the Conversion
Now run the app on the address book file. Your output should look like this:

<?xml version="1.0" encoding="UTF-8"7>

<addressbook>
<nickname>Fred</nickname>
<email>fred@barneys.house</email>
<htm1>TRUE</htm1>
<firstname>Fred</firstname>
<Tasthame>Flintstone</lasthame>
<work>999-Quarry</work>
<home>999-BedrockLane</home>
<fax>888-Squawk</fax>
<pager>777-pager</pager>
<cel11>555-cell</cell>

</addresshook>

You have now successfully converted an existing data structure to XML. And it
wasn't even that hard. Congratul ations!

Transforming XML Data with XSLT

The XML Stylesheet Language for Transformations (XSLT) can be used for
many purposes. For example, you could generate PDF or postscript from the
XML data. But generally, XSLT isused to generated formatted HTML output, or
to create an alternative XML representation of the data.

In this section of the tutorial, you'll use an XSLT transform to translate XML
input datato HTML output.

DEFINING AN ULTRA-SIMPLE ARTICLE DOCUMENT TYPE253

Note: The XSLT specification is very large and quite complex. Rather thick books
have been written on the subject. So this tutorial can only scratch the surface. It will
give you enough a background to get started, so you can undertake simple XSLT
processing tasks. It should also give you a head start when you investigate XSLT
further.

Defining an Ultra-Simple article
Document Type

We'll start by defining a super simple document type that could be used for writ-
ing articles. Our <article> documents will contain these structure tags:

e <TITLE> -- Thetitle of the article.

e <SECT> -- A section. (Consists of a heading and a body.)

e <PARA> -- A paragraph.

e <LIST>--Alist.

e <ITEM>-- Anentryinalist.

e <NOTE> -- An aside, which will be offset from the main text.

The dlightly unusua aspect of this structure is that we won't create a separate
element tag for a section heading. Such elements are commonly created to dis-
tinguish the heading text (and any tags it contains) from the body of the section
(that is, any structure elements underneath the heading).

Instead, we' Il allow the heading to merge seamlessly into the body of a section.
That arrangement adds some complexity to the stylesheet, but that will give us a
chance to explore XSLT’s template-selection mechanisms. It also matches our
intuitive expectations about document structure, where the text of a heading is
directly followed by structure elements, which can simplify outline-oriented
editing.

Note: However, that structureis not easily validated, because XML’s mixed-content
model allowstext anywhere in asection, whereas we want to confinetext and inline
elements so that they only appear before the first structure element in the body of
the section. The assertion-based validator (Schematron) can do it, but most other
schemamechanismscan’t. Sowe' Il dispense with defining aDTD for the document

type.

254

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

In this structure, sections can be nested. The depth of the nesting will determine
what kind of HTML formatting to use for the section heading (for example, hl
or h2.) That's also useful with outline-oriented editing, because it lets you can
move sections around at will without having to worry about changing the head-
ing tag -- or any of the other section headings that are affected by the move.

For lists, we'll use a type attribute to specify whether the list entries are unor-
dered (bulleted), alpha (enumerated with lower case letters), ALPHA (enumer-
ated with uppercase letters, or numbered.

We'll also allow for some inline tags that change the appearance of the text:

* -- bold

e <I>--italics

¢ <U>-- underline

e <DEF> -- definition

e <LINK>--linktoaURL

Note: An inline tag does not generate a line break, so a style change caused by an
inline tag does not affect the flow of text on the page (although it will affect the
appearance of that text). A structure tag, on the other hand, demarcates a new seg-
ment of text, so at aminimum it always generates a line break, in addition to other
format changes.

The <DEF> tag will help make thingsinteresting. That tag will used for terms that
are defined in the text. Such terms will be displayed in italics, the way they ordi-
narily are in adocument. But using a special tag in the XML will allow an index
program to one day find such definitions and add them to the index, along with
keywords in headings. In the Note above, for example, the definitions of inline
tags and structure tags could have been marked with <DEF> tags, for future
indexing.

Finally, the LINK tag serves two purposes. First, it will let us create alink to a
URL without having to put the URL in twice -- so we can code
<link>http//...</1ink> instead of http//....
Of course, we'll also want to alow a form that looks like <1ink tar-
get="...">...name...</Tink>. That leadsto the second reason for the <1ink>
tag—it will give us an opportunity to play with conditional expressionsin XSLT.

Note: Asone college professor said, thetrick to defining aresearch project isto find
something that is “large enough to be feasible... but small enough to be feasible”.

CREATING A TEST DOCUMENT

Although the article structure is exceedingly simple (consisting of only 11 tags), it
raises enough interesting problems to keep us busy exploring XSLT for a while!
Along theway, we'll get agood view of it'sbasic capabilities. But therewill still be
large areas of the spec that areleft untouched. Thelast part of thistutorial will point
out the magjor things we missed, to give you some sense of what sorts of features
await you in the specification!

Creating a Test Document

Here, you'll create a simple test document using nested <SECT> elements, a few
<PARA> €lements, a <NOTE> element, a <LINK>, and a <LIST type="unor-
dered">. The idea is to create a document with one of everything, so we can
explore the more interesting translation mechanisms.

Note: The sample data described hereis contained in articlel.xml. (The brows-
ableversionisarticlel-xml.html.)

To make the test document, create afile caled article.xml and enter the XML
data shown below.

<?xm1 version="1.0"7>
<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section
<PARA>This section will introduce a subsection.</PARA>
<SECT>The Subsection Heading
<PARA>This 1is the text of the subsection.
</PARA>
</SECT>
</SECT>
</ARTICLE>

Note that in the XML file, the subsection is totally contained within the major
section. (Unlike HTML, for example, where headings, do no contain the body of
a section.) The result is an outline structure that is harder to edit in plain-text
form, like this. But much easier to edit with an outline-oriented editor.

Someday, given an tree-oriented XML editor that understands inline tags like
 and <I>, it should be possible to edit an article of this kind in outline form,
without requiring acomplicated stylesheet. (Thereby alowing the writer to focus

255

256 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

on the structure of the article, leaving layout until much later in the process.) In
such an editor, the article-fragment above would ook something like this.

<ARTICLE>
<TITLE>A Sample Article
<SECT>The First Major Section
<PARA>This section will introduce a subsection.
<SECT>The Subheading

<PARA>This 1is the text of the subsection. Note
that ...

At the moment, tree-structured editors exist, but they treat inline tags like
and <I> the same way that they treat other structure tags, which can make the
“outling” a bit difficult to read. But hopefully, that situation will improve one
day. Meanwhile, we'll press on...

Writing an XSLT Transform

In this part of the tutorial, you'll begin writing an XSLT transform that will con-
vert the XML article and render it in HTML.

Note: The transform described in this section is contained in articlela.xs1. (The
browsable versionisarticlela-xs1.html.)

Start by creating a normal XML document:
<?xml version="1.0" encoding="IS0-8859-1"7>
Then add the lines shown below to create an XSL stylesheet:
<?xml version="1.0" encoding="IS0-8859-1"7>

<xs1:stylesheet

xmlns:xs1="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"
>

</xsT:stylesheet>

PROCESSING THE BASIC STRUCTURE ELEMENTS

Now, set it up to produce HTML-compatible output:
<xsT1:stylesheet
>

<xsl:output method="html" />

</xs1:stylesheet>

WEe'll get into the detailed reasons for that entry later on in this section. But for
now, note that if you want to output anything besides well-formed XML, then
you'll need an <xs1:output> tag like the one shown, specifying either “text”
or “htm1”. (The default valueis “xm1”.)

Note: When you specify XML output, you can add the indent attribute to produce
nicely indented XML output. The specification looks like this:
<xs1:output_method="xml1"_indent="yes"/>.

Processing the Basic Structure Elements

You'll gart filling in the stylesheet by processing the elements that go into creat-
ing atable of contents -- the root element, the title element, and headings. You'll
also process the PARA element defined in the test document.

Note: If on first reading you skipped the section of this tutorial that discusses the
XPath addressing mechanisms, now is a good time to go back and review that sec-
tion!

Begin by adding the main instruction that processes the root element:

<xsT:stylesheet ...
<xsl:template match="/">
<html><body>
<xsl:apply-templates/>
</body></html>
</xd:template>

</xs1:stylesheet>

257

258

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

The XSL commands are shown in bold. (Note that they are defined in the "xs1"
namespace.) The instruction <xs1:apply-templates> processes the children of
the current node. In the case, the current node is the root node.

Despite its simplicity,. this example illustrates a number of important ideas, so
it's worth understanding thoroughly. The first concept is that a stylesheet con-
tains a number of templates, defined with the <xsl:template> tag. Each template
contains a match attribute, which selects the elements that the template will be
applied to, using the X Path addressing mechanisms.

Within the template, tags that do not start with the xs1: namespace prefix are
simply copied. The newlines and whitespace that follow them are also copied,
which helps to format make the resulting output readable.

Note: When anewlineis not present, whitespace generally seemsto beignored. To
include whitespace in the output in such cases, or to include other text, you can use
the <xs1:text> tag. Basically, an XSLT stylesheet expects to process tags. So
everything it sees needsto be either an <xs1: . . > tag, some other tag, or whitespace.

In this case, the non-xsl tags are HTML tags (shown in red, for readability). So
when the root tag is matched, X SLT outputsthe HTML start-tags, processes any
templates that apply to children of the root, and then outputs the HTML end-

tags.

Process the <TITLE> Element

Next, add atemplate to process the article title:

<xs1:template match="/ARTICLE/TITLE">
<hl align="center"> <xsl:apply-templates/> </hl>
</xsT1:template>

</xsT:stylesheet>

In this case, you specified a complete path to the TITLE element, and output
some HTML to make the text of the title into a large, centered heading. In this
case, the apply-templates tag ensures that if the title contains any inline tags like
italics, links, or underlining, they will be processed as well.

More importantly, the apply-templates instruction causes the text of thetitle to be
processed. Like the DOM data model, the XSLT data model is based on the con-
cept of text nodes hanging off of element nodes (which, in turn, can hang off

PROCESSING THE BASIC STRUCTURE ELEMENTS

other element nodes, and so on). That hierarchical structure constitutes the
sourcetree. Thereisaso aresult tree, which contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the
result of XSLT operations, it is helpful to understand the structure of those trees,
and their contents. (For more on this subject, see the sidebar on The XSLT/XPath
Data Modédl (page 277) later in this section.)

Process Headings

To continue processing the basic structure elements, add a template to process
the top-level headings:

<xsl:template match="/ARTICLE/SECT" >
<h1> <xsl:apply-templates select="text()|B| |U|DEF|LINK" /> </h1>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE" />
</xd:template>

</xs1:stylesheet>

Here, you've specified the path to the topmost SECT elements. But this time,
you've applied templates in two stages, using the select attribute. For the first
stage, you selected text nodes using the XPath text() function, aswell asinline
tags like bold and italics. (The vertical pipe (]) isused to match multiple items --
text, or a bold tag, or an italics tag, etc.) In the second stage, you selected the
other structure elements contained in the file, for sections, paragraphs, lists, and
notes.

Using the select tags let you put the text and inline elements between the
<h1>...</h1> tags, while making sure that al of the structure tags in the section
are processed afterwards. In other words, you made sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, which
isimportant for HTML output.

In general, the select clause lets you apply all templates to a selected subset of
the information available at the current context. As another example, this tem-
plate selects all attributes of the current node:

<xs1:apply-templates select="@*"/></attributes>

259

260

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Next, add the virtually identical template to process the second-level headings:

<xd:template match="/ARTICLE/SECT/SECT" >
<h2> <xsl:apply-templates select="text()|B|l [UIDEF|LINK" /> </h2>
<xd:apply-templates select=" SECT|PARA|LIST|NOTE" />
</xsl:template>

</xsT:stylesheet>

Generate a Runtime Message

You could add templates for deeper headings, too, but at some point you have to
stop, if only because HTML only goes down to 5 levels. But for this example,
you'll stop at two levels of section headings. But if the XML input happens to
contain a 3rd level, you'll want to deliver an error message to the user. This sec-
tion shows you how to do that.

Note: We could continue processing SECT elements that are further down, by
selecting them with the expression /SECT/SECT//SECT. The // selects any SECT
eements, at any “depth”, as defined by XPath addressing mechanism. But we'll
take the opportunity to play with messaging, instead.

Add the following template to generate an error when a section is encountered
that is nested too deep:

<xd:template match="/ARTICLE/SECT/SECT/SECT" >
<xd:message terminate="yes" >Error: Sections can only be nested 2 deep
.</xd:message>

</xsT1:template>

</xsT:stylesheet>

The terminate="yes" clause causes the transformation process to stop after the
message is generated. Without it, processing could still go on with everything in
that section being ignored.

Extra-Credit Exercise:

Expand the stylesheet to handle sections nested up to 5 sections deep, generating
<hl>...<h5> tags. Generate an error on any section nested 6 levels deep.

WRITING THE BASIC PROGRAM 261

Finally, finish up the stylesheet by adding atemplate to process the PARA tag:
<xsT:template match="PARA">
<p><xs1:apply-templates/></p>

</xs1:template>

</xs1:stylesheet>

Nothing unusual here. Just another template like the ones you' re used to.

Writing the Basic Program

In this part of the tutorial, you'll modify the program that used XSLT to echo an
XML file unchanged, and modify it so that it uses your stylesheet.

Note: The code shown in this section is contained in Stylizer.java. Theresult is
the HTML code shown in stylizerla.txt. (The displayable version is
stylizerla.html.)

Start by copying TransformationApp02, which parses an XML file and writes
to System.out. Saveit as Stylizer.java.

Next, modify occurrences of the class name and the usage-section of the pro-
gram:

public class FransformationAppylizer
{
if (argv.length '= 12) {
System.err.println ("Usage: java

FransformationAppSylizer stylesheet

System.exit (1);

filename™);

262 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Then modify the program to use the stylesheet when creating the Transformer
object.

import javax.xml.transform.dom.DOMSource;
import javax.xml.transfor m.stream.StreamSour ce;
import javax.xml.transform.stream.StreamResult;

public class Stylizer

{
public static void main (String argv[])
{
try {
Fitef=rnrewFitetarvio+

File stylesheet = new File(argv[0]);
File datafile = new File(argv[1]);

DocumentBuilder builder =
factory.newDocumentBuilder();
document = builder.parse(f datdfile);

StreamSour ce stylesour ce = new StreamSour ce(stylesheet);
Transformer transformer =
Factory.newTransformer (stylesource) ;

This code uses the file to create a StreamSource object, and then passes the
source object to the factory classto get the transformer.

Note: You can simplify the code somewhat by eliminating the DOM Source class
entirely. Instead of creating aDOM Source object for the XML file, create a Stream-
Source object for it, as well asfor the stylesheet. (Take it on for extra credit!)

TRIMMING THE WHITESPACE 263
Now compile and run the program using articlela.xs1 onarticlel.xml. The
results should look like this:

<html>
<body>

<hl align="center">A Sample Article</hl>
<h1>The First Major Section
</hl>

<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading

</h2>
<p>This is the text of the subsection.
</p>

</body>
</html>

At this point, there is quite a bit of excess whitespace in the output. You'll see
how to eliminate most of it in the next section.

Trimming the Whitespace

If you recall, when you took alook at the structure of a DOM, there were many
text nodes that contained nothing but ignorable whitespace. Most of the excess
whitespace in the output came from them. Fortunately, XSL gives you away to
eliminate them. (For more about the node structure, see the sidebar: The
XSLT/XPath Data M odel (page 277).)

Note: The stylesheet described here is articlelb.xs1. The result is the HTML
code shown in stylizerlb.txt. (The displayable versions are articlelb-
xs1.html and stylizerlb.html.)

264

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

To do remove some of the excess whitespace, add the line highlighted below to
the stylesheet.

<xs1:stylesheet ...
>
<xs1:output method="html"/>
<xd:strip-space elements=" SECT" />

This instruction tells XSL to remove any text nodes under SECT elements that
contain nothing but whitespace. Nodes that contain text other than whitespace
will not be affected, and other kinds of nodes are not affected.

Now, when you run the program, the result looks like this:

<html>
<body>

<hl align="center">A Sample Article</hl>

<h1>The First Major Section
</hl>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading
</h2>
<p>This is the text of the subsection.
</p>

</body>
</html>

That’s quite an improvement. There are still newline characters and white space
after the headings, but those come from the way the XML iswritten:

<SECT>The First Major Section
<PARA>This section will introduce a subsection.</PARA>
AAAA

Here, you can see that the section heading ends with a newline and indentation
space, before the PARA entry starts. That's not a big worry, because the browsers
that will processthe HTML routinely compress and ignore the excess space. But
we thereis still one more formatting at our disposal.

TRIMMING THE WHITESPACE

Note: The stylesheet described here is articlelc.xs1. The result is the HTML
code shown in stylizerlc.txt. (The displayable versions are articlelc-
xs1.html and stylizerlc.html.)

To get rid of that last little bit of whitespace, add this template to the stylesheet:

<xsl:template match="text()" >
<xsl:value-of select=" normalize-space()" />
</xd:template>

</xs1:stylesheet>
The output now looks like this:

<html>

<body>

<hl align="center">A Sample Article</hl>

<h1>The First Major Section</hl>

<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading</h2>

<p>This 1is the text of the subsection.</p>
</body>

</html>

That is quite a bit better. Of course, it would be nicer if it were indented, but that
turns out to be somewhat harder than expected! Here are some possible avenues
of attack, along with the difficulties:

I ndent option
Unfortunately, the indent="yes" option that can be applied to XML output
is not available for HTML output. Even if that option were available, it
wouldn’t help, because HTML elements are rarely nested! Although HTML
source is frequently indented to show the implied structure, the HTML tags
themselves are not nested in away that creates areal structure.

Indent variables
The <«xs1:text> function lets you add any text you want, including
whitespace. So, it could conceivably be used to output indentation space.
The problem is to vary the amount of indentation space. XSLT variables
seem like agood idea, but they don’'t work here. The reason isthat when you
assign avaueto avariable in atemplate, the value is only known within that
template (statically, at compile time value). Even if the variable is defined
globally, the assigned value is not stored in a way that letsit be dynamically
known by other templates at runtime. Once <apply-templates/> invokes

265

266

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

other templates, they are unaware of any variable settings made in other tem-
plates.

Parameterized templates
Using a “parameterized template” is another way to modify a template’s
behavior. But determining the amount of indentation space to pass as the
parameter remains the crux of the problem!
At the moment, then, there does not appear to be any good way to control the
indentation of HTML-formatted output. Typically, that fact is of little conse-
guence, since the data will usually be manipulated in its XML form, while the
HTML version is only used for display a browser. It’s only inconvenient in a
tutoria like this, where it would be nice to see the structure you’ re creating! But
when you click on the link to stylizeric.htm1, you see the results you expect.

Processing the Remaining Structure
Elements

In this section, you’'ll process the LIST and NOTE elements that add additional
structure to an article.

Note: The sample document described in this section is article2.xml, the
stylesheet used to manipulate it is article2.xs1. The result is the HTML code
shown in stylizer2.txt. (The displayable versions are article2-xml.htmT,
article2-xs1.html, and stylizer2.html.)

Start by adding some test data to the sample document:

<?xml version="1.0"7>
<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section
</SECT>
<SECT>The Second Major Section
<PARA>This section adds a LIST and a NOTE.
<PARA>Here is the LIST:
<LIST type="ordered">
<ITEM>Pears</ITEM>
<ITEM>Grapes</ITEM>
</LIST>
</PARA>
<PARA>And here 1is the NOTE:

PROCESSING THE REMAINING STRUCTURE ELEMENTS 267

<NOTE>Don't forget to go to the hardware store on
your
way to the grocery!
</NOTE>
</PARA>
</SECT>
</ARTICLE>

Note: Although the list and note in the XML file are contained in their respective
paragraphs, it really makes no difference whether they are contained or not—the
generated HTML will be the same, either way. But having them contained will
make them easier to deal with in an outline-oriented editor.

Modify <PARA> handling

Next, modify the PARA template to account for the fact that we are now allowing
some of the structure elements to be embedded with a paragraph:

<xsT:template match="PARA">
<ps<xstrappty—temptates/></p>
<p> <xsl:apply-templates select="text()|B| |U|DEF|LINK" /> </p>
<xsl:apply-templates select="PARA|LIST|NOTE" />
</xs1:template>

This modification uses the same technique you used for section headings. The
only differenceisthat SECT elements are not expected within a paragraph.

Process <LIST> and <ITEM> elements

Now you're ready to add a template to process LIST elements:

<xsl:template match="LIST" >
<xsl:if test=" @type="ordered™ >

<xsl:apply-templates/>

</xd:if>
<xsl:if test=" @type="unordered" >

<xsl:apply-templates/>

268

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

</xdl:if>
</xsl:template>

</xsT:stylesheet>

The <xs1:1if> tag uses the test="" attribute to specify a boolean condition. In
this case, the value of the type attribute is tested, and the list that is generated
changes depending on whether the value is ordered or uncrdered.

The two important things to note for this example are:

* Thereisnoelse clause, nor isthereareturn or exit statement, so it takes
two <xs1:1f> tags to cover the two options. (Or the <xs1:choose> tag
could have been used, which provides case-statement functionality.)

e Single quotes are required around the attribute values. Otherwise, the
XSLT processor attemptsto interpret the word ordered asan X Path func-
tion, instead of asastring.

Now finish up LIST processing by handling 1Tem elements. Nothing spectacular
here.

<xd:template match="ITEM" >
<xsl:apply-templates/>

</xsl:template>

</xsT:stylesheet>

Ordering Templates in a Stylesheet

By now, you should have the idea that templates are independent of one another,
so it doesn’'t generally matter where they occur in afile. So from here on, we'll
just show the template you need to add. (For the sake of comparison, they're
always added at the end of the example stylesheet.)

Order does make a difference when two templates can apply to the same node, In
that case, the one that is defined last is the one that is found and processed. For
example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify atemplate pattern that looks like this: //LIST//LIST. In that
template, you would use the HTML option to generate an a phabetic enumera-
tion, instead of a numeric one.

PROCESSING THE REMAINING STRUCTURE ELEMENTS 269

But such an element could also be identified by the pattern //LIST. To make sure
the proper processing is done, the template that specifies //LIST would have to
appear before the templ ate the specifies //LIST//LIST.

Process <NOTE> Elements

The last remaining structure element is the NOTE element. Add the template
shown below to handle that.

<xs1:template match="NOTE">
<bTockquote>Note:

<xs1:apply-templates/>
</p></blockquote>
</xs1:template>

This code brings up an interesting issue that results from the inclusion of the

 tag. To be well-formed XML, the tag must be specified in the stylesheet as

, but that tag is not recognized by many browsers. And while most brows-
ers recognize the sequence
</br>, they all treat it like a paragraph break,
instead of asingle line break.

In other words, the transformation must generate a
 tag, but the stylesheet
must specify
. That brings usto the major reason for that special output tag
we added early in the stylesheet:

<xsl:stylesheet ... >
<xsl:output method="html" />

</xs1:stylesheet>

That output specification converts empty tags like
 to their HTML form,

, on output. That conversion is important, because most browsers do not
recognize the empty-tags. Here is alist of the affected tags:

Table 3 Empty Tags

- darea

- frame - isindex
- base .
- hr - Tlink
- basefont .
br - img - meta
- input - param

- col

270

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Summarizing:

By default, XSLT produces well-formed XML on output. And since an XSL
stylesheet is well-formed XML to start with, you cannot easily put a tag like

 inthe middle of it. The "<xs1:output method="htm1"/>" solvesthe prob-
lem, so you can code
 in the stylesheet, but get
 in the output.

The other major reason for specifying <xs1:output method="html1"/> is that,
like the specification <xs1:output method="text"/>, generated text is not
escaped. For example, if the stylesheet includes the &1t ; entity reference, it will
appear asthe "<" character in the generated text. When XML is generated, on the
other hand, the &1t ; entity reference in the stylesheet would be unchanged, so it
would appear as &1t; in the generated text.

Note: If you actually want & It; to be generated as part of the HTML output, you'll
need to encode it as &1t;—that sequence becomes &It; on output, because
only the & is converted to an & character.

Run the Program

Hereisthe HTML that is generated for the second section when you run the pro-
gram now:

<h1>The Second Major Section</hl>

<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

<01>

<Ti>Pears</11i>

<1i>Grapes</1i>

</01>

<p>And here is the NOTE:</p>

<bTlockquote>

Note:

Don't forget to go to the hardware store on your way to the
grocery!

</blockquote>

PROCESS INLINE (CONTENT) ELEMENTS

Process Inline (Content) Elements

The only remaining tags in the ARTICLE type are the inline tags -- the ones that
don’'t create a line break in the output, but which instead are integrated into the
stream of text they are part of.

Inline elements are different from structure elements, in that they are part of the
content of atag. If you think of an element as a node in a document tree, then
each node has both content and structure. The content is composed of the text
and inline tagsit contains. The structure consists of the other elements (structure
elements) under the tag.

Note: The sample document described in this section is article3.xml, the
stylesheet used to manipulate it is article3.xs1. The result is the HTML code
shown in stylizer3.txt. (The browser-displayable versions are article3-
xm1.htm1, article3-xs1.html, and stylizer3.html.)

Start by adding one more bit of test data to the sample document:

<?xml version="1.0"7>
<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section
</SECT>
<SECT>The Second Major Section
</SECT>
<SECT>The<I>Third</I> Major Section
<PARA>In addition to theinlinetag in the heading, this section
definesthe term <DEF>inline</DEF>, which literally means
"nolinebreak". It also addsa smplelink to the main page
for the Java platform (<LINK>http://java.sun.com</LINK>),
aswell asalink tothe
<LINK target=" http://java.sun.com/xml" >XM L </LINK> page.
</PARA>

</SECT>
</ARTICLE>

271

272

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Now, process the inline <DEF> elements in paragraphs, renaming them to HTML
italics tags:

<xd:template match="DEF" >
<i> <xsl:apply-templates/> </i>
</xsl:template>

Next, comment out the text-node normalization. It has served its purpose, and
new we're to the point that we need to preserve spaces important:

<l--
<xsT1:template match="text()">
<xsl:value-of select="normalize-space()"/>
</xsT1:template>
-—>

This modification keeps us from losing spaces before tags like <I> and <DEF>.
(Try the program without this modification to see the result.)

Now, process basic inline HTML elements like , <I>, <U> for bold, italics,
and underlining.

<xs1:template match="B|I|U">
<xs1:element name="{name()3}">
<xsl:apply-templates/>
</xsl:element>
</xsT1:template>

The «xsT1:element> tag lets you compute the element you want to generate.
Here, you generate the appropriate the inline tag using the name of the current
element. In particular, note the use of curly braces ({}) in the name=".." expres-
sion. Those curly braces cause the text inside the quotes to be processed as an
XPath expression, instead of being interpreted as alitera string. Here, they cause
the XPath name () function to return the name of the current node.

Curly braces are recognized anywhere that an “attribute value template” can
occur. (Attribute value templates are defined in section 7.6.2 of the specification,
and they appear several places in the template definitions.). In such expressions,
curly braces can also be used to refer to the value of an attribute, {@foo}, or to
the content of an element {foo}.

Note: You can also generate attributes using <xs1:attribute>. For more informa-
tion see Section 7.1.3 of the XSLT Specification.

PROCESS INLINE (CONTENT) ELEMENTS

The last remaining element is the LINK tag. The easiest way to process that tag
will be to set up a named-template that we can drive with a parameter:

<xsT1:template name="htmLink">
<xsT:param name="dest" select="UNDEFINED"/>
<xs1:element name="a">
<xs1:attribute name="href">
<xs1l:value-of select="$dest"/>
</xsl:attribute>
<xs1:apply-templates/>
</xs1:element>
</xs1:template>

The major difference in this template is that, instead of specifying a match
clause, you gave the template a name with the name="" clause. So this template
only gets executed when you invoke it.

Within the template, you also specified a parameter named “dest”, using the
<xs1:param> tag. For a bit of error checking, you used the select clause to give
that parameter a default value of “UNDEFINED”. To reference the variable in the
<xs1:value-of>tag, you specified “$dest”.

Note: Recall that an entry in quotesis interpreted as an expression, unlessit is fur-
ther enclosed in single quotes. That's why the single quotes were needed earlier, in
"@type="ordered'"—t0 make sure that ordered was interpreted as a string.

The <xs1:eTement> tag generates an element. Previously, we have been able to
simply specify the element we want by coding something like <htm1>. But here
you are dynamically generating the content of the HTML anchor (<a>) in the
body of the <xs1:element> tag. And you are dynamically generating the href
attribute of the anchor using the <xs1:attribute> tag.

The last important part of the template is the <apply-templates> tag, which
inserts the text from the text node under the LINK element. (Without it, there
would be no text in the generated HTML link.)

Next, add the template for the LINK tag, and call the named template from within
it:

<xsT:template match="LINK">

<xs1:if test="@target">
<!--Target attribute specified.-->
<xsT:call-template name="htmLink">

273

274 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

<xs1:with-param name="dest" select="@target"/>
</xsT:call-template>
</xs1:if>
</xsT1:template>

<xs1:template name="htmLink">

The test="@target" clause returns true if the target attribute exists in the
LINK tag. So this if-statement generates HTML links when the text of the link
and the target defined for it are different.

The <xs1:call-template> tag invokes the named template, while <xs1:with-
param> Specifies a parameter using the name clause, and its value using the
select clause.

As the very last step in the stylesheet construction process, add the if-clause
shown below to process LINK tags that do not have a target attribute.

<xsT1:template match="LINK">
<xsT1:if test="@target">

</xsT:if>

<xd:if test=" not(@target)" >
<xd:call-template name="htmLink" >
<xd:with-param name="dest" >
<xd:apply-templates/>
</xsl:with-param>
</xdl:call-template>
</xdl:if>
</xsT1:template>

The not(...) clause inverts the previous test (there is no else clause, remem-
ber?). So this part of the template is interpreted when the target attribute is not
specified. This time, the parameter value comes not from a select clause, but
from the contents of the <xs1:with-param> element.

Note: Just to make it explicit: variables (which we' [l mention abit later) and param-
eters can have their value specified either by a select clause, which lets you use
XPath expressions, or by the content of the element, which letsyou use XSLT tags.

PRINTING THE HTML

The content of the parameter, in this case, is generated by the <xs1:apply-tem-
plates/> tag, which inserts the contents of the text node under the LINK ele-
ment.

Run the Program

When you run the program now, the results should look like this:

<h1>The <I>Third</I> Major Section
</hl>
<p>In addition to the inline tag in the heading, this section
defines the term <i>inline</i>, which literally means
"no Tine break". It also adds a simple Tink to the main
page
for the Java platform (http://java.sun.com),
as well as a 1link to the
XML page.
</p>

Awesome! You have now converted a rather complex XML fileto HTML. (As
seemingly simple asit was, it still provided alot of opportunity for exploration.)

Printing the HTML

You have now converted an XML fileto HTML. One day, someone will produce
an HTML-aware printing engine that you'll be able to find and use through the
Java Printing Service (JPS) API. At that point, you'll have ability to print an
arbitrary XML file as formatted data—all you' Il have to do is set up a stylesheet!

What Else Can XSLT Do?

As lengthy as this section of the tutorial has been, it has still only scratched the
surface of XSLT's capabilities. Many additional possibilities await you in the
XSLT Specification. Here are afew of the thingsto look for:

import (Section 2.6.2) and include (Section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The
include Statement simply inserts any definitions from the included file. The

276

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

import statement lets you override definitions in the imported file with defi-
nitionsin your own stylesheet.

for-each loops (Section 8)
Loop over acollection of items and process each one, in turn.

choose (case-statement) for conditional processing (Section 9.2)
Branch to one of multiple processing paths depending on an input value.

generating numbers (Section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric
literals. XSLT provides three numbering modes.

¢ single: Numbers items under a single heading, like an “ordered ligt” in
HTML.

e multiple: Produces multi-level numbering like “A.1.3".

e any: Consecutively numbers items wherever they appear, like the foot-
notes in a chapter.

formatting numbers (Section 12.3)
Control enumeration formatting, so you get numerics (format="1"), upper-
case alphabetics (format="A"), lowercase alphabetics (format="a"), or
compound numbers, like “A.1", as well as numbers and currency amounts
suited for a specific international locale.

sorting output (Section 10)
Produce output in some desired sorting order.

mode-based templates (Section 5.7)
L ets you process an element multiple times, each timein a different “mode”.
You add a mode attribute to templates, and then specify <apply-templates
mode="..."> to apply only the templates with a matching mode. Combined
with the <apply-templates select="..."> to slice and dice the input pro-
cessing, creating a matrix of elements to process and the templates to apply
to them.

variables (Section 11)

Variables, like parameters, let you control atemplate’s behavior. But they are
not as valuable as you might think. The value of a variable is only known
within the scope of the current template or <xd:if> clause (for example) in
which it is defined. You can’t pass a value from one template to another, or
even from an enclosed part of a template to another part of the same tem-
plate.

These statements are true even for a “globa” variable. You can change its

value in atemplate, but the change only applies to that template. And when
the expression used to define the global variable is evaluated, that evaluation

WHAT ELSE CAN XSLT Do?

takes place in the context of the structure’s root node. In other words, global
variables are essentially runtime constants. Those constants can be useful to
change the behavior of a template, especially when coupled with include
and import Statements. But variables are not a general-purpose data-man-
agement mechanism.

The XSLT/XPath Data Model

Likethe DOM, the XSL/XPath data model consists of atree containing a variety
of nodes. Under any given element node, there are text nodes, attribute nodes,
element nodes, comment nodes, and processing instruction nodes.

Once an XPath expression establishes a context, other expressions produce val-
ues that are relative to that context. For example, the expression //LIST estab-
lishes a context consisting of a LIST node. Within the XSLT template that
processes such nodes, the expression @type refersto the element’s type attribute.
(Similarly, the expression @* refersto al of the element’s attributes.)

The Trouble with Variables

It is awfully tempting to create a single template and set a variable for the desti-
nation of the link, rather than going to the trouble of setting up a parameterized
template and calling it two different ways. The idea would be to set the variable
to a default value (say, the text of the LINK tag) and then, if target attribute
exists, set the destination variable to the value of the target attribute.

That would be a darn good idea—if it worked. But once again, the issue is that
variables are only known in the scope within which they are defined. So when
you code an <xs1:1if> to change the value of the variable, the value is only
known within the context of the <xs1:1 f> tag. Once </xs1:1 > is encountered,
any change to the variable's setting is lost.

A similarly tempting idea is the possbhility of replacing the
text() |B|I|U|DEF|LINK specification with avariable ($inT11ine). But since the
value of the variable is determined by where it is defined, the value of a global
inTine variable consists of text nodes, nodes, etc. that happen to exist at the
root level. In other words, the value of such avariable, in this case, is null.

277

278

Next...

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

The final page of the XSLT tutoria will show you how to concatenate multiple
transformations together in afilter chain.

Concatenating XSLT Transformations
with a Filter Chain

It is sometimes useful to create a “filter chain” of XSLT transformations, so that
the output of one transformation becomes the input of the next. This section of
the tutorial shows you how to do that.

Writing the Program

Start by writing a program to do the filtering. This example will show the full
source code, but you can use one of the programs you’ve been working on as a
basis, to make things easier.

Note: The code described hereis contained in FiTterChain.java.

The sample program includes the import statements that identify the package

locations for each class:

import
import
import
import

import
import
import
import
import

import
import
import
import

import

javax.
javax.
javax.
javax.

org.xml
org.xml
org.xml
org.xml
org.xml

javax.
javax.
javax.
javax.

javax.

xml
xml
xml
xml

xml
xml
xml
xml

xml

.parsers.FactoryConfigurationError;
.parsers.ParserConfigurationException;
.parsers_SAXParser;
.parsers._SAXParserFactory;

.sax.SAXException;
.sax.SAXParseException;
.sax.InputSource;
.saxX.XMLReader;
.saxX.XMLFiTter;

.transform.Transformer;
.transform.TransformerException;
.transform.TransformerFactory;
.transform.TransformerConfigurationException;

.transform.sax.SAXTransformerFactory;

WRITING THE PROGRAM 279

import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.¥*;

The program also includes the standard error handlers you're used to. They're
listed here, just so they are al gathered together in one place:

}

catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.printin{" " + tce.getMessage());

// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() !'= null)
X = tce.getException();

X.printStackTrace();

}

catch (TransformerException te) {
// Error generated by the parser
System.out.printin ("* Transformation error™);
System.out.printin{" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() !'= null)
X = te.getException();
X.printStackTrace();
}
catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception X = sxe;
if (sxe.getException() != null)
X = sxe.getException();
X.printStackTrace();
}
catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

280 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

catch (IOException 1ioe) {
// I/0 error
ioe.printStackTrace();

}

In between the import statements and the error handling, the core of the program
consists of the code shown below.

public static void main (String argv[])
{
if (argv.length != 3) {
System.err.println ("Usage: java FilterChain
stylesheetl stylesheet2 xmlfile");
System.exit (1);
}

try {
// Read the arguments
File stylesheetl = new File(argv[0]);
File stylesheet2 = new File(argv[1]);
File datafile new File(Cargv[2]);

// Set up the 1input stream
BufferedInputStream bis = new

BufferedInputStream(newFilelnputStream(datafile));
InputSource input = new InputSource(bis);

// Set up to read the input file

SAXParserFactory spf = SAXParserFactory.newInstance();
SAXParser parser = spf.newSAXParser();

XMLReader reader = parser.getXMLReader();

// Create the filters (seeNote#l)
SAXTransformerFactory stf =

(SAXTransformerFactory)

TransformerFactory.newInstance();

XMLFilter filterl = stf.newXMLFilter(

new StreamSource(stylesheetl));
XMLFilter filter2 = stf.newXMLFilter(

new StreamSource(stylesheet2));

// Wire the output of the reader to filterl (seeNote#2)
// and the output of filterl to filter2
filterl.setParent(reader);
filter2.setParent(filterl);

// Set up the output stream

UNDERSTANDING HOW IT WORKS 281

StreamResult result = new StreamResult(System.out);

// Set up the transformer to process the SAX events generated
// by the Tast filter in the chain
Transformer transformer = stf.newTransformer();
SAXSource transformSource = new SAXSource(
filter2, input);
transformer.transform(transformSource, result);
} catch (...) {

Notes

1. Thisweird bit of codeis explained by the fact that SAXTransformerFac-
tory extends TransformerFactory, adding methods to obtain filter
objects. The newInstance () method is a static method defined in Trans-
formerFactory, which (naturally enough) returnsaTransformerFactory
object. In redlity, though, it returns a SAXTransformerFactory. SO, to get
at the extramethods defined by SAXTransformerFactory, thereturn value
must be cast to the actual type.

2. An XMLFilter object isboth a SAX reader and aSAX content handler. As
aSAX reader, it generates SAX eventsto whatever object has registered to
receive them. As a content handler, it consumes SAX events generated by
it's"parent” object -- which is, of necessity, aSAX reader, aswell. (Calling
the event generator a“ parent” must make sense when looking at the inter-
nal architecture. From the external perspective, the name doesn’t appear to
be particularly fitting.) The fact that filters both generate and consume
SAX events alows them to be chained together.

Understanding How it Works

The code listed above shows you how to set up the transformation. Figure 2
should help you get a better feel for what's happening when it executes.

282

input parser
source

Legend \

1 = reader (generates SAX events)
¢ = content handler {consumes $ AX events)
P (i-s) = parse{inputSource) instruction

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

transformer

N

L0

3

Figure2 Operation of chained filters

When you create the transformer, you pass it a a SAXSource object, which
encapsulates a reader (in this case, filter2) and an input stream. You aso pass
it a pointer to the result stream, where it directs its output. The diagram shows
what happens when you invoke transform() on the transformer. Here is an
explanation of the steps:

1

The transformer sets up an internal object as the content handler for
filter2, and tellsit to parse the input source.

. filter2, inturn, setsitself up asthe content handler for filterl, andtells

it to parse the input source.

. Continuing to pass the buck, filterl asks the parser object to please

parse the input source.

. The parser does so, generating SAX events which it passesto filterl.
. filterl, acting in its capacity as a content handler, processes the events

and does its transformations. Then, acting in its capacity asa SAX reader
(XMLReader), it sends SAX eventsto filter?2.

. filter2 does the same, sending its events to the transformer’s content

handler, which generates the output stream.

TESTING THE PROGRAM 283

Testing the Program

To try out the program, you'll create an XML file based on atiny fraction of the
XML DocBook format, and convert it to the ARTICLE format defined here. Then
you'll apply the ARTICLE stylesheet to generate an HTML version.

Note: This example processes small-dochook-article.xml using docbookToAr-
ticle.xs1, and articlelc.xs1. The result is the HTML code shown in filter-
out.txt. (The browser-displayable versions are small-docbook-article-
xm1.html, docbookToArticle-xs1.html, articlelc-xs1.html, and filter-
out.htm1.) Seethe O’ Reilly Web pagesfor agood description of the DocBook arti-
cleformat.

Start by creating a small article that uses a minute subset of the XML DocBook
format:

<?xm1 version="1.0"7>
<Article>
<ArtHeader>
<Title>Title of my (Dochook) article</Title>
</ArtHeader>
<Sectl>
<Title>Title of Section 1.</Title>
<Para>This is a paragraph.</Para>
</Sectl>
</Article>

Next, create a stylesheet to convert it into the ARTICLE format:

<xsT1:stylesheet
xmlns:xs1="http://www.w3.0rg/1999/XSL/Transform”
version="1.0"
>
<xs1:output method="xml1"/> (seeNote#1)

<xs1:template match="/">
<ARTICLE>
<xs1:apply-templates/>
</ARTICLE>

</xs1:template>

<!-- Lower level titles strip out the element tag --> (see
Note #2)

284

XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

<!-- Top-Tevel title -->

<xs1:template match="/Article/ArtHeader/Title"> (seeNote#3)
<TITLE> <xsT1:apply-templates/> </TITLE>

</xsT1:template>

<xs1:template match="//Sectl"> (seeNote#4)
<SECT><xs1:apply-templates/></SECT>
</xsT1:template>

<xsT:template match="Para">
<PARA><xsT1:apply-templates/></PARA> (see Note#5)
</xsT1:template>

</xsT:stylesheet>

Notes:

1. Thistime, the stylesheet is generating XML output.

2. The element below matches the main title. For section titles, the tag gets
stripped. (Since no template conversion governs thosetitle elements, they
are ignored. The text nodes they contain, however, are still echoed as a
result of XSLT’s built in template rules. More on that below.)

3. Thetitle from the DocBook article header becomes the ARTICLE title.
4. Numbered section tags are converted to plain SECT tags.
5. Carries out a case conversion, so Para becomes PARA.

Although it hasn’t been mentioned explicitly, XSLT defines a number of built-in
(default) template rules. The complete set is listed in Section 5.8 of the spec.
Mainly, they provide for the automatic copying of text and attribute nodes, and
for skipping comments and processing instructions. They also dictate that inner
elements are processed, even when their containing tags that don't have tem-
plates. That is the reason that the text node in the section title is processed, even
though the section title is not covered by any template.

Now, run the FilterChain program, passing it the stylesheet above, the ARTI-
CLE stylesheet, and the small DocBook file, in that order. The result should like
this:

<html>

<body>

<hl align="center">Title of my (Docbook) article</hl>
<h1>Title of Section 1.</hl>

<p>This is a paragraph.</p>

</body>

</html>

CONCLUSION 285

Conclusion

Congratulations! You have completed the XSLT tutorial! There is a lot you do
with XML and XSLT, and you are now prepared to explore the many exciting
possibilities that await.

286 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS

Java™ API for XML
Messaging

Maydene Fisher

THE Java™ API for XML Messaging (“JAXM”) makes it possible for devel-
opersto do XML messaging using the Java™ platform. This document will help
you learn how to use JAXM.

For more information on JAXM, see the JAXM documentation included with
the Java Web Services Developer Pack (“Java WSDP’) at

<JWDP_HOME>/docs/jaxm/index.html

The Java WSDP includes the following material related to JAXM:

» The API specification (Javadoc™ documentation) for JAXM
 TheJAXM 1.0.1 EA1 Reference | mplementation (RI)
 Various documents about the RI

» Sample applications that can be run with the JAXM RI

This document gives instructions for running the Rl as a way to help you get
started. You may prefer to go through both the overview and tutorial before run-
ning the samples to make it easier to understand what the RI is doing, or you
may prefer to explore the RI first. The overview gives some of the conceptual
background behind the JAXM API to help you understand why certain things are
done the way they are. The tutorial shows you how to use the basic JAXM API,
giving examples and explanations of the more commonly used features. Finally,
the code examples show how to build an application that you can run.

287

288

JAVA™ AP| FOR XML MESSAGING

In This Chapter
Overview of JAXM 288
Messages 288
Connections 291
Messaging Providers 293
Running the Samples 295
The Sample Programs 296
The Provider Administration Tool 297
Tutorial 299
Client without a M essaging Provider 299
Client with a Messaging Provider 306
Adding Attachments 312
Code Examples 315
Request.java 316
MyUddiPing.java 318

Overview of JAXM

This overview presents a high level view of how JAXM messaging works and
explains conceptsin general terms. Its goal isto give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at JAXM from three perspectives:

* Messages
e Connections
* Messaging providers

Messages

JAXM messages follow SOAP standards. That is, they conform to the Simple
Object Access Protocol (SOAP) 1.1 and SOAP with Attachments specifications,
which prescribe the format for messages and also specify some things that are
required, optional, or not allowed. With the JAXM API, you can create XML
messages that conform to these SOAP specifications simply by making Java API
cals.

MESSAGES

The Structure of an XML Document

Note: For more complete information on XML documents, see Understanding
XML (page 31) and Java™ API for XML Processing (page 73).

An XML document has a hierarchical structure with elements, subelements, sub-
subelements, and so on. You will notice that many of the JAXM classes and
interfaces represent XML elements in a SOAP message and have the word ele-
ment or SOAP or both in their names.

An element is also referred to as a node. Accordingly, the JAXM API has the
interface Node, which is the base class for al the classes and interfaces that rep-
resent XML elements in a SOAP message. There are also methods such as
SOAPETement.addTextNode, Node.detachNode, and Node.getValue, which
you will see how to usein the tutorial section.

What Is in a Message?

The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments

The following outline shows the very high level structure of a JAXM message
with no attachments. Except for the SOAP header, al the parts listed are
required.

I. SOAP message
A. SOAP part
1. SOAP envelope
a. SOAP header (optional)
b. SOAP body

The JAXM API provides the SOAPMessage class to represent a SOAP message,
SOAPPart to represent the SOAP part, SOAPEnvelope to represent the SOAP
envelope, and so on.

When you create a new SOAPMessage object, it will automatically have the parts
that are reguired to be in a SOAP message. In other words, a new SOAPMessage

289

290

JAVA™ AP| FOR XML MESSAGING

object has a SOAPPart object that contains a SOAPEnveTope object. The SOAPEn-
velope object in turn automatically contains an empty SOAPHeader object fol-
lowed by an empty SOAPBody object. If you do not need the SOAPHeader object,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

Messages with Attachments

A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part may contain only XML content; as aresult, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So, if for example, you want your message to contain an image file or plain
text, your message must have an attachment part for it. Note than an attachment
part can contain any kind of content, so it can contain datain XML format as
well.

The following outline shows the high-level structure of a SOAP message that
has two attachments, one containing plain text and one containing an image.

I. SOAP message
A. SOAP part
1. SOAP envelope
a. SOAP header (optional)
b. SOAP body
B. Attachment part (content is plain text)
C. Attachment part (content is an imagefile)

JAXM provides the AttachmentPart class to represent the attachment part of a
SOAP message.

A SOAPMessage object automatically has a SOAPPart object and its required sub-
elements, but because AttachmentPart objects are optional, you have to create
and add them yourself.

The tutoria section will walk you through creating and populating messages
with and without attachment parts.

Another way to look at JAXM messaging is from the perspective of whether or
not a messaging provider is used, which is discussed at the end of the section
Messaging Providers (page 293).

CONNECTIONS

Connections

All JAXM messages are sent and received over a connection. The connection
can go directly to a particular destination or to a messaging provider. (A messag-
ing provider is a service that handles the transmission and routing of messages
and provides features not available when you use a connection that goes directly
to its ultimate destination. Messaging providers are explained in more detail
later.)

The JAXM API supplies the following class and interface to represent these two
kinds of connections:

1. SOAPConnection — a connection from the sender directly to the receiver
(a point-to-point connection)
2. ProviderConnection — aconnection to a messaging provider

SOAPConnection

A SOAPConnection object, which represents a point-to-point connection, is sim-
ple to create and use. One reason is that you do not have to do any configuration
to use a SOAPConnection object because it does not need to run in a servlet con-
tainer (like Tomcat) or a J2EE container. It is the only kind of connection avail-
able to aclient that does not use a messaging provider.

The following code fragment creates a SOAPConnection object and then, after
creating and populating the message, uses the connection to send the message.
The parameter request is the message being sent; endpoint represents whereit is
being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();
SOAPConnection con = factory.createConnection();

.// create a request message and give it content

SOAPMessage response = con.call(request, endpoint);

When a SOAPConnection object is used, the only way to send a message is with
the method ca11, which transmits its message and then blocks until it receives a
reply. Because the method cal1 requires that a response be returned to it, this
type of messaging is referred to as request-response messaging.

291

292

JAVA™ AP| FOR XML MESSAGING

A Web service implemented for request-response messaging must return a
response to any message it receives. As stated in the previous section, a request-
response message will always be sent using the SOAPConnection.call method,
which requires that a message be returned to unblock it. Most often, the message
being sent is arequest, and the message that is returned is the response.

When the message is an update, the response is an acknowledgement that the
update was received. Such an acknowledgement implies that the update was suc-
cessful. Some messages may not require any response at al. The service that
gets such a message is still required to send back a response because one is
needed to unblock the call method. In this case, the response is not related to
the content of the message; it is simply amessage to unblock the cal1 method.

Unlike a client with no messaging provider, which is limited to using only a
SOAPConnection object, a client that uses a messaging provider isfree to use a
SOAPConnection object or a ProviderConnection object. It is expected that
ProviderConnection objects will be used most of the time.

ProviderConnection

A ProviderConnection object represents a connection to a messaging provider.
(The next section explains more about messaging providers.) When you send a
message via a ProviderConnection object, the message goes to the messaging
provider. The messaging provider forwards the message, following the mes-
sage’srouting instructions, until the message gets to the ultimate recipient’s mes-
saging provider, which in turn forwards the message to the ultimate recipient.

When an application is using a ProviderConnection object, it must use the
method ProviderConnection.send to send a message. This method transmits
the message one way and returns immediately, without having to block until it
gets aresponse. The messaging provider that receives the message will forward
it to the intended destination and return the response, if any, at alater time. The
interval between sending a request and getting the response may be very short,
or it may be measured in days. In this style of messaging, the original messageis
sent as a one-way message, and any response is sent subsequently as a one-way
message. Not surprisingly, this style of messaging is referred to as one-way mes-

saging.

MESSAGING PROVIDERS

Messaging Providers

A messaging provider is a service that handles the transmission and routing of
messages. It works behind the scenes to keep track of messages and see that they
are sent to the proper destination or destinations.

Transparency

One of the great features of a messaging provider is that you are not even aware
of it. You just write your JAXM application, and the right things happen. For
example, when you are using a messaging provider and send a message by call-
ing the ProviderConnection.send method, the messaging provider receives the
message and works with other parts of the communications infrastructure to per-
form various tasks, depending on what the message’s header contains and how
the messaging provider itself has been implemented. The result is that the mes-
sage arrives at its final destination without your being aware of any of the details
involved in accomplishing the delivery.

Profiles

JAXM offers the ability to plug in additiona protocols that are built on top of
SOAP. A JAXM provider implementation is not required to implement features
beyond what the SOAP 1.1 and SOAP with Attachments specifications require,
but it is free to incorporate other standard protocols, called profiles, that are
implemented on top of SOAP. For example, the “ebXML Routing, Transport,
and Packaging V1.0—Message Service Specification” defines levels of service
that are not included in the two SOAP specifications. A messaging provider that
is implemented to include ebXML capabilities on top of SOAP capabilities is
said to support an ebXML profile. A messaging provider may support multiple
profiles, but an application can use only one at a time and must have a prior
agreement with each of the parties to whom it sends messages about what profile
is being used.

Profiles affect a message’'s headers. For example, depending on the profile, a
new SOAPMessage object will come with certain headers already set. Also a pro-
file implementation may provide API that makes it easier to create a header and
set its content. The JAXM RI includes APIs for both the ebXML and SOAP-RP
profiles. The Javadoc documentation for these profiles is at
<JWSDP_HOME>/docs/jaxm/profiles/index.html. (You will find links to the
Javadoc documentation for the JAXM API at <JWSDP_HOME>/ap1i/index.html.)

293

294

JAVA™ AP| FOR XML MESSAGING

Continuously Active

A messaging provider works continuously. A JAXM client may make a connec-
tion with its provider, send one or more messages, and then close the connection.
The provider will store the message and then send it. Depending on how the pro-
vider has been configured, it will resend a message that was not successfully
delivered until it is successfully delivered or until the limit for the number of
resends is reached. Also, the provider will stay in a waiting state, ready to
receive any messages that are intended for the client. The provider will store
incoming messages so that when the client connects with the provider again, the
provider will be able to forward the messages. In addition, the provider generates
error messages as needed and maintains a log where messages and their related
error messages are stored.

Intermediate Destinations

When a messaging provider is used, a message can be sent to one or more inter-
mediate destinations before going to the final recipient. These intermediate desti-
nations, called actors, are specified in the message’'s SOAPHeader object. For
example, assume that a message is an incoming Purchase Order. The header
might route the message to the order input desk, the order confirmation desk, the
shipping desk, and the billing department. Each of these destinations is an actor
that will take the appropriate action, remove the header information relevant to
it, and send the message to the next actor. The default actor is the final destina-
tion, so if no actors are specified, the message is routed to the final recipient.

The attribute actor is used to specify an intermediate recipient. A related attribute
iS mustUnderstand, which, when its value is true, means that an actor must under-
stand what it is supposed to do and carry it out successfully. A SOAPHeader
object uses the method addAttribute to add these attributes, and the SOAPHead-
erElement interface provides methods for setting and getting the values of these
attributes.

When to Use a Messaging Provider

A JAXM client may or may not use a messaging provider. Generally speaking, if
you just want to be a consumer of web services, you do not need a messaging

MESSAGING PROVIDERS 295

provider. The following list shows some of the advantages of not using a mes-
saging provider:

« The application can be written using the 2SE platform

e Theapplication is not required to be deployed in a container such as Tom-
cat or a XEE container

* No configuration is required
The limitations of not using a messaging provider are the following:

¢ The client can send only request-response messages
e Theclient can act in the client role only

It follows that if you want to provide a web service, meaning that you must be
able to get and save requests that are sent to you at any time, you must use ames-
saging provider. You will also need to run in a container, which provides the
messaging infrastructure used by the provider. A messaging provider gives you
the flexibility to assume both the client and service roles, and it also lets you
send one-way messages. |n addition, if your messaging provider supports a pro-
tocol such as ebXML or SOAP-RP on top of SOAP, you can take advantage of
the additional quality of service featuresthat it provides.

Messaging with and without a Provider

JAXM clients can be categorized according to whether or not they use a messag-
ing provider. Those that do not use a messaging provider can be further divided
into those that run in a container and those that do not. A JAXM client that does
not use amessaging provider and also does not run in a container is called a stan-
dalone client.

Running the Samples

The JAXM Reference Implementation (RI) is an implementation of the JAXM
API plus an implementation of a messaging provider. The RI also includes basic
implementations of ebXML and SOAP-RP profiles, which run on top of SOAP.
When an enterprise shops for a messaging provider, one of the main consider-
ations is which profiles the messaging provider supports.

The RI also provides some simple examples of JAXM applications that you can
run and also a Provider Administration tool that makes it easy to configure the

messaging provider.

296 JAVA™ AP| FOR XML MESSAGING

Before you can run the samples that run in a container or use the Provider
Administration tool, you need to start up Tomcat. These are the stepsto follow:
1. type thefollowing at the command line:
Unix:

cd $IWSDP_HOME/bin
startup.sh

Windows;

cd %IWSDP_HOME%\bin
startup.bat

2. Open abrowser window and set it to
http://localhost:8080/index.html

3. On the page that comes up, click on one of the sample programs listed.
Then follow the instructions in the new window that comes up.

The Sample Programs

The sample programs illustrate various kinds of applications you can write with
the JAXM API. Once Tomcat is running, you can run the following sample pro-
grams provided with the RI simply by setting your browser to the appropriate
URL and following the instructions on the Web page that comes up.

« Simple— A simple example of sending and receiving amessage using the
local messaging provider

¢ Trandator — A simple translation service that translates text into different
languages

* JAXM Tags — An example that uses JSP tags to generate and consume a
SOAP message

¢ Remote— An example of around trip message that uses a JAXM messag-
ing provider that supports the basic ebXML profile to send and receive a
message

¢ SOAP-RP— An example of around trip message that usesa JAXM mes-

saging provider that supports the basic SOAP-RP profile to send and
receive a message

THE PROVIDER ADMINISTRATION ToOL

There are two other sample programs, jaxm-uddiping and jaxm-standalone,
that do not run in Tomcat. To run them, go to the <JWSDP_HOME>/sampTes/jaxm
directory, where you will find the directories uddiping and standalone. Each
directory contains a README file that explains what to do.

The last part of the JAXM tutorial modifies the code in UddiPing. java and also
explains in detail how to run it. You might find it more convenient to wait until
you have reached that section before trying to run the jaxm-uddiping and jaxm-
standalone samples.

The preceding list presented the sample applications according to what they do.
You can also look at the sample applications as examples of the three possible
types of JAXM clients:

¢ Those that do not use a messaging provider and also do not runin a
container
These are called standalone applications. The samples jaxm-standalone
and jaxm-uddiping are examples of standalone clients.

* Thosethat do not use a messaging provider and run in a container
The samples Simple, Tranglator, and JAXM Tags are examples of this
type. Simple differs from the other two in that it uses a local provider,
which should not be confused with a messaging provider. The local pro-
vider is simply a mechanism for returning the reply to a message that was
sent using the method SOAPConnection.call.

¢ Those that use a messaging provider and run in a container
The samples Remote and SOAP-RP are examples of thistype. The JAXM
RI includes an implementation of a messaging provider and also imple-
mentations of two profiles that operate on top of SOAP. Remote uses the
implementation of an ebXML profile, and SOAP-RP uses the implemen-
tation of a SOAP-RP profile.

The Provider Administration Tool

The same index.htm1 page with links to the samples has a link to the Provider
Administration tool. Thistool requires auser name and password for authentica-
tion, which you will have to set up before you can use the tool. All that is
involved in the setup is simply opening the file tomcat-users.xm1 and uncom-
menting the element for provideradmin. Here are the stepsto follow:

1. Open the file <JWSDP_HOME>/conf/tomcat-users.xml in your favorite
editor

297

298 JAVA™ AP| FOR XML MESSAGING

2. Delete the comment tags (“<!--") and (“-->") that are before and after the
following element

<users name="jaxm-provideradmin” password="changeme”
role="provider”/>

3. If Tomcat is running, you will need to shut it down and start it up again.
Thisis so that Tomcat will see the revised version of tomcat-users.xml.
Here are the instructions for shutting Tomcat down and then starting it up
again:

Unix:
cd $IWSDP_HOME/bin

shutdown. sh
startup.sh

Windows;
cd %IWSDP_HOME%\bin

shutdown.bat
startup.bat

4. Set your browser window to
http://localhost:8080/index.html

5. Click on the link “JAXM Provider Administration Tool”. A window will
come up with text boxes for your login name and password.
Use the name and password in the file tomcat-users.xm1, which are

user name: jaxm-provideradmin
password: changeme

When the Provider Administration tool comes up, follow the instructions it
gives. Thistool is normally used by System Administrators, but others may use
it aswell. Exploring thistool gives you more of anidea of what a messaging pro-

CLIENT WITHOUT A MESSAGING PROVIDER 299

vider needs to know. For example, some typical ways to change the provider
properties are:
e To add, modify, or delete an endpoint

¢ To change the retry interval (the amount of time the provider will wait
before trying to send a message again)

« To change the number of retries (the number of timesthe provider will try
to send a message)

¢ To change the directory where the provider logs messages

Tutorial

This section will walk you through the basics of sending a SOAP message using
the JAXM API. At the end of this chapter, you will know how to do the follow-

ing:

» Get aconnection

¢ Create amessage

¢ Add content to a message

¢ Send the message

* Retrieve the content in a message and an attachment
First, we'll walk through the steps in sending a request-response message for a
client that does not use a messaging provider. Then we'll do a walkthrough of a
client that uses a messaging provider sending a one-way message. Both types of

client may add attachments to a message, so adding attachments is covered last
as a separate topic.

Client without a Messaging Provider

An application that does not use a messaging provider islimited to operating in a
client role and can send only request-response messages. Though limited, it can
make use of Web services that are implemented to do request-response messag-

ing.

300

JAVA™ AP| FOR XML MESSAGING

Getting a SOAPConnection Object

The first thing any JAXM client needs to do is get a connection, either a SOAP-
Connection object or aProviderConnection object. The overview section dis-
cusses these two types of connections and how they are used.

A client that does not use a messaging provider has only one choice for creating
a connection, which is to create a SOAPConnection object. Thiskind of connec-
tion is a point-to-point connection, meaning that it goes directly from the sender
to the URL that the sender specifies.

The first step is to obtain a SOAPConnectionFactory object that you can use to
create your connection. The JAXM APl makes this easy by providing the SOAP-
ConnectionFactory class with a default implementation. You can get an
instance of thisimplementation with the following line of code.

SOAPConnectionFactory scFactory =
SOAPConnectionFactory.newInstance();

Notice that because newInstance is a static method, you will always use the
class name SOAPConnectionFactory when you invoke its newInstance
method.

Now you can use scFactory to create a SOAPConnection object.
SOAPConnection con = scFactory.createConnection();

You will use con later to send the message that is created in the next part.

Creating a Message

The next step is to create a message, which you do using a MessageFactory
object. If you are a standalone client, you can use the default implementation of
the MessageFactory class that the JAXM API provides. The following code
fragment illustrates getting an instance of this default message factory and then
using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

Asistrue of the newInstance method for SOAPConnectionFactory, the newIn-
stance method for MessageFactory is static, so you invoke it by caling Mes-
sageFactory.newInstance. Note that it is possible to write your own

CLIENT WITHOUT A MESSAGING PROVIDER

implementation of a message factory and plug it in via system properties, but the
default message factory will almost always be the one that is used.

The other way to get a MessageFactory object is to retrieve it from a naming
service where it has been registered. This way is available only to applications
that use a messaging provider, and it will be covered later.

Parts of a Message

A SOAPMessage object is required to have certain elements, and the JAXM API
simplifies things for you by returning a new SOAPMessage object that aready
contains these elements. So message, which was created in the preceding line of
code, has the following:

I. A SOAPPart object that contains
A. A SOAPEnveTope object that contains
1. An empty SOAPHeader object
2. An empty SOAPBody object

The SOAPHeader object, though optional, is included for convenience because
most messages will useit. The SOAPBody object can hold the content of the mes-
sage and can also contain fault messages that contain status information or
details about a problem with the message.

Accessing Elements of a Message

The next step in creating a message is to access its parts so that content can be
added. The SOAPMessage oObject message, created in the previous code fragment,
iswhereto start. It contains a SOAPPart object, SO you use message to retrieve it.

SOAPPart soapPart = message.getSOAPPart();
Next you can use soapPart to retrieve the SOAPEnvelope object that it contains.
SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use envelope tO retrieve its empty SOAPHeader and SOAPBody
objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

301

302

JAVA™ AP| FOR XML MESSAGING

Our example of a standalone client does not use a SOAP header, so you will
need to delete it. Because all SOAPETlement objects, including SOAPHeader
objects, are derived from the Node interface, you use the method Node . detach-
Node to delete header.

header.detachNode();

Adding Content to the Body

To add content to the body, you need to create a SOAPBodyETement object to hold
the content. When you create any new element, you also need to create an asso-
ciated Name object to identify it. Name objects are created using SOAPEnvelope
methods, so you can use envelope from the previous code fragment to create the
Name object for your new element.

Name objects associated with SOAPBody and SOAPHeader objects must be fully
gualified; that is, they must be created with a local name, a prefix for the
namespace being used, and a URI for the namespace. Specifying a hamespace
for an element makes clear which one is meant if there is more than one element
with the same local name.

The code fragment that follows retrieves the SOAPBody object body from envelope,
creates aName object for the element to be added, and adds a new SOAPBodyETe-
ment object to body.

SOAPBody body
Name bodyName

envelope.getBody();
envelope.createName(“GetLastTradePrice”,

m”, “http://wombat.ztrade.com”);
SOAPBodyElement gltp = body.addBodyETement(bodyName) ;

At this point, body contains a SOAPBodyETement object identified by the Name
object bodyName, but there is still no content in gitp. Assuming that you want to
get a quote for the stock of Sun Microsystems, Inc., you need to create a child
element for the symbol using the method addChildETement. Then you need to
give it the stock symbol using the method addTextNode. The Name object for the
new SOAPETement object symbol is initialized with only alocal name, which is
allowed for child elements.

Name name = envelope.createName("symbol1");
SOAPETement symbol = gltp.addChildETlement(name);
symbol.addTextNode(“SUNW”) ;

You might recall that the headers and content in a SOAPPart object must be in
XML format. The JAXM API takes care of thisfor you, building the appropriate

CLIENT WITHOUT A MESSAGING PROVIDER 303

XML constructs automatically when you call methods such as addBodyETement,
addChildETement, and addTextNode. Note that you can cal the method
addTextNode only on an element such as bodyElement or any child elements that
are added to it. You cannot call addTextNode on a SOAPHeader Or SOAPBody
object.

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
xmlns :SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m=
"http://wombat.ztrade.com">
<symbo1>SUNW</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let's examine this XML excerpt line by line to see how it relates to your JAXM
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

JAXM code:

SOAPPart soapPart = message.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();

XML it produces:

<SOAP-ENV:Envelope

xmlns :SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
e e . . (intervening elements omitted)

</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Envelope is the name of the element, and
SOAP-ENV is the namespace prefix. The interface SOAPEnvelope represents a
SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line has an attribute for the SOAP envelope element. xm1ns stands

304

JAVA™ AP| FOR XML MESSAGING

for "XML namespace,” and its value is the URI of the namespace associated
with Envelope. Thisattribute is automatically included for you.

JAXM code:
SOAPBody body = envelope.getBody();
XML it produces:
<SOAP-ENV:Body>
</SOAP—ENV:éoay;-

These two lines mark the beginning and end of the SOAP body, represented in
JAXM by a SOAPBody object.

JAXM code;

Name bodyName = envelope.createName("GetLastTradePrice",

m", "http://wombat.ztrade.com");
SOAPBodyElement gltp = body.addBodyETement(bodyName) ;

XML it produces:

<m:GetlLastTradePrice xmlns:m=
"http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyETement gitp in your code represents. "Get-
LastTradePrice” is its local name, "m" is its namespace prefix, and
"http://wombat.ztrade.com” is its namespace URI.

JAXM code;

Name name = envelope.createName("symbol1");
SOAPETement symbol = gltp.addChildETlement(name);
symbol.addTextNode("SUNW") ;

XML it produces:
<symbo1>SUNW</symbol>

The String "SUNW" is the message content that your recipient, the stock quote
service, receives.

CLIENT WITHOUT A MESSAGING PROVIDER

Sending a Message

A standalone client uses a SOAPConnection object and must therefore use the
SOAPConnection method call to send a message. This method takes two argu-
ments, the message being sent and the destination to which the message should
go. This message is going to the stock quote service indicated by the URLEnd-
point object endpoint.

URLEndpoint endpoint = new URLEndpoint(
‘http://wombat.ztrade.com/quotes™);

SOAPMessage response = con.call(message, endpoint);

Your message sent the stock symbol SUNW,; the SOAPMessage object response
should contain the last stock price for Sun Microsystems, which you will retrieve
in the next section.

A connection uses afair amount of resources, so it isagood ideato close a con-
nection as soon as you are through using it.

con.close();

Getting the Content of a Message

The initial stepsfor retrieving a message’s content are the same as those for giv-
ing content to a message: You first access the SOAPBody object, using the mes-
sage to get the envelope and the envelope to get the body. Then you access its
SOAPBodyETement object because that isthe element to which content was added
in the example. (In alater section you will see how to add content directly to the
SOAPBody object, in which case you would not need to access the SOAPBodyETe-
ment object for adding content or for retrieving it.) To get the content, which was
added with the method Node.addTextNode, Yyou cal the method
Node.getValue. Notethat getvalue returns the value of the immediate child of
the element that calls the method. Therefore, in the following code fragment,
getValue is caled on bodyElement, the element on which the method addText-
Node was called.

In order to access bodyElement, you need to call the method getChi1dETement On
body. Passing bodyName t0 getChildElement returns a java.util.Iterator
object that contains al of the child elements identified by the Name object
bodyName. You already know that there is only one, so just calling the method
next on it will return the SOAPBodyETement you want. Note that the method

305

306 JAVA™ AP| FOR XML MESSAGING

Iterator.next returns a Java Object, so it is necessary to cast the Object it
returns to a SOAPBodyElement object before assigning it to the variable
bodyElement.

SOAPPart sp = response.getSOAPPart();

SOAPEnvelop env = sp.getEnvelope();

SOAPBody sb = sp.getBody();

java.util.Iterator it = sb.getChildETements(bodyName);
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

If there were more than one element with the name bodyName, you would have
had to use awhile loop using the method Iterator.hasNext to make sure that
you got all of them.

while (it.hasNext()) {
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

}

At this point, you have seen how to send a request-response message as a standa-
lone client. You have also seen how to get the content from the response. The
next part shows you how to send a message using a messaging provider.

Client with a Messaging Provider

Using a messaging provider gives you more flexibility than a standalone client
has because it can take advantage of the additional functionality that a messaging
provider can offer.

Getting a ProviderConnection Object

Whereas a SOAPConnection object is a point-to-point connection directly to a
particular URL, a ProviderConnection object is a connection to a messaging
provider. With this kind of connection, all messages that you send or receive go
through the messaging provider.

CLIENT WITH A MESSAGING PROVIDER

As with getting a SOAPConnection object, the first step is to get a connection
factory, but in this case, it is a ProviderConnectionFactory object. You can
obtain a ProviderConnectionFactory object by retrieving it from a naming
service. This is possible when your application is using a messaging provider
and is deployed in a servlet or J2EE container. With a ProviderConnection-
Factory oObject, you can create a connection to a particular messaging provider
and thus be able to use the capabilities of a profile that the messaging provider
supports.

To get aProviderConnectionFactory object, you first supply the logical name
of your messaging provider to the container at deployment time. This is the
name associated with your messaging provider that has been registered with a
naming service based on the Java Naming and Directory Interface™ ("JNDI").
You can then do alookup using this name to obtain a ProviderConnectionFac-
tory object that will create connections to your messaging provider. For exam-
ple, if the name registered for your messaging provider is “ProviderABC”, you
can do a lookup on “ProviderABC” to get a ProviderConnectionFactory
object and use it to create a connection to your messaging provider. Thisiswhat
isdone in the following code fragment. The first two lines use methods from the
JNDI API to retrieve the ProviderConnectionFactory object, and the last line
uses a method from the JAXM API to create the connection to the messaging
provider. Note that because the INDI method Tookup returns a JavaObject, you
must convert it to a ProviderConnectionFactory object before assigning it to
the variable pcFactory.

Context ctx = new InitialContext();
ProviderConnectionFactory pcFactory =
(ProviderConnectionFactory)ctx.lookup("ProviderABC");

ProviderConnection pcCon = pcFactory.createConnection();

You will use pcCon, which represents a connection to your messaging provider, to
get information about your messaging provider and to send the message you will
create in the next section.

Creating a Message

You create all JAXM messages by getting aMessageFactory object and using it
to create the SOAPMessage object. For the standalone client example, you simply
used the default MessageFactory object obtained via the method MessageFac-
tory.newInstance. However, when you are using a messaging provider, you
obtain the MessageFactory object in adifferent way.

307

308

JAVA™ AP| FOR XML MESSAGING

Getting a MessageFactory

If you are using a messaging provider, you create a MessageFactory object by
using the method ProviderConnection.createMessageFactory. In addition,
you pass it a String indicating the profile you want to use. To find out which
profiles your messaging provider supports, you need to get a ProviderMetaData
object with information about your provider. Thisis done by calling the method
getMetaData on the connection to your provider. Then you need to call the
method getSupportedProfiles to get an array of the profiles your messaging
provider supports. Supposing that you want to use the ebXML profile, you need
to seeif any of the profilesin the array matches "ebxml". If there is a match, that
profile is assigned to the variable profile, which can then be passed to the method
createMessageFactory.

ProviderMetaData metaData = pcCon.getMetaData();
String[] supportedProfiles = metaData.getSupportedProfiles();
String profile = null;

for (int i=0; i < supportedProfiles.length; i++) {
if (supportedProfiles[i].equals("ebxm1")) {
profile = supportedProfiles[i];
break;

}

MessageFactory factory = pcCon.createMessageFactory(profile);

You can now use factory to create a SOAPMessage object that conforms to the
ebXML profile. This example uses the minimal ebXML profile used in the
JAXM RI. Note that the following line of code uses the class EbXMLMEssage-
Imp1, whichisdefined in the JAXM RI and is not part of the JAXM API.

EbXMLMessageImpl message = (EbXMLMessageImpl)factory.
createMessage();

For this profile, you need to indicate the Endpoint objects for the sender and the
receiver. This information will appear in the message’s header, and the messag-
ing provider will use it to determine where to send the message. The following
lines of code use the methods setSender and setReceiver, which are provided
by the ebXML profile implemented in the JAXM RI. These methods not only
create a SOAPHeader object but also give it content. You can use these methods

CLIENT WITH A MESSAGING PROVIDER

because your SOAPMessage object is an EbXMLMessageImp1 object, giving you
access to the methods defined in EbXMLMessageImpl.

message.setSender(new Party("http://grand.products.com™));
message.setReceiver(new Party("http://whiz.gizmos.com"));

If you are not using a profile or you want to set content for a header not covered
by your profile’'simplementation, you need to follow the steps shown in the next
section.

Adding Content to the Header
To add content to the header, you need to create a SOAPHeaderETement object.
Aswith all new elements, it must have an associated Name object, which you cre-
ate using the message’s SOAPEnveTope object.

The following code fragment retrieves the SOAPHeader object from envelope and
adds anew SOAPHeaderETement Object to it.

SOAPHeader header = envelope.getHeader();
Name headerName = envelope.createName("Purchase Order",

"PQ", "http://www.sonata.com/order");
SOAPHeaderElement headerElement =

header.addHeaderElement (headerName) ;

At this point, header contains the SOAPHeaderETement Object headerElement identi-
fied by the Name object headerName. Note that the addHeaderElement method
both creates header Element and adds it to header.

Now that you have identified header Element with headerName and added it to header,
the next step is to add content to headerElement, which the next line of code does
with the method addTextNode.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderElement
object whose content is"order".

Adding Content to the SOAP Body

The process for adding content to the SOAPBody object is the same for clients
using a messaging provider asit isfor standalone clients. Thisis aso the same as
the process for adding content to the SOAPHeader object. You access the SOAP-
Body object, add a SOAPBodyETement Object to it, and add text to the SOAP-

309

310

JAVA™ AP| FOR XML MESSAGING

BodyElement object. It is possible to add additional SOAPBodyETement Objects,
and it is possible to add subelements to the SOAPBodyETement objects with the
method addChiTdETement. For each element or child element, you add content
with the method addTextNode.

The section on the standal one client demonstrated adding one SOAPBodyETement
object, adding a child element, and giving it some text. The following example
shows adding more than one SOAPBodyETement and adding text to each of them.

The code first creates the SOAPBodyETement object purchaseLineltems, which has a
fully-qualified namespace associated with it. That is, the Name object for it has a
local name, a namespace prefix, and a hamespace URI. As you saw earlier, a
SOAPBodyETement object is required to have a fully-qualified namespace, but
child elements added to it may have Name objects with only the local name.

SOAPBody body
Name bodyName

envelope.getBody();
envelope.createName("PurchaseLineItems", "PO",
"http://sonata.fruitsgalore.com”);
SOAPBodyETement purchaselLineltems =
body.addBodyETement(bodyName) ;

Name childName = envelope.createName("Order");
SOAPETement order =
purchaselLineItems.addChiTdElement(childName);

childName = envelope.createName("Product");
SOAPETement product = order.addChildETement(childName);
product.addTextNode ("Apple");

childName = envelope.createName("Price");
SOAPETement price = order.addChildElement(chiTdName);
price.addTextNode("1.56");

childName = envelope.createName("Order");
SOAPETement order2 =
purchaselLineItems.addChiTdElement(childName);

childName = envelope.createName("Product");
SOAPETement product2 = order2.addChiTldETement(childName);
product2.addTextNode("Peach");

childName = envelope.createName("Price");
SOAPETement price2 = order2.addChildETement(childName);
price2.addTextNode("1.48");

CLIENT WITH A MESSAGING PROVIDER

The JAXM code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaselLineIltems
xmlns:PO="http://www.sonata.fruitsgalore/order">
<Order>
<Product>Apple</Product>
<Price>1.56</Price>
</0Order>

<Order>
<Product>Peach</Product>
<Price>1.48</Price>
</0Order>
</PO:PurchaseLineltems>

Adding Content to the SOAPPart Object

If the content you want to send isin afile, JAXM provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody
object and build the XML content yourself, as you did in the previous section.

To add a file directly to the SOAPPart object, you use a javax.xml.trans-
form.Source object from JAXP (the Java™ API for XML Processing). There
arethreetypes of Source objects: SAXSource, DOMSource, and StreamSource. A
StreamSource object holds content as an XML document. SAXSource and DOM-
Source objects hold content along with the instructions for transforming the con-
tent into an XML document.

The following code fragment uses JAXP API to build a DOMSource object that is
passed to the SOAPPart.setContent method. The first two lines of code get a
DocumentBuilderFactory object and use it to create the DocumentBuilder
object builder. Then builder parses the content file to produce a Document object,
which is used to initialize a new DOMSource object.

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.

newInstance();
DocumentBuilder builder = dbFactory.newDocumentBuilder();
Document doc = builder.parse("file:///music/order/soap.xm1");
DOMSource domSource = new DOMSource(doc);

The following two lines of code access the SOAPPart object and set the new
DOMSource object as its content. The method SOAPPart.setContent not only

311

312

JAVA™ AP| FOR XML MESSAGING

sets content for the SOAPBody object but also sets the appropriate header for the
SOAPHeader object.

SOAPPart soapPart = envelope.getSOAPPart();
soapPart.setContent(domSource);

You will see other ways to add content to a message in the section on Attach-
mentPart objects. One big difference to keep in mind is that a SOAPPart object
must contain only XML data, whereas an AttachmentPart object may contain
any type of content.

Sending the Message

When the connection isaProviderConnection object, messages have to be sent
using the method ProviderConnection.send. This method sends the message
passed to it and returns immediately. Unlike the SOAPConnection method call,
it does not have to block until it receives aresponse, which |eaves the application
free to do other things.

The send method takes only one argument, the message to be sent. It does not
need to be given the destination because the messaging provider can use infor-
mation in the header to figure out where the message needs to go.

pcCon.send(message);
pcCon.close();

Adding Attachments

Adding AttachmentPart objects to a message is the same for al clients,
whether they use a messaging provider or not. As noted in earlier sections, you
can put any type of content, including XML, in an AttachmentPart object. And
because the SOAP part can contain only XML content, you must use an Attach-
mentPart object for any content that is not in XML format.

Creating an AttachmentPart Object and
Adding Content
The SOAPMessage object creates an AttachmentPart object, and the message

also has to add the attachment to itself after content has been added. The SOAP-
Message class has three methods for creating an AttachmentPart object.

ADDING ATTACHMENTS

The first method creates an attachment with no content. In this case, an Attach-
mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment with the AttachmentPart method setContent.
This method takes two parameters, a Java Object for the content, and a String
object that gives the content type. Content in the SOAPBody part of a message
automatically has a Content-Type header with the value "text/xml" because the
content has to be an XML document. In contrast, the type of content in an
AttachmentPart object has to be specified because it can be any type.

Each AttachmentPart object has one or more headers associated with it. When
you specify a type to the method setContent, that type is used for the header
Content-Type. Content-Type is the only header that is required. You may set
other optional headers, such as Content-Id and Content-Location. For conve-
nience, JAXM provides get and set methods for the headers Content-Type,
Content-1d, and Content-L ocation. These headers can be helpful in accessing a
particular attachment when a message has multiple attachments. For example, to
access the attachments that have particular headers, you call the SOAPMessage
method getAttachments and pass it the header or headers you are interested in.

The following code fragment shows one of the ways to use the method setCon-
tent. The Java Object being added is a String, which contains plain text, so
the second argument has to be “text/plain”. The code also sets a content identi-
fier, which can be used to identify this AttachmentPart object. After you have
added content to attachment, you need to add attachment to the SOAPMessage object,
which is donein the last line.

String stringContent = "Update address for Sunny Skies +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain™);
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The variable attachment now represents an AttachmentPart object that contains
the String stringContent and has a header that contains the String “text/plain”. It
also has a Content-1d header with “update address’ as its value. And now
attachment is part of message.

Let's say you aso want to attach a jpeg image showing how beautiful the new
location is. In this case, the second argument passed to setContent must be

313

314

JAVA™ AP| FOR XML MESSAGING

"image/jpeg" to match the content being added. The code for adding an image
might look like the following. For the first attachment, the Object passed to the
method setContent WasaString. Inthiscase, itisastream.

AttachmentPart attachment2 = message.createAttachmentPart();

byte[] jpegData = . . .;
ByteArrayInputStream stream = new ByteArrayInputStream(
jpegData);

attachment2.setContent(stream, "image/jpeg");

message.addAttachmentPart(attachment);

The other two SOAPMessage.createAttachment methods create an Attach-
mentPart object complete with content. Oneisvery similar to the Attachment-
Part.setContent method in that it takes the same parameters and does
essentially the same thing. It takes a Java Object containing the content and a
String giving the content type. As with AttachmentPart.setContent, the
Object may be a String, a stream, a javax.xml.transform.Source, Or a
javax.activation.DataHandler oObject. You have already seen an example of
using a Source object as content. The next example will show how to use a
DataHandler object for content.

The other method for creating an AttachmentPart object with content takes a
DataHandler object, which is part of the JavaBeans™ Activation Framework
(JAF). Using a DataHandler object is fairly straightforward. First you create a
java.net.URL object for the file you want to add as content. Then you create a
DataHandler object initialized with the URL object and pass it to the method
createAttachmentPart.

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dh = new DataHandler(url);
AttachmentPart attachment = message.createAttachmentPart(dh);
attachment.setContentId("gyro_image");

message.addAttachmentPart(attachment);

You might note two things about the previous code fragment. First, it sets a
header for Content-ID with the method setContentId. This method takes a
String that can be whatever you like to identify the attachment. Second, unlike
the other methods for setting content, this one does not take a String for the
Content-Type. This method takes care of setting the Content-Type header for

ADDING ATTACHMENTS 315

you, which is possible because one of the things a DataHandler object does is
determine the data type of the file it contains.

Accessing an AttachmentPart Object

If you receive a message with attachments or want to change an attachment to a
message you are building, you will need to access the attachments. When it is
given no argument, the method SOAPMessage.getAttachments returns a
java.util.Iterator object over al the AttachmentPart objectsin a message.
The following code prints out the content of each AttachmentPart object in the
SOAPMessage 0bject message.

java.util.Iterator it = message.getAttachments();
while (it.hasNext()) {
AttachmentPart attachment = it.next();
Object content = attachment.getContent();
String id = attachment.getContentId();

System.out.print("Attachment " + id + " contains: +
content);
System.out.printin("");
}
Summary

You have now used the basic JAXM API and seen how to create and send SOAP
messages as a standalone client and as a client using a messaging provider. You
have added content to a SOAP header and a SOAP body and also created attach-
ments and given them content. In addition, you have seen how to retrieve the
content from the SOAP part and from attachments.

Congratulations on learning how to use the basic JAXM API.

Code Examples

Thefirst part of thistutorial used code fragments to walk you through the basics
of using the JAXM API. This section puts some of the code fragments you cre-
ated into the program Request. java and also creates the application MyUdd1iP-
ing.java, which you can run.

316

JAVA™ AP| FOR XML MESSAGING

Note: <JWSDP_HOME> is the directory where you unpacked the Java Web Services
Developer Pack. The code examples use the Unix form $JWSDP_HOME; for Win-
dows, substitute the equivalent form %JWSDP_HOME%.

Request.java

The class Request.java is shown here and is also included in the
<JWSDP_HOME>/docs/tutorial/examples/jaxm directory. It is based on the
message you built as an example of a standalone client sending a request-

REQUEST.JAVA

response message. In addition to putting all the code together, it adds import
statements, amain method, and a try/catch block with exception handling.

import
import
import
import

public

javax.xml.soap.*;
javax.xml.messaging.*;
java.io.*;
java.util.*;

class Request {

public static void main(String[] args){

try {

SOAPConnectionFactory scFactory =
SOAPConnectionFactory.newInstance();
SOAPConnection con = scFactory.createConnection();

MessageFactory factory =
MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

SOAPPart soapPart = message.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();
SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();
header.detachNode();

Name bodyName = envelope.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

SOAPBodyElement gltp =

body.addBodyElement(bodyName) ;

Name name = envelope.createName("symbol1");
SOAPETement symbol = gltp.addChildETement(name);
symbol.addTextNode ("SUNW") ;

URLEndpoint endpoint = new URLEndpoint(
"http://wombat.ztrade.com/quotes™);
SOAPMessage response = con.call(message,
endpoint);

con.close();

SOAPPart sp = response.getSOAPPart();
SOAPEnvelope se = sp.getEnvelope();
SOAPBody sb = se.getBody();

Iterator it = sb.getChildETements(bodyName);

317

318

JAVA™ AP| FOR XML MESSAGING

SOAPBodyETement bodyElement =
(SOAPBodyETement)it.next();
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();

3
3

In order for Request. java to be runnable, the URLEndpoint object in it hasto be
avalid existing site, which is not true in this case. However, the application in
the next section is one that you can run.

MyUddiPing.java

The sample program UddiPing.java is another example of a standalone appli-
cation. A Universal Description, Discovery and Integration (UDDI) serviceis a
business registry and repository from which you can get information about busi-
nesses that have registered themselves with the registry. In this case, the uddi P-
ing application is not actually accessing a UDDI service registry but rather atest
(demo) version. Because of this, the number of businesses you can get informa-
tion about is limited. Nevertheless, UddiPing demonstrates a request being sent
and a response being received. The application prints out the complete message
that is returned, that is, the complete XML document as it looks when it comes
over the wire. Later in this section you will see how to rewrite UddiPing. java
so that in addition to printing out the entire XML document, it also prints out just
the text content of the response. This makesit much easier to see the information
you want.

In order to get a better idea of how to run the UddiPing example, take alook at
the directory <JWSDP_HOME>/samples/jaxm/uddiping. This directory contains
the subdirectory src and the files run.sh, uddi.properties, UddiPing.class,
and README. The README file tells you what you need to do to run the application,
which is explained more fully here.

The README file directs you to modify the file build.properties, which con-
tains the URL of the destination (the UDDI test registry) and the proxy host and
proxy port of the sender. You will need to modify this file so that it has your
proxy host and your proxy port. If you are in the uddiping directory when you

MYUDDIPING.JAVA

call the run.sh script, the information in the run script should be correct
already.

The run.sh script calsthe java command on Uddi Ping. First it setsthe location
of the java command and then prints a usage message if two arguments are not
supplied. Perhaps the main thing it doesisto set your classpath so that the neces-
sary .jar files can be found.

Here iswhat you type at the command line if you want to get information about,
for example, Oracle:

run.sh uddi.properties Oracle

Executing the run script as shown in the preceding command line should pro-
duce an XML document with the name and description of Oracle as the content.
However, these are embedded in the XML document, which makes them diffi-
cult to see. The next section adds code to UddiPing.java that extracts the con-
tent so that it is readily visible.

Creating MyUddiPing.java

To make the response to UddiPing.java easer to read, you will create a new
file called MyuddiPing.java, which extracts the content and prints it out. You
will see how to write the new file later in this section after setting up anew direc-
tory with the necessary files. Because the name of the new file is MyUddiP-
ing.java, you need to create the directory myuddiping under the
<JWSDP_HOME> /sampTles/jaxm directory. Then copy al of the files from the
uddiping directory into the myuddiping directory.

cd $IWSDP_HOME/samples/jaxm
mkdir myuddiping
cp uddiping/* myuddiping

Open run. sh and change UddiPing to MyUddiPing so that the run script will be
called on the correct file.

TheMyUddiPing.class filewill be added to the directory myuddiping as part of
the execution of the run.sh script. The run.sh script will be examined more
later.

319

320

JAVA™ AP| FOR XML MESSAGING

The src directory will not have been copied from uddiping because it is not a
file, so you need to create your own src directory. Then go to the src directory
and create thefile MyUddiPing. java using your favorite editor.

cd myuddiping
mkdir src

For convenience, you can copy MyUddiPing.java from the examples directory
to your new src directory asfollows:

UNIX:

cd $IWSDP_HOME/docs/tutorial/examples/jaxm
cp MyUddiPing.java $JWSDP_HOME/samples/jaxm/myuddiping/src

Windows;

cd %IWSDP_HOME%\docs\tutorial\examples\jaxm
cp MyUddiPing.java %JWSDP_HOME%\sampTlels\jaxm\myuddiping\src

Now let's go through the file a few lines at a time. Note that most of the class
MyUddiPing.java is based on UddiPing.java. You will be adding a section at
the end that accesses only the content you want from the response that is
returned by the method call.

Thefirst four lines of code import the packages used in the application.

import javax.xml.soap.*;
import javax.xml.messaging.*;
import java.util.*;

import java.io.*;

The next few lines begin the definition of the class MyUddiPing, which starts
with the definition of its main method. The first thing it does is check to see if
two arguments were supplied. If not, it prints a usage message and exits. (Note
that if one of the run scripts is used, the check will already have been done, so
there will always be two argumentsto get to this point.)

public class MyUddiPing {
public static void main(String[] args) {
try {
if (args.length != 2) {

MYUDDI PING.JAVA 321

System.err.println("Usage: UddiPing " +
"properties-file business-name™);
System.exit(l);
3

The following lines create a java.util.Properties file that contains the sys-
tem properties and the properties from the file uddi.properties that isin the
myudd1iping directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[0]));
Properties props = System.getProperties();
Enumeration it = myprops.propertyNames();
while (it.hasMoreElements()) {

String s = (String) it.nextElement();

props.put(s, myprops.getProperty(s));
}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of MessageFactory and usesit to create a message.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();
SOAPConnection connection =
scf.createConnection();
MessageFactory msgFactory =
MessageFactory.newInstance();
SOAPMessage msg = msgFactory.createMessage();

The new SOAPMessage object msg automatically contains a SOAPPart object that
contains a SOAPEnveTope object. The SOAPEnveTope oObject contains a SOAPBody
object, which is the element you want to access in order to add content to it. The
next lines of code get the SOAPPart object, the SOAPEnvelope object, and the
SOAPBody object.

SOAPEnvelope envelope =
msg.getSOAPPart().getEnvelope();
SOAPBody body = envelope.getBody();

The following lines of code add an element with a fully-qualified name and then
add two attributes to the new element. The first attribute has the name
"generic" and the value "1.0". The second attribute has the name "maxRows"
and the value "100". Then the code adds a child element with the name name and
adds some text to it with the method addTextNode. The text added isthe String

322 JAVA™ AP| FOR XML MESSAGING

object that was passed in as the second argument, which is the name of the busi-
ness that is being searched for in the test registry.

SOAPBodyElement findBusiness =
body.addBodyETement(
envelope.createName("find_business",
"M, "urn:uddi-org:api™));

findBusiness.addAttribute(

envelope.createName("generic”, "1.0");
findBusiness.addAttribute(
envelope.createName("maxRows", "100");

SOAPETement businessName =
findBusiness.addChiTdETement(
envelope.createName("name"));

businessName.addTextNode(args[1]);

The next line of code creates the URLEndpoint object that is the destination for
this message. It gets the value of the property named "URL" from the system
property file.

URLEndpoint endpoint = new URLEndpoint(
System.getProperties().getProperty("URL"));

The following line of code saves the changes that have been made to the mes-
sage. This method will be called automatically when the message is sent, but it
does not hurt to call it explicitly.

msg.saveChanges();

Next the message msg is sent to the destination that endpoint represents, which is
the test UDDI registry. The method ca11 will block until it gets a SOAPMessage
object back, at which point it returns the reply.

SOAPMessage reply = connection.call(msg,
endpoint);

In the next two lines, the first prints out a line giving the URL of the sender (the
test registry), and the second prints out the returned message as an XML docu-
ment.

System.out.println("Received reply from: +
endpoint);
reply.writeTo(System.out);

MYUDDI PING.JAVA 323

The code thus far has been based on UddiPing.java. If you go to the uddiping
directory and call the appropriate run script, you can see what the output looks
like.

UNIX:

cd $IWSDP_HOME/samples/jaxm/uddiping
run.sh uddi.properties Microsoft

Windows;

cd %IWSDP_HOME%\samples\jaxm\uddiping
run.bat uddi.properties Microsoft

What appears on your screen will look something like this:

Received replyfrom:
http://www3.ibm.com/services/uddi/testregistry/inquiryapi<?xm
T version="1.0" encoding="UTF-8" ?><Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"><Body><busi
nessList generic="1.0" xmlns="urn:uddi-org:api”
operator="www.ibm.com/services/uddi"
truncated="false"><businessInfos><businessInfo
businessKey="D7475060-BF58-11D5-A432-
0004AC49CC1E"><name>Microsoft Corporation</name><description
xm1:Tang="en">Computer Software and Hardware
Manufacturer</description><servicelInfos></serviceInfos></busi
nessInfo></businessInfos></businessList></Body></Envelope>

Adding New Code

Now you are going to add code to make the reply more user-friendly. Your new
code will get the content from certain elements rather than printing out the whole
XML document as it was sent over the wire. Because the content isin the SOAP-
Body object, the first thing you need to do is access it, as shown in the following
line of code. You can access each element in separate method calls, as was done
in earlier examples, or you can access the SOAPBody object using this shorthand
version.

SOAPBody replyBody =
reply.getSOAPPart().getEnvelope() .getBody();

324

JAVA™ AP| FOR XML MESSAGING

Next you might print out two blank lines to separate your results from the raw
XML message and athird line that describes the text that follows.

System.out.printin("");

System.out.printin("");
System.out.print(
"Content extracted from the reply message: ");

Now you can begin the process of getting al of the child elements from an ele-
ment, getting the child elements from each of those, and so on, until you arrive at
a text element that you can print out. Unfortunately, the registry used for this
example code, being just atest registry, is not always consistent. The number of
subelements sometimes varies, making it difficult to know how many levels
down the code needs to go. And in some cases, there are multiple entries for the
same company name.

The code you will be adding drills down through the subelements within the
SOAP body and retrieves the name and description of the company in most
cases. The method you use to retrieve child elementsis the SOAPETement method
getChildETements. When you give this method no arguments, it retrieves all of
the child elements of the element on which it is caled. If you know the Name
object used to name an element, you can supply that to getChildETements and
retrieve only the children with that name. In this case, however, you need to
retrieve all elements and keep drilling down until you get to the elements that
contain text content.

Here isthe basic pattern that is repeated for drilling down:

Iterator iterl = replyBody.getChildETements();
while (iterl.hasNext()) {
SOAPBodyETement bodyElement =
(SOAPBodyETement)iterl.next();
Iterator iter2 =
bodyElement.getChildETlements();
while (iter2.hasNext()) {

The method getChildElements returns the elements in the form of a
java.util.Iterator object. You access the child elements by calling the
method next on the Iterator object. The method Iterator.hasNext can be
used in a while loop because it returns true as long as the next call to the
method next will return a child element. The loop ends when there are no more
child elementsto retrieve.

MYUDDI PING.JAVA 325

Animmediate child of a SOAPBody object is a SOAPBodyE1ement object, whichis
why calling iterl.next returns a SOAPBodyETement object. Children of SOAP-
BodyETement objects and all child elements from there down are SOAPETement
objects. For example, the call iter2. next returnsthe SOAPETement object child2.
Note that the method Iterator.next returns an Object, which has to be nar-
rowed (cast) to the specific kind of object you are retrieving. Thus, the result of
calling iterl.next is cast to a SOAPBodyETement object, whereas the results of
caling iter2.next, iter3.next, and so on, are all cast t0 a SOAPETement
object.

Hereis the code you add to access and print out the company name and descrip-
tion:

Iterator iterl = replyBody.getChildETements();
while (iterl.hasNext()) {
SOAPBodyElement bodyElement =
(SOAPBodyETement)iterl.next();
Iterator iter2 =
bodyElement.getChildETements();
while (iter2.hasNext()) {
SOAPETement child2 =
(SOAPETement)iter2.next();
Iterator 1iter3 =
child2.getChildETlements();
String content = child2.getValue();
System.out.printin(content);
while (iter3.hasNext()) {
SOAPETement child3 =
(SOAPETement)iter3.next();
Iterator iter4 =
child3.getChildElements();
content = child3.getValue();
System.out.printin(content);
while (iter4.hasNext()) {
SOAPETement child4 =
(SOAPETement)iterd.next();
content = child4.getValue(Q);
System.out.printin(content);

}
}
connection.close();
} catch (Exception ex) {

326

JAVA™ AP| FOR XML MESSAGING

ex.printStackTrace();

}

You are now ready to compile the code and move the new .class file to the
directory myuddiping. If you have not already done so, you can copy the file
MyUddiPing.java from <JWSDP_HOME>/docs/tutorial/examples/jaxm tO
<JWSDP_HOME>/samples/jaxm/myuddiping/src. When you execute the
appropriate run script, which you will do next, it will compile MyUddiPing.java
and move the resulting MyUddiPing.class file to the myuddiping directory for
you.

First, you will need to copy the run script in the examples directory of the tuto-
rial to the myuddiping directory asfollows:

unix:

cd $IWSDP_HOME/samples/jaxm/myuddiping
cp $IWSDP_HOME/docs/tutorial/jaxm/examples/run.sh .

Windows;

cd %IWSDP_HOME%\samples\jaxm\myuddiping
cp %IWSDP_HOME%\docs\tutorial\jaxm\examples\run.bat .

To get a description of, for instance, Oracle, execute the appropriate run script
from the myuddiping directory. If you are already in the directory myuddiping,
you can, of course, ignore the linesthat cd to it.

Note: If the run script is not executable, you will need to make it executable.

unix:

cd $IWSDP_HOME/samples/jaxm/myuddiping
run.sh uddi.properties Oracle

Windows;

cd %IWSDP_HOME%\samples\jaxm\myuddiping
run.bat uddi.properties Oracle

MYUDDIPING.JAVA

Here is the output that will appear after the full XML message. It is produced by
the code added in MyUddiPing. java.

Content extracted from the reply message:

Oracle
oracle powers the internet

Oracle Corporation
Oracle Corporation provides the software and services for e-
business.

Running the script with Microsoft instead of Oracle produces the following out-
put:

Received reply from: http://www-
3.ibm.com/services/uddi/testregistry/inquiryapi

<?xm1 version="1.0" encoding="UTF-8" 7><Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"><Body><busi
nessList generic="1.0" xmlns="urn:uddi-org:api”
operator="www.ibm.com/services/uddi"
truncated="false"><businessInfos><businessInfo
businessKey="D7475060-BF58-11D5-A432-
0004AC49CC1E"><name>Microsoft Corporation</name><description
xm1:Tang="en">Computer Software and Hardware
Manufacturer</description><servicelInfos></serviceInfos></busi
nessInfo></businessInfos></businessList></Body></Envelope>

Content extracted from the reply message:

Microsoft Corporation
Computer Software and Hardware Manufacturer

Conclusion

JAXM provides a Java API that simplifies writing and sending XML messages.
You have learned how to use this API to write client code for JAXM request-
response messages and one-way messages. You have a so learned how to get the
content from a reply message. Finally, you have seen how to write and run your
own modification of the uddiping sample application. You now have first-hand
experience of how JAXM makesit easier to do XML messaging.

327

328 JAVA™ AP| FOR XML MESSAGING

Java™ API for
XML-based RPC

Dale Green

I F you’re new to the Java™ API for XM L-based RPC (“JAX-RPC"), this chap-
ter isthe place to start. After briefly describing JAX-RPC, the chapter shows you
how to build a simple Web service and client.

Although it starts with the basics, this chapter does have a few prerequisites.
First, you should aready be familiar with the Java programming language. You
should also know how to install software, set environment variables, edit XML
files, and run commands from a terminal window. A basic knowledge of Web
serversis helpful, but not required.

Since this material is based on an early access (EA) release, it does not cover the
full capabilities of JAX-RPC. If you're interested in learning more about JAX-
RPC and its underlying technologies, please see the list of links on the
<JAXRPC_HOME>/index.htm1 page of your installation.

In This Chapter
What is JAX-RPC? 330
A Simple Example: Helloworld 331
Helloworld at Runtime 331
Helloworld Files 333
Overview of Steps 333
Setting Up 333
Coding the Service Definition Interface and Implementation Class 334
Compiling the Service Definition Code 335

329

Bios.html

330

JAVA™ AP| FOR XML-BASED RPC

Creating the Configuration File 335
Generating the Stubs and Ties 336
Creating the Deployment Descriptor 337
Packaging the Service Definition 338
Deploying the Service Definition 339
Coding the Client 340
Compiling the Client Code 341
Running the Client 341
The Dynamic Invocation | nterface 342
When to Use DI 342
A DIl Client Example 343

What is JAX-RPC?

JAX-RPC stands for Java APl for XML-based RPC. It's an API for building
Web services and clients using remote procedure calls (RPC) and XML. Ofien
used in a distributed client/server model, an RPC mechanism enables clients to
execute procedures on other systems.

In JAX-RPC, aremote procedure call is represented by an XM L-based protocol
such as SOAP. The SOAP specification defines envelope structure, encoding
rules, and a convention for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages over HTTP. The
JAX-RPC reference implementation relies on SOAP 1.1 and HTTP 1.1.

Although JAX-RPC relies on complex protocols, the API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. After locating the
service endpoint by specifying a URL, the client simply invokes the methods on
alocal object (astub) that represents the remote service.

With JAX-RPC, clients and Web services have a big advantage— the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a Web service that is not running on the
Java platform and vice versa. Thisflexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTP, SOAP,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages. The

HELLOWORLD AT RUNTIME

JAX-RPC reference implementation includes a tool (xrpcc) that can read or
write WSDL files. See the appendix, The xrpcc Tool (page 519).

A Simple Example: HelloWorld

This example shows you how to create a service named HelloWorld. A remote
client of the HelloWorld service can invoke the sayHello method, which
accepts a string parameter and then returns a string.

HelloWorld at Runtime

Figure 1 shows the structure of the He1TloWor1d service after it's been deployed.
Here's what happens at runtime:

1

To call aremote procedure, the He110CT1ient program invokes a method
on astub, alocal object that represents the remote service.

. The stub invokes routinesin the JAX-RPC runtime system of the reference

implementation.

. Theruntime system convertsthe remote method call into a SOAP message

and then transmits the message as an HTTP request.

. When the server receives the HTTP request, the JAX-RPC runtime system

extracts the SOAP message from the request and translatesit into amethod
call.

. The JAX-RPC runtime system invokes the method on the tie object.
. The tie object invokes the method on the implementation of the Hel-

ToWorld service.

331

332

JAVA™ AP| FOR XML-BASED RPC

HelloClient HeIIqurId
Service
Program
Stubs Ties
Runtime

HTTP

Figurel TheHelloWorld Example at Runtime

The application developer only provides the top layers in the stacks depicted by
Figure 1. Table 1 shows where the layers originate.

Tablel Who (or What) Providesthe Layers

Layer Source

HelloClient Program
HeTlloWor1d Service (definition interface Provided by the application devel oper
and implementation class)

Stubs Generated by the xrpcc tool, which isrun by
Ties the application developer

JAX-RPC Runtime

System Included with the reference implementation

HELLOWORLD FILES 333

HelloWorld Files

To create service, an application devel oper needs to provide just a few files. For
the HelloWorld example, these files are in the docs/tutorial/exam-
ples/jaxrpc/hello subdirectory:

* HelloIF.java - the service definition interface

e HelloImpl.java - the implementation classfor the He110IF interface

* config.xml - aconfiguration fileread by the xrpcc tool, which createsthe
stub and tie classes

* web.xml - adeployment descriptor for the Web component (a servlet) that
dispatches to the service

* HelloClient.java - the remote client that contacts the service and then
invokes the sayHe110 method

Overview of Steps

The basic steps for developing a service definition are as follows:

1. Code the service definition interface and implementation class.
2. Compile the service definition code of step 1.

. Create the configuration file.

. Generate the stubs and ties.

. Create the deployment descriptor.

. Package the service definition.

7. Deploy the service definition.

o O~ W

On the client side, these are the steps:

1. Codethe client.
2. Compile the client code.
3. Runtheclient.

Setting Up

Before you try out the HelloWor1d example, verify that you've instaled the
required software and that you' ve set the necessary environment variables.

../examples/jaxrpc/hello/HelloIF.java
../examples/jaxrpc/hello/HelloImpl.java
../examples/jaxrpc/hello/HelloClient.java

334

JAVA™ AP| FOR XML-BASED RPC

Required Software

For a list of the required software and supported operating systems, see the
Release Notes of the Java Web Services Developer Pack.

The Java Web Services Developer Pack includes Tomcat and the ant build util-
ity. You must use the included version of Tomcat to run the examplesin thistuto-
rial. Although you may use a separate installation of ant, we recommend that
you run the included version in order to avoid confusion over incompatible ver-
sions.

Environment Variables

Before you try out the HeTlloWorld example, you must set some environment
variables. For more information, see the Release Notes of the Java Web Services
Developer Pack.

Setting build.xml Properties

If you are on a Windows system, you may skip this section.
1. In a text editor, open the docs/tutorial/examples/jaxrpc/com-
mon/config-build.properties file.

2. If you are on a UNIX system, change the value of the script-suffix
property to sh. For Windows, the value should be bat, which isthe default.

3. Savethe config-build.properties file and exit the editor.

Coding the Service Definition Interface
and Implementation Class

A service definition interface declares the methods that a remote client may
invoke on the service. The interface must conform to afew rules:

* |t extendsthe java. rmi.Remote interface.

* |t must not have constant declarations, such aspublic final static.

¢ The methods must throw the java. rmi.RemoteException or one of its
subclasses. (The methods may also throw service-specific exceptions.)

¢ Method parameters and return types must be supported JAX-RPC types.
(See section 5.1 of the JAX-RPC Specifications.)

COMPILING THE SERVICE DEFINITION CODE 335

In this example, the service definition interface is He110IF. java:

package hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extendsRemote {

public String sayHello(String s) throwsRemoteException;
}

In addition to the interface, you'll need to code the class that implements the
interface. In this example, the implementation classis called He11oImp1:

package hello;

public class HelloImpl implementsHellolF {
public String message = new String(“Hello “);
public String sayHello(String s) {

return new String(message + s);

}

Compiling the Service Definition Code

To compile HelloIF.java and HelloImpl.java, go to the docs/tuto-
rial/examples/jaxrpc/hello directory and type the following:

ant compile-server

This command places the resulting classfilesin the bui1d subdirectory.

Creating the Configuration File

The config.xml file contains information needed by the xrpcc tool, which
you'll runin the next section.

In the file listing that follows, note the values defined in the <service> element.
The name of the service, HelloWor1d, will be used as the prefix of the Hel-
ToWor1dImpl class name. Generated by the xrpcc tool, the He11oWor1dImpl is
ingtantiated by the client class. (See Coding the Client (page 340).) The packa-

336

JAVA™ AP| FOR XML-BASED RPC

geName attribute, he1lo, is the name of the package of the classes generated by
xrpcc. In the <interface> subelement, the name attribute corresponds to the
fully qualified name of the service definition interface, hel1o.HelloIF. The
servantName attribute is the name of the interface’s implementation class,
hello.HelloImpl.

Hereisthe config.xm1 file:

<?xml version="1.0" encoding="UTF-8"7>
<configuration
xmlns="http://java.sun.com/jax-rpc-ri/xrpcc-config”>
<rmi name="HelloWorldService”
targetNamespace="http://hello.org/wsd1”
typeNamespace="http://hello.org/types”>
<service name="HelloWorld” packageName="helo”>
<interface name="hdlo.HellolF”
servantName="hello.Hellolmpl” />
</service>
</rmi>
</configuration>

For more information about the syntax of the tool’s configuration file, see the
section Configuration File (page 521).

Note: Although required for the reference implementation of JAX-RPC, the config-
uration file and xrpcc tool are not defined in the specifications. Their syntax and
usage may change in future releases.

Generating the Stubs and Ties

The xrpcc tool generates the stubs and ties, which are lower-level classes that
enable the client and server to communicate. The tool also creates a properties
fileand aWSDL file. Used internally by the reference implementation, the prop-
erties file is not defined in the specifications. For information about the relation-
ship between JAX-RPC technology and WSDL files, please refer to the JAX-
RPC specifications.

In this example, the tool reads the service definition interface and the configura-
tion file. (Alternatively, the tool may read a WSDL file instead of the interface.
See Starting With a WSDL Document (page 523) for more information.)

CREATING THE DEPLOYMENT DESCRIPTOR 337

The xrpcc tool isascript—xrpcc.sh for UNIX or xprcc.bat for Windows. To
create the stubs and ties, run the tool asfollows:

UNIX:

xrpcc.sh -classpath build -both -d build config.xml
Windows:

xrpcc.bat -classpath build -both -d build config.xml

The -both option instructs xrpcc to generate both stubs and ties. The -d option
denotes the destination directory for the generated files. See the section
Syntax (page 519) for the full syntax of the xrpcc toal.

Creating the Deployment Descriptor

A deployment descriptor isan XML file that provides configuration information
for the Web server about the Web components (JSP pages or servlets) that are in
a Web application. Because the HelloWor1d service is deployed as a servlet, the
deployment descriptor has some elements that are related to the service. This
section describes only those elements; for more information about deployment
descriptors, see the Java Servlet Specifications.

Let's take aquick look at a couple of the elements in the deployment descriptor
(web.xm1). First, notethe He1ToWorld_Config.properties value of the <init-
param> element. This properties file was generated by the xrpcc tool. The name
of the file is the He1loWor1d service name (which was defined in the configura
tion file) appended by the _Config.properties string. The value of the <ur1-
pattern> element, /jaxrpc/*, is part of the URL that designates the service's
endpoint. This URL is passed to the HeT11oCl1ient program as a command-line
parameter. See Running the Client (page 341).

Theweb.xm1 deployment descriptor follows:

<?xml1 version="1.0" encoding="UTF-8"7>

<!DOCTYPE web-app PUBLIC
“-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

<web-app>
<display-name>HeTlloWorTdApplication</display-name>

338

JAVA™ AP| FOR XML-BASED RPC

<description>HelTlo World Application</description>
<servilet>
<servlet-name>JAXRPCEndpoint</servlet-name>
<display-name>JAXRPCEndpoint</display-name>
<description>
Endpoint for Hello World Application
</description>
<servlet-class>
com.sun.xml.rpc.server.http.JAXRPCServiet
</servlet-class>
<init-param>
<param-name>configuration.file</param-name>
<param-value>
/WEB_INF/HelloWorld_Config.properties
</param-value>
</init-param>
<load-on-startup>0</Toad-on-startup>
</serviet>
<servlet-mapping>
<servlet-name>JAXRPCEndpoint</servlet-name>
<url-patterns/jaxrpc/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>60</session-timeout>
</session-config>

</web-app>

Packaging the Service Definition

A service definition is packaged in a Web application archive (WAR), aJJAR file
whose contents is defined by the Java Servlet specifications. WAR files make it
easy to distribute and install (deploy) the service on various sites. In alater step,
you will deploy the jaxrpc-hello.war file on Tomcat. For JAX-RPC, a WAR

file contains the following files:

One or more service definition interfaces

Each service definition has a single interface, but a WAR file may contain
the files for more than one service. In this example, the service definition

interfaceisHel10IF.class.

One or more service definition classes that implement the interfaces
For each service definition interface, you must provide a corresponding

service implementation class (He11oImpl.class).

e Classes for pluggable serializers and deserializers

DEPLOYING THE SERVICE DEFINITION 339

This example does not require these files. (See the JAX-RPC Specifica-
tions for more information.)

« Other filesrequired by the service implementation classes

Examples of these files are; helper classes, JPEG images, and XML docu-
ments. Since it's so simple, the HelloImp1 class does not need any of
these other files.

A deployment descriptor
All WAR files require a deployment descriptor (web.xm1).

* Anoptiona WSDL file that describes the service

In a previous section, you created the He1TloWorl1dService.wsd1 file by
running the xrpcc toal.

In addition to the preceding list of files, in the JAX-RPC reference implementa-
tion aWAR file aso contains several files generated by the xrpcc tool: tie, serv-
let, and helper classes; and a server configuration file
(He1loWorld_Config.properties).

To package the He11oWor1d service definition, type the following:
ant package

This command creates the jaxrpc-hello.war file.

Deploying the Service Definition

To deploy the service definition, you simply copy the WAR file to Tomcat's
webapps directory:

ant deploy

The first time you deploy a WAR file, Tomcat must be started. For subsequent
deployments of the same WAR file, you do not need to start or restart Tomcat.
Because you are about to deploy the jaxrpc-hello.war file for the first time, if
Tomcat is running now, you must shut it down and then restart it.

To shut down (stop) Tomcat, type the following command in a terminal window:
UNIX:

shutdown. sh

340

JAVA™ AP| FOR XML-BASED RPC

Windows,
shutdown

To start Tomcat, type this command:
UNIX:

startup.sh
Windows:
startup

To verify that the He171oWor1d service has been deployed, open a browser win-
dow and specify this URL.:

http://localhost:8080/jaxrpc-hello/jaxrpc
The browser should display these lines:
A Web Service is installed at this URL.

It supports the following ports: “HelloIF”
(http://localhost:8080/jaxrpc-hello/jaxrpc/HeT10IF)

Coding the Client

The He1l1oClient is a stand-alone program that calls the sayHe11o method of
the He1loWor1d service. It makes this call through a stub, a local object which
acts as aproxy for the remote service.

In the code listing that follows, note the names of the He110IF_Stub and Hel-
ToWorldImpl classes, which were generated by the xrpcc tool. The HelloIF
prefix matches the name of the service definition interface and the HelloWor1d
prefix corresponds to the service name specified in the configuration file. The
HelloWorldImpl classisthe implementation of a service as described in section
9.3 of the JAX-RPC specifications. The client gets a reference to the stub by
calling the getHe110IF method of HelloWorldImpl.

The parameter of the _setTargetEndpoint method is a URI that denotes the
address of the target service port. For details on this URI, see Running the
Client (page 341).

COMPILING THE CLIENT CODE

The source code for the He11oC11ent follows;

package hello;

public class HelloClient {
public static void main(String[] args) {
try {
HellolF_Stub stub =
(Hellol F_Stub)(new Hellowor IdI mpl().getHellol F());
stub._setTargetEndpoint(argg0]);
System.out.printin(stub.sayHello(“ Duke!™));
} catch (Exception ex) {
ex.printStackTrace();

}

Compiling the Client Code

Because the client code refers to classes generated by the xrpcc tool, be sure to
run the tool before compiling the client. To compile the client, type the follow-

ing:

ant compile-client

Running the Client

To run the He1ToCT1ent program, type the following:
ant run

The program should display thisline:
Hello Duke!

The run target executes this command:

java -classpath <cpath> hello.HelloClient <endpoint>

341

342

JAVA™ AP| FOR XML-BASED RPC

We created the run-hel70 target because the classpath includes many JAR files.
(The classpath will be simplified in a later release.) The command-line parame-
ter for the He110CT14ent program isthe service endpoint:

http://localhost:8080/jaxrpc-hello/jaxrpc/Hel10IF

The jaxrpc-hello portion of the URL is the context of the servlet that imple-
ments the HelloWorld service. This portion corresponds to the prefix of the
jaxrpc-hello.war file. The jaxrpc string matches the value of the <url1-pat-
tern> element of the web.xm1 deployment descriptor. And finally, He110IF is
the name of the interface that defines the service.

The Dynamic Invocation Interface

With the dynamic invocation interface (DII), a client can call aremote procedure
even if the signature of the remote procedure or the name of the service are
unknown until runtime.

When to Use DIl

Although DII clients are flexible, they are more complex than clients that use
static stubs. (For an example of a client with static stubs, see Coding the
Client (page 340).) Compared to clients with static stubs, clients with DIl are
more difficult to code, debug, and test. Therefore, a client should use DIl only if
it cannot use static stubs.

However, there are two cases that require the flexibility of a DIl client. The first
case is a service broker that dynamically discovers services, configures the
remote calls, and executes the calls. For example, an application for an online
clothing store might access a service broker that specializes in shipping. This
broker would use the Java APl for XML Registries (JAXR) to locate the services
of the shipping companies that meet certain criteria, such as low cost or fast
delivery time. At runtime, the broker uses DIl to call remote procedures on the
web services of the shipping companies. As an intermediary between the cloth-
ing store and the shipping companies, the broker offers benefitsto all parties. For
the clothing store, it simplifies the shipping process, and for the shipping compa-
nies, it finds customers.

The second case requiring DIl is less common: a development environment that
does not support the generation of static stubs.

A DII CLIENT EXAMPLE

A DIl Client Example

The source code for this example is in the HelloClient.java file of the
docs/tutorial/examples/jaxrpc/dynamic directory.

The HelloCTient program makes two remote procedure calls. sayHello and
sayHelloOneWay. The sayHello call is synchronous and follows the familiar
request-response model. During a synchronous call, the client makes the call
(request) and waits for the call’s return (response) before continuing. The say-
He1loOneWay call has a one-way invocation mode. In the one-way mode, the cli-
ent thread does not block and wait for the server to process the remote call. For
more information about invocation modes, see section 8.2.3.1 of the JAX-RPC
Specifications.

DIl Classes and Interfaces

TheHe110C11ent program uses the following interfaces and classes for dynamic
invocation.

e (Call -supports the dynamic invocation of a remote operation on a service
port

* Service - afactory for Cal1l objects, dynamic proxies, and stubs; only
generated services are factories for stubs

e TypeMapping - aset of tuplesthat describe the mapping between Java pro-
gramming language typesand XML datatypes; each TypeMapping isfor a
specific encoding; each tuple in a TypeMapping contains the following
information:
« Java programming language type
e SerializerFactory
* DeserializerFactory
« XML datatype

e TypeMappingRegistry - a storage area (registry) for TypeMapping
instances; this registry enables you to store and retrieve TypeMapping
instances for specific encodings

¢ Qname - aqualified name based on the Namespacesin XML Specifications
To see how to set up and invoke a dynamic invocation, refer to the He1ToCTient

source code that is shown in the next section. As you examine the source code,
note the classes and interfaces that belong to the packages whose names begin

343

../examples/jaxrpc/dynamic/HelloClient.java
../../api/javax/xml/rpc/Call.html
../../api/javax/xml/rpc/Service.html
../../api/javax/xml/rpc/encoding/TypeMapping.html
../../api/javax/xml/rpc/encoding/TypeMappingRegistry.html
../../api/javax/xml/rpc/namespace/QName.html
../../api/javax/xml/rpc/encoding/SerializerFactory.html
../../api/javax/xml/rpc/encoding/DeserializerFactory.html

344

JAVA™ AP| FOR XML-BASED RPC

with com. sun. These packages are specific to the reference implementation and
are not defined in the JAX-RPC Specifications.

DIl HelloClient Listing

Here is the full listing for the HelloClient.java file of the docs/tuto-
rial/examples/jaxrpc/dynamic directory. Note how much longer the DIl cli-
ent is than the static stub client shown in Coding the Client (page 340).

package dynamic;

import

import
import
import
import
import
import

import
import
import

import
import
import
import

import
import

import

java.rmi.RemoteException;

javax.
javax.
javax.
javax.
javax.
javax.

com.s
com.s
com.s

com.s
com.s
com.s
com.s

com.s
com.s

com.s

un.xml.

un.xml

un.xml

un.xml.
un.xml.

un.xml.

xml.rpc.
xml.rpc.
xml.rpc.
xml.rpc.
xml.rpc.
xml.rpc.

rpc.
.rpc.
un.xml.

rpc

.rpc.
un.xml.
un.xml.
un.xml.

rpc

rpc.
rpc.

rpc.
rpc.

rpc.

Call;
Service;
JAXRPCException;
namespace.QName;
encoding.TypeMapping;
encoding.TypeMappingRegistry;

client.Servicelmpl;
client.dii.CallImpl;

encoding.
.encoding
encoding.
.TypeMappingRegistryImpl;

encoding

encoding.
encoding.

.client.dii.CallPropertyConstants;

Initializable;

.TypeMappingImpl;

SerializerConstants;

soap.SOAPConstants;
soap.StandardSOAPTypeMappings;

soap.streaming.SOAPNamespaceConstants;

public class HelloClient implements CallPropertyConstants,
SerializerConstants {

public static void main(String[] args) {

try

{

String bodyNamespaceValue =
new String(“http://dynamic-hello.org/wsdl1”);

QName stringQname =
new QName (SOAPNamespaceConstants.XSD, “string”);

../examples/jaxrpc/dynamic/HelloClient.java

ADII CLIENT EXAMPLE 345

TypeMapping typeMapping =

new StandardSOAPTypeMappings();
TypeMappingRegistry registry =

new TypeMappingRegistryImpl();
registry.register(typeMapping,

SOAPConstants.URI_ENCODING);

QName port = new QName(“HeTT1oIF”);
Service service =

new ServiceImpl(new QName(“Hell0”));
service.setTypeMappingRegistry(registry);

Call call = service.createCall(Q);
call.setPortTypeName(port);
call.setTargetEndpointAddress(args[0]);

call.setProperty(BODY_NAMESPACE_PROPERTY,
bodyNamespaceValue) ;
call.setProperty(IS_SOAPACTION_USED_PROPERTY,
new Boolean(true));
call.setProperty(SOAPACTION_VALUE_PROPERTY, “‘“);
call.setProperty (ENCODING_STYLE_PROPERTY,
SOAPConstants.URI_ENCODING);

((Cal1Imp1)call).setReturnType(stringQname,
String.class);

call.setOper ationName(“ sayHello”);

call.addParameter(“String_1", stringQname,
Call.PARAM_MODE_IN);

String[] params = { new String(“Duke!”) };

String result = (String)call.invoke(params);

System.out.printin(result);

call.setOper ationName(“ sayHelloOneWay”);
call.removeAllParameters();
call.invokeOneWay(null);
System.out.println(“One-way invoked”);

} catch (Exception ex) {
ex.printStackTrace();

}

346 JAVA™ AP| FOR XML-BASED RPC

Building and Running the DIl Example

To build this example, follow these steps.

1. Make sure that you've performed the set up instructions in Setting
Up (page 333) and Coding the Service Definition Interface and Implemen-
tation Class (page 334).

2. Gotothe docs/tutorial/examples/jaxrpc/dynamic directory
3. Type thefollowing:

ant build

This command compiles the code, runs the xrpcc tool, packages the
WAR file, and deploys the WAR file onto the Tomcat server. The section,
A Simple Example: HelloWorld (page 331), instructed you to perform
each of these tasks by executing separate ant targets. The build target
executes the same set of targets, but is more convenient because it
requires less typing.

4. To run the client, type the following command:
ant run
The client should display the following lines:

A dynamic hello to Duke! <time-stamp>
One-way invoked

(Useful for debugging, the time-stamp indicates when the server code for the
example was compiled. You can check the time-stamp to make sure that the cli-
ent is accessing the WAR file most recently built.)

Java™ API for XML
Registries

by Kim Haase

T HE Java™ API for XML Registries (“JAXR”") provides a uniform and stan-
dard Java API for accessing different kinds of XML Registries.

The release of JAXR 1.0 that you have downloaded as part of the Java Web Ser-
vices Developer Pack (“Java WSDP”) includes the following:

* The JAXR 1.0 Early Access Reference Implementation (RI)

* API documentation

e Sample programs, including a Registry Browser
To learn how to configure JAXR in preparation for running JAXR client pro-
grams, see the JAXR home page (<JWSDP_HOME>/docs/jaxr/index.htm1 on

UNIX® systems; <JWSDP_HOME>\docs\jaxr\index.htm1 on Microsoft Win-
dows systems).

In This Chapter
Overview of JAXR 348
What is a Registry? 348
What 1s JAXR? 348
JAXR Architecture 349
Implementing a JAXR Client 350
Establishing a Connection 351
Querying a Registry 353
Managing Registry Data 355

347

Bios.html

348

JAVA™ AP| FOR XML REGISTRIES

Running the Client Examples 360
Using the Registry Browser 362
Querying a Registry 362
Managing Registry Data 363

Overview of JAXR

This section provides a brief overview of JAXR.

What is a Registry?

An XML regigtry is an infrastructure that enables the building, deployment, and
discovery of Web services. It is a neutra third party that facilitates dynamic and
loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of a Web-based servica.

Currently there are avariety of specifications for XML registries. These include

¢ The ebXML Registry and Repository standard, which is being developed
by the Organization for the Advancement of Structured Information Stan-
dards (OASIS) and the United Nations Centre for the Facilitation of Pro-
cedures and Practices in Administration, Commerce and Transport
(U.N./CEFACT)

e The Universal Description, Discovery, and Integration (UDDI) project,
which is being developed by a vendor consortium

What Is JAXR?

JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives devel opers the ability to write registry client programs that are por-
table across different target registries. JAXR also enables value-added capabili-
ties beyond those of the underlying registries.

JAXR ARCHITECTURE

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the ebXML Registry and the
UDDI v1.0 specifications. You can find the latest version of the specification at

http://java.sun.com/xml/downToads/jaxr.html

At thisrelease, the JAXR RI implements the level O capability profile defined by
the JAXR specification. Thislevel allows access to both UDDI and ebXML reg-
istries at a basic level. The RI, however, currently supports access only to UDDI
registries.

Currently several UDDI registries exist. The Java WSDP Registry Server pro-
vides a UDDI-compliant registry that you can use to test your JAXR applica
tions.

Some ebXML registries are under development, but they are not yet generaly
available.

JAXR Architecture

The high-level architecture of JAXR consists of the following parts:

¢ A JAXR client, which uses the JAXR API to accessaregistry viaaJAXR
provider.

* A JAXR provider, which implements the RegistryService interface and
various interfaces in order to alow a client to access registries.

A JAXR provider implements two main packages:

e javax.xml.registry, which consists of the API interfaces and classes
that define the registry access interface.

e javax.xml.registry.infomodel, which consists of interfaces that
define the information model for JAXR. These interfaces define the types
of objects that reside in aregistry and how they relate to each other. The
basic interface in this package is the RegistryObject interface. Its sub-
interfaces include Organization, Service, and ServiceBinding.

The most basic interfacesin the javax.xml.registry package are

e Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use aregistry.

349

http://java.sun.com/xml/downloads/jaxr.html

350 JAVA™ AP| FOR XML REGISTRIES

e RegistryService. The client obtains a RegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, also part of the javax.xm1.registry package, are

* BusinessQueryManager, Which allows the client to search a registry for
information in accordance with the javax.xml.registry.infomodel
interfaces. An optional interface, DeclarativeQueryManager, alows the
client to use SQL syntax for queries. (Thisrelease of the JAXR RI does not
implement DeclarativeQueryManager.)

e BusinessLifeCycleManager, which allowsthe client to modify theinfor-
mation in aregistry by either saving it (updating it) or deleting it.

When an error occurs, JAXR APl methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR API use a Collection object as an argument or a
returned value. Using a Col1ection object allows operations on several registry
objects at atime.

Implementing a JAXR Client

This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updatesto aUDDI registry. A JAXR client is
aclient program that can access registries using the JAXR API.

This tutorial does not describe how to implement a JAXR provider. A JAXR
provider provides an implementation of the JAXR specification, usually as a
facade around an existing registry provider, such asaUDDI or ebXML registry.
The JAXR Rl itself is an example of a JAXR provider.

This tutorial includes several client examples.

e JAXRQuery.java shows how to search aregistry
* JAXRPub1ish.java shows how to publish an organization to aregistry
¢ JAXRDelete.java shows how to remove an organization from aregistry

The JAXR release also includes several sample JAXR clients, the most complete
of which is a Registry Browser that includes a graphical user interface (GUI).

../examples/jaxr/JAXRQuery.java
../examples/jaxr/JAXRPublish.java
../examples/jaxr/JAXRDelete.java

ESTABLISHING A CONNECTION

The Registry Browser allows access to any registry, but includes some of the
most commonly used registries as preset URLS:

* http://uddi.microsoft.com:80/inquire (the Microsoft query regis-
try)

e http://www-3.ibm.com/services/uddi/testregistry/inquiryapi
(the IBM query registry)

e http://test.uddi.microsoft.com:80/inquire (the Microsoft test
guery registry)

e https://test.uddi.microsoft.com:443/publish (the Microsoft test
update registry)

The Registry Browser source code is in the directory <JWSDP_HOME>/sam-
ples/jaxr/jaxr-browser (on UNIX systems) or <JWSDP_HOME>\sam-
ples\jaxr\jaxr-browser (on Microsoft Windows systems). Much of the
source code implements the GUI. The JAXR code is in the file JAXRCT1-
ent.java.

Establishing a Connection

The first task a JAXR client must complete is to establish a connection to a reg-
istry.

Preliminaries: Getting Access to a Registry

Any user of aJAXR client may perform queries on a public registry. In order to
add data to the registry or to update registry data, however, a user must obtain
permission from the registry to access it through a user name and password. To
register with one of the test registries, go to one of the following Web sites and
follow the instructions:

e http://uddi.microsoft.com/
e http://www-3.ibm.com/services/uddi/

You do not need access permission to use the Java WSDP Registry Server.

Creating or Looking Up a Connection Factory

A client creates a connection from a connection factory. A JAXR provider may
supply one or more preconfigured connection factories that clients can obtain by
looking them up using the Java Naming and Directory Interface™ (JNDI) API.

351

http://uddi.microsoft.com/
http://www-3.ibm.com/services/uddi/

352

JAVA™ AP| FOR XML REGISTRIES

The JAXR RI does not currently supply preconfigured connection factories.
Instead, a client creates an instance of the abstract class ConnectionFactory:

import javax.xml.registry.*;

ConnectionFactory connFactory =
ConnectionFactory.newInstance();

Creating a Connection

To create a connection, a client first creates a set of properties that specify the
URL of the registry or registries being accessed and the type of registry (UDDI
or ebXML). For example, the following code provides the URL of the IBM test
guery registry and specifies the JAXR RI implementation of the connection fac-
tory for the UDDI registry. (There should be no line break in the string.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",
"http://www-
3.ibm.com/services/uddi/testregistry/inquiryapi”);
props.setProperty("javax.xml.registry.factoryClass",
"com.sun.xml.registry.uddi.ConnectionFactoryImpl");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in JAXRPublish.java and JAXRDelete.java
shows the steps used to create a JAXR connection.

Obtaining and Using a RegistryService Object

After creating the connection, the client uses the connection to obtain aRegis-
tryService object and then the interface or interfacesit will use:

RegistryService rs = connection.getRegistryService();

BusinessQueryManager bgm = rs.getBusinessQueryManager();

BusinessLifeCycleManager blcm =
rs.getBusinessLifeCycleManager();

QUERYING A REGISTRY

Typicaly, a client obtains both a BusinessQueryManager object and a Busi-
nessLifeCycleManager object from the RegistryService object. If it isusing
the registry for queries only, it may need to obtain only a BusinessQueryMan-
ager object.

Querying a Registry

The simplest way for aclient to use aregistry isto query it for information about
the organizations that have submitted data to it. The BusinessQueryManager
interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a BulkRe-
sponse (a collection of objects) that meets a set of criteria specified in the
method arguments. At this release the most useful of these methods are likely to
be

e findOrganizations, which returns alist of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

* findServices, which returnsaset of services offered by a specified orga-
nization

* findServiceBindings, which returnsthe service bindings supported by a
specified service

The JAXRQuery program illustrates how to query aregistry and display the data
returned.

The following sections describe how to perform some common queries.

Finding Organizations by Name

The following fragment of the executeQuery method in JAXRQuery.java
shows how to find all the organizations in the registry whose names begin with a
specified string, qString, and to sort them in aphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArraylList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESQ);
Collection namePatterns = new ArraylList();
namePatterns.add(gString);

// Find using the name

353

354

JAVA™ AP| FOR XML REGISTRIES

BulkResponse response =
bgm.findOrganizations(findQualifiers,
namePatterns, null, null, null, null);
Collection orgs = response.getCollection();

A client can specify a case-sensitive search by using the first argument of the
findOrganizations method to specify a collection of findQualifiers. For
example, the following code fragment finds organizations whose names contain
the string “ Coffee”:

Collection findQualifiers = new ArraylList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArrayList();
namePatterns.add("%Coffee%") ;

// Find orgs with name containing ’Coffee’
BulkResponse response =
bgm.findOrganizations(findQualifiers, namePatterns, null,
null, null, null);
Collection orgs = response.getCollection();

Finding Organizations by Classification

To find organizations by classification, you need to establish the classification
within a particular classification scheme and then specify the classification as an
argument to the findOrganizations method. The following code fragment
finds al organizations that correspond to a particular classification within the
North American Industry Classification System (NAICS) taxonomy. (You can
find the NAICS codes a http://www.census.gov/epcd/naics/naic-
scod.txt.)

BusinessLifeCycleManager Tcm =
rs.getBusinessLifeCycleManager();

ClassificationScheme cScheme =
Tem.findClassificationSchemeByName("ntis-gov:naics™);

Classification classification = (Classification)
Tem.createClassification(cScheme, "Snack and Nonalcoholic

Beverage Bars", "722213");
Collection classifications = new ArraylList();
classifications.add(classification);

// make JAXR request

BuTlkResponse response = bgManager.findOrganizations(null,
null, classifications, null, null, null);

Collection orgs = response.getCollection();

http://www.census.gov/epcd/naics/naicscod.txt
http://www.census.gov/epcd/naics/naicscod.txt

MANAGING REGISTRY DATA

Finding Services and ServiceBindings

After aclient has located an organization, it can find that organization’s services
and the service bindings associated with those services.

Iterator orglter = orgs.iterator();
while (orgIter.hasNext()) {
Organization org = (Organization) orgIter.next();
Collection services = org.getServices();
Iterator svclter = services.iterator();
while (svcIter.hasNext()) {
Service svc = (Service) svclter.next();
Collection serviceBindings =
svc.getServiceBindings(Q);
Iterator sblter = serviceBindings.iterator();
while (sbIter.hasNext()) {
ServiceBinding sb =
(ServiceBinding) sbIter.next();

Managing Registry Data

If aclient has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the BusinessLifeCycleManager interface to perform
these tasks.

Registries usually alow aclient to modify data only if the datais being modified
by the same user who first submitted the data.

Getting Authorization from the Registry

Before it can submit data, the client must send its username and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

// Edit to provide your own username and password

String username = ;
String password = "";

// Get authorization from the registry
PasswordAuthentication passwdAuth =
new PasswordAuthentication(username,

355

356

JAVA™ AP| FOR XML REGISTRIES

password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

Creating an Organization

The client creates the organization and populates it with data before saving it.

An Organization object is one of the more complex data items in the JAXR
API. It normally includes the following:
¢ A Name object
e A Description object
* A Key object, representing the ID by which the organization is known to
the registry
* A PrimaryContact object, which isaUser object that refers to an autho-

rized user of the registry. A User object normally includes a PersonName
object and collections of TeTephoneNumber and EmailAddress objects.

A collection of Classification objects
* Service objects and their associated ServiceBinding objects

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organiza-
tion, it does not include a key; the registry normally returns the new key when it
accepts the newly created organization. The b1cm object in this code fragment is
the BusinessLifeCycleManager object returned in Obtaining and Using a Reg-
istryService Object (page 352). An InternationalString object is used for
string values that may need to be localized.

// Create organization name and description
Organization org = blcm.createOrganization("The Coffee Break™);
InternationalString s =
blcm.createlnternationalString("Purveyor of only the " +
"finest coffees. Established 1895™);
org.setDescription(s);

// Create primary contact, set name

User primaryContact = blcm.createUser();

PersonName pName = blcm.createPersonName("Jane Doe");
primaryContact.setPersonName(pName) ;

// Set primary contact phone number

MANAGING REGISTRY DATA

TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber (" (800) 555-1212");

Collection phoneNums = new ArrayList();
phoneNums .add (tNum) ;
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address

EmailAddress emailAddress =
bTcm.createEmailAddress("jane.doe@TheCoffeeBreak.com™);

Collection emailAddresses = new ArraylList();

emailAddresses.add(emailAddress);

primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

Adding Classifications

Organizations commonly belong to one or more classifications within one or
more classification schemes (taxonomies). To establish a classification for an
organization within a taxonomy, the client locates the taxonomy it wants to use,
then creates a classification. It uses the BusinessQueryManager to find the tax-
onomy. For example, the following code sets up a classification for the organiza-
tion within the NAICS taxonomy.

// Set classification scheme to NAICS
ClassificationScheme cScheme =
bgm. findClassificationSchemeByName("ntis-gov:naics™);

// Create and add classification
Classification classification = (Classification)
blcm.createClassification(cScheme,

"Snack and Nonalcoholic Beverage Bars", "722213");
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Services also use classifications, so you can use similar code to add a classifica
tion to a Service object.

357

358

JAVA™ AP| FOR XML REGISTRIES

Adding Services and Service Bindings to an
Organization

Most organizations add themselves to aregistry in order to offer services, so the
JAXR API hasfacilities to add services and service bindings to an organization.

Like an Organization object, a Service object has a name and a description.
Also like an Organization object, it has a unique key that is generated by the
registry when the serviceis registered. It may also have classifications associated
with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, then add the services to the organization. It speci-
fies an access URI but not a specification link.

// Create services and service

Collection services = new ArraylList();

Service service = blcm.createService("My Service Name");

InternationalString is =
blcm.createlnternationalString("My Service Description™);

service.setDescription(is);

// Create service bindings

Collection serviceBindings = new ArraylList(Q);

ServiceBinding binding = blcm.createServiceBinding();

is = blcm.createInternationalString("My Service Binding " +
"Description™);

binding.setDescription(is);

binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");

serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

MANAGING REGISTRY DATA

Saving an Organization

The primary method a client usesto add or modify organization dataisthe save-
Organizations method, which creates one or more new organizations in a reg-
istry if they did not exist previously. If one of the organizations exists but some
of the data have changed, the saveOrganizations method updates the data.

After a client populates an organization with the information it wants to make

public, it saves the organization. The registry returns the key in its response, and
the client retrievesit.

// Add organization and submit to registry

// Retrieve key 1if successful

Collection orgs = new ArraylList();

orgs.add(org);

BulkResponse response = blcm.saveOrganizations(orgs);

Collection exceptions = response.getException();

if (exceptions == null) {
System.out.println("Organization saved");

Collection keys = response.getCollection();

Iterator keyIter = keys.iterator();

if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();
System.out.println("Organization key is " + id);
org.setKey(orgKey);

Removing Data from the Registry

A registry alows you to remove from the registry any data that you have submit-
ted to it. You use the key returned by the registry as an argument to one of the
BusinessLifeCycleManager delete methods. deleteOrganizations, delete-
Services, deleteServiceBindings, and others.

The JAXRDeTete sample program deletes the organization created by the JAXR-
Pub1ish program. It searches the registry by name for the organization and uses
the key string displayed by the JAXRPub11ish program to verify that it is remov-
ing the correct organization. Once it has the key, it deletes the organization and

359

360

JAVA™ AP| FOR XML REGISTRIES

then displays the key again so that the user can confirm that it has deleted the
correct one.

String id = key.getId();
System.out.println("Deleting organization with id " + id);
Collection keys = new ArrayList();
keys.add(key);
BuTlkResponse response bTcm.deleteOrganizations(keys);
Collection exceptions response.getException();
if (exceptions == null) {
System.out.println("Organization deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {
orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();
id = orgKey.getId();
System.out.println("Organization key was " + 1id);

}

A client can use a similar mechanism to delete services and service bindings.

Running the Client Examples

The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. Currently they specify the
IBM test registry for queries and updates; you can specify another registry.

Before you compile the JAXRPub1ish and JAXRDelete examples, edit the lines
containing the empty strings for the username and password to specify your
username and password. Feel free to change any of the organization datain the
JAXRPub1ish program.

Set the JAVA_HOME, JAXR_HOME, and CATALINA_HOME environment variables as
specified in the JAXR home page (<JWSDP_HOME>/docs/jaxr/index.html on
UNIX systems; <JWSDP_HOME>\docs\jaxr\index.htm1 on Microsoft Windows
systems).

To compile the programs, go to the docs/tutorial/examples/jaxr directory
(on UNIX systems) or the docs\tutoriallexamples\jaxr directory (on
Microsoft Windows systems). A build.xml file allows you to use the command

ant build

RUNNING THE CLIENT EXAMPLES

to compile all the examples. The ant tool creates a subdirectory called build
and places the class files there.

Before you run the examples, start Tomcat. See the JAXR home page
(<IWSDP_HOME>/docs/jaxr/index.html on UNIX systems,
<JWSDP_HOME>\docs\jaxr\index.htm1 on Microsoft Windows systems) for
details.

To run the JAXRQuery example, use the ant target run-query. Specify aquery-
string argument on the command line to search the registry for organizations
whose names contain that string. For example, the following command line
searches for organizations whose names contain the string “sun”:

ant -Dquery-string=sun run-query

To run the JAXRPub 11 sh program, use the run-pub1ish target with no command
line arguments.

ant run-publish

The program output displays the string value of the key of the new organization.

If you forgot to fill in the username and password strings, you will get a“No
Credentials present” error message.

After you run the JAXRPub1ish program but before you run JAXRDelete, you
can run JAXRQuery to look up the organization you published. You can also use
the Registry Browser to search for it.

To run the JAXRDe ete program, specify the string returned by the JAXRPub1ish
program as input to the run-delete target:

ant -Dkey-string=string-value run-delete
To remove the build directory and class files, use the command
ant clean

To obtain a syntax reminder for the run-query, run-publish, and run-delete
targets, use the command

ant help

361

362 JAVA™ AP| FOR XML REGISTRIES

Using the Registry Browser

The Registry Browser is both a working example of a JAXR client and a GUI
tool that enables you to search registries. You can examine the source code, as
described in Implementing a JAXR Client (page 350).

Before you run the Registry Browser, stat Tomcat. See Starting
Tomcat (page 67) for details.

To start the browser, go to the bin directory of your Java WSDP installation or
place this directory in your path.

To start the browser on a UNIX system, enter the following command:
jaxr-browser.sh

On a Microsoft Windows system, enter the following command:
jaxr-browser

After the browser starts, enter the URL of the registry you want to use in the
Registry Location combo box, or select a URL from the drop-down menu in the
combo box. There may be a delay of afew seconds while a busy cursor is visi-
ble.

When the busy cursor disappears, you have a connection to the URL. However,
you do not establish a connection to the registry itself until you perform a query
or update, so the browser will not report an invalid URL until then.

The browser contains two main panes, Browse and Submissions.

Querying a Registry

You use the Browse pane to query aregistry.

Querying by Name
To search for organizations by name, perform the following steps.
1. Click the Browsetab if it is not already selected.

MANAGING REGISTRY DATA

2. In the Find By panel on the left side of the Registry Browser window, do
the following:

a. Select Namein the Find By combo box if it is not already selected.
b. Enter astring in the text field.
c. Press Enter or click the Search button in the toolbar.
After a few seconds, the organizations whose names begin with the text string

appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Double-click on an organization to show its details. An Organization dialog box
appears. In this dialog box, you can click Show Services to display the Services
dialog box for the organization. In the Services dialog box, you can click Show
ServiceBindings to display the ServiceBindings dialog box for that service.

Querying by Classification
To query aregistry by classification, perform the following steps.

1. Select Classification in the Find By combo box.

2. Inthe Classifications pane that appears bel ow the combo box, double-click
a classification scheme.

3. Continue to double-click until you reach the node you want to search on.
4. Click the Search button in the tool bar.
After afew seconds, one or more organizations in the chosen classification may

appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Managing Registry Data
You use the Submissions pane to add, modify, or delete registry data.
To get to the Submissions pane, do either of the following:

* Click the Submissions tab.

 |f you used the Browse pane to locate an organization for which you want
to modify data, right-click on the organization and choose either Edit Reg-
istryObject or Delete RegistryObject from the pop-up menu. In order to
modify data, you need to be connected to aregistry that allowsyou to pub-

363

364

JAVA™ AP| FOR XML REGISTRIES

lish data. If you were previously using a URL that only allows queries,
change the URL to the publish URL.

If you click Delete RegistryObject, an authorization diadlog box appears. To
delete the organization, enter your username and password and click OK. To
close the window without deleting the organization, click Cancel.

Adding an Organization

To enter or modify information about an organization, use the Organization
panel on the left side of the Submissions pane.

Use the Organization Information fields as follows:

« Name: Enter the name of the organization.

¢ |d: You cannot enter or modify datain thisfield; the ID value is returned
by the registry after you submit the data.

« Description: Enter a description of the organization.
Use the Primary Contact Information fields as follows:

« Name: Enter the name of the primary contact person for the organization.
¢ Phone: Enter the primary contact's phone number.
e Email: Enter the primary contact's email address.

For information on adding or removing classifications, see Adding and Remov-
ing Classifications (page 365).

Adding Services to an Organization

To add or modify information about an organization's services, Use the Services
panel on the right side of the Submissions pane.

To add a service, click the Add Services button in the toolbar. A subpanel for the
service appears in the Services panel. Click the Add Services button more than
once to add more services in the Services panel.

Each service subpanel has the following components:

« Name, Id, and Description fields
« Edit Bindings and Remove Service buttons
« A Classifications panel

MANAGING REGISTRY DATA

Use these components as follows:

* Namefield: Enter a name for the service.

¢ |d field: You cannot enter or modify data in this field; the ID value is
returned by the registry after you submit the data.

« Description field: Enter a description of the service.

¢ Click the Edit Bindings button to add or edit service bindings for the ser-
vice. An Edit ServiceBindings dialog box appears.

¢ Click the Remove Service button to remove this service from the organi-
zation. The service subpanel disappears from the Services panel.

« To add or remove classifications, use the Classifications panel.

Adding Service Bindings to a Service

To add service bindings for a service, click the Edit Bindings button in a service
subpanel in the Submissions pane. The Edit ServiceBindings dialog box appears.

If there are no existing service bindings when the dialog box first appears, it con-
tains an empty Service Bindings panel and two buttons, Add Binding and Done.
If the service already has service bindings, the Service Bindings panel contains a
subpanel for each service binding.

Click Add Binding to add a service binding. Click Add Binding more than once
to add multiple service bindings.

After you click Add Binding, a new service binding subpanel appears. It con-
tains three text fields and a Remove Binding button.

Usethetext fields as follows:

» Description: Enter a description of the service binding.
e Access URI: Enter the URI used to access the service.

Use the Remove Binding button to remove the service binding from the service.

Click Done to close the dialog box when you have finished adding or removing
service bindings.

Adding and Removing Classifications

To add classifications to, or remove classifications from, an organization or ser-
vice, use a Classifications panel. A Classifications panel appearsin an Organiza-
tion panel or service subpanel.

365

366

JAVA™ AP| FOR XML REGISTRIES

To add a classification:

1. Click Add.

2. In the Select Classifications dialog, double-click one of the classification
schemes.

« |f you clicked ntis-gov:naics, you can add the classification at any level
of the taxonomy hierarchy. When you reach the level you want, click
Add.

 |f you clicked Geography, locate the appropriate |eaf node (the country)
and click Add.

The classification appears in atable in the Classifications panel below the but-
tons.

Follow these steps more than once to add multiple classifications to the organi-
zation or service.

Click Close to dismiss the window when you have finished.

To remove a classification, select the appropriate table row in the Classifications
panel and click Remove. The classification disappears from the table.

Submitting the Data

When you have finished entering the data you want to add or modify, click the
Submit button in the toolbar.

An authorization dialog box appears. To continue with the submission, enter
your username and password and click OK. To close the window without sub-
mitting the data, click Cancel.

The Java™ WSDP
Registry Server

by Kim Haase

A registry offers amechanism for humans or software applications to advertise
and discover Web services. The Java™ Web Services Developer Pack (“Java
WSDP”) Registry Server implements Version 1 of the Universal Description,
Discovery and Integration (UDDI) project, providing a UDDI-compliant registry
for Web services in a private environment. You can use it with the Java WSDP
APlIsas atest registry for Web services application development.

You can use the Registry Server to test applications that you develop that use the
Java APl for XML Registries (“JAXR"), described in the chapter Java™ API for
XML Registries. You can also use the JAXR Registry Browser provided with the
Java WSDP to perform queries and updates on registry data.

The release of the Registry Server that you have downloaded as part of the Java
WSDP includes the following:
» The Java WSDP Registry Server 1.0 Early Accessrelease

» A database based on the native XML database Xindice, whichis part of the
Apache XML project. This database provides the repository for registry
data.

* A tool named Indri that alows you to create and inspect database data
using a graphical user interface

Before you can access the Registry Server, you must start Tomcat and the data-
base. For details, see the Registry Server home page.

367

Bios.html

368

THE JAVA™ WSDP REGISTRY SERVER

At this release, the Registry Server has limited capabilities. It supports only the
following messages defined in the UDDI Programmer’s API 1.0 Specification:

<save_business>
<find_business>
<get_businessDetail>
<deTlete_business>

In This Chapter

Setting Up the Registry Server 368
Using the JAXR Registry Browser with the Registry Server 369

Adding Organizations 369

Querying the Registry 369
Using the Command Line Client Scriptswith the Registry Server 370
Using the JAXR API to Accessthe Registry Server 371
Using theIndri Tool to Accessthe Registry Server Database 372

Setting Up the Registry Server

Before you can use the Java WSDP Registry Server, you must start both Tomcat
and the Xindice database.

Instructions for starting and stopping Tomcat are in Starting Tomcat (page 67).

Go to the bin directory of your Java WSDP installation (or place this directory
in your PATH). To start the Xindice database, use the command

xindice-start (on a Microsoft Windows system)
xindice-start.sh (on a UNIX system)

This command runs in the background. The database may take severa seconds
to start up.

To stop the database, use the command
xindice-stop (on a Microsoft Windows system)

xindice-stop.sh (on a UNIX system)

ADDING ORGANIZATIONS

Using the JAXR Redgistry Browser with
the Registry Server

You can use the JAXR Registry Browser to access the Registry Server.

For basic information on the Registry Browser, see Using the Registry Browser
in Java™ API for XML Registries.

After you start the Registry Browser using the jaxr-browser.sh or jaxr-
browser.bat script, enter the following URL in the Registry Location combo
box (all on oneline):

http://hostname:8080/registry-server/RegistryServerServiet

The hostname must be fully qualified; do not specify Tocalhost. If you enter the
name incorrectly, no error message appears until you try to perform a query or
update.

You specify http: for both queries and updates. The registry server does not
support authentication at this release.

Adding Organizations

When you submit an organization and the authorization dialog box appears,
enter any string in the username and password fields. The Registry Server does
not check the values you enter, but you may not enter an empty string.

The Registry Server supports adding and deleting organizations, but does not
support modifying organizations. If you submit an organization and then choose
the Edit Registry Object menu item to modify it, a new organization is created
when you submit the modified data.

Querying the Registry

To perform queries by name against the Registry Server, enter the string in the
Name text field. Searches against the Registry Server are case-sensitive. A
search will find al organizations whose names contain the exact string entered.

369

370

THE JAVA™ WSDP REGISTRY SERVER

Using the Command Line Client Scripts
with the Registry Server

You will find a shell script called <JWSDP_HOME>/samples/registry-
server/registry-server-test.sh (on UNIX® systems) or
<JWSDP_HOME>\samples\registry-server/registry-server-test.bat (on
Microsoft Windows systems).

The script uses XML filesin the xm1 subdirectory to send messages to the Regis-
try Server.

Before you use the script, make sure it is executable (make it so if it is not).

1. Save abusiness.
To save a business, the script uses the file SaveBusiness.xm1 in the xm1
subdirectory. Edit thisfileif you wish.

To save the business, use the following command (on a UNIX system,
add the . sh suffix):

registry-server-test run-cli-save

Output appears in the terminal window in which you run the command.
Notice the businesskey vaue returned in the <businessEntity> tag.
You will useitin step 2.

2. Obtain business details.
To obtain details about a business, the script uses the file GetBusiness-
Detail.xm1 inthe xm1 subdirectory.

Before you run the script this time, edit this file by copying the bus1i-
nessKey vaue from the output of the command in step 1 into the <bus1i-
nessKey> tag.

To obtain details about the business you saved, use the following com-
mand:

registry-server-test run-cli-get

Output appears in the terminal window.

3. Find abusiness.

To find abusiness by name, the script uses the file FindBusiness.xm1 in
the xm1 subdirectory.

QUERYING THE REGISTRY 371

Before you run the script this time, edit the file by changing the value in
the <name> tag to the name you specified in the SaveBusiness.xm1 file.

To find the business, use the following command:
registry-server-test run-cli-find

Output appearsin the terminal window.

You can create your own XML files to run with the script. To use the
<save_business> message, specify the following in the <authInfo> tag:

<authInfo>magicCookie</authInfo>

Using the JAXR API to Access the
Registry Server

You can access the Registry Server by using the sample programs in the
docs/tutorial/examples/jaxr directory (on UNIX systems) or the
docs\tutorial\examples\jaxr directory (on Microsoft Windows systems).
You need to edit them as follows

In JAXRPublish.java and JAXRDelete.java, for both the queryURL and the
publishURL, specify the Registry Server by using the following string (on one
line):

"http://hostname:8080/registry-server/RegistryServerServiet";

where hostname isthe fully qualified host name. Do not use https: for the pub-
TishURL.

Edit the lines that specify a username and password by providing any non-empty
string. For example:

// Edit to provide your own username and password
String username = "x";
String password

y';
In JAXRQuery. java, specify the Registry Server asfollows:

props.setProperty("javax.xml.registry.queryManagerURL",
"http://hostname:8080/registry-
server/RegistryServerServiet");

372

THE JAVA™ WSDP REGISTRY SERVER

Alsoin JAXRQuery. java, remove the percent (%) signs from the following line:
namePatterns.add("%" + gString + "%");
Instead, specify the namePatterns for the query string as follows:

namePatterns.add(gString);

Using the Indri Tool to Access the
Registry Server Database

The Indri tool provides a graphic user interface (GUI) that allows you to access
the Registry Server database directly. You can use this tool to save and find busi-
nesses and to obtain business details.

Note: The Indri isalarge lemur. It is reported that when Europeans first arrived in
Madagascar, they heard its cry from the trees and asked what was making that
sound. The reply was “Indri! Indri!” which is Malagasy for “Look up! Look up!”
This seems an appropriate name for a database |ookup tool.

You invoke the Indri tool through the registry-server-test script. Use the
following command:

registry-server-test.sh run-indri (UNIX systems)
registry-server-test.bat run-indri (Microsoft Windows systems)

To save abusiness, perform the following steps.

1. Open the file SaveBusiness.xm1 in the xm1 subdirectory. Edit it if you
wish.

2. Copy the contents of the file and paste them into the large text area labeled
Node.

3. Choose Check Content from the Process menu and verify that the message
document is well-formed

appears in the status area at the bottom of the Indri window.

4. In the Collection panel on the top left side of the Indri window, make sure
uddi is selected.

QUERYING THE REGISTRY 373

5. Choose Create Node from the Database menu. The message
node ‘nid’ in collection ‘uddi’ created

appears in the status area.
To obtain business details, perform the following steps:

1. Select Clear Text Areafrom the Database menu to clear the Node text area.

2. Select Get Node from the Database menu. The XML code you submitted
when you saved the business appearsin the text area.

To find a business by name, perform the following steps:

1. Select Clear Text Areafrom the Database menu to clear the Node text area.

2. Copy the following string into the XPath Query text field. If necessary,
replace “Alter” with a string that appears in the name of the business you
saved.

//uddi :businessEntity/uddi:name[contains(text(),"Alter")]

3. Click Find.
4. Check the status area for a message like the following:

query complete: 1 matches.

5. If there are any matches, select a node from the X Nodes panel on the bot-
tom left side of the Indri window. The content of the node appears in the
Node area.

To exit the Indri tool, choose Exit from the File menu.

374 THE JAVA™ WSDP REGISTRY SERVER

Web Applications

Stephanie Bodoff

A Web application is a dynamic extension of a Web server. A Web application
can consist of dynamic Web pages containing various types of markup language
(HTML, XML, and so on) as well as static resources such as images. A Web
application can also be the endpoint of afine-grained Web service that is used by
the dynamic Web pages. In the Java™ 2 Platform, WWeb components provide the
dynamic extension capabilities for a Web server. Web components are supported
by the services of a runtime platform called a Web container. In the Java Web
Services Developer Pack (“Java WSDP”), Web components are either Java™
Servlets and JSP™ pages and they run in the Tomcat Web container.

This chapter describes the organization of and configuration, and deployment
procedures for Web applications. Subsequent chapters, Java™ Servlet
Technology (page 393) and JavaServer Pages™ Technology (page 429), cover
how to develop the Web components. Many features of JSP technology are
determined by Java Servlet technology so you should familiarize yourself with
that material.

Most Web applications use the HTTP protocol and support for HTTP is a major
aspect of Web components. For a brief summary of HTTP protocol features see
HTTP Overview (page 525).

In This Chapter
Web Application Life Cycle 376
Web Application Archives 378
Creating aWAR File 379
Web Application Deployment Descriptors 379
Prolog 380
Context Parameters 380

375

Bios.html

376

WEB APPLICATIONS

Filter Mappings 381
Event Listeners 381
Alias Paths 381
Error Mappings 382
References to Environment Entries, Resource Environment Entries, ¢~
Resources 383
Deploying Web Applications 383
Specifying the Web Application Context 384
Example 385
Running Web Applications 385
Updating Web Applications 385
I nternationalizing and L ocalizing Web Applications 386
Accessing Databases from Web Applications 388
The Examples 388
Downloading and Starting the Database Server 389
Populating the Database 389
Configuring the Web Application to Use the Database J90
Configuring the Server to Recognize the Database 390

Web Application Life Cycle

The server-side portion of a Web application consists of Web components, static
resource files such as images, and helper classes and libraries. The IWSDP pro-
vides many supporting services that enhance the capabilities of Web components
and make them easier to develop. However, because it must take these services
into account, the process for creating and running a Web application is different
than that of traditional stand-alone Java classes.

Web components run within an environment called a Web container. The Web
container provides services such as request dispatching, security, concurrency,
and life cycle management. It also gives Web components accessto APIs such as
naming, transactions, and e-mail.

Certain aspects of Web application behavior can be configured when it is
deployed. The configuration information is maintained in atext filein XML for-
mat called a Web application deployment descriptor. A deployment descriptor
must conform to the schema described in the Java Servlet specification.

http://java.sun.com/products/servlet/download.html#specs

The process for creating, deploying, and executing a Web application can be
summarized as follows:

1. Develop the Web component code (including possibly a deployment
descriptor).

2. Build the Web application components along with any static resources (for
example, images) and helper classes referenced by the component.

3. Deploy the application.

4. Access a URL that references the Web application.

Developing Web component code is covered in the chapters on servlet and JSP
technology. Steps 2. through 4. are expanded on in the following sections illus-
trated with a Hello, World style application. This application allows a user to
enter aname into an HTML form:

" _§ Bookmarks 4 Location] -] &7 What's Related x|

My name is Duke. What is yours?

IZeusI

St | Rovo

= [Dane

Figurel Greeting Form

377

378

WEB APPLICATIONS

and then displays a greeting after the name is submitted:

Eile Edn View Go Communicstor Help i

"| . Bookmaks & Locaiion g (/localhostE000/helloZ/gresingusemame=Zeus| '|@'mm HI

%

My name is Duke, What is yours?

_Subm | Rese |
Hello, Zeus! k
= [Document Dane: S o g 2

Figure2 Response

The Hello application contains two Web components that generate the greeting
and the response. This tutorial hastwo versions of this application: a servlet ver-
sion called He11o01 in which the components are implemented by two servlet
classes, GreetingServiet. java and ResponseServlet.java and aJSP version
called He1102 in which the components are implemented by two JSP pages,
greeting.jsp and response.jsp. The two versions are used to illustrate the
tasks involved in packaging, deploying, and running an application that contains
Web components. If you are viewing this tutorial online, you must download the
tutorial bundle to get the source code for this example. See Running the

Examples (page xvi).

Web Application Archives

If you want to distribute a Web application and run it on another server you
package it in a Web application archive (WAR), which is a JAR similar to the
package used for Java classlibraries, and installed (or deployed) into a Web con-
tainer. In addition to Web components, a Web application archive usually con-
tains other files including:

« Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.

e Static Web content (HTML, image, and sound files, and so on)

¢ Client-side classes (applets and utility classes)

../examples/web/hello1/GreetingServlet.java
../examples/web/hello1/ResponseServlet.java
../examples/web/hello2/greeting.txt
../examples/web/hello2/response.txt

CREATING A WAR FILE 379

Web components and static Web content files are called Web resources.

A WAR has a specific directory structure. The top-level directory of a WAR is
the document root of the application. The document root is where JSP pages, cli-
ent-side classes and archives, and static Web resources are stored.

The document root contains a subdirectory called WEB-INF, which contains the
following files and directories:

e web.xml - the Web application deployment descriptor

« Tag library descriptor files (see Tag Library Descriptors (page 471)).

¢ classes - a directory that contains server-side classes. servlets, utility
classes, and JavaBeans components.

¢ Tib - adirectory that contains JAR archives of libraries (tag libraries and
any utility libraries called by server-side classes).

You can also create application-specific subdirectories (that is, package directo-
ries) in either the document root or the WEB-INF/classes directory.

The ant build files distributed with the tutorial examples construct this directory
structure in the bui 1d subdirectory.

Creating a WAR File

You can manually create aWAR in two ways:

« With the JAR tool distributed with the J2SE SDK. You simply execute the
following command in the build directory of atutorial example:

jar cvf archiveName.war .

« With thewar task of the ant portable build tool.

Web Application Deployment
Descriptors

The following sections give a brief introduction to the Web application deploy-
ment descriptor elements you will usually want to specify. A number of security
parameters can be specified but this release of the tutorial does not cover them.
For a complete listing and description of the elements, see the Java Servlet spec-
ification. The simpler applications discussed in Creating the Getting Started

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html

380 WEB APPLICATIONS

Application (page 61), Updating Web Applications (page 385), and What is a
JSP Page? (page 430) do not need a Web application deployment descriptor, but
all the others are distributed with a descriptor.

Note: Descriptor elements must appear in the deployment descriptor in the follow-
ing order: icon, display-name, description, distributable, context-param,
filter, filter-mapping, Tistener, serviet, servlet-mapping, session-con-
fig, mime-mapping, welcome-file-1ist, error-page, taglib, resource-env-
ref, resource-ref, security-constraint, login-config, security-role, env-
entry.

Prolog

The prolog of the Web application deployment descriptor is as follows:

<?xml version="1.0" encoding="IS0-8859-1"7>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_3.dtd">

Context Parameters

The Web componentsin aWAR share an object that represents their Web context
(see Accessing the Web Context (page 421)). To pass initialization parameters to
the context, you must add a context-param element to the Web application
deployment descriptor. Here is the element used to declare a context parameter
that sets the resource bundle used in the example discussed in JavaServer
Pages™ Standard Tag Library (page 497):

<context-param>
<param-name>
javax.servilet.jsp.jst]l.i1l8n.basename
</param-name>
<param-value>messages.BookstoreMessages</param-value>
</context-param>

FILTER MAPPINGS

Filter Mappings

A Web container usesfilter mapping declarations to decide which filtersto apply
to arequest, and in what order (see Specifying Filter Mappings (page 415)). The
container matches the request URI to a servlet as described in Alias
Paths (page 381). To determine which filters to apply, it matches filter mapping
declarations by servlet name or URL pattern. The order in which filters are
invoked is the order in which filter mapping declarations that match a request
URI for a servlet appear in the filter mapping list.

To specify a filter mapping you must add an filter and filter-mapping ele-
ments to the Web application deployment descriptor. Here is the element use to
declare the order filter and map it to the ReceiptServiet discussed in Java™
Servlet Technology (page 393):

<filter>
<filter-name>0OrderFilter<filter-name>
<filter-class>filters.OrderFilter<filter-class>
</filter>
<filter-mapping>
<filter-name>0rderFilter</filter-name>
<url-pattern>ReceiptServiet</url-pattern>
</filter-mapping>

Event Listeners

To add an event listener class (described in Handling Servlet Life Cycle
Events (page 397)), you must add a Tistener element to the Web application
deployment descriptor. Here is the element use to declare the listener class used
in Java™ Servlet Technology (page 393) and JavaServer Pages™ Standard Tag

Library (page 497):

<Tistener>
<listener-class>1listeners.ContextListener</listener-class>
</Tistener>

Alias Paths

When arequest is received by Tomcat it must determine which Web component
should handle the request. It does so by mapping the URL path contained in the

381

382

WEB APPLICATIONS

request to a Web component. A URL path contains the context root (described in
Running Web Applications (page 385)) and an alias path:

http://<host>:8080/context root/alias path

Before a servlet can be accessed, the Web container must have least one alias
path for the component. The alias path must start with a“‘/’ and end with a string
or awildcard expression with an extension (*. jsp for example). Since Web con-
tainers automatically map an alias path that ends with *. jsp, you do not have to
specify an alias path for a JSP page unless you wish to refer to the page by a
name other than its file name. In the example discussed in Updating Web
Applications (page 385), the page greeting.jsp has an dlias, /greeting, but
the page response. jsp isreferenced by its file name within greeting. jsp.

To set up the mappings for the servlet version of the Hello application you must
add the following servlet and servlet-mapping elements to the Web applica-
tion deployment descriptor:

<servlet>
<servlet-name>greeting</serviet-name>
<display-name>greeting</display-name>
<description>no description</description>
<servlet-class>GreetingServiet</servlet-class>

</serviet>

<servlet>
<servlet-name>response</serviet-name>
<display-name>response</display-name>
<description>no description</description>
<servlet-class>ResponseServlet</servlet-class>

</serviet>

<servlet-mapping>
<servlet-name>greeting</serviet-name>
<url-pattern>/greeting</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>response</serviet-name>
<url-pattern>/response</url-pattern>

</servlet-mapping>

Error Mappings

You can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any Web com-
ponent and a Web resource (see Handling Errors (page 399)). To set up the map-

REFERENCES TO ENVIRONMENT ENTRIES, RESOURCE ENVI-

ping, you must add an <error-page> element to the deployment descriptor.
Here is the element use to map OrderException to the page errorpage.html
used in Java™ Servlet Technology (page 393):

<error-page>
<exception-type>exception.OrderException</exception-type>
<location>/errorpage.html</Tocation>

</error-page>

Note: You can also define error pages for a JSP page contained in a WAR. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

References to Environment Entries,
Resource Environment Entries, or
Resources

If your Web components reference environment entries, resource environment
entries, or resources such as databases, you must declare the references with
<env-entrys>, <resource-env-ref>, Or <resource-ref> elements. Here is the
element use to declare areference to the data source used in the Web technol ogy
chaptersin thistutorial:

<resource-ref>
<res-ref-name>jdbc/BookDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

Deploying Web Applications

The next step after you have programmed and configured a Web application isto
deploy it to Tomcat. You deploy an application to Tomcat by notifying it of a
new application context. The first time you deploy a new application you must
restart Tomcat. Thereafter you can reload the application as described in Rel oad-
ing the Examples (page xviii).

384

WEB APPLICATIONS

Specifying the Web Application Context

A context is aname that gets mapped to the document root of a Web application.
The context of the Hellol application is /hellol. The request URL
http://localhost:8080/hellol/index.htm] retrieves the file index.html
from the document root.

Tomcat

can be notified of a new context in two ways.

e Automaticaly. If you copy a Web application directory or WAR to
<JWSDP_HOME>/webapps, the context root for the application is automati-
cally added to the Tomcat configuration. This isthe approach used by the
simpler applications (He11o1, He1102, Date) discussed in the Web tech-
nology chapters.

« By adding a context entry to Tomcat’s configuration. This is the approach
used by the Duke’s Bookstore application discussed in the Web technol ogy
chapters. For example, here is the Context entry for the application dis-
cussed in Java™ Servlet Technology (page 393):

<Context path="/bookstorel”

docBase="../docs/tutorial/examples/web/bookstorel/build"
debug="0">

There aretwo ways to add this entry to Tomcat's configuration:

Edit the file <JWSDP_HOME>/conf/server.xm1. Since this can be error
prone, we recommend the next approach.

Put an application-specific configuration file in
<JWSDP_HOME>/webapps. The Context entry for the application dis-
cussed in Java™ Servlet Technology (page 393) is in the file
docs/tutorial/web/bookstorel/bookstore.xml1. Whentheapplica-
tion is deployed, bookstorel.xml is copied to
<JWSDP_HOME>/webapps.

Note:

Manual specification of the Context entry isalimitation of the current release

of the Web Services Pack. Later releaseswill include an administration tool that will
simplify this task.

EXAMPLE 385

Example
To deploy the He1101 application:

1. Goto docs/tutorial/examples/hel1o1 and build and deploy the exam-
ple by running ant. Thisrunsthe default ant target dep1oy which depends
on the bui1d target. The bui1d target will spawn any necessary compila
tions and copy files to the docs/tutorial/examples/web/date/build
directory. The deploy target copies the build directory to
<JWSDP_HOME>/webapps.

2. Start or restart Tomcat.

Running Web Applications

A Web application is executed when a Web browser references a URL that is
mapped to component contained in the client. Once you have deployed the
Hello1 application, you can run the Web application by pointing a browser at:

http://<host>:8080/hellol/greeting

Replace <host> with the name of the host running Tomcat. If your browser is
running on the same host as Tomcat, you may replace <host> with Tocalhost.

Updating Web Applications

During development, you will often need to make changes to Web applications.
To modify a servlet you modify the source file, recompile the servlet class, and
redeploy the application. Except for the compilation step, you update a JSP page
in the same way.

To try this feature, first build and deploy the JSP version of the Hello applica
tion:

1. Gotodocs/tutorial/examples/hel102 and build and deploy the exam-
ple by running ant. Thisrunsthe default ant target dep1oy which depends
on the bui1d target. The bui1d target will spawn any necessary compila
tionsand copy filestothe docs/tutorial/examples/web/hel102/build
directory. The deploy target copies the build directory to
<JWSDP_HOME>/webapps.

2. Start or restart Tomcat.

386 WEB APPLICATIONS

3. OpentheHel102 URL http://localhost:8080/hello2.

Now modify one of the JSP files. For example, you could replace the contents of
response. jsp with:

<h2>Hello, <%=username%>!</h2>

1. Edit response.jsp.
2. Execute ant.
3. Reload the application as described in Reloading the

Examples (page xviii) by loading the URL http://local-
host:8080/manager/reload?path=/hell02.

4, Reload theHe1102 URL.

If you make this change, the next time you execute the application, the color of
the response will be red:

#rHello - Netscape

File Edit Yew Go Communicator Help

‘51 J'Hmﬂlu v I-m'lill'll‘.l\u1",fIt:u:uIhu:vsl:ﬂtll]lh"hEIIr.|2|l’greelmlg”|'usemume-Zeus 'l F" What's Related HI
e ™

Y-

My name is Duke, What is yours?
I
Submit | Reset |

Hello, Zeus!

i F= [Document Done:

Figure3 Red Response

Internationalizing and Localizing Web
Applications

Internationalization is the process of preparing an application to support various
languages. Localization is the process of adapting an internationalized applica-
tion to support a specific language or locale. While al client user interfaces
should be internationalized and localized, it is particularly important for Web

EXAMPLE

applications because of the far reaching nature of the Web. For a good overview
of internationalization and localization see

http://java.sun.com/docs/books/tutorial/il8n/index.htm]l

There are two approaches to internationalizing a Web application:

* Provide aversion of the JSP in each of the target locales and have a con-
troller servlet dispatch the request to the appropriate page (depending on
the requested locale). This approach is useful if large amounts of dataon a
page or an entire Web application need to be internationalized.

« |solate any locale-sensitive data on a page (such as error messages, string
literals, or button labels) into resource bundles, and access the data so that
the corresponding translated messageis fetched automatically and inserted
into the page. Thus, instead of creating strings directly in your code, you
create aresource bundle that contains translations and read the trand ations
from that bundle using the corresponding key. A resource bundle can be
backed by a text file (properties resource bundle) or a class (list resource
bundle) containing the mappings.

In the following chapters on Web technology, the Duke's Bookstore example is
internationalized and localized into English and Spanish. The key and vaue
pairs are contained in list resource bundles named mes-
sages.BookMessage_*.class. TO give you an idea of what the key and string
pairs in a resource bundle look like, here are a few lines from the file mes-
sages.BookMessages. java.

{"TitleCashier”, "Cashier"},

{"TitleBookDescription”, "Book Description"},

{"Visitor", "You are visitor number "},

{"What", "What We”re Reading"},

{"Talk", " talks about how web components can transform the way
you develop applications for the web. This is a must read for
any self respecting web developer!"},

{"Start", "Start Shopping"},

To get the correct strings for a given user, a Web component retrieves the locale
(set by abrowser language preference) from the request, opens the resource bun-

387

http://java.sun.com/docs/books/tutorial/i18n/index.html

388 WEB APPLICATIONS

diefor that locale, and then saves the bundle as a session attribute (see Associat-
ing Attributes with a Session (page 422)):

ResourceBundle messages = (ResourceBundle)session.
getAttribute("messages™);
if (messages == null) {
Locale Tocale=request.getlLocale();
messages = ResourceBundle.getBundle("WebMessages",
locale);
session.setAttribute("messages”, messages);

}
A Web component retrieves the resource bundle from the session:

ResourceBundle messages =
(ResourceBundle)session.getAttribute("messages™);

and looks up the string associated with the key TitleCashier asfollows:
messages.getString(“TitleCashier”);

This has been a very brief introduction to internationalizing Web applications.
For more information on this subject see the Java BluePrints:

http://java.sun.com/blueprints

Accessing Databases from Web
Applications

Datathat is shared between Web components and persistent between invocations
of a Web application is usualy maintained by a database. Web applications use
the JDBC 2.0 API to access relational databases. For information on this AP,
see

http://java.sun.com/docs/books/tutorial/jdbc

The Examples

The examples discussed in the chapters Java™ Servlet Technology (page 393),
JavaServer Pages™ Technology (page 429), Custom Tags in JSP™
Pages (page 461), and JavaServer Pages™ Standard Tag Library (page 497)

http://java.sun.com/blueprints
http://java.sun.com/docs/books/tutorial/jdbc

DOWNLOADING AND STARTING THE DATABASE SERVER 389

require a database. For this release we have tested the examples with the Point-
base database and we provide an ant build file to create the database tables and
populate the database. The remainder of this section describes how to install and
start the Pointbase database server, set up the example tables, configure the Web
application to use the database, and configure Tomcat to recognize the database.

Downloading and Starting the Database
Server

You can download a copy of the Pointbase database from:
http://www.pointbase.com

After you have downloaded and installed the Pointbase database, you will need
to do the following:

1. Set the PB_HOME environment variable to point to your Pointbase install
directory.

2. Copy <PB_HOME>/client/Tib/pbclient4lev.jar to
<JWSDP_HOME>/common/11ib to make the Pointbase client library available
to the exampl e applications.

3. Inaterminal window, go to <PB_HOME>/server.
4. Start the Pointbase server by typing Server.

Populating the Database

1. In aterminal window, set the environment variable PB_HOME to point to
your Pointbase installation to make the Pointbase libraries available to the
ant task that populates the database.

2. GO to <JWSDP_HOME>/docs /tutorial/examples/web.

3. Execute ant. At the end of the processing, you should see the following
output:

[javal ID
[java] ----------
[java]l 201
[java]l 202
[java]l 203
[javal 204

http://www.pointbase.com

390

WEB APPLICATIONS

[java] 205

[java]l 206

[java]l 207

[javal

[javal 7 Rows Selected.
[javal

[java]l SQL>

[java]

[java] COMMIT;

[java] OK

Configuring the Web Application to Use
the Database

In order to access a database from a Web application you must declare resource
reference in the application’s Web application deployment descriptor (see Refer-
ences to Environment Entries, Resource Environment Entries, or
Resources (page 383)). The resource reference declares the name and type of
resource and the type of authentication used when the resource is accessed.

Configuring the Server to Recognize the
Database

Since the resource reference declared in the Web application deployment
descriptor uses a INDI name to refer to the database, you must connect the name
to an actual database by providing a resource factory in the Tomcat’'s configura-
tion. Hereisthe resource factory used by the application discussed in all the Web
technology chapters:

<Resource name="jdbc/BookDB" reloadable="true"
auth="Container" type="javax.sql.DataSource"/>
<ResourceParams name="jdbc/BookDB">
<parameters>
<hame>user</name>
<value>pubTlic</value>
</parameter>
<parameters>
<name>password</name>
<value>pubTlic</value>
</parameter>
<parameters>
<name>driverClassName</name>

CONFIGURING THE SERVER TO RECOGNIZE THE DATABASE

<value>com.pointbase. jdbc.jdbcUniversalDriver</value>
</parameter>
<parameters>
<nhame>driverName</name>
<value>jdbc:pointbase:
server://Tocalhost/sample</value>
</parameter>
</ResourceParams>

Since the resource factory is a subentry of the Context entry described in Run-
ning Web Applications (page 385), you add this entry to Tomcat’s configuration
in the same ways that you can add the Context entry.

392 WEB APPLICATIONS

Java™ Serviet

Technology

Stephanie Bodoff

AS soon as the Web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts
towards this goal, focused on using the client platform to deliver dynamic user
experiences. At the sametime, devel opers also investigated using the server plat-
form for this purpose. Initially, CGI scripts were the main technology used to
generate dynamic content. Though widely used, CGI scripting technology has a
number of shortcomings including platform-dependence and lack of scalability.
To address these limitations, Java Servlet technology was created as a portable

way to provide dynamic, user-oriented content.

In This Chapter

What isa Servlet?

The Example Servlets
Troubleshooting

Servlet Life Cycle
Handling Servlet Life Cycle Events
Handling Errors

Sharing I nformation
Using Scope Objects
Controlling Concurrent Access to Shared Resources
Accessing Databases

Initializing a Servlet

Writing Service M ethods

394
395
396
397
397
399
400
400
402
403
404
405

393

Bios.html

394

JAVA™ SERVLET TECHNOLOGY

Getting Information From Requests 406
Constructing Responses 408
Filtering Requests and Responses 410
Programming Filters 411
Programming Customized Requests and Responses 413
Specifying Filter Mappings 415
Invoking Other Web Resources 417
Including Other Resources in the Response 418
Transferring Control to Another Web Component 420
Accessing the Web Context 421
Maintaining Client State 422
Accessing a Session 422
Associating Attributes with a Session 422
Session Management 423
Session Tracking 424
Finalizing a Servlet 425
Tracking Service Requests 25
Notifying Methods to Shut Down 426
Creating Polite Long-Running Methods 427

What is a Serviet?

A serviet is a Java programming language class used to extend the capabilities of
servers that host applications accessed via a request-response programming
model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by Web servers. For such applications,
Java Servlet technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and
classes for writing servlets. All servlets must implement the Servlet interface,
which defines life cycle methods.

When implementing a generic service, you can use or extend the GenericServ-
Tet class provided with the Java Servlet API. The HttpServiet class provides
methods, such as doGet and doPost, for handling HT TP-specific services.

This chapter focuses on writing serviets that generate responses to HTTP
requests. Some knowledge of the HTTP protocol is assumed; if you are unfamil-
iar with this protocol, you can get a brief introduction to HTTP in HTTP
Overview (page 525).

../../api/javax/servlet/package-summary.html
../../api/javax/servlet/http/package-summary.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/Servlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/tutorial/api/javax/servlet/http/HttpServlet.html

The Example Servlets

This chapter uses the Duke's Bookstore application to illustrate the tasks
involved in programming servlets. Table 1 lists the servlets that handle each
bookstore function. Each programming task is illustrated by one or more serv-
lets. For example, BookDetailsServiet illustrates how to handle HTTP GET
requests, BookDetailsServlet and CatalogServlet show how to construct
responses, and CatalogServlet showsyou how to track session information.

Table1l Duke'sBookstore Example Serviets

Put a book in a shopping cart

Function Servlet

Enter the bookstore BookStoreServiet

Create the bookstore banner BannerServlet

Browse the bookstore catalog CatalogServiet
CatalogServiet,

BookDetailsServiet

Get detailed information on a specific book

BookDetailsServiet

Display the shopping cart

ShowCartServlet

Remove one or more books from the shopping cart

ShowCartServlet

Buy the books in the shopping cart

CashierServlet

Receive an acknowledgement for the purchase

ReceiptServilet

The data for the bookstore application is maintained in a database and accessed
through the helper class database.BookDB. The database package also contains
the class BookDeta1i1s which represents a book. The shopping cart and shopping
cart items are represented by the classes cart.ShoppingCart and cart.Shop-

pingCartItem.

395

396 JAVA™ SERVLET TECHNOLOGY

The source for the bookstore application is located in the docs/tutorial/exam-
ples/web/bookstorel directory created when you unzip the tutorial bundlie
(see Running the Examples (page xvi)). To build, deploy, and run the example:

1. Gotothe examplesdirectory and build and deploy the example by running
ant. Thisruns the default ant target dep1oy which depends on the bui1d
target. The build target will spawn any necessary compilations and copy
filestothedocs/tutorial/examples/web/bookstorel/build directory.
The deploy target copies the bookstorel context file to
<JWSDP_HOME> /webapps as described in Running ~ Web
Applications (page 385).

1. Start the Pointbase database server (see Accessing Databases from Web

Applications (page 388)).
2. Start or restart Tomcat.

3. Open the bookstore URL http://localhost:8080/bookstorel/enter.

Troubleshooting

Common Problems and Their Solutions (page 70) lists some reasons why a Web
client can fail. In addition, Duke’s Bookstore returns the following exceptions:

* BookNotFoundException—if a book can’'t be located in the bookstore
database. Thiswill occur if you haven’t loaded the bookstore database with
databy running ant create-web-db or if the database server hasn't been
started or it has crashed.

* BooksNotFoundException—if the bookstore data can’t beretrieved. This
will occur if you haven't loaded the bookstore database with data by run-
ning ant create-web-db or if the database server hasn't been started or it
has crashed.

* UnavailableException—if a servlet can't retrieve the Web context
attribute representing the bookstore. Thiswill occur if you haven’t copied
the Pointbase client library <PB_HOME>/client/1ib/pbclientdlev.jar
10 <JWSDP_HOME>/common/11ib.

Since we have specified an error page, you will see the message The applica-
tion is unavailable. Please try later. |f you don't specify an error page,
the Web container generates a default page containing the message A Servlet
Exception Has Occurred and astack trace that can help diagnose the cause of
the exception. If you use the errorpage.html, you will have to look in the Web

HANDLING SERVLET LIFE CYCLE EVENTS 397

container’s log to determine the cause of the exception. Web log files reside in
the directory <JwsbP_HOME>/Togs and are named jwsdp_1og. <date> . txt.

Servlet Life Cycle

Thelife cycle of aservlet is controlled by the container in which the servlet has
been deployed. When arequest is mapped to a servlet, the container performsthe
following steps:
1. If an instance of the servlet does not exist, the Web container:
a. Loadsthe servlet class
b. Creates an instance of the servlet class

c. Initializesthe servlet instance by calling the init method. Initialization
iscovered in Initializing a Servlet (page 404).

2. Invokes the service method, passing a request and response object. Ser-
vice methods are discussed in Writing Service Methods (page 405).

If the container needs to remove the servlet, it finalizes the servlet by calling the
servlet's destroy method. Finalization is discussed in Finalizing a
Servlet (page 425).

Handling Servlet Life Cycle Events

You can monitor and react to events in a servlet’s life cycle by defining listener
objects whose methods get invoked when life cycle events occur. To use these
listener objects you must

« Definethe listener class
« Specify the listener class

Defining The Listener Class

You define a listener class as an implementation of a listener interface. Servlet
Life Cycle Events (page 398) lists the events that can be monitored and the cor-
responding interface that must be implemented. When a listener method is
invoked it is passed an event that contains information appropriate to the event.

398 JAVA™ SERVLET TECHNOLOGY

For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

Table2 Servlet Life Cycle Events

Object Event Listener Interface and Event Class
s javax.servilet.

Initialization ServetContextlist d

Woonisa | adoeinion | SeTvjercontextistener

(See Accessing

tChOeTV\éi?(e 421)) Attribute added, | javax.servlet.

~OLEAL (Pag removed, or ServletContextAttributelistener and
replaced ServiletContextAttributeEvent
Creation, javax.servlet.http.

Sesson miimear | Hrtpsessiontvent |

(See Maintaining P

Client Attribute added, | javax.servlet.http.

State (page 422)))) i
removed, or HttpSessionAttributelistener and
replaced HttpSessionBindingEvent

The Tisteners.ContextListener class creates and removes the database
helper and counter objects used in the Duke's Bookstore application. The meth-
ods retrieve the Web context object from ServletContextEvent and then store
(and remove) the objects as servlet context attributes.

import database.BookDB;
import javax.servlet.*;
import util.Counter;

public final class ContextListener
implements ServletContextListener {
private ServletContext context = null;
public void contextInitialized(ServletContextEvent event) {
context = event.getServletContext();
try {
BookDB bookDB = new BookDB();
context.setAttribute("bookDB", bookDB);
} catch (Exception ex) {
System.out.println(
"Couldn't create database:
+ ex.getMessage());

../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextEvent.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeEvent.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionEvent.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionBindingEvent.html
../examples/web/bookstore1/listeners/ContextListener.java

HANDLING ERRORS 399

}
Counter counter = new Counter();
context.setAttribute("hitCounter", counter);
context.log("Created hitCounter”

+ counter.getCounter());
counter = new Counter();
context.setAttribute("orderCounter”™, counter);
context.log("Created orderCounter”

+ counter.getCounter());

}

public void contextDestroyed(ServletContextEvent event) {
context = event.getServietContext();
BookDB bookDB = context.getAttribute(

"bookDB") ;

bookDB. remove();
context.removeAttribute("bookDB");
context.removeAttribute("hitCounter");
context.removeAttribute("orderCounter");

Specifying Event Listener Classes

To specify an event listener class, you add a 1istener element to the Web appli-
cation deployment descriptor. Here is the Tistener element for the Duke's
Bookstore application:

<Tistener>
<listener-class>1listeners.ContextListener</listener-class>
</Tistener>

Handling Errors

Any number of exceptions can occur when a servlet is executed. The Web con-
tainer will generate a default page containing the message A Servilet Excep-
tion Has Occurred when an exception occurs, but you can also specify that
the container should return a specific error page for agiven exception. To specify
such a page, you add an error-page element to the Web application deployment

400 JAVA™ SERVLET TECHNOLOGY

descriptor. These elements map the exceptions returned by the Duke's Bookstore
application to errorpage. html:

<error-page>
<exception-

type>exception.BookNotFoundException</exception-type>
<location>/errorpage.htmi</Tocation>

</error-page>

<error-page>
<exception-

type>exception.BooksNotFoundException</exception-type>
<location>/errorpage.htmi</Tocation>

</error-page>

<error-page>
<exception-type>exception.OrderException</exception-type>
<location>/errorpage.htmi</Tocation>

</error-page>

Sharing Information

Web components, like most objects, usually work with other objects to accom-
plish their tasks. There are several ways they can do this. They can use private
hel per objects (for example, JavaBeans components), they can share objects that
are attributes of a public scope, they can use a database, and they can invoke
other Web resources. The Java Servlet technology mechanisms that allow a Web
component to invoke other Web resources are described in Invoking Other Web
Resources (page 417).

Using Scope Objects

Collaborating Web components share information via objects maintained as
attributes of four scope objects. These attributes are accessed with the

[get|set]Attribute methods of the class representing the scope. Table 3 lists

the scope objects.

Table3 Scope Objects

USING ScopPe OBJECTS

jsp.PageContext

Scope
Object Class Accessible From
Web context javax.servlet. Web components within a Web context. See
ServletContext Accessing the Web Context (page 421).
. Tet Web components har_1d| i ng arequest that belongsto
session ﬂizaxﬁiirgegs%on the session. See Maintaining Client
p.HEEP State (page 422).
subtype of
request javax.servlet. Web components handling the request.
ServletRequest
page javax.serviet. The JSP page that creates the object. See Implicit

Objects (page 439).

401

../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/http/HttpSession.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/jsp/PageContext.html

402

JAVA™ SERVLET TECHNOLOGY

Figure 1 shows the scoped attributes maintained by the Duke’s Bookstore appli-
cation.

BookStoreServiet

f Session

Attribute

currency ookDetailsServiet ('

#
hitCounterFilter f’m
/"_—\. Attributes
- - CatalogServiet
f Session hitCounter

Attribute bookDB

orderCounter J

@ orderFilter

/H"—“_

eceiptServiet

Figurel Duke'sBookstore Scoped Attributes

Controlling Concurrent Access to Shared
Resources

In amultithreaded server, it is possible for shared resources to be accessed con-
currently. Besides scope object attributes, shared resources include in-memory
data such as instance or class variables and external objects such as files, data-
base connections, and network connections. Concurrent access can arise in sev-
eral situations:

« Multiple Web components accessing objects stored in the Web context
« Multiple Web components accessing objects stored in a session

« Multiple threads within a Web component accessing instance variables. A
Web container will typically create athread to handle each request. If you
want to ensure that a servlet instance handles only one request at atime, a
servlet can implement the SingleThreadvodel interface. If a servlet
implementsthisinterface, you are guaranteed that no two threads will exe-
cute concurrently in the serviet’s service method. A Web container can
implement this guarantee by synchronizing access to a single instance of

../../api/javax/servlet/SingleThreadModel.html

ACCESSING DATABASES

the servlet, or by maintaining a pool of Web component instances and dis-
patching each new request to a free instance. This interface does not pre-
vent synchronization problemsthat result from Web components accessing
shared resources such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsis-
tent fashion. To prevent this, you must control the access using the synchroniza-
tion techniques described in the Threads lesson in the Java Tutorial.

In the previous section we showed five scoped attributes shared by more than
one servlet: bookDB, cart, currency, hitCounter, and orderCounter. The
bookDB attribute is discussed in the next section. The cart, currency, and counters
can be set and read by multiple multithreaded servlets. To prevent these objects
from being used inconsistently, access is controlled by synchronized methods.
For example, hereisthe util.Counter class.

public class Counter {

private int counter;

public Counter() {
counter = 0;

}

public synchronized int getCounter() {
return counter;

}

public synchronized int setCounter(int c) {
counter = c;
return counter;

}

public synchronized int incCounter() {
return(++counter);

}

Accessing Databases

Datathat is shared between Web components and persistent between invocations
of a Web application is usually maintained by a database. Web components use
the JDBC 2.0 API to access relational databases. The data for the bookstore
application is maintained in a database and accessed through the helper class
database.BookDB. For example, ReceiptServiet invokes the BookDB.buy-
Books method to update the book inventory when a user makes a purchase. The
buyBooks method invokes buyBook for each book contained in the shopping
cart. To ensure the order is processed in its entirety, the calls to buyBook are

403

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial
../examples/web/bookstore1/util/Counter.java
../examples/web/bookstore1/database/BookDB.java
../examples/web/bookstore1/ReceiptServlet.java

404

JAVA™ SERVLET TECHNOLOGY

wrapped in asingle JDBC transaction. The use of the shared database connection
is synchronized viathe [get| release]Connection methods.

public void buyBooks(ShoppingCart cart) throws OrderException{
Collection items = cart.getItems();
Iterator i = items.iterator();
try {
getConnection();
con.setAutoCommit(false);
while (i.hasNext()) {
ShoppingCartItem sci = (ShoppingCartItem)i.next();
BookDetails bd = (BookDetails)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity(Q);
buyBook (id, quantity);
}
con.commit();
con.setAutoCommit(true);
releaseConnection();
} catch (Exception ex) {
try {
con.rollback(Q;
releaseConnection();
throw new OrderException("Transaction failed: " +
ex.getMessage());
} catch (SQLException sgx) {
releaseConnection();
throw new OrderException("Rollback failed: " +
sqx.getMessage());

Initializing a Servlet

After the Web container loads and instantiates the servlet class and before it
delivers requests from clients, the Web container initializes the servlet. You can
customize this process to alow the servlet to read persistent configuration data,
initialize resources, and perform any other one-time activities by overriding the
init method of the Servlet interface. A servlet that cannot completeitsinitial-
ization process should throw UnavailableException.

All the servlets that access the bookstore database (BookStoreServilet, Cata-
TogServlet, BookDetailsServlet, and ShowCartServlet) initidize avariable

../../api/javax/servlet/Servlet.html
../examples/web/bookstore1/BookStoreServlet.java
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/BookDetailsServlet.java
../examples/web/bookstore1/ShowCartServlet.java

ACCESSING DATABASES 405

in their i nit method that points to the database hel per object created by the Web
context listener:

public class CatalogServlet extends HttpServiet {
private BookDB bookDB;
public void init() throws ServiletException {
bookDB = (BookDB)getServletContext().
getAttribute("bookDB");
if (bookDB == null) throw new
UnavailableException("Couldn't get database.™);

Writing Service Methods

The service provided by a servlet is implemented in the service method of a
GenericServiet, the doMethod methods (where Method can take the value Get,
Delete, Options, Post, Put, Trace) of an HttpServlet, or any other protocol-
specific methods defined by a class that implements the Serviet interface. In
therest of this chapter, the term “ service method” will be used for any method in
aservlet classthat provides a service to aclient.

The general pattern for a service method is to extract information from the
request, access externa resources, and then populate the response based on that
information.

For HTTP servlets, the correct procedure for populating the response is to first
fill in the response headers, then retrieve an output stream from the response, and
finally write any body content to the output stream. Response headers must
always be set before a PrintWriter or ServletOutputStream is retrieved
because the HTTP protocol expects to receive all headers before body content.
The next two sections describe how to get information from requests and gener-
ate responses.

406

JAVA™ SERVLET TECHNOLOGY

Getting Information From Requests

A request contains data passed between a client and the servilet. All requests
implement the ServletRequest interface. This interface defines methods for
accessing the following information:

« Parameters, which are typically used to convey information between cli-
ents and servlets

¢ Object-valued attributes, which are typically used to pass information

between the servlet container and a servlet or between collaborating serv-
lets

« Information about the protocol used to communicate the request and the
client and server involved in the request
» Information relevant to localization

For example, in CatalogServiet the identifier of the book that a customer
wishes to purchase is included as a parameter to the request. The following code
fragment illustrates how to use the getParameter method to extract the identi-
fier:

String bookId = request.getParameter("Add");
if (bookId !'= null) {
BookDetails book = bookDB.getBookDetails(bookId);

You can aso retrieve an input stream from the request and manually parse the
data. To read character data, use the BufferedReader object returned by the
request’s getReader method. To read binary data, use the ServletInputStream
returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServietRequest, which
contains the request URL, HTTP headers, query string, and so on.

AnHTTP request URL contains the following parts:
http://[host]:[port][request path]?[query string]

The request path is further composed of the following elements:
e Context path: A concatenation of * /* with the context root of the servlet’'s
Web application.

e Servlet path: The path section that corresponds to the component alias
that activated this request. This path startswitha’/’.

../../api/javax/servlet/ServletRequest.html
../examples/web/bookstore1/CatalogServlet.java
http://java.sun.com/j2se/1.3/docs/api/java/io/BufferedReader.html
../../api/javax/servlet/ServletInputStream.html
../../api/javax/servlet/http/HttpServletRequest.html

GETTING INFORMATION FROM REQUESTS

e Path info: The part of the request path that is not part of the context path
or the servlet path.

Table 5 gives some examples of how the URL will be broken down if the context
path is /catalog, and the aliases are as listed in Table 4:

Table4 Aliases
Pattern Servlet
/Tawn/* LawnServilet
/*.jsp JSPServlet

Table5 Request Path Elements

Request Path Servlet Path Path Info
/catalog/lawn/index.html /lawn /index.html
/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual param-
eters are retrieved from a request with the getParameter method. There are two
ways to generate query strings:

« A query string can explicitly appear in a Web page. For example, an
HTML page generated by the CatalogServiet could contain the link Add To Cart. Cata-
TogServlet extracts the parameter named Add as follows:

String bookId = request.getParameter("Add");

e A query string is appended to a URL when a form with a GET HTTP
method is submitted. In the Duke's Bookstore application, CashierServ-
Tet generatesaform, auser nameinput to the formisappended to the URL
that maps to ReceiptServiet, and ReceiptServlet extracts the user
name using the getParameter method.

407

../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/CashierServlet.java
../examples/web/bookstore1/CashierServlet.java
../examples/web/bookstore1/ReceiptServlet.java

408

JAVA™ SERVLET TECHNOLOGY

Constructing Responses

A response contains data passed between a server and the client. All responses
implement the ServietResponse interface. This interface defines methods that
alow you to:

« Retrieve an output stream to use to send data to the client. To send charac-
ter data, use the PrintWriter returned by the response's getWriter
method. To send binary data in a MIME body response, use the Serv-
TetOutputStream returned by getOutputStream. To mix binary and text
data, for example, to create a multipart response, use a ServletQutput-
Stream and manage the character sections manually.

 Indicate the content type (for example, text/htm1), being returned by the
response. A registry of content type namesis kept by IANA at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

« Indicate whether to buffer output. By default, any content written to the
output stream isimmediately sent to the client. Buffering allows content to
bewritten before anything isactually sent back to the client, thus providing
the servlet with more time to set appropriate status codes and headers or
forward to another Web resource.

¢ Set localization information.

HTTP response objects, HttpServietResponse, have fields representing HTTP
headers such as

e Status codes, which are used to indicate the reason of arequest is not sat-
isfied.

« Cookies, which are used to store application-specific information at the
client. Sometimes cookies are used to maintain an identifier for tracking a
user’s session (see Session Tracking (page 424)).

In Duke's Bookstore, BookDetailsServiet generates an HTML page that dis-
plays information about a book which the servlet retrieves from a database. The
servlet first sets response headers. the content type of the response and the buffer
size. The servlet buffers the page content because the database access can gener-
ate an exception that would cause forwarding to an error page. By buffering the
response, the client will not see a concatenation of part of a Duke’'s Bookstore
page with the error page should an error occur. The doGet method then retrieves
aPrintWriter from the response.

../../api/javax/servlet/ServletResponse.html
http://java.sun.com/j2se/1.3/docs/api/java/io/PrintWriter.html
../../api/javax/servlet/ServletOutputStream.html
../../api/javax/servlet/ServletOutputStream.html
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
../../api/javax/servlet/http/HttpServletResponse.html
../examples/web/bookstore1/BookDetailsServlet.java

CONSTRUCTING RESPONSES 409

For filling in the response, the serviet first dispatches the request to Ban-
nerServlet, which generates a common banner for all the servletsin the appli-
cation. This process is discussed in Including Other Resources in the
Response (page 418). Then the servlet retrieves the book identifier from a
request parameter and uses the identifier to retrieve information about the book
from the bookstore database. Finaly the serviet generates HTML markup that
describes the book information and commits the response to the client by calling
the c1ose method on the PrintWriter.

public class BookDetailsServilet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// set headers before accessing the Writer
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the response
out.printIn("<html>" +

"<head><title>+
messages.getString("TitleBookDescription™)
+</title></head>");

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =
getServletContext().
getRequestDispatcher("/banner™);
if (dispatcher !'= null)
dispatcher.include(request, response);

//Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {
// and the information about the book
try {
BookDetails bd =
bookDB.getBookDetails(bookId);

//Print out the information obtained
out.println("<h2>" + bd.getTitle() + "</h2>" +

} catch (BookNotFoundException ex) {
response.resetBuffer();
throw new ServletException(ex);

410

JAVA™ SERVLET TECHNOLOGY

out.printTn("</body></htm1>");
out.close();

}

BookDetailsServlet generates a page that looks like:

#: Book Description - Nelscape

Eile Edit Yew Go Communicator Help

" ¥ Bookmerks X Loestion [ty //iocalhosta000/bookstore] bookdetailstbookki=c03 ¥] 4.0 WharsRelaled IX

[T L

Duke's ‘%* Bookstore

Web Components for Web Developers

By Webster Masterson (2000)

Here's what the eritics say:

What a ceal bosk

L
Char price: $17.75
Add To Your Shopping Cart Continue Shopping
[P i [[T—— T T N S

Figure2 Book Details

Filtering Requests and Responses

A filter is an object that can transform the header and/or content of a request or
response. Filters differ from Web components in that they usually do not them-
selves create a response. Instead, a filter provides functionality that can be
“attached” to any kind of Web resource. As a consequence, a filter should not
have any dependencies on a Web resource for which it is acting as a filter so that

PROGRAMMING FILTERS

it can be composable with more than one type of Web resource. The main tasks
that afilter can perform are:

¢ Query the request and act accordingly

« Block the request and response pair from passing any further.

« Modify the request headers and data. You do this by providing a custom-
ized version of the request.

« Modify the response headers and data. You do this by providing a custom-
ized version of the response.

* |nteract with external resources

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a Web resource to be filtered by a chain of zero, one, or more
filters in a specific order. This chain is specified when the Web application con-
taining the component is deployed and instantiated when a Web container loads
the component.

In summary, the tasks involved in using filtersinclude:

¢ Programming the filter
¢ Programming customized requests and responses
« Specifying the filter chain for each Web resource

Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig
interfaces in the javax.servlet package. You define a filter by implementing
the Filter interface. The most important method in thisinterface isthe doFi1-
ter method, which is passed request, response, and filter chain objects. This
method can perform the following actions:

« Examine the request headers

« Customizetherequest object if it wishes to modify request headers or data

« Customize the response object if it wishes to modify response headers or
data

* Invokethe next entity in thefilter chain. If the current filter isthe last filter
in the chain that endswith the target Web component or static resource, the
next entity is the resource at the end of the chain; otherwise, it is the next
filter that was configured in the WAR. It invokes the next entity by calling

411

../../api/javax/servlet/Filter.html

412

JAVA™ SERVLET TECHNOLOGY

the doFilter method on the chain object (passing in the request and
response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to
invoke the next entity. In the latter case, the filter is responsible for filling
out the response.

« Examine response headers after it has invoked the next filter in the chain
e Throw an exception to indicate an error in processing

In addition to doFiTter, you must implement the init and destroy methods.
The init method is called by the container when the filter is instantiated. If you
wish to pass initialization parameters to the filter you retrieve them from the
FilterConfig object passed to init.

The Duke's Bookstore application uses the filters HitCounterFilter and
OrderFilter to increment and log the value of a counter when the entry and
receipt servlets are accessed.

In the doFiT1ter method, both filters retrieve the servlet context from the filter
configuration object so that they can access the counters stored as context
attributes. After the filters have completed application-specific processing, they
invoke doFilter on the filter chain object passed into the original doFilter
method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServiletException {
this.filterConfig = filterConfig;
}
public void destroy() {
this.filterConfig = null;
}
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
if (filterConfig == null)
return;
StringWriter sw = new StringWriter(Q);
PrintWriter writer = new PrintWriter(sw);
Counter counter = (Counter)filterConfig.
getServiletContext().
getAttribute("hitCounter™);
writer.printin();
writer.printin{" "3

../examples/web/bookstore1/filters/HitCounterFilter.java
../examples/web/bookstore1/filters/OrderFilter.java

PROGRAMMING CUSTOMIZED REQUESTS AND RESPONSESA13

writer.printin("The number of hits is: " +
counter.incCounter());
writer.printin(" ")

// Log the resulting string

writer.flush(Q);

filterConfig.getServletContext().
Tog(sw.getBuffer().toString());

chain.doFilter(request, wrapper);

Programming Customized Requests and
Responses

There are many ways for a filter to modify arequest or response. For example, a
filter could add an attribute to the request or insert data in the response. In the
Duke's Bookstore example, HitCounterFilter inserts the value of the counter
into the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. The way to do thisis to pass the servlet that generates the
response a stand-in stream. The stand-in stream prevents the servlet from closing
the original response stream when it completes and allows the filter to modify
the servlet’s response.

In order to pass this stand-in stream to the servlet, the filter creates a response
“wrapper” that overrides the getWriter or getQutputStream method to return
this stand-in stream. The wrapper is passed to the doFi1ter method of the filter
chain. Wrapper methods default to calling through to the wrapped request or
response object. This approach follows the well-known Wrapper or Decorator
pattern described in Design Patterns, Elements of Reusable Object-Oriented
Software. The following sections describe how the hit counter filter described
earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper Or HttpServletRequestWrapper. To override
response methods, you wrap the response in an object that extends
ServletResponseWrapper Or HttpServletResponseWrapper.

HitCounterFilter wraps the response in a CharResponseWrapper. The
wrapped response is passed to the next object in the filter chain, which is Book-

../../api/javax/servlet/ServletRequestWrapper.html
../../api/javax/servlet/http/HttpServletRequestWrapper.html
../../api/javax/servlet/ServletResponseWrapper.html
../../api/javax/servlet/http/HttpServletResponseWrapper.html
../examples/web/bookstore1/filters/CharResponseWrapper.java

414

JAVA™ SERVLET TECHNOLOGY

StoreServilet. BookStoreServiet writes its response into the stream created
by CharResponseWrapper. When chain.doFilter returns, HitCounterFilter
retrieves the servlet’s response from PrintWriter and writes it to a buffer. The
filter inserts the value of the counter into the buffer, resets the content length
header of the response, and finally writes the contents of the buffer to the
response stream.

PrintWriter out = response.getWriter();
CharResponseWrapper wrapper = new CharResponseWrapper (
(HttpServletResponse) response);
chain.doFilter(request, wrapper);
CharArrayWriter caw = new CharArrayWriter();
caw.write(wrapper.toString() .substring(0,
wrapper.toString().index0f("</body>")-1));
caw.write("<p>\n<center><center>" +
messages.getString("Visitor") + "" +
counter.getCounter() + "<center>");
caw.write("\n</body></html>");
response.setContentLength(caw.toString().length());
out.write(caw.toString();
out.close();

public class CharResponseWrapper extends
HttpServiletResponseWrapper {
private CharArrayWriter output;
public String toString() {
return output.toString(Q;

}

public CharResponseWrapper(HttpServletResponse response){
super(response);
output = new CharArrayWriter();

}

public PrintWriter getWriter(){
return new PrintWriter(output);

}

SPECIFYING FILTER MAPPINGS

Figure 3 shows the entry page for Duke's Bookstore with the hit counter.

i Duke's Bookstore - Netscape

Communicator Help
kmarks 4 Locsion [r | Votar o] € Whets Feleted |

Duke's %4: Bookstore

‘What We're Heading

developer!

Start Shapping

Tou are wizgitor purber 4

] [Documant Done Tt e e A

Figure3 Duke's Bookstore

Specifying Filter Mappings

A Web container uses filter mappings to decide how to apply filters to Web
resources. A filter mapping matches a filter to a Web component by name or to
Web resources by URL pattern. The filters are invoked in the order that filter
mappings appear in the filter mapping list of a WAR.

To map afilter to a Web resources you:

« Declare the filter using the <filter> element in the Web application
deployment descriptor. This element creates a name for the filter and
declaresthe filter’s implementation class and initialization parameters.

« Map thefilter to aWeb resource by defining a <fi1ter-mapping> element
in the deployment descriptor. This element maps a filter name to a Web

resource by name or by URL pattern.

415

416 JAVA™ SERVLET TECHNOLOGY

The following elements show how to specify the hit counter and order filters. To
define a filter you provide a name for the filter, the class that implements the
filter, and optionally some initialization parameters.

<filter>
<filter-name>0rderFilter</filter-name>
<filter-class>filters.OrderFilter</filter-class>
</filter>
<filter>
<filter-name>HitCounterFilter</filter-name>
<filter-class>filters.HitCounterFilter</filter-class>
</filter>

The filter-mapping element maps the order filter to the /receipt URL. The
mapping could also have specified the servlet ReceiptServiet. Note that the
filter, filter-mapping, servilet, and servlet-mapping elements must
appear in the Web application deployment descriptor in that order.

<filter-mapping>

<filter-name>0OrderFilter</filter-name>
<url-pattern>/receipt</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>HitCounterFilter</filter-name>
<url-pattern>/enter</url-pattern>

</filter-mapping>

If you want to log every request to a Web application, you would map the hit
counter filter to the URL pattern /*. Table 6 summarizes the filter mapping list
for the Duke's Bookstore application. The filters are matched by URL pattern
and each filter chain contains only one filter.

Table 6 Duke's Bookstore Filter Mapping List

URL Filter
/enter HitCounterFilter
/receipt OrderFilter

You can map a filter to one or more Web resource and you can map more than
one filter to a Web resource. This is illustrated in Figure 4, where filter F1 is

SPECIFYING FILTER MAPPINGS 417

mapped to servlets S1, S2, and S3, filter F2 is mapped to S2, and filter F3 is
mapped to S1 and S2.

Figure4 Filter to Servlet Mapping

Recall that afilter chain is one of the objects passed to the doFi1ter method of a
filter. This chain is formed indirectly via filter mappings. The order of the filters
in the chain is the same as the order that filter mappings appear in the Web appli-
cation deployment descriptor.

When afilter is mapped to servlet S1, the Web container invokes the doFilter
method of F1. The doFi1ter method of each filter in S1'sfilter chain isinvoked
by the preceding filter in the chain viathe chain.doFilter method. Since S1's
filter chain contains filters F1 and F3, F1's call to chain.doFilter invokes the
doFiTlter method of filter F3. When F3's doFi 1ter method completes, control
returnsto F1's doFi1ter method.

Invoking Other Web Resources
Web components can invoke other Web resources in two ways. indirect and
direct.

A Web component indirectly invokes another Web resource when it embeds a
URL that points to another Web component in content returned to a client. In the

418

JAVA™ SERVLET TECHNOLOGY

Duke's Bookstore application, most Web components contain embedded URL s
that point to other Web components. For example, ReceiptServiet indirectly
invokes the CatalogServlet through the embedded URL /bookstorel/cata-
Tog.

A Web component can also directly invoke another resource while it is execut-
ing. There aretwo possibilities: it can include the content of another resource, or
it can forward a request to another resource.

To invoke a resource available on the server that is running a Web component,
you must first obtain a RequestDispatcher using the getRequestDis-
patcher ("URL™) method.

You can get a RequestDispatcher from either a request or the Web context,
however, the two methods have dightly different behavior. The method takes the
path to the requested resource as an argument. A request can take a relative path
(that is, one that does not begin with a */’), but the Web context requires an
absolute path. If the resource is not available, or if the server has not imple-
mented aRequestDispatcher object for that type of resource, getRequestDis-
patcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the
Response

It is often useful to include another Web resource, for example, banner content or
copyright information, in the response returned from a Web component. To
include another resource, invoke the incTude method of aRequestDispatcher:

include(request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a Web component, the effect of the method is to send
the request to the included Web component, execute the Web component, and
then include the result of the execution in the response from the containing serv-
let. Anincluded Web component has access to the request object, but it islimited
in what it can do with the response object:

¢ |t can write to the body of and commit aresponse.

It cannot set headers or call any method (for example, setCookie) that
affects the headers of the response.

../../api/javax/servlet/RequestDispatcher.html

INCLUDING OTHER RESOURCES IN THE RESPONSE

The banner for the Duke's Bookstore application is generated by BannerServ-
Tet. Note that both doGet and doPost methods are implemented because Ban-
nerServlet can be dispatched from either method in a calling servlet.

public class BannerServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.printin("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<hl>" +
"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +
"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.printin("<body bgcolor=\"#ffffff\">" +

"<center>" + "<hr>
 " + "<hl>" +

"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +

"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}

Each servlet in the Duke's Bookstore application includes the result from Ban-
nerServlet with the following code:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/banner");
if (dispatcher !'= null)
dispatcher.include(request, response);

}

419

../examples/web/bookstore1/BannerServlet.java
../examples/web/bookstore1/BannerServlet.java

420

JAVA™ SERVLET TECHNOLOGY

Transferring Control to Another Web
Component

In some applications you might want to have one Web component do prelimi-
nary processing of a reguest and another component generate the response. For
example, you might want to partially process a request and then transfer to
another component depending on the nature of the request.

To transfer control to another Web component, you invoke the forward method
of aRequestDispatcher. When arequest isforwarded, the request URL isset to
the path of the forwarded page. If the original URL is required for any process-
ing you can save it as arequest attribute. The Dispatcher serviet, used by aver-
sion of the Duke's Bookstore application described in The Example JSP
Pages (page 463), saves the path information from the original URL, retrieves a
RequestDispatcher from the request, and then forwards to the JSP page tem-
plate.jsp.

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServiletResponse response) {
request.setAttribute("selectedScreen",
request.getServietPath());
RequestDispatcher dispatcher = request.
getRequestDispatcher("/template.jsp™);
if (dispatcher !'= null)
dispatcher.forward(request, response);
}

public void doPost(HttpServiletRequest request,
3

The forward method should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletQutputStream Or
PrintWriter object within the servlet, you cannot use this method; it throws an
ITlegalStateException.

../examples/web/bookstore3/Dispatcher.java
../examples/web/bookstore3/template.txt
../examples/web/bookstore3/template.txt

TRANSFERRING CONTROL TO ANOTHER WEB COMPONENT421

Accessing the Web Context

The context in which Web components execute is an object that implements the
ServletContext interface. You retrieve the Web context with the getServiet-
Context method. The Web context provides methods for accessing:

¢ [Initialization parameters

» Resources associated with the Web context
e Object-valued attributes

« Logging capabilities

The Web context is used by the Duke's Bookstore filters fiTters.HitCounter-
Filter and OrderFilter discussed in Filtering Requests and
Responses (page 410). The filters store a counter as a context attribute. Recall
from Controlling Concurrent Access to Shared Resources (page 402) that the
counter’s access methods are synchronized to prevent incompatible operations
by serviets that are running concurrently. A filter retrieves the counter object
with the context’s getAttribute method. The incremented value of the counter
is recorded with the context’s 1og method.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {

StringWriter sw = new StringWriter(Q);

PrintWriter writer = new PrintWriter(sw);

ServletContext context = filterConfig.
getServletContext();

Counter counter = (Counter)context.
getAttribute("hitCounter™);

writer.printin("The number of hits is: " +
counter.incCounter());

context.log(sw.getBuffer().toString());

../../api/javax/servlet/ServletContext.html
../examples/web/bookstore1/filters/HitCounterFilter.java
../examples/web/bookstore1/filters/HitCounterFilter.java

422

JAVA™ SERVLET TECHNOLOGY

Maintaining Client State

Many applications require a series of requests from aclient to be associated with
one another. For example, the Duke's Bookstore application saves the state of a
user’s shopping cart across requests. Web-based applications are responsible for
maintaining such state, called a session, because the HTTP protocol is stateless.
To support applications that need to maintain state, Java Servlet technology pro-
vides an API for managing sessions and allows several mechanisms for imple-
menting sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by
calling the getSession method of arequest object. This method returns the cur-
rent session associated with this request, or, if the request does not have a ses-
sion, creates one. Since getSession may modify the response header (if cookies
are the session tracking mechanism), it needs to be called before you retrieve a
PrintWriter Or ServletOQutputStream.

Associating Attributes with a Session

You can associate object-valued attributes with a session by name. Such
attributes are accessible by any Web component that belongs to the same Web
context and is handling a request that is part of the same session.

The Duke's Bookstore application stores a customer’s shopping cart as a session
attribute. This allows the shopping cart to be saved between requests and also
allows cooperating servlets to accessthe cart. CatalogServiet addsitemsto the
cart, ShowCartServiet displays, deletes items from, and clears the cart, and
CashierServlet retrievesthe total cost of the books in the cart.

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart =

(ShoppingCart)session.

../../api/javax/servlet/http/HttpSession.html
../examples/web/bookstore1/CatalogServlet.java
../examples/web/bookstore1/ShowCartServlet.java
../examples/web/bookstore1/CashierServlet.java

SESSION MANAGEMENT

getAttribute("cart™);

// Determine the total price of the user's books
double total = cart.getTotal(Q);

Notifying Objects That Are Associated with a
Session

Recall that your application can notify Web context and session listener objects
of servlet life cycle events (Handling Serviet Life Cycle Events (page 397)). You
can also notify objects of certain events related to their association with a ses-
sion:

* When the object is added to or removed from a session. To receive this
notification, your object must implement the javax.http.HttpSession-
BindingListener interface.

* When the session to which the object is attached will be passivated and/or
activated. A session will be passivated and activated when it is moved
between virtual machines or saved to and restored from persistent storage.
To receive this notification, your object must implement the
javax.http.HttpSessionActivationlListener interface.

Session Management

Since there is no way for an HTTP client to signal that it no longer needs a ses-
sion, each session has an associated time-out so that its resources can be
reclaimed. The time-out period can be accessed with asession’s [get|set]Max-
InactiveInterval methods. To ensure that an active session is not timed-out,
you should periodically access the session in service methods because this resets
the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s invali-
date method to invalidate a session on the server side and remove any session
data.

The bookstore application’s ReceiptServiet is the last serviet to access a cli-
ent’s session, so it has responsibility for invalidating the session:

public class ReceiptServlet extends HttpServiet {
public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

423

../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionActivationListener.html
../examples/web/bookstore1/ReceiptServlet.java

424 JAVA™ SERVLET TECHNOLOGY

// Get the user's session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();

Session Tracking

A Web container can use several methods to associate a session with auser, all of
which involve passing an identifier between the client and server. The identifier
can be maintained on the client as a cookie or the Web component can include

the identifier in every URL that is returned to the client.

If your application makes use of session objects, you must ensure that session
tracking is enabled by having the application rewrite URLS whenever the client
turns off cookies. You do this by calling the response’s encodeURL (URL) method
on all URLSs returned by a servlet. This method includes the session ID in the
URL only if cookies are disabled; otherwise it returns the URL unchanged.

The doGet method of ShowCartServlet encodes the three URLS at the bottom

of the shopping cart display page asfollows:

out.println("<p> <p><a href=\"" +

response.encodeURL(request.getContextPath() + "/catalog") +
"\">" + messages.getString("ContinueShopping”) +

" " +
"<a href=\"" +

response.encodeURL(request.getContextPath() + "/cashier") +

"\">" + messages.getString("Checkout™) +

" " +

"<a href=\"" +
response.encodeURL(request.getContextPath() +

"/showcart?Clear=clear") +

"\">" + messages.getString("ClearCart") +

"");

If cookies are turned off, the session is encoded in the Check Out URL as fol-

lows;

http://localhost:8080/bookstorel/cashier;
jsessionid=c0o7fszebl

If cookies areturned on, the URL issimply:

http://localhost:8080/bookstorel/cashier

../examples/web/bookstore1/ShowCartServlet.java

TRACKING SERVICE REQUESTS 425

Finalizing a Servlet

When a servlet container determines that a servlet should be removed from ser-
vice (for example, when a container wants to reclaim memory resources, or
when it is being shut down) it calls the destroy method of the Serviet inter-
face. In this method you release any resources the servlet is using and save any
persistent state. The following destroy method rel eases the database object cre-
ated in the init method described in Initializing a Servlet (page 404):

public void destroy() {
bookDB = null;
}

All of a servlet's service methods should be complete when a serviet is
removed. The server tries to ensure this completion by calling the destroy
method only after all service requests have returned or after a server-specific
grace period, whichever comesfirst.

If your servlet has potentially long-running service requests, use the techniques
described below to:

« Keep track of how many threads are currently running the service method

¢ Provide aclean shutdown by having the destroy method notify long-run-
ning threads of the shutdown and wait for them to complete

« Have the long-running methods poll periodically to check for shutdown
and, if necessary, stop working, clean up, and return

Tracking Service Requests

To track service requests, include in your serviet class a field that counts the
number of service methods that are running. The field should have synchronized
access methods to increment, decrement, and return its value.

public ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

//Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {
serviceCounter++;

}

protected synchronized void TeavingServiceMethod() {
serviceCounter--;

426

JAVA™ SERVLET TECHNOLOGY

}

protected synchronized int numServices() {
return serviceCounter;

}

}

The servi ce method should increment the service counter each time the method
is entered and should decrement the counter each time the method returns. This
is one of the few times that your HttpServiet subclass should override the ser-
vice method. The new method should call super.service to preserve al of the
origina service method's functionality.

protected void service(HttpServletRequest req,
HttpServletResponse resp)

throws ServletException,IOException {
enteringServiceMethod();

try {
super.service(req, resp);
} finally {
TeavingServiceMethod();

}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not rel ease any shared
resources until all of the service requests have completed. One part of doing this
is to check the service counter. Another part is to notify the long-running meth-
ods that it is time to shut down. For this notification another field is required.
Thefield should have the usual access methods:

public ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown

protected setShuttingDown(boolean flag) {
shuttingDown = flag;

}

protected boolean isShuttingDown() {
return shuttingDown;

}

CREATING POLITE LONG-RUNNING METHODS 427

An example of the destroy method using these fields to provide a clean shut-
down follows:

public void destroy() {
/% Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (humServices() > 0) {
setShuttingDown(true);

}

/* Wait for the service methods to stop. */
while(numServices() > 0) {

try {
Thread.sleep(interval);
} catch (InterruptedException e) {

}

Creating Polite Long-Running Methods

Thefinal step to provide a clean shutdown is to make any long-running methods
behave politely. Methods that might run for a long time should check the value
of the field that notifies them of shutdowns and should interrupt their work, if
necessary.

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
'isShuttingDown()); i++) {
try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}

428 JAVA™ SERVLET TECHNOLOGY

JavaServer Pages™
Technology

Stephanie Bodoff

JAVASERVER Pages™ (JSP™) technology allows you to easily create Web
content that has both static and dynamic components. JSP technology projects
all the dynamic capabilities of Java Servlet technology but provides a more natu-
ral approach to creating static content. The main features of JSP technology are:

» A language for developing JSP pages, which are text-based documents that

describe how to process a request and construct a response
» Congtructs for accessing server-side objects
» Mechanisms for defining extensions to the JSP language

JSP technology also contains API that is used by developers of Web containers,

but this APl is not covered in this chapter.

In This Chapter

What isa JSP Page?

The Example JSP Pages

The Life Cycle of a JSP Page
Trandlation and Compilation
Execution

Initializing and Finalizing a JSP Page

Creating Static Content

Creating Dynamic Content
Using Objects Within JSP Pages
JSP Scripting Elements

430
432
434
435
436
437
438
438
438
441

429

Bios.html

430

JAVASERVER PAGES™ TECHNOLOGY

Including Content in a JSP Page 444
Transferring Control to Another Web Component 445

Param Element 446
Including an Applet 446
Extending the JSP L anguage A48

What is a JSP Page?

A JSP page is a text-based document that contains two types of text: static tem-
plate data, which can be expressed in any text-based format such as HTML,
SVG, WML, and XML, and JSP elements, which construct dynamic content. A
syntax card and reference for the JSP elementsis available at:

http://java.sun.com/products/jsp/technical.html#syntax

The following Web page is aform that allows you to select alocale and displ .ys
the date in a manner appropriate to the locale.

= Netscape: Localized Dates o]
File Edit View Go Communicator Help |
' Back Forwatdl Reload Home Search Netscape Print Secuty Shop ﬂ‘
Locale: Byelorussian (Belarus) ~ | Get Date

The date in Byelorussian (Belarus) is ¢P2004, 19, UDaadécYoUD 2000

[l | {a o @ v

Figurel Localized Date Form

The source for this example is in the docs/tutorial/examples/web/date
directory created when you unzip the tutorial bundle. The JSP page index.jsp
used to create the form appears below; it is a typical mixture of static HTML
markup and JSP elements. If you have developed Web pages, you are probably
familiar with the HTML document structure statements (<head>, <body>, and so

http://www.w3.org/MarkUp
http://www.w3.org/TR/SVG
http://www.oasis-open.org/cover/wap-wml.html
http://www.w3.org/TR/REC-xml
http://java.sun.com/products/jsp/technical.html#syntax
../examples/web/date/index.txt

431

on) and the HTML statements that create aform <form> and a menu <select>.
The exampl e contains the following types of JSP constructs:

¢ Directives (<% @page ... %>) import classesin the java.uti1 package and
the MyLocales class, and set the content type returned by the page.

¢ Thejsp:useBean element creates an object containing a collection of locales
and initializes a variable that point to that object.

e Scriptlets (<% ... %>) retrieve the value of the Tocale request parameter,
iterate over a collection of locale names, and conditionally insert HTML
text into the output.

* EXpressions (<%= ... %>) insert the value of the locale name into the
response.

e The jsp:include element sends a request to another page (date.jsp) and
includes the response in the response from the calling page.

<% @ page import="java.util.* ,MyL ocales' % >
<% @ page contentType="text/html; char set=I SO-8859-5" % >
<html|>
<head><title>Localized Dates</title></head>
<body bgcolor="white">
<jsp:useBean id="locales" scope="application"
class="MyL ocales' />
<form name="localeForm” action="index.jsp" method="post">
Locale:
<select name=Tlocale>
<%
String selectedL ocale = request.getParameter (" locale™);
Iterator i = locales.getL ocaleNames().iter ator ();
while (i.hasNext()) {
String locale = (Sring)i.next();
if (selectedLocale!=null & &

selectedL ocale.equals(locale)) {
%>
<option selected><¥%=Tocale¥%></option>
<%
1 else {
%>
<option><%=locale%></option>
<%
}
}
%>
</select>

<input type="submit" name="Submit" value="Get Date">

432

JAVASERVER PAGES™ TECHNOLOGY

</form>
<jsp:include page="date.jsp" />
</body>
</html>

To build, deploy, and execute this JSP page:

1. Goto docs/tutorial/examples /web/date and build the example by execut-
ing ant. This runs the default ant target deploy which depends on the
buid target. The bui1d target will spawn any necessary compilations and
copy files to the docs/tutorial/examples/web/date/build directory.
The deploy target copies the build directory to <JwSDP_HOME>/webapps.

2. Start or restart Tomcat.
3. Open the bookstore URL http://localhost:8080/date.

You will see acombo box whose entries are locales. Select alocale and click Get
Date. You will see the date expressed in a manner appropriate for that locale.

The Example JSP Pages

To illustrate JSP technology, this chapter rewrites each servlet in the Duke's
Bookstore application introduced in Java™ Servlet Technology (page 393) as a
JSP page:

Table 1 Duke's Bookstore Example JSP Pages

Function JSP Pages

Enter the bookstore bookstore.jsp

Create the bookstore banner banner.jsp

Browse the books offered for sale catalog.jsp

Put abook in a shopping cart catalog.jsp and bookdetails.jsp
Get detailed information on a specific book bookdetails.jsp

Display the shopping cart showcart.jsp

Remove one or more books from the shopping cart showcart.jsp

Buy the books in the shopping cart cashier.jsp

Table1l Duke'sBookstore Example JSP Pages (Continued)

Function

JSP Pages

Receive an acknowledgement for the purchase

receipt.jsp

The data for the bookstore application is still maintained in a database. However,
two changes are made to the database hel per object database.BookDB:

¢ The database helper object is rewritten to conform to JavaBeans compo-
nent design patterns as described in JavaBeans Component Design
Conventions (page 452). This change is made so that JSP pages can access
the hel per object using JSP language el ements specific to JavaBeans com-

ponents.

 Instead of accessing the bookstore database directly, the hel per object goes

through a data access object database . BookDAO.

The implementation of the database helper object follows. The bean has two
instance variables. the current book and a reference to the database enterprise

bean.

public class BookDB {
private String bookId = "0";

private BookDBEJB database = null;

public BookDB () throws Exception {

}

public void setBookId(String bookId) {

this.bookId = bookId;
}

public void setDatabase(BookDBEJB database) {

this.database = database;

}

public BookDetails getBookDetails()

throws Exception {
try {

return (BookDetails)database.
getBookDetails (bookId);
} catch (BookNotFoundException ex) {

throw ex;

}

433

../examples/web/bookstore2/database/BookDB.java

434

JAVASERVER PAGES™ TECHNOLOGY

Finally, this version of the example contains an appl et to generate a dynamic dig-
ital clock in the banner. See Including an Applet (page 446) for a description of
the JSP element that generates HTML for downloading the applet.

The source for the application is located in the docs/tutorial/exam-
ples/web/bookstore2 directory created when you unzip the tutorial bundlie
(see Running the Examples (page xvi)). To build, deploy, and run the example:

1. Gotothe examplesdirectory and build and deploy the example by running
ant. Thisruns the default ant target dep1oy which depends on the bui1d
target. The build target will spawn any necessary compilations and copy
filestothedocs/tutorial/examples/web/bookstore2/build directory.
The deploy target copies the bookstore2 context file to
<JWSDP_HOME> /webapps as described in Running Web
Applications (page 385).

2. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

3. Start or restart Tomcat.

4. Open the bookstore URL http://localhost:8080/bookstore2/enter.

See Common Problems and Their Solutions (page 70) and
Troubleshooting (page 396) for help with diagnosing common problems.

The Life Cycle of a JSP Page

A JSP page services requests as a servlet. Thus, the life cycle and many of the
capabilities of JSP pages (in particular the dynamic aspects) are determined by
Java Servlet technology and much of the discussion in this chapter refersto func-
tions described in Java™ Servlet Technology (page 393).

When a request is mapped to a JSP page, it is handled by a special servlet that
first checks whether the JSP page's servlet is older than the JSP page. If it is, it
translates the JSP page into a servlet class and compiles the class. During devel-
opment, one of the advantages of JSP pages over servletsis that the “build” pro-
cessis performed automatically.

TRANSLATION AND COMPILATION

Translation and Compilation

During the translation phase each type of data in a JSP page is treated differ-
ently:

« Template data is transformed into code that will emit the data into the
stream that returns data to the client.
* JSP elements are treated as follows;

 Directivesare used to control how the Web container translates and exe-
cutes the JSP page.

« Scripting elements areinserted into the JSP page’s servlet class. See JSP
Scripting Elements (page 441) for details.

* Elementsof theform <jsp: XXX ... /> areconverted into method calls
to JavaBeans components or invocations of the Java Serviet API.

For a JSP page named pageName, the source for a JSP page’s serviet is kept in
thefile:

<JWSDP_HOME>/work/localhost/context root/pageName$jsp.java

For example, the source for the index page (named index.jsp) for the date
localization example discussed at the beginning the chapter would be named:

<JWSDP_HOME>/work/Tocalhost/date/index$jsp.java

Both the trandation and compilation phases can yield errors that are only
observed when the page is requested for the first time. If an error occurs while
the page is being translated (for example, if the translator encounters a mal-
formed JSP element), the server will return a ParseException and the serviet
class source file will be empty or incomplete. The last incomplete line will give a
pointer to the incorrect JSP element.

If an error occurs while the JSP page is being compiled (for example, due to a
syntax error in a scriptlet), the server will return a JasperException and a mes-
sage that includes the name of the JSP page’s servlet and the line where the error
occurred.

Once the page has been translated and compiled, the JSP page’s servlet for the
most part follows the serviet life cycle described in Serviet Life

Cycle (page 397):
1. If an instance of the JSP page’s servlet does not exist, the container:
a. Loads the JSP page’s servlet class

435

436

JAVASERVER PAGES™ TECHNOLOGY

b. Instantiates an instance of the servlet class
c. Initializes the servlet instance by calling the jspInit method

2. Invokesthe _jspService method, passing a request and response object.

If the container needs to remove the JSP page's servlet, it calls the jspbDestroy
method.

Execution

You can control various JSP page execution parameters using page directives.
The directives that pertain to buffering output and handling errors are discussed
here. Other directives are covered in the context of specific page authoring tasks
throughout the chapter.

Buffering

When a JSP page is executed, output written to the response object is automati-
cally buffered. You can set the size of the buffer with the following page direc-
tive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent
back to the client, thus providing the JSP page with more time to set appropriate
status codes and headers or forward to another Web resource. A smaller buffer
decreases server memory load and allows the client to start receiving data more
quickly.

Handling Errors

Any number of exceptions can arise when a JSP page is executed. To specify that
the Web container should forward control to an error page if an exception occurs,
include the following page directive at the beginning of your JSP page:

<%@ page errorPage="file_name" %>
The Duke's Bookstore application page initdestroy.jsp containsthe directive

<%@ page errorPage="errorpage.jsp"%>

../examples/web/bookstore2/initdestroy.txt

EXECUTION

The beginning of errorpage.jsp indicates that it is serving as an error page
with the following page directive:

<%@ page isErrorPage="true|false" %>

This directive makes the exception object (of type javax.serviet.jsp.IspEx-
ception) available to the error page, so that you can retrieve, interpret, and pos-
sibly display information about the cause of the exception in the error page.

Note: You can also define error pages for the WAR that contains a JSP page. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

Initializing and Finalizing a JSP Page

You can customize the initialization process to allow the JSP page to read persis-
tent configuration data, initialize resources, and perform any other one-time
activities by overriding the jspInit method of the JspPage interface. You
rel ease resources using the jspbestroy method. The methods are defined using
JSP declarations, discussed in Declarations (page 441).

The bookstore example page initdestroy.jsp defines the jspInit method to
retrieve the object database .BookDBAQ that accesses the bookstore database and
stores areference to the bean in bookDBAO.

private BookDBAO bookDBAOQ;
public void jspInit() {
bookDBAO =
(BookDBAQ) getServletContext().getAttribute("bookDB") ;
if (bookDBAOQ == null)
System.out.println("Couldn’t get database.™);

}

When the JSP page is removed from service, the jspDestroy method releases
the BookDBAQ variable.

public void jspDestroy() {
bookDBAO = null;
}

437

../examples/web/bookstore2/errorpage.txt
../../api/javax/servlet/jsp/JspException.html
../../api/javax/servlet/jsp/JspException.html
../examples/web/bookstore2/initdestroy.txt
../examples/web/bookstore2/database/BookDBAO.java

JAVASERVER PAGES™ TECHNOLOGY

Since the enterprise bean is shared between all the JSP pages, it should beinitial-
ized when the application is started, instead of in each JSP page. Java Servlet
technology provides application life cycle events and listener classes for this
purpose. As an exercise, you can move the code that manages the creation of the
enterprise bean to a context listener class. See Handling Serviet Life Cycle
Events (page 397) for the context listener that initializes the Java Servlet version
of the bookstore application.

Creating Static Content

You create static content in a JSP page by simply writing it as if you were creat-
ing a page that consists only of that content. Static content can be expressed in
any text-based format such as HTML, WML, and XML. The default format is
HTML. If you want to use a format other than HTML you include a page direc-
tive with the contentType attribute set to the format type at the beginning of
your JSP page. For example, if you want a page to contain data expressed in the
wireless markup language (WML), you need to include the following directive:

<%@ page contentType="text/vnd.wap.wml"%>
A registry of content type namesis kept by IANA at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

Creating Dynamic Content

You create dynamic content by accessing Java programming language objects
from within scripting elements.

Using Objects Within JSP Pages

You can access a variety of objects, including enterprise beans and JavaBeans
components, within a JSP page. JSP technology automatically makes some
objects available and you can also create and access application-specific objects.

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

USING OBJECTS WITHIN JSP PAGES

Implicit Objects

Implicit objects are created by the Web container and contain information related
to a particular request, page, or application. Many of the objects are defined by
the Java Servlet technology underlying JSP technology and are discussed at
length in Java™ Servlet Technology (page 393). Table 2 summarizes the

implicit objects.

Table 2 Implicit Objects

Variable Class Description
. The context for the JSP page’s servlet and any Web

. . javax.servlet. . . L

application ServietContext components contai ned in the same application. See
Accessing the Web Context (page 421).

. javax.servlet. P . ,
config ServletConfig Initialization information for the JSP page’s servlet.
exception java.lang. Accessible only from an error page. See Han-

P Throwable dling Errors (page 436).

javax.servlet.
out Jsp. Ispriter The output stream.
.] The instance of the JSP page's servlet processing
page java.iang. the current request. Not typically used by JSP page
Object
authors.
The context for the JSP page. Providesasingle API
. Tet to mar_1agethe various _scoped attributes described
pageContext %:\r;a);ézg(r;\o/nieﬁ in Using Scope Objects (page 400).
' This API is used extensively when implementing
tag handlers (see Tag Handl ers (page 469)).
subtype of The request tri g_geri ng the exec_uti on of the JSP
request javax.serviet. page. See Getting | nformation From
ServletRequest Requests (page 406).
s.ubtype of The response to be returned to the client. Not typi-
response Javax.ser‘v1 et. caly used by isp pageauthors
ServletResponse y)
session javax.serviet. The session object for the client. See M aintain-
http.HttpSession | ing Client State (page 422).

439

../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/ServletConfig.html
http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Throwable.html
../../api/javax/servlet/jsp/JspWriter.html
http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Object.html
../../api/javax/servlet/jsp/PageContext.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/ServletResponse.html
../../api/javax/servlet/http/HttpSession.html

440

JAVASERVER PAGES™ TECHNOLOGY

Application-Specific Objects

When possible, application behavior should be encapsulated in objects so that
page designers can focus on presentation issues. Objects can be created by devel-
opers who are proficient in the Java programming language and accessing data-
bases and other services. There are four ways to create and use objects within a
JSP page:

 |nstance and class variables of the JSP page's servlet class are created in
declarations and accessed in scriptlets and expressions.

e Loca variables of the JSP page’s servlet class are created and used in
scriptlets and expressions.

« Attributes of scope objects (see Using Scope Objects (page 400)) are cre-
ated and used in scriptlets and expressions.

« JavaBeans components can be created and accessed using streamlined JSP
elements. These elements are discussed in the chapter JavaBeans™ Com-
ponents in JSP™ Pages (page 451). You can a so create a JavaBeans com-
ponent in a declaration or scriptlet and invoke the methods of a JavaBeans
component in a scriptlet or expression.

Declarations, scriptlets, and expressions are described in JSP_Scripting
Elements (page 441).

Shared Objects

The conditions affecting concurrent access to shared objects described in Con-
trolling Concurrent Access to Shared Resources (page 402) apply to objects
accessed from JSP pages that run as multithreaded servlets. You can indicate
how a Web container should dispatch multiple client requests with the following
page directive:

<%@ page isThreadSafe="true|false" %>

When isThreadSafe is set to true, the Web container may choose to dispatch
multiple concurrent client requests to the JSP page. This is the default setting. If
using true, you must ensure that you properly synchronize accessto any shared
objects defined at the page level. This includes objects created within declara-
tions, JavaBeans components with page scope, and attributes of the page scope
object.

If isThreadSafe is set to false, requests are dispatched one at a time, in the
order they were received and access to page level objects does not have to be

JSP SCRIPTING ELEMENTS

controlled. However, you still must ensure that access to attributes of the app1i -
cation Or session scope objects and JavaBeans components with application or
session scope is properly synchronized.

JSP Scripting Elements

JSP scripting elements are used to create and access objects, define methods, and
manage the flow of control. Since one of the goals of JSP technology is to sepa-
rate static template data from the code needed to dynamically generate content,
very sparing use of JSP scripting is recommended. Much of the work that
requires the use of scripts can be eliminated by using custom tags, described in
Custom Tags in JSP™ Pages (page 461).

JSP technology allows a container to support any scripting language that can call
Java objects. If you wish to use a scripting language other than the default, java,
you must specify it in apage directive at the beginning of a JSP page:

<%@ page language="scripting language" %>

Since scripting elements are converted to programming language statements in
the JSP page’s servlet class, you must import any classes and packages used by a
JSP page. If the page language is java, you import a class or package with the
page directive:

<%@ page import="packagename.*, fully_qualified_classname" %>

For example, bookstore example page showcart. jsp imports the classes needed
to implement the shopping cart with the following directive:

<%@ page import="java.util.*, cart.*" %>

Declarations

A JSP declaration is used to declare variables and methods in a page’s scripting
language. The syntax for a declaration is:

<%! scripting language declaration %>

When the scripting language is the Java programming language, variables and
methods in JSP declarations become declarations in the JSP page’s servlet class.

441

../examples/web/bookstore2/showcart.txt

442 JAVASERVER PAGES™ TECHNOLOGY

The bookstore example page initdestroy.jsp defines an instance variable
named bookDBAO and the initialization and finalization methods jspInit and
jspDestroy discussed earlier in a declaration:

<%!
private BookDBAO bookDBAQ;

public void jspInit() {

public void jspDestroy() {

}

%>

Scriptlets

A JSP scriptlet is used to contain any code fragment that isvalid for the scripting
language used in a page. The syntax for ascriptletis:

<%
scripting language statements
%>

When the scripting language is set to java, a scriptlet is transformed into a Java
programming language statement fragment and is inserted into the service
method of the JSP page’s servlet. A programming language variable created
within a scriptlet is accessible from anywhere within the JSP page.

The JSP page showcart.jsp contains a scriptlet that retrieves an iterator from
the collection of items maintained by a shopping cart and sets up a construct to
loop through all the itemsin the cart. Inside the loop, the JSP page extracts prop-
erties of the book objects and formats them using HTML markup. Since the
while loop opens a block, the HTML markup is followed by a scriptlet that
closes the block.

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {
ShoppingCartItem item =
(ShoppingCartItem)i.next();
BookDetails bd = (BookDetails)item.getItem();

<tr>

../examples/web/bookstore2/initdestroy.txt
../examples/web/bookstore2/showcart.txt

JSP SCRIPTING ELEMENTS

<td align="right" bgcolor="#ffffff">
<%=1tem.getQuantity ()%

</td>

<td bgcolor="#ffffaa">

<a href="
<%=request.getContextPath()%>/bookdetails?bookId=
<%=bd.getBookId()%>"><%=bd.getTitle()%>
</td>

<%
// End of while
}

%>

The output appears below:

& Shopping Cart - Metscage

Ele Ede Yiew Go (o bHelp

! Back ool Felpad Home Search Melscope Pt Secuny hﬂ

“Bookmarks k. Locaion[rap //ocalhost B0 /bocksiom?/showsart_+]) What's Related

5
Duke's Qﬂr Bookstore

You have 2 itemns in vour shopping cart.

Crueantity Title Price
1 Dwuke: A Bingraphy of the Java Evangelist £1075 Remove Item
1 Web Components for Web Developers $17.75 Remave ltem

Subtotal $28 50

Continue Shopping Check Out Clear Cart

A [Docimant Done SO

Figure2 Duke s Bookstore Shopping Cart

Expressions

A JSP expression is used to insert the value of a scripting language expression,
converted into a string, into the data stream returned to the client. When the
scripting language is the Java programming language, an expression is trans-

443

JAVASERVER PAGES™ TECHNOLOGY

formed into a statement that converts the value of the expression into a String
object and inserts it into the implicit out object.

The syntax for an expressioniis:
<%= scripting language expression %>

Note that a semicolon is not allowed within a JSP expression, even if the same
expression has a semicolon when you use it within a scriptlet.

The following scriptlet retrieves the number of itemsin a shopping cart:

<%
// Print a summary of the shopping cart
int num = cart.getNumberOfItems();
if (num > 0) {

%>

Expressions are then used to insert the value of num into the output stream and
determine the appropriate string to include after the number:

<%=messages.getString("CartContents")%> <¥%=num¥%>
<%=(num==1 ? <%=messages.getString("CartItem")%> :
<%=messages.getString("CartItems"))%>

Including Content in a JSP Page

There are two mechanisms for including another Web resource in a JSP page: the
include directive and the jsp:include element.

Theinclude directiveis processed when the JSP page istranslated into a servlet
class. The effect of the directive to the insert the text contained in another file,
either static content or another JSP page, in the including JSP page. You would
probably use the include directive to include banner content, copyright infor-
mation, or any chunk of content that you might want to reuse in another page.
The syntax for the include directiveis:

<%@ include file="filename" %>

JSP SCRIPTING ELEMENTS

For example, al the bookstore application pages include the file banner. jsp
containing the banner content with the following directive:

<%@ include file="banner.jsp" %>

In addition, the pages bookstore.jsp, bookdetails.jsp, catalog.jsp, and
showcart.jsp include JSP elements that create and destroy a database bean
with the element:

<%@ include file="initdestroy.jsp" %>

Because you must statically put an include directive in each file that reuses the
resource referenced by the directive, this approach has its limitations. For amore
flexible approach to building pages out of content chunks, see A Template Tag

Library (page 489).

The jsp:include element is processed when a JSP page is executed. The
include action allows you to include either astatic or dynamic resourcein a JSP
file. The results of including static and dynamic resources are quite different. If
the resource is static, its content is inserted into the calling JSP file. If the
resource is dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response from the calling
JSP page. The syntax for the jsp:include element is:

<jsp:include page="includedPage" />

The date application introduced at the beginning of this chapter includes the
page that generates the display of the localized date with the following state-
ment:

<jsp:include page="date.jsp"/>

Transferring Control to Another Web
Component

The mechanism for transferring control to another Web component from a JSP
page uses the functionality provided by the Java Servliet APl as described in
Transferring Control to Another Web Component (page 420). You access this
functionality from a JSP page with the jsp: forward element:

<jsp:forward page="/main.jsp" />

../examples/web/bookstore2/banner.txt
../examples/web/bookstore2/bookstore.txt
../examples/web/bookstore2/bookdetails.txt
../examples/web/bookstore2/catalog.txt
../examples/web/bookstore2/showcart.txt

446

JAVASERVER PAGES™ TECHNOLOGY

Note that if any data has already been returned to a client, the jsp: forward ele-
ment will fail with an I17egalStateException.

Param Element

When an include or forward element is invoked, the original request object is
provided to the target page. If you wish to provide additional data to that page,
you can append parameters to the request object with the jsp:param element:

<jsp:include page="..." >
<jsp:param name="paraml” value="valuel"/>
</jsp:include>

Including an Applet

You can include an applet or JavaBeans component in a JSP page using the
jsp:plugin element. This element generates HTML that contains the appropri-
ate client browser dependent constructs (<object> or <embed>) that will resultin
the download of the Java Plug-in software (if required) and client-side compo-
nent and subsequent execution of an client-side component. The syntax for the
jsp:plugin element follows:

<jsp:plugin
type="bean|applet"”
code="objectCode”
codebase="objectCodebase”
align="alignment" }
archive="archivelList" }
height="height" }
hspace="hspace" }
jreversion="jreversion” }
name="componentName" }
vspace="vspace" }
width="width" }
nspluginurl="url" }
iepluginurl="url" } >
<jsp:params>
{ <jsp:param name="paramName" value= paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

e R e N N N N N

PARAM ELEMENT

The jsp:plugintag isreplaced by either an <cbhject> or <embed> tag, as appro-
priate for the requesting client. The attributes of the jsp:plugin tag provide con-
figuration data for the presentation of the element as well as the version of the
plug-in required. The nspluginurl and iepluginurl attributes specify the URL
where the plug-in can be downloaded.

The jsp:param elements specify parameters to the applet or JavaBeans compo-
nent. The jsp:fallback element indicates the content to be used by the client
browser if the plug-in cannot be started (either because <cbhject> or <embed> is
not supported by the client or due to some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found
or started, a plug-in-specific message will be presented to the user, most likely a
popup window reporting a ClassNotFoundException.

The Duke's Bookstore page banner.jsp that creates the banner displays a
dynamic digital clock generated by DigitalClock:

'f“?.-_l]LtI:F:'sIInnkslan - Netscape
Eile Edit Yiew Go Communicator Help
'% ¥ Bookmarks & Location:[ntp-//localhost8000/bookstareZ/enter =] €2 What's Related ﬂ

Duke's T@-ﬁ Bookstore

Thursday, March 1, 2001 11.53.52 AM PST

What We're Reading

In Web Components for Web Developers, author Webster Masterson, a world
renowned gurn on web development, talks about how web components can transform
the way you develop applications for the web. This 13 a must read for any self
respecting web developer!

Start Shopping
Copyright © 2001 Sun Microgystems, Inc.
i Wl |Document: Done

Figure3 Duke's Bookstore with Applet

447

../examples/web/bookstore2/banner.txt

JAVASERVER PAGES™ TECHNOLOGY

The jsp:plugin element used to download the applet follows:

<jsp:plugin

type="applet"

code="DigitalClock.class"

codebase="/bookstore2”

jreversion="1_3"

align="center" height="25" width="300"

nspluginurl="http://java.sun.com/products/plugin/1.3.0_01
/plugin-install.html”

iepluginurl="http://java.sun.com/products/plugin/1.3.0_01
/jinstal1-130_01-win32.cab#Version=1,3,0,1" >

<jsp:params>
<jsp:param name="Tlanguage"

value="<%=request.getlLocale() .getLanguage(O)%>" />
<jsp:param name="country"
value="<%=request.getlLocale() .getCountry()%>" />

<jsp:param name="bgcolor" value="FFFFFF" />
<jsp:param name="fgcolor” value="CC0066" />

</jsp:params>
<jsp:fallback>
<p>Unable to start plugin.</p>

</jsp:fallback>

</jsp:plugin>

Extending the JSP Language

You can perform awide variety of dynamic processing tasks including accessing
databases, using enterprise services such as e-mail and directories, and flow con-
trol with JavaBeans components in conjunction with scriptlets. One of the draw-
backs of scriptlets however, isthat they tend to make JSP pages more difficult to
maintain. Alternatively, JSP technology provides a mechanism, called custom
tags, that allows you to encapsulate dynamic functionality in objects that are
accessed through extensions to the JSP language. Custom tags bring the benefits
of another level of componentization to JSP pages.

For example, recall the scriptlet used to loop through and display the contents of
the Duke's Bookstore shopping cart:

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {
ShoppingCartItem item =
(ShoppingCartItem)i.next();

PARAM ELEMENT 449

<tr>

<td align="right" bgcolor="#ffffff">
<%=1tem.getQuantity()%>

</td>

An iterate custom tag eliminates the code logic and manages the scripting
variable i tem that references elements in the shopping cart:

<logic:iterate id="item"
collection="<%=cart.getItems()%>">
<tr>
<td align="right" bgcolor="#ffffff">
<%=1tem.getQuantity ()%
</td>

</logic:iterate>

Custom tags are packaged and distributed in a unit called atag library. The syn-
tax of custom tagsis the same as that used for the JSP elements, namely
<prefix:tag>, but for custom tags, prefix is defined by the user of the tag
library and tag is defined by the tag developer. Custom Tags in JSP™
Pages (page 461) explains how to use and develop custom tags.

450

JAVASERVER PAGES™ TECHNOLOGY

JavaBeansTM'
Components in JSP™
Pages

Stephanie Bodoff

\]AVABEANS components are Java classes that can be easily reused and com-
posed together into applications. Any Java class that follows certain design con-
ventions can be a JavaBeans component.

JavaServer Pages™ technology directly supports using JavaBeans components
with JSP language elements. You can easily create and initialize beans and get
and set the values of their properties. This chapter provides basic information
about JavaBeans components and the JSP language elements for accessing Java-
Beans components in your JSP pages. For further information about the Java
Beans component model see http://java.sun.com/products/javabeans.

In This Chapter
JavaBeans Component Design Conventions. 452
Why Usea JavaBeansComponent?ccovuiunen... 453
Creating and Using a JavaBeansComponent. 454
Setting JavaBeans Component Properties 455
Retrieving JavaBeans Component Properties 458

451

Bios.html
http://java.sun.com/products/javabeans

JavaBeans Component Design
Conventions

JavaBeans component design conventions govern the properties of the class, and
the public methods that give access to the properties.

A JavaBeans component property can be:

« Read/write, read-only, or write-only.
« Simple, which means it contains a single value, or indexed, which means
it represents an array of values.

There is no requirement that a property be implemented by an instance variable;
the property must simply be accessible using public methods that conform to
certain conventions:

« For each readable property, the bean must have a method of the form:

PropertyClass getProperty() { ... }
« For each writable property, the bean must have a method of the form:
setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a con-
structor that takes no parameters.

The Duke’s Bookstore application JSP pages enter. jsp, bookdetails.jsp,
catalog.jsp, showcart.jsp use the database.BookDB and database.Book-
Details JavaBeans components. BookDB provides a JavaBeans component front
end to the access object BookDBAO. Both beans are used extensively by bean-ori-
ented custom tags (see Custom Tags in JSP™ Pages (page 461)). The JSP pages
showcart.jsp and cashier.jsp use cart.ShoppingCart to represent a user’s
shopping cart.

The JSP pages catalog.jsp, showcart.jsp, and cashier.jsp use the
util.Currency JavaBeans component to format currency in a locale-sensitive
manner. The bean has two writable properties, Tocale and amount, and one read-

452

../examples/src/web/bookstore2/database/BookDB.java
../examples/src/ejb/database/BookDetails.java
../examples/src/ejb/database/BookDetails.java
../examples/src/web/bookstore2/cart/ShoppingCart.java
../examples/src/web/bookstore2/util/Currency.java

able property, format. The format property does not correspond to any instance
variable, but returns a function of the Tocale and amount properties.

public class Currency {
private Locale locale;
private double amount;
public Currency() {
Jocale = null;
amount 0.0;

}

public void setLocale(Locale 1) {
Jocale = 1;

}

public void setAmount(double a) {
amount = a;

}

public String getFormat() {
NumberFormat nf =

NumberFormat.getCurrencyInstance(locale);

return nf.format(amount);

Why Use a JavaBeans Component?

A JSP page can create and use any type of Java programming language object
within a declaration or scriptlet. The following scriptlet creates the bookstore
shopping cart and stores it as a session attribute:

<%
ShoppingCart cart = (ShoppingCart)session.
getAttribute("cart™);
// If the user has no cart, create a new one
if (cart == null) {
cart = new ShoppingCart(Q);
session.setAttribute("cart", cart);

453

If the shopping cart object conforms to JavaBeans conventions, JSP pages can
use JSP elements to create and access the object. For example, the Duke’s
Bookstore pages bookdetails.jsp, catalog.jsp, and showcart. jsp replace
the scriptlet with the much more concise JSP useBean el ement:

<jsp:useBean id="cart" class="cart.ShoppingCart"
scope="session"/>

Creating and Using a JavaBeans
Component

You declare that your JSP page will use a JavaBeans component using either one
of the following formats:

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope"/>

or

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second format is used when you want to include jsp:setProperty State-
ments, described in the next section, for initializing bean properties.

The jsp:useBean element declares that the page will use a bean that is stored
within and accessible from the specified scope, which can be application,
session, request Of page. If no such bean exists, the statement creates the bean
and stores it as an attribute of the scope object (see Using Scope
Objects (page 400)). The value of the id attribute determines the name of the
bean in the scope and the identifier used to reference the bean in other JSP ele-
ments and scriptlets.

454

Note: In JSP Scripting Elements (page 441) we mentioned that you must you
must import any classes and packages used by a JSP page. This rule is slightly
altered if the classisonly referenced by useBean elements. In these cases, you must
only import the classif the classisin the unnamed package. For example, in What
isaJSP Page? (page 430), the page index. jsp importstheMyLocales class. How-
ever, in the Duke's Bookstore example, all classes are contained in packages, and
so are not explicitly imported.

The following element creates an instance of Currency if none exists, storesit as
an attribute of the session object, and makes the bean available throughout the
session by the identifier currency:

<jsp:useBean id="currency" class="util.Currency"”
scope="session"/>

Setting JavaBeans Component
Properties

There are two ways to set JavaBeans component properties in a JSP page:

¢ With the jsp:setProperty element
e With ascriptlet: <% beanName.setPropName(value); %>

455

The syntax of the jsp:setProperty element depends on the source of the prop-
erty value. Table 1 summarizes the various ways to set a property of a JavaBeans
component using the jsp:setProperty element:

Table1l Setting JavaBeans Component Properties

Value Source Element Syntax

<jsp:setProperty name="beanName"

String constant ;
9 property="propName" value="string constant"/>

<jsp:setProperty name="beanName"

Request parameter property="propName" param="paramName" />

<jsp:setProperty name="beanName"

Request parameter name property="propName" />

matches bean property <jsp:setProperty name="beanName"

property="%"/>

<jsp:setProperty name=""
Expression property="propName"
value="<%= expression %"/>

1. beanName must be the same as that specified for the id attributein auseBean ele-
ment.

2. Theremust be a setPropName method in the JavaBeans component.

3. paramName must be arequest parameter name.

A property set from a constant string or request parameter must have a type
listed in Table 2. Since both a constant and request parameter are strings, the
Web container automatically converts the value to the property’s type; the con-
version applied is shown in the table. String values can be used to assign values
to aproperty that hasaPropertyEd1itor class. When that isthe case, the setAs-
Text (String) method is used. A conversion failure arises if the method throws

456

an I1legalArgumentException. The value assigned to an indexed property
must be an array, and the rules just described apply to the elements.

Table 2 Valid Value Assignments

Property Type Conversion on String Value

Bean Property Uses setAsText (string-literal)

boolean or Boolean Asindicated in java.lang.Boolean.valueOf(String)
byte or Byte Asindicated in java. Tang.Byte.valueOf (String)
char or Character Asindicated in java. Tang.String.charAt(0)

double or Double Asindicated in java. Tang.Double.valueOf (String)
intor Integer Asindicated in java.lang.Integer.valueOf(String)
float or Float Asindicated in java. Tang.Float.valueOf(String)
Tong or Long Asindicated in java. Tang.Long.valueOf(String)
short or Short Asindicated in java. Tang.Short.valueOf(String)
Object new String(string-literal)

You would use a runtime expression to set the value of a property whose typeis
a compound Java programming language type. Recall from
Expressions (page 443) that a JSP expression is used to insert the value of a
scripting language expression, converted into a String, into the stream returned
to the client. When used within a setProperty element, an expression simply
returns its value; no automatic conversion is performed. As a consequence, the
type returned from an expression must match or be castable to the type of the

property.

457

The Duke's Bookstore application demonstrates how to use the setProperty
element and a scriptlet to set the current book for the database helper bean. For
example, bookstore3/bookdetails. jsp usesthe form:

<jsp:setProperty name="bookDB" property="bookId"/>
while bookstore2/bookdetails.jsp usesthe form:

<% bookDB.setBookId(bookId); %>

The following fragments from the page bookstore3/showcart.jsp illustrate
how to initialize a currency bean with a Locale object and amount determined
by evaluating request-time expressions. Because the first initialization is nested
in auseBean element, it is only executed when the bean is created.

<jsp:useBean id="currency" class="util.Currency"”
scope="session">
<jsp:setProperty name="currency" property="Tocale"
value="<%= request.getlLocale() %>"/>
</jsp:useBean>

<jsp:setProperty name="currency" property="amount"
value="<%=cart.getTotal O%>"/>

Retrieving JavaBeans Component
Properties

There are several ways to retrieve JavaBeans component properties. Two of the
methods convert the value of the property into a String and insert the value into

the current implicit ocut object: the jsp:getProperty element and an expres-
sion:

e <jsp:getProperty name="beanName" property="propName" />
o <%= beanName.getPropName() %>

458

../examples/src/web/bookstore3/bookdetails.txt
../examples/src/web/bookstore2/bookdetails.txt
../examples/src/web/bookstore3/showcart.txt

For both methods, beanName must be the same as that specified for the id
attribute in a useBean element and there must be a get PropName method in the
JavaBeans component.

If you need to retrieve the value of a property without converting it and inserting
it into the out object, you must use a scriptlet:

<% Object o = beanName.getPropName(); %>

Note the differences between the expression and the scriptlet; the expression has
an ‘=" after the opening ‘%’ and does not terminate with a semicolon, as doesthe
scriptlet.

The Duke’s Bookstore application demonstrates how to use both forms to
retrieve the formatted currency from the currency bean and insert it into the
page. For example, bookstore3/showcart.jsp usesthe form:

<jsp:getProperty name="currency" property="format"/>
while bookstore2/showcart.jsp usesthe form:
<%= currency.getFormat() %>

The Duke’s Bookstore application page bookstore2/showcart.jsp uses the
following scriptlet to retrieve the number of books from the shopping cart bean
and open a conditional insertion of text into the output stream:

<%
// Print a summary of the shopping cart
int num = cart.getNumberOfItems();
if (nhum > 0) {

%>

Although scriptlets are very useful for dynamic processing, using custom tags
(see Custom Tags in JSP™ Pages (page 461)) to access object properties and
perform flow control is considered to be a better approach. For example,
bookstore3/showcart.jsp replaces the scriptlet with the following custom

tags:

<bean:define id="num" name="cart" property="numberOfItems" />
<logic:greaterThan name="num" value="0" >

Figure 1 summarizes where various types of objects are stored and how those
objects can be accessed from a JSP page. Objects created by the jsp:useBean

459

../examples/src/web/bookstore3/showcart.txt
../examples/src/web/bookstore2/showcart.txt

460 JAVABEANS™ COMPONENTS IN JSP™ PAGES

tag are stored as attributes of the scope objects and can be accessed by
jsp:[get|set]Property tags and in scriptlets and expressions. Objects created
in declarations and scriptlets are stored as variables of the JSP page's serviet
class and can be accessed in scriptlets and expressions.

" Web
Context |

attribute1 |

attribute2

Session |

JSP Page attribute1
Serviet <%! declaration %> attribute2) jsp:useBean
Class 4 <% scriptlet %> " 4 jsp:getProperty
"Request

<%= expression %> jsp:setProperty

object1

object2) attributet |
attribute2

" Page
Context

attribute1 |

attribute2

Figurel Accessing Objects From a JSP Page

Custom Tags in JSP™
Pages

Stephanie Bodoff

T HE standard JSP tags for invoking operations on JavaBeans™ components
and performing request dispatching simplify JSP page development and mainte-
nance. JSP technology also provides a mechanism for encapsulating other types
of dynamic functionality in custom tags, which are extensions to the JSP lan-
guage. Custom tags are usually distributed in the form of atag library, which
defines a set of related custom tags and contains the objects that implement the

tags.

Some examples of tasksthat can be performed by custom tags include operations
on implicit objects, form processing, accessing databases and other enterprise
services such as e-mail and directories, and flow control. JSP tag libraries are
created by developers who are proficient at the Java programming language and
expert in accessing data and other services and used by Web application design-
ers who can focus on presentation issues rather than being concerned with how
to access enterprise services. As well as encouraging division of labor between
library developers and library users, custom tags increase productivity by encap-
sulating recurring tasks so that they can be reused across more than one applica-
tion.

Tag libraries are receiving a great deal of attention in the JSP technology com-
munity. For more information about tag libraries and pointers to some freely-
available libraries see http://java.sun.com/products/jsp/taglibrar-
ies.html.

461

Bios.html
http://java.sun.com/products/jsp/taglibraries.html
http://java.sun.com/products/jsp/taglibraries.html

462

CusTOM TAGS IN JSP™ PAGES

In This Chapter
What isa Custom Tag? 462
The Example JSP Pages 463
Using Tags 465
Declaring Tag Libraries 465
Making the Tag Library Implementation Available 466
Types of Tags 466
Defining Tags 469
Tag Handlers 469
Tag Library Descriptors 471
Simple Tags 473
Tags With Attributes 474
Tags With Bodies a77
Tags That Define Scripting Variables 479
Cooperating Tags 483
Examples 85
An Iteration Tag 485
A Template Tag Library 489
How IsaTag Handler Invoked? 494

What is a Custom Tag?

A custom tag is a user-defined JSP language element. When a JSP page contain-
ing a custom tag is translated into a servlet, the tag is converted to operations on
an object called a tag handler. The Web container then invokes those operations
when the JSP page's servlet is executed.

Custom tags have arich set of features. They can

Be customized via attributes passed from the calling page.
Access dl the objects available to JSP pages.
Modify the response generated by the calling page.

Communicate with each other. You can create and initialize a JavaBeans
component, create a variable that refers to that bean in one tag, and then
use the bean in another tag.

Be nested within one another, allowing for complex interactions within a
JSP page.

463

The Example JSP Pages

This chapter describes the tasks involved in using and defining tags. The chapter
illustrates the tasks with excerpts from the JSP version of the Duke's Bookstore
application discussed in The Example JSP Pages (page 432) rewritten to take
advantage of two tag libraries. Struts and tutorial-template. The third section in
the chapter, Examples (page 485), describes two tags in detail: the iterate tag
from Struts and the set of tagsin the tutorial-template tag library.

The Struts tag library provides a framework for building internationalized Web
applications that implement the Model-View-Controller design pattern. Struts
includes a comprehensive set of utility custom tags for handling:

e HTML forms

e Templates

» JavaBeans components
« Logic processing

The Duke's Bookstore application uses tags from the Struts bean and Togic
sublibraries.

The tutorial-template tag library defines a set of tags for creating an application
template. The template is a JSP page, with place holders for the parts that need to
change with each screen. Each of these place holdersisreferred to as a parameter
of the template. For example, a simple template could include a title parameter
for the top of the generated screen and a body parameter to refer to a JSP page
for the custom content of the screen. The template is created with a set of nested
tags—definition, screen, and parameter—that are used to build a table of
screen definitions for Duke's Bookstore and an insert tag to insert parameters
from the table into the screen.

Figure 1 shows the flow of arequest through the Duke’s Bookstore Web compo-
nents:

* template.jsp which determines the structure of each screen. It uses the
insert tag to compose a screen from subcomponents.

¢ screendefinitions.jsp which defines the subcomponents used by each
screen. All screens have the same banner, but different title and body con-
tent (specified by the JSP Pages column in Table 1).

e Dispatcher, aservlet, processes requests and forwards to template.jsp.

http://jakarta.apache.org/struts
../examples/web/bookstore3/template.txt
../examples/web/bookstore3/screendefinitions.txt
../examples/web/bookstore3/Dispatcher.java

464

CusTtOoM TAGS IN JSP™ PAGES

J2EE™ Server

BookDBEJB

Enterprise
Bean

Dispatcher ‘0
Servlet HttpServiet
Request

ém_plate

Web JSP™
Client Page

HitpServiet

Response JSP™

Page

Figurel Request Flow Through Duke's Bookstore Components

The source for the Duke's Bookstore application is located in the docs/tuto-
rial/examples/web/bookstore3 directory created when you unzip the tutorial
bundle (see Running the Examples (page xvi)). To build, deploy, and run the
example:

1. Download Struts version 1.0 from

http://jakarta.apache.org/builds/jakarta-struts/
release/v1.0/

2. Unpack Struts and copy struts-bean.tld, struts-logic.tld, and
struts.jar from jakarta-struts-1.0/1ib t0 docs/tutorial/exam-
ples/web/bookstore3.

3. Goto the examplesdirectory and build and deploy the example by running
ant. Thisruns the default ant target dep1oy which depends on the bui1d
target. The build target will spawn any necessary compilations and copy
filestothedocs/tutorial/examples/web/bookstore3/build directory.
The deploy target copies the bookstore3 context file to

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0

DECLARING TAG LIBRARIES 465

<JWSDP_HOME> /webapps as described in Running ~ Web
Applications (page 385).

4. Start the Pointbase database server (see Accessing Databases from Web
Applications (page 388)).

5. Start or restart Tomcat.

6. Open the bookstore URL http://localhost:8080/bookstore3/enter

See Common Problems and Their Solutions (page 70) and
Troubleshooting (page 396) for help with diagnosing common problems.

Using Tags
This section describes how a JSP page uses tags and introduces the different
types of tags.
To use atag, apage author must do two things:

« Declare the tag library containing the tag
« Makethetag library implementation available to the Web application

Declaring Tag Libraries

You declare that a JSP page will use tags defined in atag library by including a
taglib directive in the page before any custom tag is used:

<%@ taglib uri="/WEB-INF/tutorial-template.tld" prefix="tt" %>

The uri attribute refers to a URI that uniquely identifies the TLD, described in
Tag Library Descriptors (page 471). ThisURI can be direct or indirect. The pre-
fix attribute defines the prefix that distinguishes tags defined by a given tag
library from those provided by other tag libraries.

Tag library descriptor filenames must have the extension .t1d. TLD files are
stored in the WEB-INF directory of the WAR or in a subdirectory of WEB-INF. You
can reference a TLD directly and indirectly.

The following tag1ib directive directly referencesa TLD filename:
<%@ taglib uri="/WEB-INF/tutorial-template.tld" prefix="tt" %>

This tag1ib directive uses a short logical name to indirectly reference the TLD:

466

CusTOM TAGS IN JSP™ PAGES

<%@ taglib uri="/tutorial-template” prefix="tt" %>

A logical name must be mapped to an absolute location in the Web application
deployment descriptor. To map the logical name /tutorial-template to the
absolute location /WEB-INF/tutorial-template.tld, you must add a taglib
element to web . xm1:

<taglib>
<taglib-uri>/tutorial-template</taglib-uri>
<taglib-location>
/WEB-INF/tutorial-template.tld
</taglib-location>
</taglib>

Making the Tag Library Implementation
Available

A tag library implementation can be made available to a Web application in two
basic ways. The classes implementing the tag handlers can be stored in an
unpacked form in the WEB-INF/classes subdirectory of the Web application.
Alternatively, if the library is distributed as a JAR, it is stored the WEB-INF/11ib
directory of the Web application. A tag library shared between more than one
application is stored in the <IWsDP_HOME>/common/11ib directory of the Java
WSDP.

Types of Tags

JSP custom tags are written using XML syntax. They have a start tag and end
tag, and possibly a body:

<tt:tag>
body
</tt:tag>

A custom tag with no body is expressed as follows:

<tt:tag />

TYPES OF TAGS

Simple Tags
A simple tag contains no body and no attributes:

<tt:simple />

Tags With Attributes

A custom tag can have attributes. Attributes are listed in the start tag and have
the syntax attr="value". Attribute values serve to customize the behavior of a
custom tag just as parameters are used to customize the behavior of a method.

You specify the types of atag's attributes in a tag library descriptor, (see Tags
With Attributes (page 474)).

You can set an attribute value from a String constant or a runtime expression.
The conversion process between the constants and runtime expressions and
attribute types follows the rules described for JavaBeans component properties
in Setting JavaBeans Component Properties (page 455).

The attributes of the Struts Togic:present tag determine whether the body of
the tag is evauated. In the following example, an attribute specifies a request
parameter named Clear:

<logic:present parameter="Clear">

The Duke's Bookstore application page catalog.jsp USES a runtime expression
to set the value of the attribute that determines the collection of books over
which the Struts Togic:iterate tag iterates:

<logic:iterate collection="<%=bookDB.getBooks()%>"
id="book" type="database.BookDetails">

Tags With Bodies

A custom tag can contain custom and core tags, scripting elements, HTML text,
and tag-dependent body content between the start and end tag.

In the following example, the Duke’'s Bookstore application page showcart. jsp
uses the Struts Togi c: present tag to clear the shopping cart and print a message
if the request contains a parameter named Clear:

467

../examples/web/bookstore3/catalog.txt
../examples/web/bookstore3/showcart.txt

468

CusTOM TAGS IN JSP™ PAGES

<logic:present parameter="Clear">
<% cart.clear(); %>

You just cleared your shopping cart!

</logic:present>

Choosing Between Passing Information as
Attributes or Body

Asshown in thelast two sections, it is possible to pass a given piece of dataas an
attribute of the tag or to the tag's body. Generally speaking, any data that is a
simple string or can be generated by evaluating a simple expression is best
passed as an attribute.

Tags That Define Scripting Variables

A custom tag can define a variable that can be used in scripts within a page. The
following example illustrates how to define and use a scripting variable that con-
tains an object returned from a JINDI lookup. Examples of such objects include
enterprise beans, transactions, databases, environment entries, and so on:

<tt:lookup id="tx" type="UserTransaction”
name="java:comp/UserTransaction” />
<% tx.begin(Q); %>

In the Duke's Bookstore application, several pages use bean-oriented tags from
Struts to define scripting variables. For example, bookdetails.jsp uses the
bean:parameter tag to create the bookId scripting variable and set it to value of
t