001 /* =========================================================== 002 * JFreeChart : a free chart library for the Java(tm) platform 003 * =========================================================== 004 * 005 * (C) Copyright 2000-2008, by Object Refinery Limited and Contributors. 006 * 007 * Project Info: http://www.jfree.org/jfreechart/index.html 008 * 009 * This library is free software; you can redistribute it and/or modify it 010 * under the terms of the GNU Lesser General Public License as published by 011 * the Free Software Foundation; either version 2.1 of the License, or 012 * (at your option) any later version. 013 * 014 * This library is distributed in the hope that it will be useful, but 015 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 016 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 017 * License for more details. 018 * 019 * You should have received a copy of the GNU Lesser General Public 020 * License along with this library; if not, write to the Free Software 021 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 022 * USA. 023 * 024 * [Java is a trademark or registered trademark of Sun Microsystems, Inc. 025 * in the United States and other countries.] 026 * 027 * --------------- 028 * Regression.java 029 * --------------- 030 * (C) Copyright 2002-2008, by Object Refinery Limited. 031 * 032 * Original Author: David Gilbert (for Object Refinery Limited); 033 * Contributor(s): -; 034 * 035 * Changes 036 * ------- 037 * 30-Sep-2002 : Version 1 (DG); 038 * 18-Aug-2003 : Added 'abstract' (DG); 039 * 15-Jul-2004 : Switched getX() with getXValue() and getY() with 040 * getYValue() (DG); 041 * 042 */ 043 044 package org.jfree.data.statistics; 045 046 import org.jfree.data.xy.XYDataset; 047 048 /** 049 * A utility class for fitting regression curves to data. 050 */ 051 public abstract class Regression { 052 053 /** 054 * Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to 055 * the data using ordinary least squares regression. The result is 056 * returned as a double[], where result[0] --> a, and result[1] --> b. 057 * 058 * @param data the data. 059 * 060 * @return The parameters. 061 */ 062 public static double[] getOLSRegression(double[][] data) { 063 064 int n = data.length; 065 if (n < 2) { 066 throw new IllegalArgumentException("Not enough data."); 067 } 068 069 double sumX = 0; 070 double sumY = 0; 071 double sumXX = 0; 072 double sumXY = 0; 073 for (int i = 0; i < n; i++) { 074 double x = data[i][0]; 075 double y = data[i][1]; 076 sumX += x; 077 sumY += y; 078 double xx = x * x; 079 sumXX += xx; 080 double xy = x * y; 081 sumXY += xy; 082 } 083 double sxx = sumXX - (sumX * sumX) / n; 084 double sxy = sumXY - (sumX * sumY) / n; 085 double xbar = sumX / n; 086 double ybar = sumY / n; 087 088 double[] result = new double[2]; 089 result[1] = sxy / sxx; 090 result[0] = ybar - result[1] * xbar; 091 092 return result; 093 094 } 095 096 /** 097 * Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to 098 * the data using ordinary least squares regression. The result is returned 099 * as a double[], where result[0] --> a, and result[1] --> b. 100 * 101 * @param data the data. 102 * @param series the series (zero-based index). 103 * 104 * @return The parameters. 105 */ 106 public static double[] getOLSRegression(XYDataset data, int series) { 107 108 int n = data.getItemCount(series); 109 if (n < 2) { 110 throw new IllegalArgumentException("Not enough data."); 111 } 112 113 double sumX = 0; 114 double sumY = 0; 115 double sumXX = 0; 116 double sumXY = 0; 117 for (int i = 0; i < n; i++) { 118 double x = data.getXValue(series, i); 119 double y = data.getYValue(series, i); 120 sumX += x; 121 sumY += y; 122 double xx = x * x; 123 sumXX += xx; 124 double xy = x * y; 125 sumXY += xy; 126 } 127 double sxx = sumXX - (sumX * sumX) / n; 128 double sxy = sumXY - (sumX * sumY) / n; 129 double xbar = sumX / n; 130 double ybar = sumY / n; 131 132 double[] result = new double[2]; 133 result[1] = sxy / sxx; 134 result[0] = ybar - result[1] * xbar; 135 136 return result; 137 138 } 139 140 /** 141 * Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to 142 * the data using a power regression equation. The result is returned as 143 * an array, where double[0] --> a, and double[1] --> b. 144 * 145 * @param data the data. 146 * 147 * @return The parameters. 148 */ 149 public static double[] getPowerRegression(double[][] data) { 150 151 int n = data.length; 152 if (n < 2) { 153 throw new IllegalArgumentException("Not enough data."); 154 } 155 156 double sumX = 0; 157 double sumY = 0; 158 double sumXX = 0; 159 double sumXY = 0; 160 for (int i = 0; i < n; i++) { 161 double x = Math.log(data[i][0]); 162 double y = Math.log(data[i][1]); 163 sumX += x; 164 sumY += y; 165 double xx = x * x; 166 sumXX += xx; 167 double xy = x * y; 168 sumXY += xy; 169 } 170 double sxx = sumXX - (sumX * sumX) / n; 171 double sxy = sumXY - (sumX * sumY) / n; 172 double xbar = sumX / n; 173 double ybar = sumY / n; 174 175 double[] result = new double[2]; 176 result[1] = sxy / sxx; 177 result[0] = Math.pow(Math.exp(1.0), ybar - result[1] * xbar); 178 179 return result; 180 181 } 182 183 /** 184 * Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to 185 * the data using a power regression equation. The result is returned as 186 * an array, where double[0] --> a, and double[1] --> b. 187 * 188 * @param data the data. 189 * @param series the series to fit the regression line against. 190 * 191 * @return The parameters. 192 */ 193 public static double[] getPowerRegression(XYDataset data, int series) { 194 195 int n = data.getItemCount(series); 196 if (n < 2) { 197 throw new IllegalArgumentException("Not enough data."); 198 } 199 200 double sumX = 0; 201 double sumY = 0; 202 double sumXX = 0; 203 double sumXY = 0; 204 for (int i = 0; i < n; i++) { 205 double x = Math.log(data.getXValue(series, i)); 206 double y = Math.log(data.getYValue(series, i)); 207 sumX += x; 208 sumY += y; 209 double xx = x * x; 210 sumXX += xx; 211 double xy = x * y; 212 sumXY += xy; 213 } 214 double sxx = sumXX - (sumX * sumX) / n; 215 double sxy = sumXY - (sumX * sumY) / n; 216 double xbar = sumX / n; 217 double ybar = sumY / n; 218 219 double[] result = new double[2]; 220 result[1] = sxy / sxx; 221 result[0] = Math.pow(Math.exp(1.0), ybar - result[1] * xbar); 222 223 return result; 224 225 } 226 227 }