
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

OpenMP API User’s Guide

Forte Developer 7

Part No. 816-2468-10
May 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

iii

Contents

Before You Begin ix

Typographic Conventions ix

Shell Prompts xi

Accessing Forte Developer Development Tools and Man Pages xi

Accessing Forte Developer Documentation xiii

Accessing Related Solaris Documentation xvi

Sending Your Comments xvi

1. OpenMP API Summary 1-1

1.1 Where to Find the OpenMP Specifications 1-1

1.2 Special Conventions Used Here 1-2

1.3 Directive Formats 1-2

1.4 Conditional Compilation 1-3

1.5 PARALLEL - Parallel Region Construct 1-5

1.6 Work-Sharing Constructs 1-6

1.6.1 DO and for 1-6

1.6.2 SECTIONS 1-7

1.6.3 SINGLE 1-8

1.6.4 Fortran WORKSHARE1-9

iv OpenMP API User’s Guide • May 2002

1.7 Combined Parallel Work-sharing Constructs 1-10

1.7.1 PARALLEL DO and parallel for 1-10

1.7.2 PARALLEL SECTIONS 1-11

1.7.3 PARALLEL WORKSHARE1-11

1.8 Synchronization Constructs 1-12

1.8.1 MASTER 1-12

1.8.2 CRITICAL 1-13

1.8.3 BARRIER 1-13

1.8.4 ATOMIC 1-14

1.8.5 FLUSH 1-15

1.8.6 ORDERED 1-15

1.9 Data Environment Directives 1-16

1.9.1 THREADPRIVATE 1-16

1.10 OpenMP Directive Clauses 1-17

1.10.1 Data Scoping Clauses 1-17

1.10.1.1 PRIVATE 1-17

1.10.1.2 SHARED 1-17

1.10.1.3 DEFAULT 1-18

1.10.1.4 FIRSTPRIVATE 1-18

1.10.1.5 LASTPRIVATE 1-18

1.10.1.6 COPYIN 1-18

1.10.1.7 COPYPRIVATE 1-19

1.10.1.8 REDUCTION 1-19

1.10.2 Scheduling Clauses 1-19

1.10.2.1 STATIC Scheduling 1-20

1.10.2.2 DYNAMIC Scheduling 1-20

1.10.2.3 GUIDED Scheduling 1-20

1.10.2.4 RUNTIME Scheduling 1-20

Contents v

1.10.3 NUM_THREADS Clause 1-21

1.10.4 Placement of Clauses on Directives 1-22

1.11 OpenMP Runtime Library Routines 1-23

1.11.1 Fortran OpenMP Routines 1-23

1.11.2 C/C++ OpenMP Routines 1-23

1.11.3 Run-time Thread Management Routines 1-24

1.11.3.1 OMP_SET_NUM_THREADS1-24

1.11.3.2 OMP_GET_NUM_THREADS1-24

1.11.3.3 OMP_GET_MAX_THREADS1-24

1.11.3.4 OMP_GET_THREAD_NUM1-25

1.11.3.5 OMP_GET_NUM_PROCS1-25

1.11.3.6 OMP_IN_PARALLEL 1-25

1.11.3.7 OMP_SET_DYNAMIC1-26

1.11.3.8 OMP_GET_DYNAMIC1-26

1.11.3.9 OMP_SET_NESTED1-26

1.11.3.10 OMP_GET_NESTED1-27

1.11.4 Routines That Manage Synchronization Locks 1-27

1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK 1-28

1.11.4.2 OMP_DESTROY_LOCK and

OMP_DESTROY_NEST_LOCK1-28

1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK1-28

1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK1-29

1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK1-29

1.11.5 Timing Routines 1-30

1.11.5.1 OMP_GET_WTIME1-30

1.11.5.2 OMP_GET_WTICK 1-30

vi OpenMP API User’s Guide • May 2002

2. Implementation Dependent Issues 2-1

3. Compiling for OpenMP 3-1

3.1 Fortran 95 3-1

3.1.1 Validation of OpenMP Directives with -XlistMP 3-2

3.2 C and C++ 3-4

3.3 OpenMP Environment Variables 3-6

3.4 Stacks and Stack Sizes 3-7

4. Converting to OpenMP 4-1

4.1 Converting Legacy Fortran Directives 4-1

4.1.1 Converting Sun-Style Directives 4-1

4.1.1.1 Issues Between Sun-Style Directives and OpenMP 4-3

4.1.2 Converting Cray-Style Directives 4-4

4.1.2.1 Issues Between Cray-Style Directives and OpenMP

Directives 4-4

4.2 Converting Legacy C Pragmas 4-5

4.2.1 Issues Between Legacy C Pragmas and OpenMP 4-6

vii

Tables

TABLE 3-1 OpenMP Environment Variables: setenv VARIABLE value 3-6

TABLE 3-2 Multiprocessing environment variables 3-7

TABLE 4-1 Converting Sun Parallelization Directives to OpenMP 4-2

TABLE 4-2 DOALL Qualifier Clauses and OpenMP Equivalent Clauses 4-2

TABLE 4-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 4-3

TABLE 4-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses 4-4

TABLE 4-5 Converting Legacy C Parallelization Pragmas to OpenMP 4-5

TABLE 4-6 taskloop Optional Clauses and OpenMP Equivalents 4-5

TABLE 4-7 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 4-6

viii OpenMP API User’s Guide • May 2002

ix

Before You Begin

The OpenMP API User’s Guide summarizes the OpenMP Fortran 95, C, and C++

application program interface (API) for building multiprocessing applications.

This guide is intended for scientists, engineers, and programmers who have a

working knowledge of the Fortran, C, or C++ languages, and the OpenMP parallel

programming model. Familiarity with the Solaris operating environment or UNIX®

in general is also assumed.

Typographic Conventions

The following are the typographic conventions used in the text and code examples

in this manual:

x OpenMP API User’s Guide • May 2002

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 In code examples, what you type,

when contrasted with on-screen

computer output.

In text, identifies tokens in the

language, API, or library function

names.

% su

Password:

ATOMICdirectives

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code and Command-Line Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…fn] xinline=alpha,dos

Before You Begin xi

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

xii OpenMP API User’s Guide • May 2002

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

% echo $PATH

% man dbx

Before You Begin xiii

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

xiv OpenMP API User’s Guide • May 2002

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt

Before You Begin xv

Related Forte Developer Documentation

The following table describes related documentation that is available at

file:/opt/SUNWspro/docs/index.html . If your product software is not

installed in the /opt directory, ask your system administrator for the equivalent

path on your system.

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on

Solaris environments; input/output, libraries,

performance, debugging, and parallel

processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and

command-line options for the f95 compiler.

Also includes guidelines for migrating legacy

f77 programs to f95 .

C User’s Guide Describes the compile-time environment and

command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and

command-line options for the CCcompiler.

Numerical Computation Guide Describes issues regarding the numerical

accuracy of floating-point computations.

xvi OpenMP API User’s Guide • May 2002

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.

1-1

CHAPTER 1

OpenMP API Summary

OpenMP™ is a portable, parallel programming model for shared memory

multiprocessor architectures, developed in collaboration with a number of computer

vendors. The specifications were created and are published by the OpenMP

Architecture Review Board. For more information on the OpenMP developer

community, including tutorials and other resources, see their web site at:

http://www.openmp.org

The OpenMP API is the recommended parallel programming model for all Forte

Developer compilers. See Chapter 4 for guidelines on converting legacy Fortran and

C parallelization directives to OpenMP.

This chapter summarizes the directives, run-time library routines, and environment

variables comprising the OpenMP Application Program Interfaces, as implemented

by the Forte Developer Fortran 95, C and C++ compilers.

1.1 Where to Find the OpenMP
Specifications
The material presented in this chapter is only a summary with many details left out

intentionally for the sake of brevity. In all cases, refer to the OpenMP specification

documents for complete details.

The Fortran 2.0 and C/C++ 1.0 OpenMP specifications can be found on the official

OpenMP website, http://www.openmp.org/ , and are hyper linked to the Forte

Developer documentation index installed with the software, at:

file:/opt/SUNWspro/docs/index.html

1-2 OpenMP API User’s Guide • May 2002

1.2 Special Conventions Used Here
In the tables and examples that follow, Fortran directives and source code are shown

in upper case, but are case-insensitive.

The term structured-block refers to a block of Fortran or C/C++ statements having no

transfers into or out from the block.

Constructs within square brackets, [...] , are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and compiler,

f95 .

The terms “directive” and “pragma” are used interchangeably in this manual.

1.3 Directive Formats
Only one directive-name can be specified on a directive line.

Fortran:

Fortran fixed format accepts three directive “sentinels”, free format only one.

In the Fortran examples that follow, free format will be used.

C/C++:

C and C++ use the standard preprocessing directive starting with #pragma omp .

OpenMP Fortran 2.0

Fixed Format:

C$OMP directive-name optional_clauses...
!$OMP directive-name optional_clauses...
*$OMP directive-name optional_clauses...

Must start in column one; continuation lines must have a non-blank or non-zero

character in column 6.

Comments may appear after column 6 on the directive line, initiated by an exclamation

point (!). The rest of the line after the ! is ignored.

Chapter 1 OpenMP API Summary 1-3

1.4 Conditional Compilation
The OpenMP API defines the preprocessor symbol _OPENMPto be used for

conditional compilation. In addition, OpenMP Fortran API accepts a conditional

compilation sentinel.

Free Format:

!$OMP directive-name optional_clauses...

May appear anywhere on a line, preceded only by whitespace; an ampersand (&) at the

end of the line identifies a continued line.

Comments may appear on the directive line, initiated by an exclamation point (!). The

rest of the line is ignored.

OpenMP C/C++ 1.0

#pragma omp directive-name optional_clauses...
Each pragma must end with a new-line character, and follows the conventions of

standard C and C++ for compiler pragmas.

Pragmas are case sensitive. The order in which clauses appear is not significant. White

space can appear after and before the # and between words.

OpenMP Fortran 2.0

Fixed Format:

!$ fortran_95_statement
C$ fortran_95_statement
*$ fortran_95_statement
c$ fortran_95_statement

The sentinel must start in column 1 with no intervening blanks. With OpenMP

compilation enabled, the sentinel is replaced by two blanks. The rest of the line must

conform to standard Fortran fixed format conventions, otherwise it is treated as a

comment. Example:

OpenMP Fortran 2.0

1-4 OpenMP API User’s Guide • May 2002

C23456789

!$ 10 iam = OMP_GET_THREAD_NUM() +

!$ 1 index

Free Format:

!$ fortran_95_statement

This sentinel can appear in any column, preceded only by white space, and must

appear as a single word. Fortran free format conventions apply to the rest of the line.

Example:

C23456789

!$ iam = OMP_GET_THREAD_NUM() + &

!$& index

Preprocessor:

Compiling with OpenMP enabled defines the preprocessor symbol _OPENMP.

#ifdef _OPENMP

iam = OMP_GET_THREAD_NUM()+index

#endif

OpenMP C/C++ 1.0

Compiling with OpenMP enabled defines the macro _OPENMP.

#ifdef _OPENMP

iam = omp_get_thread_num() + index;

#endif

OpenMP Fortran 2.0

Chapter 1 OpenMP API Summary 1-5

1.5 PARALLEL- Parallel Region Construct
The PARALLELdirective defines a parallel region, which is a region of the program

that is to be executed by multiple threads in parallel.

TABLE 1-1 identifies the clauses that can appear with this construct.

OpenMP Fortran 2.0

!$OMP PARALLEL [clause[[,]clause]...]
structured-block

!$OMP END PARALLEL

OpenMP C/C++ 1.0

#pragma omp parallel [clause[clause]...]
structured-block

1-6 OpenMP API User’s Guide • May 2002

1.6 Work-Sharing Constructs
Work-sharing constructs divide the execution of the enclosed code region among the

members of the team of threads that encounter it. Work sharing constructs must be

enclosed within a parallel region for the construct to execute in parallel.

There are many special conditions and restrictions on these directives and the code

they apply to. Programmers are urged to refer to the appropriate OpenMP

specification document for the details.

1.6.1 DOand for

Specifies that the iterations of the DOor for loop that follows must be executed in

parallel.

OpenMP Fortran 2.0

!$OMP DO [clause[[,] clause] ...]
do_loop

[!$OMP END DO [NOWAIT]]

The DOdirective specifies that the iterations of the DOloop that immediately follows must

be executed in parallel. This directive must appear within a parallel region to be effective.

Chapter 1 OpenMP API Summary 1-7

1.6.2 SECTIONS

SECTIONSencloses a non-iterative block of code to be divided among threads in the

team. Each block is executed once by a thread in the team.

Each section is preceded by a SECTIONdirective, which is optional for the first

section.

OpenMP C/C++ 1.0

#pragma omp for [clause[clause] ...]
for-loop

The for pragma specifies that the iterations of the for-loop that immediately follows must

be executed in parallel. This pragma must appear within a parallel region to be effective.

The for pragma places restrictions on the structure of the corresponding for loop, and it

must have canonical shape:

for (initexpr; var logicop b; increxpr)
where:

• initexpr is one of the following:

var = lb
integer_type var = lb

• increxpr is one of the following expression forms:

++var
var++
-- var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

• var is a signed integer variable, made implicitly private for the range of the for . var
must not be modified within the body of the for statement. Its value is indeterminate

after the loop, unless specified lastprivate .

• logicop is one of the following logical operators:

< <= > >=

• lb, b, and incr are loop invariant integer expressions.

1-8 OpenMP API User’s Guide • May 2002

1.6.3 SINGLE

The structured block enclosed by SINGLE is executed by only one thread in the

team. Threads in the team that are not executing the SINGLE block wait at the end of

the block unless NOWAITis specified.

OpenMP Fortran 2.0

!$OMP SECTIONS [clause[[,] clause] ...]
[!$OMP SECTION]

structured-block
[!$OMP SECTION

structured-block]

...

!$OMP END SECTIONS [NOWAIT]

OpenMP C/C++ 1.0

#pragma omp sections [clause[clause] ...]
{

[#pragma omp section]

structured-block
[#pragma omp section

structured-block]
...

}

OpenMP Fortran 2.0

!$OMP SINGLE [clause[[,] clause] ...]
structured-block

!$OMP END SINGLE [end-modifier]

OpenMP C/C++ 1.0

#pragma omp single [clause[clause] ...]
structured-block

Chapter 1 OpenMP API Summary 1-9

1.6.4 Fortran WORKSHARE

Divides the work of executing the enclosed code block into separate units of work,

and causes the threads of the team to share the work such that each unit is executed

only once.

There is no C/C++ equivalent to the Fortran WORKSHAREconstruct.

TABLE 1-1 identifies the clauses that can appear with these constructs.

OpenMP Fortran 2.0

!$OMP WORKSHARE

structured-block
!$OMP END WORKSHARE [NOWAIT]

1-10 OpenMP API User’s Guide • May 2002

1.7 Combined Parallel Work-sharing
Constructs
The combined parallel work-sharing constructs are shortcuts for specifying a parallel

region that contains one work-sharing construct.

There are many special conditions and restrictions on these directives and the code

they apply to. Programmers are urged to refer to the appropriate OpenMP

specification document for the details.

TABLE 1-1 identifies the clauses that can appear with these constructs.

1.7.1 PARALLEL DOand parallel for

Shortcut for specifying a parallel region that contains a single DOor for loop.

Equivalent to a PARALLELdirective followed immediately by a DOor for directive.

clause can be any of the clauses accepted by the PARALLELand DO/for directives,

except the NOWAITmodifier.

OpenMP Fortran 2.0

!$OMP PARALLEL DO[clause[[,] clause]...]
do_loop

[!$OMP END PARALLEL DO]

OpenMP C/C++ 1.0

#pragma omp parallel for [clause[clause]...]
for-loop

Chapter 1 OpenMP API Summary 1-11

1.7.2 PARALLEL SECTIONS

Shortcut for specifying a parallel region that contains a single SECTIONSdirective.

Equivalent to a PARALLELdirective followed by a SECTIONSdirective. clause can be

any of the clauses accepted by the PARALLELand SECTIONSdirectives, except the

NOWAITmodifier.

1.7.3 PARALLEL WORKSHARE

Provides a shortcut for specifying a parallel region that contains a single WORKSHARE
directive. clause can be one of the clauses accepted by either the PARALLELor

WORKSHAREdirective.

OpenMP Fortran 2.0

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]

structured-block
[!$OMP SECTION

structured-block]

...

!$OMP END PARALLEL SECTIONS

OpenMP C/C++ 1.0

#pragma omp parallel sections [clause[...]

{

[#pragma omp section]

structured-block
[#pragma omp section

structured-block]

...

}

1-12 OpenMP API User’s Guide • May 2002

There is no C/C++ equivalent.

1.8 Synchronization Constructs
The following constructs specify thread synchronization. There are many special

conditions and restrictions regarding these constructs that are too numerous to

summarize here. Programmers are urged to refer to the appropriate OpenMP

specification document for the details.

1.8.1 MASTER

Only the master thread of the team executes the block enclosed by this directive. The

other threads skip this block and continue. There is no implied barrier on entry to or

exit from the master section.

OpenMP Fortran 2.0

!$OMP PARALLEL WORKSHARE[clause[[,] clause]...]

structured-block
!$OMP END PARALLEL WORKSHARE

OpenMP Fortran 2.0

!$OMP MASTER

structured-block
!$OMP END MASTER

OpenMP C/C++ 1.0

#pragma omp master

structured-block

Chapter 1 OpenMP API Summary 1-13

1.8.2 CRITICAL

Restrict access to the structured block to only one thread at a time. The optional name
argument identifies the critical region. All unnamed CRITICAL directives map to the

same name. Critical section names are global entities of the program and must be

unique. For Fortran, if name appears on the CRITICAL directive, it must also appear

on the END CRITICAL directive. For C/C++, the identifier used to name a critical

region has external linkage and is in a name space which is separate from the name

spaces used by labels, tags, members, and ordinary identifiers.

1.8.3 BARRIER

Synchronizes all the threads in a team. Each thread waits until all the others in the

team have reached this point.

OpenMP Fortran 2.0

!$OMP CRITICAL [(name)]

structured-block
!$OMP END CRITICAL [(name)]

OpenMP C/C++ 1.0

#pragma omp critical [(name)]

structured-block

OpenMP Fortran 2.0

!$OMP BARRIER

OpenMP C/C++ 1.0

#pragma omp barrier

1-14 OpenMP API User’s Guide • May 2002

1.8.4 ATOMIC

Ensures that a specific memory location is to be updated atomically, rather than

exposing it to the possibility of multiple, simultaneous writing threads.

This implementation replaces all ATOMIC directives by enclosing the expression-statement
in a critical section.

OpenMP Fortran 2.0

!$OMP ATOMIC

expression-statement

The directive applies only to the immediately following statement, which must be in one

of these forms:

x = x operator expression
x = expression operator x
x = intrinsic(x, expr-list)
x = intrinsic(expr-list, x)

where:

• x is a scalar of intrinsic type

• expression is a scalar expression that does not reference x
• expr-list is a non-empty, comma-separated list of scalar expressions that do not reference

x (see the OpenMP Fortran 2.0 specifications for details)

• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of + - * / .AND. .OR. .EQV. .NEQV.

OpenMP C/C++ 1.0

#pragma omp atomic

expression-statement

The pragma applies only to the immediately following statement, which must be in one of

these forms:

x binop = expr
x++

++x
x--

-- x
where:

• x in an lvalue expression with scalar type.

• expr is an expression with scalar type that does not reference x.

• binop is not an overloaded operator and one of: +, * , - , / , &, ^ , | , <<, or >>.

Chapter 1 OpenMP API Summary 1-15

1.8.5 FLUSH

Thread-visible Fortran variables or C objects are written back to memory at the point

at which this directive appears. The FLUSHdirective only provides consistency

between operations within the executing thread and global memory. The optional

list consists of a comma-separated list of variables or objects that need to be flushed.

A flush directive without a list synchronizes all thread-visible shared variables or

objects.

1.8.6 ORDERED

The enclosed block is executed in the order that iterations would be executed in a

sequential execution of the loop.

OpenMP Fortran 2.0

!$OMP FLUSH [(list)]

OpenMP C/C++ 1.0

#pragma omp flush [(list)]

OpenMP Fortran 2.0

!$OMP ORDERED

structured-block
!$OMP END ORDERED

The enclosed block is executed in the order that iterations would be executed in a

sequential execution of the loop. It can appear only in the dynamic extent of a DOor

PARALLEL DOdirective. The ORDEREDclause must be specified on the closest DOdirective

enclosing the block.

An iteration of a loop to which a DOdirective applies must not execute the same ordered
directive more than once, and it must not execute more than one ordered directive.

1-16 OpenMP API User’s Guide • May 2002

1.9 Data Environment Directives
The following directives control the data environment during execution of parallel

constructs.

1.9.1 THREADPRIVATE

Makes the list of objects (Fortran common blocks and named variables, C named

variables) private to a thread but global within the thread.

See the OpenMP specifications (section 2.6.1 in the Fortran 2.0 specifications, secton 2.7.1
in the C/C++) for the complete details and restrictions.

OpenMP C/C++ 1.0

#pragma omp ordered

structured-block

The enclosed block is executed in the order that iterations would be executed in a

sequential execution of the loop. It must not appear in the dynamic extent of a for
pragma that does not have the ordered clause specified.

An iteration of a loop with a for construct must not execute the same ordered directive

more than once, and it must not execute more than one ordered directive.

OpenMP Fortran 2.0

!$OMP THREADPRIVATE(list)

Common block names must appear between slashes. To make a common block

THREADPRIVATE, this directive must appear after every COMMONdeclaration of that

block.

OpenMP C/C++ 1.0

#pragma omp threadprivate (list)

Each variable of list must have a file-scope or namespace-scope declaration preceding

the pragma.

Chapter 1 OpenMP API Summary 1-17

1.10 OpenMP Directive Clauses
This section summarizes the data scoping and scheduling clauses that can appear on

OpenMP directives.

1.10.1 Data Scoping Clauses

Several directives accept clauses that allow a user to control the scope attributes of

variables within the extent of the construct. If no data scope clause is specified for a

directive, the default scope for variables affected by the directive is SHARED.

Fortran: list is a comma-separated list of named variables or common blocks that are

accessible in the scoping unit. Common block names must appear within slashes (for

example, /ABLOCK/).

There are important restrictions on the use of these scoping clauses. Refer to section

2.6.2 in the Fortran 2.0 specification, and section 2.7.2 in the C/C++ specification for

complete details.

TABLE 1-1 identifies the directives on which these clauses can appear.

1.10.1.1 PRIVATE

private(list)

Declares the variables in the comma separated list to be private to each thread in a

team.

1.10.1.2 SHARED

shared(list)

All the threads in the team share the variables that appear in list, and access the

same storage area.

1-18 OpenMP API User’s Guide • May 2002

1.10.1.3 DEFAULT

Fortran

DEFAULT(PRIVATE | SHARED | NONE)

C/C++

default(shared | none)

Specify scoping attribute for all variables within a parallel region. THREADPRIVATEvariables

are not affected by this clause. If not specified, DEFAULT(SHARED)is assumed.

1.10.1.4 FIRSTPRIVATE

firstprivate(list)

Variables on list are PRIVATE. In addition, private copies of the variables are

initialized from the original object existing before the construct.

1.10.1.5 LASTPRIVATE

lastprivate(list)

Variables on the list are PRIVATE. In addition, when the LASTPRIVATEclause appears

on a DOor for directive, the thread that executes the sequentially last iteration

updates the version of the variable before the construct. On a SECTIONSdirective, the

thread that executes the lexically last SECTIONupdates the version of the object it

had before the construct.

1.10.1.6 COPYIN

Fortran

COPYIN(list)

The COPYINclause applies only to variables, common blocks, and variables in

common blocks that are declared as THREADPRIVATE. In a parallel region, COPYIN
specifies that the data in the master thread of the team be copied to the thread

private copies of the common block at the beginning of the parallel region.

C/C++

copyin(list)

The COPYINclause applies only to variables that are declared as THREADPRIVATE.
In a parallel region, COPYINspecifies that the data in the master thread of the

team be copied to the thread private copies at the beginning of the parallel region.

Chapter 1 OpenMP API Summary 1-19

1.10.1.7 COPYPRIVATE

Fortran

COPYPRIVATE(list)

Uses a private variable to broadcast a value, or a pointer to a shared object, from

one member of a team to the other members. Variables in list must not appear in

a PRIVATE or FIRSTPRIVATE clause of the SINGLE construct specifying

COPYPRIVATE.

There is no C/C++ equivalent.

1.10.1.8 REDUCTION

Fortran

REDUCTION(operator| intrinsic: list)

operator is one of: +, * , - , .AND. , .OR. , .EQV. , .NEQV.

intrinsic is one of: MAX, MIN, IAND, IOR, IEOR

Variables in list must be named variables of intrinsic type.

C/C++

reduction(operator: list)

operator is one of: +, * , - , &, ^ , | , &&, ||

The REDUCTIONclause is intended to be used on a region in which the reduction

variable is used only in reduction statements. Variables on list must be SHAREDin the

enclosing context. A private copy of each variable is created for each thread as if it

were PRIVATE. At the end of the reduction, the shared variable is updated by

combining the original value with the final value of each of the private copies.

1.10.2 Scheduling Clauses

The SCHEDULEclause specifies how iterations in a Fortran DOloop or C/C++ for
loop are divided among the threads in a team. TABLE 1-1 shows which directives

allow the SCHEDULEclause.

There are important restrictions on the use of these scheduling clauses. Refer to

section 2.3.1 in the Fortran 2.0 specification, and section 2.4.1 in the C/C++

specification for complete details.

schedule(type [, chunk])

1-20 OpenMP API User’s Guide • May 2002

Specifies how iterations of the DO or for loop are divided among the threads of the

team. type can be one of STATIC, DYNAMIC, GUIDED, or RUNTIME. In the absence of a

SCHEDULEclause, STATIC scheduling is used. chunk must be an integer expression.

1.10.2.1 STATIC Scheduling

schedule(static [, chunk])

Iterations are divided into pieces of a size specified by chunk. The pieces are

statically assigned to threads in the team in a round-robin fashion in the order of the

thread number. If not specified, chunk is chosen to divide the iterations into

contiguous chunks nearly equal in size with one chunk assigned to each thread.

1.10.2.2 DYNAMICScheduling

schedule(dynamic [, chunk])

Iterations are broken into pieces of a size specified by chunk. As each thread finishes

a piece of the iteration space, it dynamically obtains the next set of iterations. When

no chunk is specified, it defaults to 1.

1.10.2.3 GUIDEDScheduling

schedule(guided [, chunk])

With GUIDED, the chunk size is reduced in an exponentially decreasing manner with each

dispatched piece of the iterations. chunk specifies the minimum number of iterations to

dispatch each time. (The size of the initial chunk of the iterations is implementation

dependent; see Chapter 2.). When no chunk is specified, it defaults to 1.

1.10.2.4 RUNTIMEScheduling

schedule(runtime)

Scheduling is deferred until runtime. Schedule type and chunk size will be determined from the

setting of the OMP_SCHEDULEenvironment variable. (Default is SCHEDULE(STATIC)

Chapter 1 OpenMP API Summary 1-21

1.10.3 NUM_THREADSClause

The Fortran OpenMP API provides a NUM_THREADSclause on the PARALLEL,
PARALLEL SECTIONS, PARALLEL DO, and PARALLEL WORKSHAREdirectives.

There is no C/C++ equivalent.

OpenMP Fortran 2.0

NUM_THREADS(scalar_integer_expression)

Specifies the number of threads in the team created when a thread enters a parallel

region. scalar_integer_expression is the number of threads requested, and supersedes

the number of threads defined by a prior call to the OMP_SET_NUM_THREADSlibrary

routine, or the value of the OMP_NUM_THREADSenvironment variable.

If dynamic thread management is enabled, the request is the maximum number of

threads to use.

1-22 OpenMP API User’s Guide • May 2002

1.10.4 Placement of Clauses on Directives

TABLE 1-1 shows the clauses that can appear on these directives and pragmas:

1. Fortran only: COPYPRIVATEcan appear on the END SINGLEdirective.

2. For Fortran, a NOWAITmodifier can appear on the END DO, END SECTIONS, END
SINGLE, or END WORKSHAREdirectives.

3. Only Fortran supports WORKSHAREand PARALLEL WORKSHARE.

■ PARALLEL
■ DO
■ for
■ SECTIONS
■ SINGLE
■ PARALLEL DO
■ parallel for
■ PARALLEL SECTIONS

TABLE 1-1 Pragmas Where Clauses Can Appear

Clause/Pragma PARALLEL DO/for SECTIONS SINGLE
PARALLEL

DO/for
PARALLEL
SECTIONS

PARALLEL
WORKSHARE3

IF • • • •

PRIVATE • • • • • • •

SHARED • • • •

FIRSTPRIVATE • • • • • • •

LASTPRIVATE • • • •

DEFAULT • • • •

REDUCTION • • • • • •

COPYIN • • • •

COPYPRIVATE •1

ORDERED • •

SCHEDULE • •

NOWAIT •2 •2 •2

NUM_THREADS • • • •

Chapter 1 OpenMP API Summary 1-23

1.11 OpenMP Runtime Library Routines
OpenMP provides a set of callable library routines to control and query the parallel

execution environment, a set of general purpose lock routines, and two portable

timer routines.

1.11.1 Fortran OpenMP Routines

The Fortran run-time library routines are external procedures. In the following

summary, int_expr is a scalar integer expression, and logical_expr is a scalar logical

expression.

OMP_functions returning INTEGER(4) and LOGICAL(4) are not intrinsic and must be

declared properly, otherwise the compiler will assume REAL. Interface declarations

for the OpenMP Fortran runtime library routines summarized below are provided

by the Fortran include file omp_lib.h and a Fortran MODULE omp_lib, as described

in the Fortran OpenMP 2.0 specifications.

Supply an INCLUDE 'omp_lib.h' statement or #include "omp_lib.h"
preprocessor directive, or a USE omp_lib statement in every program unit that

references these library routines.

Compiling with -Xlist will report any type mismatches.

The integer parameter omp_lock_kind defines the KIND type parameters used for

simple lock variables in the OMP_*_LOCKroutines.

The integer parameter omp_nest_lock_kind defines the KIND type parameters used

for the nestable lock variables in the OMP_*_NEST_LOCKroutines.

The integer parameter openmp_version is defined as a preprocessor macro _OPENMP
having the form YYYYMMwhere YYYYand MMare the year and month designations of

the version of the OpenMP Fortran API.

1.11.2 C/C++ OpenMP Routines

The C/C++ run-time library functions are external functions.

The header <omp.h> declares two types, several functions that can be used to

control and query the parallel execution environment, and lock functions that can be

used to synchronize access to data.

1-24 OpenMP API User’s Guide • May 2002

The type omp_lock_t is an object type capable of representing that a lock is

available, or that a thread owns a lock. These locks are referred to as simple locks.

The type omp_nest_lock_t is an object type capable of representing that a lock is

available, or that a thread owns a lock. These locks are referred to as nestable locks.

1.11.3 Run-time Thread Management Routines

For details, refer to the appropriate OpenMP specifications.

1.11.3.1 OMP_SET_NUM_THREADS

Sets the number of threads to use for subsequent parallel regions

Fortran

SUBROUTINE OMP_SET_NUM_THREADS(int_expr)

C/C++

#include <omp.h>

void omp_set_num_threads(int num_threads);

1.11.3.2 OMP_GET_NUM_THREADS

Returns the number of threads currently in the team executing the parallel region

from which it is called.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_THREADS()

C/C++

#include <omp.h>

int omp_get_num_threads(void);

1.11.3.3 OMP_GET_MAX_THREADS

Returns maximum value that can be returned by calls to the OMP_GET_NUM_THREADS
function.

Fortran

INTEGER(4) FUNCTION OMP_GET_MAX_THREADS()

Chapter 1 OpenMP API Summary 1-25

C/C++

#include <omp.h>

int omp_get_max_threads(void);

1.11.3.4 OMP_GET_THREAD_NUM

Returns the thread number, within its team, of the thread executing the call to this

function. This number lies between 0 and OMP_GET_NUM_THREADS()-1, with 0 being

the master thread.

Fortran

INTEGER(4) FUNCTION OMP_GET_THREAD_NUM()

C/C++

#include <omp.h>

int omp_get_thread_num(void);

1.11.3.5 OMP_GET_NUM_PROCS

Return the number of processors available to the program.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_PROCS()

C/C++

#include <omp.h>

int omp_get_num_procs(void);

1.11.3.6 OMP_IN_PARALLEL

Determine if called from within the dynamic extent of a region executing in parallel.

Fortran

LOGICAL(4) FUNCTION OMP_IN_PARALLEL()

Returns .TRUE. if called within a parallel region, .FALSE. otherwise.

C/C++

#include <omp.h>

int omp_in_parallel(void);

1-26 OpenMP API User’s Guide • May 2002

Returns nonzero if called within a parallel region, zero otherwise.

1.11.3.7 OMP_SET_DYNAMIC

Enables or disables dynamic adjustment of the number of available threads.

(Dynamic adjustment is enabled by default.)

Fortran

SUBROUTINE OMP_SET_DYNAMIC(logical_expr)

Dynamic adjustment is enabled when logical_expr evaluates to .TRUE., and is

disabled otherwise.

C/C++

#include <omp.h>

void omp_set_dynamic(int dynamic);

If dynamic evaluates as nonzero, dynamic adjustment is enabled; otherwise it is

disabled.

1.11.3.8 OMP_GET_DYNAMIC

Determine whether or not dynamic thread adjustment is enabled.

Fortran

LOGICAL(4) FUNCTION OMP_GET_DYNAMIC()

Returns .TRUE. if dynamic thread adjustment is enabled, .FALSE. otherwise.

C/C++

#include <omp.h>

int omp_get_dynamic(void);

Returns nonzero if dynamic thread adjustment is enabled, zero otherwise.

1.11.3.9 OMP_SET_NESTED

Enables or disables nested parallelism. (Nested parallelism is not supported, and is
disabled by default.)

Fortran

SUBROUTINE OMP_SET_NESTED(logical_expr)

C/C++

Chapter 1 OpenMP API Summary 1-27

#include <omp.h>

void omp_set_nested(int nested);

1.11.3.10 OMP_GET_NESTED

Determine whether or not nested parallelism is enabled. (Nested parallelism is not
supported, and is disabled by default.)

Fortran

LOGICAL(4) FUNCTION OMP_GET_NESTED()

Returns .FALSE. . Nested parallelism is not supported.

C/C++

#include <omp.h>

int omp_get_nested(void);

Returns zero. Nested parallelism is not supported.

1.11.4 Routines That Manage Synchronization Locks

Two types of locks are supported: simple locks and nestable locks. Nestable locks

may be locked multiple times by the same thread before being unlocked; simple

locks may not be locked if they are already in a locked state. Simple lock variables

may only be passed to simple lock routines, and nested lock variables only to nested

lock routines.

Fortran:

The lock variable var must be accessed only through these routines. Use the

parametersOMP_LOCK_KINDandOMP_NEST_LOCK_KIND(definedin omp_lib.h
INCLUDE file and the omp_lib MODULE) for this purpose. For example,

INTEGER(KIND=OMP_LOCK_KIND) :: var

INTEGER(KIND=OMP_NEST_LOCK_KIND) :: nvar

C/C++:

Simple lock variables must have type omp_lock_t and must be accessed only

through these functions. All simple lock functions require an argument that has

a pointer to omp_lock_t type.

Nested lock variables must have type omp_nest_lock_t , and similarly all

nested lock functions require an argument that has a pointer to

omp_nest_lock_t type.

1-28 OpenMP API User’s Guide • May 2002

1.11.4.1 OMP_INIT_LOCKand OMP_INIT_NEST_LOCK

Initialize a lock variable for subsequent calls.

Fortran

SUBROUTINE OMP_INIT_LOCK(var)

SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_init_lock(omp_lock_t * lock);

void omp_init_nest_lock(omp_nest_lock_t * lock);

1.11.4.2 OMP_DESTROY_LOCKand OMP_DESTROY_NEST_LOCK

Disassociates a lock variable from any locks.

Fortran

SUBROUTINE OMP_DESTROY_LOCK(var)

SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_destroy_lock(omp_lock_t * lock);

void omp_destroy_nest_lock(omp_nest_lock_t * lock);

1.11.4.3 OMP_SET_LOCKand OMP_SET_NEST_LOCK

Forces the executing thread to wait until the specified lock is available. The thread is

granted ownership of the lock when it is available.

Fortran

SUBROUTINE OMP_SET_LOCK(var)

SUBROUTINE OMP_SET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_set_lock(omp_lock_t * lock);

void omp_set_nest_lock(omp_nest_lock_t * lock);

Chapter 1 OpenMP API Summary 1-29

1.11.4.4 OMP_UNSET_LOCKand OMP_UNSET_NEST_LOCK

Releases the executing thread from ownership of the lock. Behavior is undefined if

the thread does not own that lock.

Fortran

SUBROUTINE OMP_UNSET_LOCK(var)

SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_unset_lock(omp_lock_t * lock);

void omp_unset_nest_lock(omp_nest_lock_t * lock);

1.11.4.5 OMP_TEST_LOCKand OMP_TEST_NEST_LOCK

OPM_TEST_LOCKattempts to set the lock associated with lock variable. Call does not

block execution of the thread.

OMP_TEST_NEST_LOCKreturns the new nesting count if the lock was set successfully,

otherwise it returns 0. Call does not block execution of the thread.

Fortran

LOGICAL(4) FUNCTION OMP_TEST_LOCK(var)

Returns .TRUE. if the lock was set, .FALSE. otherwise.

INTEGER(4) FUNCTION OMP_TEST_NEST_LOCK(nvar)

Returns nesting count if lock set successfully, zero otherwise.

C/C++

#include <omp.h>

int omp_test_lock(omp_lock_t * lock);

Returns a nonzero value if lock set successfully, zero otherwise.

int omp_test_nest_lock(omp_nest_lock_t * lock);

Returns lock nest count if lock set successfully, zero otherwise.

1-30 OpenMP API User’s Guide • May 2002

1.11.5 Timing Routines

Two functions support a portable wall clock timer.

1.11.5.1 OMP_GET_WTIME

Returns the elapsed wall clock time in seconds “since some arbitrary time in the

past”.

Fortran

REAL(8) FUNCTION OMP_GET_WTIME()

C/C++

#include <omp.h>

double omp_get_wtime(void);

1.11.5.2 OMP_GET_WTICK

Returns the number of seconds between successive clock ticks.

Fortran

REAL(8) FUNCTION OMP_GET_WTICK()

C/C++

#include <omp.h>

double omp_get_wtick(void);

2-1

CHAPTER 2

Implementation Dependent Issues

This chapter details specific issues in the OpenMP Fortran 2.0 and OpenMP C/C++

1.0 specifications that are implementation dependent.

Scheduling

■ static scheduling is the default, in the absence of an explicit OMP_SCHEDULE
environment variable, or an explicit SCHEDULEclause.

Number of Threads

■ Withoutanexplicitnum_threads() clause,call totheomp_set_num_threads ()

function, or an explicit definition of the OMP_NUM_THREADSenvironment

variable, the default number of threads in a team is 1.

■ Set the OMP_NUM_THREADSenvironment variable to the number of threads.

Dynamic Threads

■ Without an explicit call to the omp_set_dynamic() function, or an explicit

definition of the OMP_DYNAMICenvironment variable, the default is to enable

dynamic thread adjustment.

Nested Parallelism

■ Nested parallelism is not supported in this implementation, and is disabled by

default.

ATOMICDirective

■ This implementation replaces all ATOMICdirectives and pragmas by enclosing

the target statement in a critical region.

GUIDEDInitial Chunk

■ The default chunk size with SCHEDULE(GUIDED,chunk) is 1. The size of the

initial set of iterations is the number of iterations in the loop divided by the

number of threads executing the loop.

2-2 OpenMP API User’s Guide • May 2002

C++ Implementation

■ For C++, the implementation is restricted to the OpenMP C specifications. In

particular, the use of class objects as private data items within any OpenMP

clause is not supported in this release. Also, any exceptions thrown in parallel

regions will have unspecified behavior.

3-1

CHAPTER 3

Compiling for OpenMP

This chapter describes how to compile programs that utilize the OpenMP API.

To run a parallelized program in a multithreaded environment, you must set the

OMP_NUM_THREADSenvironment variable prior to program execution. This tells the

runtime system the maximum number of threads the program can create. The

default is 1. In general, set OMP_NUM_THREADSto the available number of processors

on the target platform.

The compiler README files contain information about limitations and known

deficiencies regarding their OpenMP implementation. These README files are

viewable directly by invoking the compiler with the -xhelp=readme flag, or by

pointing an HTML browser to the Forte Developer documentation index at

file:/opt/SUNWspro/docs/index.html

3.1 Fortran 95
To enable explicit parallelization with OpenMP directives, compile the program with

the f95 option flag -openmp . This flag is a macro for the following combination of

f95 options:

-mp=openmp -explicitpar -stackvar -D_OPENMP=200011

-openmp=stubs links with the stubs routines for the OpenMP API routines. Use this

option if you need to compile your application to execute serially.

-openmp=stubs also defines the _OPENMPpreprocessor token.

See the f95 (1) man page for details on these options.

3-2 OpenMP API User’s Guide • May 2002

3.1.1 Validation of OpenMP Directives with -XlistMP

You can obtain a static, interprocedural validation of a program’s OpenMP directives

by using the f95 compiler’s global program checking feature. Enable OpenMP

checking by compiling with the -XlistMP flag. (Diagnostic messages from -XlistMP
appear in a separate file created with the name of the source file and a .lst
extension). The compiler will diagnose the following violations:

Violations in the specifications of parallel directives:

■ If ordered sections are contained in the dynamic extent of the DOdirective, the

ORDEREDclause must be present in DOdirective.

■ The variable in the enclosing PARALLELregion must be SHAREDif it is specified on

the LASTPRIVATE list of a DOdirective.

■ An ORDEREDdirective can appear only in the dynamic extent of a DOor PARALLEL
DOdirective.

■ If a variable is PRIVATE(explicitly or implicitly) or THREADPRIVATEin a PARALLEL
region and this variable is set in this region then it is incorrect to use this variable

after this PARALLELregion.

■ Variables in the COPYPRIVATElist must be private in the enclosing context.

■ Variables that appear on the FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses on a work-sharing directive must have shared scope in the enclosing

parallel region.

■ DO, SECTIONS, SINGLE, and WORKSHAREdirectives that bind to the same PARALLEL
directive are not allowed to be nested one inside the other.

■ DO, SECTIONS, SINGLE, and WORKSHAREdirectives are not permitted in the

dynamic extent of CRITICAL , ORDERED, and MASTERdirectives.

■ BARRIERdirectives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL , and ORDEREDdirectives.

■ MASTERdirectives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL , and ORDEREDdirectives.

■ ORDEREDdirectives are not allowed in the dynamic extent of SECTIONS, SINGLE,

WORKSHARE, CRITICAL , and MASTERdirectives.

■ Multiple ORDEREDsections are not permitted in the dynamic extent of PARALLEL
DO.

Obstacles to parallelization determined by interprocedural data dependence
analysis:

■ Variables declared as PRIVATE are undefined for each thread on entering the

construct.

■ It is incorrect to use REDUCTIONvariable outside reduction statement.

■ Variables that are declared LASTPRIVATE or REDUCTIONfor a work-sharing

directive for which NOWAITappears must not be used prior to a barrier.

Chapter 3 Compiling for OpenMP 3-3

■ Assignment into shared scalar variable inside parallel construct may lead to

incorrect results.

■ Using a SHAREDvariable as an ATOMICvariable may cause performance

degradation.

■ Value of a private variable can be undefined if this variable was assigned inside

MASTERor SINGLE blocks.

Additional diagnostics:

■ ATOMICdirective applies only to the immediately following statement which must

be of the special form.

■ Syntax or usage is wrong for a REDUCTIONstatement.

■ The operator declared in a REDUCTIONclause should be the same as in REDUCTION
statement.

■ ATOMICvariables must be scalars.

■ CRITICAL directives with the same name are not allowed to be nested one inside

the other.

3-4 OpenMP API User’s Guide • May 2002

For example, compiling a source file ord.f with -XlistMP produces a diagnostic file

ord.lst :

In this example, the ORDEREDdirective in subroutine WORKreceives a diagnostic that

refers to the second DOdirective because it lacks an ORDEREDclause.

3.2 C and C++
To enable explicit parallelization with OpenMP directives, compile your program

with the option flag -xopenmp . This flag can take an optional keyword argument.

If you specify -xopenmp but do not include a keyword, the compiler assumes

-xopenmp=parallel . If you do not specify -xopenmp , the compiler assumes

-xopenmp=none .

FILE "ord.f"
 1 !$OMP PARALLEL
 2 !$OMP DO ORDERED
 3 do i=1,100
 4 call work(i)
 5 end do
 6 !$OMP END DO
 7 !$OMP END PARALLEL
 8
 9 !$OMP PARALLEL
 10 !$OMP DO
 11 do i=1,100
 12 call work(i)
 13 end do
 14 !$OMP END DO
 15 !$OMP END PARALLEL
 16 end
 17 subroutine work(k)
 18 !$OMP ORDERED
 ^
**** ERR-OMP: It is illegal for an ORDERED directive to bind to a
directive (ord.f, line 10, column 2) that does not have the
ORDERED clause specified.
 19 write(*,*) k
 20 !$OMP END ORDERED
 21 return
 22 end

Chapter 3 Compiling for OpenMP 3-5

-xopenmp=parallel enables recognition of OpenMP pragmas and applies to SPARC

only. The optimization level under -xopenmp=parallel is -xO3 . The compiler issues

a warning if the optimization level of your program is changed from a lower level to

-xO3 . -xopenmp=parallel defines the _OPENMPpreprocessor token to be YYYYMM

(specifically 199810L).

-xopenmp=stubs links with the stubs routines for the OpenMP API routines. Use

this option if you need to compile your application to execute serially.

-xopenmp=stubs also predefines the _OPENMPpreprocessor token.

-xopenmp=none does not enable recognition of OpenMP pragmas, makes no change

to the optimization level of your program, and does not predefine any preprocessor

tokens.

With C, do not compile with -xopenmp and -xparallel or -xexplicitpar
together.

The C++ implementation is limited to just the OpenMP C Version 1.0 API

specifications.

3-6 OpenMP API User’s Guide • May 2002

3.3 OpenMP Environment Variables
The OpenMP specifications define four environment variables that control the

execution of OpenMP programs. These are summarized in the following table.

Additional multiprocessing environment variables affect execution of OpenMP

programs and are not part of the OpenMP specifications. These are summarized in

TABLE 3-2:

TABLE 3-1 OpenMP Environment Variables: setenv VARIABLE value

Environment Varialbe Function

OMP_SCHEDULE Sets schedule type for DO, PARALLEL DO, parallel for,
for , directives/pragmas with schedule type RUNTIME
specified. If not defined, a default value of STATIC is used.

value is “type[,chunk]”
Example: setenv OMP_SCHEDULE “GUIDED,4”

OMP_NUM_THREADSor
PARALLEL

Sets the number of threads to use during execution, unless

set by a NUM_THREADSclause, or a call to

OMP_SET_NUM_THREADS(). If not set, a default of 1 is used.

value is a positive integer. (Current maximum is 128). For

compatibility with legacy programs, setting the PARALLEL
environment variable has the same effect as setting

OMP_NUM_THREADS. However, if they are both set to

different values, the runtime library will issue an error

message.

Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC Enables or disables dynamic adjustment of the number of

threads available for execution of parallel regions. If not set,

a default value of TRUEis used. value is either TRUEor

FALSE.

Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED Enables or disables nested parallelism. (Nested parallelism is
not supported).

value is either TRUEor FALSE. (This variable has no effect.)
Example: setenv OMP_NESTED FALSE

Chapter 3 Compiling for OpenMP 3-7

3.4 Stacks and Stack Sizes
The executing program maintains a main memory stack for the initial thread

executing the program, as well as distinct stacks for each helper thread. Stacks are

temporary memory address spaces used to hold arguments and automatic variables

over subprogram or function references.

The default main stack is about 8 megabytes. Compiling Fortran programs with the

f95 option -stackvar forces the allocation of local variables and arrays on the stack

as if they were automatic variables. Use of -stackvar with OpenMP programs is

required with explicitly parallelized programs because it improves the optimizer’s

TABLE 3-2 Multiprocessing environment variables

Environment Variable Function

SUNW_MP_WARN Controls warning messages issued by the OpenMP runtime

library. If set TRUEthe runtime library issues warning messages

to stderr ; FALSE disables warning messages. The default is

FALSE.

Example:

setenv SUNW_MP_WARN FALSE

SUNW_MP_THR_IDLE Controls the end-of-task status of each thread executing the

parallel part of a program. You can set the value to spin , sleep
ns , or sleep nms. The default is SPIN — a thread should spin

(or busy-wait) after completing a parallel task, until a new

parallel task arrives.

Choosing SLEEPtime specifies the amount of time a thread

should spin-wait after completing a parallel task. If, while a

thread is spinning, a new task arrives for the thread, the tread

executes the new task immediately. Otherwise, the thread goes to

sleep and is awakened when a new task arrives. time may be

specified in seconds, (ns) , or just (n) , or milliseconds, (nms) .

SLEEPwith no argument puts the thread to sleep immediately

after completing a parallel task. SLEEP, SLEEP (0) , SLEEP
(0s) , and SLEEP (0ms) are all equivalent.

Example: setenv SUNW_MP_THR_IDLE (50ms)

STACKSIZE Sets the stack size for each thread. The value is in kilobytes.

The default thread stack sizes are 4 Mb on 32-bit SPARC V8

platforms, and 8 Mb on 64-bit SPARC V9 platforms.

Example:

setenv STACKSIZE 8192 sets the thread stack size to 8 Mb

3-8 OpenMP API User’s Guide • May 2002

ability to parallelize calls in loops. (See the Fortran User’s Guide for a discussion of

the -stackvar flag.) However, this may lead to stack overflow if not enough

memory is allocated for the stack.

Use the limit C-shell command, or the ulimit ksh/sh command, to display or set

the size of the main stack.

Each helper thread of a multithreaded program has its own thread stack. This stack

mimics the initial thread stack but is unique to the thread. The thread’s PRIVATE
arrays and variables (local to the thread) are allocated on the thread stack. The

default size is 4 megabytes on 32-bit systems and 8 megabytes on 64-bit systems. The

size of the thread stack is set with the STACKSIZE environment variable.

Finding the best stack size might have to be determined by trial and error. If the

stack size is too small for a thread to run it may cause silent data corruption in

neighboring threads, or segmentation faults. If you are unsure about stack

overflows, compile your Fortran or C programs with the -xcheck=stkovf flag to

report on runtime stack overflow situations that occur in the compiled code.

demo% setenv STACKSIZE 16384 <-Set thread stack size to 16 Mb (C shell)

demo% STACKSIZE=16384 <-Same, using Bourne/Korn shell
demo% export STACKSIZE

4-1

CHAPTER 4

Converting to OpenMP

This chapter gives guidelines for converting legacy programs using Sun or Cray

directives and pragmas to OpenMP.

4.1 Converting Legacy Fortran Directives
Legacy Fortran programs use either Sun or Cray style parallelization directives. A

description of these directives can be found in the chapter Parallelization in the

Fortran Programming Guide.

4.1.1 Converting Sun-Style Directives

The following tables give OpenMP near equivalents to Sun parallelization directives

and their subclauses. These are only suggestions.

4-2 OpenMP API User’s Guide • May 2002

The DOALLdirective can take the following optional qualifier clauses:

TABLE 4-1 Converting Sun Parallelization Directives to OpenMP

Sun Directive Equivalent OpenMP Directive

C$PAR DOALL[qualifiers] !$omp parallel do [qualifiers]

C$PAR DOSERIAL No exact equivalent. You can use:

!$omp master

loop
!$omp end master

C$PAR DOSERIAL* No exact equivalent. You can use:

!$omp master

loopnest
!$omp end master

C$PAR TASKCOMMONblock[,...] !$omp threadprivate (/block/ [,...])

TABLE 4-2 DOALLQualifier Clauses and OpenMP Equivalent Clauses

Sun DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

PRIVATE(v1,v2,...) private(v1,v2,...)

SHARED(v1,v2,...) shared(v1,v2,...)

MAXCPUS(n) num_threads(n). No exact equivalent.

READONLY(v1,v2,...) No exact equivalent. For the private variables only in the list

you can achieve the same effect by using firstprivate(list) .

STOREBACK(v1,v2,...) No exact equivalent. For the private variables only in the list

you can achieve the same effect by using lastprivate(list) .

SAVELAST No exact equivalent. For private variables only you can achieve

the same effect by using lastprivate(list) .

REDUCTION(v1,v2,...) reduction(operator: v1,v2,...) Must supply the reduction

operator as well as the list of variables.

SCHEDTYPE(spec) schedule(spec) (See TABLE 4-3)

Chapter 4 Converting to OpenMP 4-3

The SCHEDTYPE(spec) clause accepts the following scheduling specifications:

4.1.1.1 Issues Between Sun-Style Directives and OpenMP

■ Scoping of variables (shared or private) must be declared explicitly with OpenMP.

With Sun directives, the compiler uses its own default scoping rules for variables

not explicitly scoped in a PRIVATE or SHAREDclause: all scalars are treated as

PRIVATE, and all array references are SHARED. With OpenMP, the default data

scope is SHAREDunless a DEFAULT(PRIVATE) clause appears on the

PARALLEL DOdirective.

■ Clauses on OpenMP directives do not accumulate; that is, there can be at most

only one type of each clause on a directive.

■ Since there is no DOSERIALdirective, mixing automatic and explicit OpenMP

parallelization may have different effects: some loops may be automatically

parallelized that would not have been with Sun directives.

■ Because OpenMP provides a richer parallelism model, it might often be possible

to get better performance by redesigning the parallelism strategies of a program

that uses Sun directives to take advantage of these features.

TABLE 4-3 SCHEDTYPEScheduling and OpenMP schedule Equivalents

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic, chunksize)
Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No OpenMP equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

4-4 OpenMP API User’s Guide • May 2002

4.1.2 Converting Cray-Style Directives

Cray-style Fortran parallelization directives are identical to Sun-style except that the

sentinel that identifies these directives is !MIC$. Also, the set of qualifier clauses on

the !MIC$ DOALL is different:

4.1.2.1 Issues Between Cray-Style Directives and OpenMP Directives

The differences are the same as for Sun-style directives, except that there is no

equivalent for the Cray AUTOSCOPE.

TABLE 4-4 OpenMP Equivalents for Cray-Style DOALLQualifier Clauses

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SHARED(v1,v2,...) SHARED(v1,v2,...)

PRIVATE(v1,v2,...) PRIVATE(v1,v2,...)

AUTOSCOPE No equivalent. Scoping must be explicit, or with the DEFAULT
clause.

SAVELAST No exact equivalent. For private variables only you can achieve

the same effect by using lastprivate(list) .

MAXCPUS(n) num_threads(n). No exact equivalent.

GUIDED schedule(guided, m)

Default m is 1.

SINGLE schedule(dynamic,1)

CHUNKSIZE(n) schedule(dynamic, n)

NUMCHUNKS(m) schedule(dynamic, n/m) where n is the number of iterations

Chapter 4 Converting to OpenMP 4-5

4.2 Converting Legacy C Pragmas
The C compiler accepts legacy pragmas for explicit parallelization. These are

described in the C User’s Guide. As with the Fortran directives, these are only

suggestions.

The legacy parallelization pragmas are:

The taskloop pragma can take on one or more of the following optional clauses:

TABLE 4-5 Converting Legacy C Parallelization Pragmas to OpenMP

Legacy C Pragma Equivalent OpenMP Pragma

#pragma MP taskloop [clauses] #pragma omp parallel for [clauses]

#pragma MP serial_loop No exact equivalent. You can use

#pragma omp master

loop

#pragma MP serial_loop_nested No exact equivalent. You can use

#pragma omp master

loopnest

TABLE 4-6 taskloop Optional Clauses and OpenMP Equivalents

taskloop Clause OpenMP parallel for Equivalent Clause

maxcpus(n) No equivalent.

private(v1,v2,...) private(v1,v2,...)

shared(v1,v2,...) shared(v1,v2,...)

readonly(v1,v2,...) No exact equivalent. For the private variables only in the list you

can achieve the same effect by using firstprivate(list) .

storeback(v1,v2,...) No exact equivalent. For the private variables only in the list you

can achieve the same effect by using lastprivate(list) .

savelast No exact equivalent. For private variables only you can achieve the

same effect by using lastprivate(list) .

reduction(v1,v2,...) reduction(operator: v1,v2,...) Must supply the reduction

operator as well as the list.

schedtype(spec) schedule(spec) (See TABLE 4-7)

4-6 OpenMP API User’s Guide • May 2002

The schedtype(spec) clause accepts the following scheduling specifications:

4.2.1 Issues Between Legacy C Pragmas and OpenMP
■ Variables declared within a parallel construct are scoped private . A

default(none) clause on a #pragma omp parallel for directive causes the

compiler to flag variables not scoped explicitly.

■ Clauses on OpenMP directives do not accumulate; that is, there can be at most

only one type of each clause on a directive.

■ Since there is no serial_loop directive, mixing automatic and explicit OpenMP

parallelization may have different effects: some loops may be automatically

parallelized that would not have been with legacy C directives.

■ Because OpenMP provides a richer parallelism model, it might often be possible

to get better performance by redesigning the parallelism strategies of a program

that uses legacy C directives to take advantage of these features.

TABLE 4-7 SCHEDTYPEScheduling and OpenMP schedule Equivalents

schedtype(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic, chunksize)
Note: Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No OpenMP equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

Index-1

Index

A
accessible documentation, xiv

B
barrier, 1-12

C
C, 3-4

C++ implementation, 2-2

common blocks

in data scoping clauses, 1-17

compilers, accessing, xi

compiling for OpenMP, 3-1

conditional compilation, 1-3

critical region, 1-12

D
data scoping clauses

COPYIN, 1-18

COPYPRIVATE, 1-19

DEFAULT, 1-18

FIRSTPRIVATE, 1-18

LASTPRIVATE, 1-18

PRIVATE, 1-17

REDUCTION, 1-19

SHARED, 1-17

directive

formats, 1-2

See pragma

directive clauses

data scoping, 1-17

scheduling, 1-19

directives

ATOMIC, 1-14, 2-1

BARRIER, 1-12

CRITICAL , 1-12

DO, 1-6

FLUSH, 1-15

for , 1-7

MASTER, 1-12

ORDERED, 1-15

PARALLEL, 1-3, 1-5

PARALLEL DO, 1-10

parallel for , 1-10

PARALLEL SECTIONS, 1-11

PARALLEL WORKSHARE, 1-11

SECTION, 1-7

SECTIONS, 1-7

SINGLE, 1-8

THREADPRIVATE, 1-16

validation (Fortran 95), 3-2

WORKSHARE, 1-9

documentation index, xiii

documentation, accessing, xiii to xv

dynamic thread adjustment, 3-6

dynamic threads, 2-1

E
environment variables, 3-6

Index-2 OpenMP API User’s Guide • May 2002

F
Fortran 95, 3-1

H
header files

omp.h , 1-23

omp_lib.h , 1-23

I
idle threads, 3-7

implementation, 2-1

M
man pages, accessing, xi

MANPATH environment variable, setting, xiii

master thread, 1-12

N
nested parallelism, 2-1, 3-6

NUM_THREADS, 1-21

number of threads, 1-21, 2-1

OMP_NUM_THREADS, 3-6

O
omp.h , 1-23

OMP_DESTROY_LOCK(), 1-28

OMP_DESTROY_NEST_LOCK(), 1-28

OMP_DYNAMIC, 3-6

OMP_GET_DYNAMIC(), 1-26

OMP_GET_MAX_THREADS(), 1-24

OMP_GET_NESTED(), 1-27

OMP_GET_NUM_PROCS(), 1-25

OMP_GET_NUM_THREADS(), 1-24

OMP_GET_THREAD_NUM(), 1-25

OMP_GET_WTICK(), 1-30

OMP_GET_WTIME(), 1-30

OMP_IN_PARALLEL() , 1-25

OMP_INIT_LOCK() , 1-28

OMP_INIT_NEST_LOCK() , 1-28

omp_lib.h , 1-23

OMP_NESTED, 3-6

OMP_NUM_THREADS, 3-6

OMP_SCHEDULE, 3-6

OMP_SET_DYNAMIC(), 1-26

OMP_SET_LOCK(), 1-28

OMP_SET_NEST_LOCK(), 1-28

OMP_SET_NESTED(), 1-26

OMP_SET_NUM_THREADS(), 1-24

OMP_TEST_LOCK(), 1-29

OMP_TEST_NEST_LOCK(), 1-29

OMP_UNSET_LOCK(), 1-29

OMP_UNSET_NEST_LOCK(), 1-29

-openmp , 3-1

ordered region, 1-15

P
parallel region, 1-3, 1-5

PATH environment variable, setting, xii

pragma

See directive

R
run-time

C/C++, 1-23

Fortran, 1-23

S
scheduling, 2-1

OMP_SCHEDULE, 3-6

scheduling clauses

SCHEDULE, 1-19, 2-1

shell prompts, xi

SLEEP, 3-7

SPIN, 3-7

stack size, 3-7

STACKSIZE, 3-7

SUNW_MP_THR_IDLE, 3-7

SUNW_MP_WARN, 3-7

synchronization, 1-12

synchronization locks, 1-27

Index-3

T
thread stack size, 3-7

timing routines, 1-30

typographic conventions, ix

V
validation of directives (Fortran 95), 3-2

W
warning messages, 3-7

work-sharing, 1-6

combined directives, 1-10

X
-XlistMP , 3-2

-xopenmp , 3-4

Index-4 OpenMP API User’s Guide • May 2002

	OpenMP API User’s Guide
	Contents
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Documentation
	Accessing Related Solaris Documentation
	Sending Your Comments

	OpenMP API Summary
	1.1 Where to Find the OpenMP Specifications
	1.2 Special Conventions Used Here
	1.3 Directive Formats
	1.4 Conditional Compilation
	1.5 PARALLEL - Parallel Region Construct
	1.6 Work-Sharing Constructs
	1.6.1 DO and for
	1.6.2 SECTIONS
	1.6.3 SINGLE
	1.6.4 Fortran WORKSHARE

	1.7 Combined Parallel Work-sharing Constructs
	1.7.1 PARALLEL DO and parallel for
	1.7.2 PARALLEL SECTIONS
	1.7.3 PARALLEL WORKSHARE

	1.8 Synchronization Constructs
	1.8.1 MASTER
	1.8.2 CRITICAL
	1.8.3 BARRIER
	1.8.4 ATOMIC
	1.8.5 FLUSH
	1.8.6 ORDERED

	1.9 Data Environment Directives
	1.9.1 THREADPRIVATE

	1.10 OpenMP Directive Clauses
	1.10.1 Data Scoping Clauses
	1.10.1.1 PRIVATE
	1.10.1.2 SHARED
	1.10.1.3 DEFAULT
	1.10.1.4 FIRSTPRIVATE
	1.10.1.5 LASTPRIVATE
	1.10.1.6 COPYIN
	1.10.1.7 COPYPRIVATE
	1.10.1.8 REDUCTION

	1.10.2 Scheduling Clauses
	1.10.2.1 STATIC Scheduling
	1.10.2.2 DYNAMIC Scheduling
	1.10.2.3 GUIDED Scheduling
	1.10.2.4 RUNTIME Scheduling

	1.10.3 NUM_THREADS Clause
	1.10.4 Placement of Clauses on Directives

	1.11 OpenMP Runtime Library Routines
	1.11.1 Fortran OpenMP Routines
	1.11.2 C/C++ OpenMP Routines
	1.11.3 Run-time Thread Management Routines
	1.11.3.1 OMP_SET_NUM_THREADS
	1.11.3.2 OMP_GET_NUM_THREADS
	1.11.3.3 OMP_GET_MAX_THREADS
	1.11.3.4 OMP_GET_THREAD_NUM
	1.11.3.5 OMP_GET_NUM_PROCS
	1.11.3.6 OMP_IN_PARALLEL
	1.11.3.7 OMP_SET_DYNAMIC
	1.11.3.8 OMP_GET_DYNAMIC
	1.11.3.9 OMP_SET_NESTED
	1.11.3.10 OMP_GET_NESTED

	1.11.4 Routines That Manage Synchronization Locks
	1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK
	1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK
	1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK
	1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK
	1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK

	1.11.5 Timing Routines
	1.11.5.1 OMP_GET_WTIME
	1.11.5.2 OMP_GET_WTICK

	Implementation Dependent Issues
	Compiling for OpenMP
	3.1 Fortran 95
	3.1.1 Validation of OpenMP Directives with -XlistMP

	3.2 C and C++
	3.3 OpenMP Environment Variables
	3.4 Stacks and Stack Sizes

	Converting to OpenMP
	4.1 Converting Legacy Fortran Directives
	4.1.1 Converting Sun-Style Directives
	4.1.1.1 Issues Between Sun-Style Directives and OpenMP

	4.1.2 Converting Cray-Style Directives
	4.1.2.1 Issues Between Cray-Style Directives and OpenMP Directives

	4.2 Converting Legacy C Pragmas
	4.2.1 Issues Between Legacy C Pragmas and OpenMP

	Index

