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Before You Begin

This manual describes the floating-point environment supported by software and

hardware on SPARC™ and x86 platforms running the Solaris™ operating system.

Although this manual discusses some general aspects of the SPARC™ and Intel

architectures, it is primarily a reference manual designed to accompany Sun™

language products.

Certain aspects of the IEEE Standard for Binary Floating-Point Arithmetic are

discussed in this manual. To learn about IEEE arithmetic, see the 18-page Standard.

See Appendix F for a brief bibliography on IEEE arithmetic.

Who Should Use This Book

This manual is written for those who develop, maintain, and port mathematical and

scientific applications or benchmarks. Before using this manual, you should be

familiar with the programming language used (Fortran, C, etc.), dbx (the source-

level debugger), and the operating system commands and concepts.

How This Book Is Organized

Chapter 1 introduces the floating-point environment.

Chapter 2 describes the IEEE arithmetic model, IEEE formats, and underflow.

Chapter 3 describes the mathematics libraries provided with the Sun Forte™

Developer compilers.
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Chapter 4 describes exceptions and shows how to detect, locate, and handle them.

Appendix A contains example programs.

Appendix B describes the floating-point hardware options for SPARC workstations.

Appendix C lists x86 and SPARC compatibility issues related to the floating-point

units used in Intel systems.

Appendix D is an edited reprint of a tutorial on floating-point arithmetic by David

Goldberg.

Appendix E discusses standards compliance.

Appendix F includes a list of references and related documentation.

Glossary contains a definition of terms.

The examples in this manual are in C and Fortran, but the concepts apply to either

compiler on a SPARC or Intel system.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.
xiv Numerical Computation Guide • May 2002



Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[ ] Brackets contain arguments

that are optional.

O[ n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[ ,…fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin xv



directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

% echo $PATH
xvi Numerical Computation Guide • May 2002



Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

% man dbx
Before You Begin xvii



Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com ) enables you to read, print, and

buy Sun Microsystems manuals through the Internet. If you cannot find a manual,

see the documentation index installed with the product on your local system or

network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.
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Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt
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Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
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CHAPTER 1

Introduction

Sun’s floating-point environment on SPARC and Intel systems enables you to

develop robust, high-performance, portable numerical applications. The floating-

point environment can also help investigate unusual behavior of numerical

programs written by others. These systems implement the arithmetic model

specified by IEEE Standard 754 for Binary Floating Point Arithmetic. This manual

explains how to use the options and flexibility provided by the IEEE Standard on

these systems.

Floating-Point Environment

The floating-point environment consists of data structures and operations made

available to the applications programmer by hardware, system software, and

software libraries that together implement IEEE Standard 754. IEEE Standard 754

makes it easier to write numerical applications. It is a solid, well-thought-out basis

for computer arithmetic that advances the art of numerical programming.

For example, the hardware provides storage formats corresponding to the IEEE data

formats, operations on data in such formats, control over the rounding of results

produced by these operations, status flags indicating the occurrence of IEEE numeric

exceptions, and the IEEE-prescribed result when such an exception occurs in the

absence of a user-defined handler for it. System software supports IEEE exception

handling. The software libraries, including the math libraries, libm and

libsunmath , implement functions such as exp(x) and sin(x) in a way that

follows the spirit of IEEE Standard 754 with respect to the raising of exceptions.

(When a floating-point arithmetic operation has no well-defined result, the system

communicates this fact to the user by raising an exception.) The math libraries also

provide function calls that handle special IEEE values like Inf (infinity) or NaN(Not

a Number).
1



The three constituents of the floating-point environment interact in subtle ways, and

those interactions are generally invisible to the applications programmer. The

programmer sees only the computational mechanisms prescribed or recommended

by the IEEE standard. In general, this manual guides programmers to make full and

efficient use of the IEEE mechanisms so that they can write application software

effectively.

Many questions about floating-point arithmetic concern elementary operations on

numbers. For example,

■ What is the result of an operation when the infinitely precise result is not

representable in the computer system?

■ Are elementary operations like multiplication and addition commutative?

Another class of questions is connected to exceptions and exception handling. For

example, what happens when you:

■ Multiply two very large numbers?

■ Divide by zero?

■ Attempt to compute the square root of a negative number?

In some other arithmetics, the first class of questions might not have the expected

answers, or the exceptional cases in the second class are treated the same: the

program aborts on the spot; in some very old machines, the computation proceeds,

but with garbage.

The IEEE Standard 754 ensures that operations yield the mathematically expected

results with the expected properties. It also ensures that exceptional cases yield

specified results, unless the user specifically makes other choices.

In this manual, there are references to terms like NaNor subnormal number. The

Glossary defines terms related to floating-point arithmetic.
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CHAPTER 2

IEEE Arithmetic

This chapter discusses the arithmetic model specified by the ANSI/IEEE Standard

754-1985 for Binary Floating-Point Arithmetic (“the IEEE standard” or “IEEE 754”

for short). All SPARC and x86 processors use IEEE arithmetic. All Sun compiler

products support the features of IEEE arithmetic.

IEEE Arithmetic Model

This section describes the IEEE 754 specification.

What Is IEEE Arithmetic?

IEEE 754 specifies:

■ Two basic floating-point formats: single and double.

The IEEE single format has a significand precision of 24 bits and occupies 32 bits

overall. The IEEE double format has a significand precision of 53 bits and

occupies 64 bits overall.

■ Two classes of extended floating-point formats: single extended and double extended.

The standard does not prescribe the exact precision and size of these formats, but

it does specify the minimum precision and size. For example, an IEEE double

extended format must have a significand precision of at least 64 bits and occupy

at least 79 bits overall.

■ Accuracy requirements on floating-point operations: add, subtract, multiply, divide,
square root, remainder, round numbers in floating-point format to integer values, convert
between different floating-point formats, convert between floating-point and integer
formats, and compare.
3



The remainder and compare operations must be exact. Each of the other

operations must deliver to its destination the exact result, unless there is no such

result or that result does not fit in the destination’s format. In the latter case, the

operation must minimally modify the exact result according to the rules of

prescribed rounding modes, presented below, and deliver the result so modified

to the operation’s destination.

■ Accuracy, monotonicity and identity requirements for conversions between

decimal strings and binary floating-point numbers in either of the basic floating-

point formats.

For operands lying within specified ranges, these conversions must produce exact

results, if possible, or minimally modify such exact results in accordance with the

rules of the prescribed rounding modes. For operands not lying within the

specified ranges, these conversions must produce results that differ from the exact

result by no more than a specified tolerance that depends on the rounding mode.

■ Five types of IEEE floating-point exceptions, and the conditions for indicating to

the user the occurrence of exceptions of these types.

The five types of floating-point exceptions are invalid operation, division by zero,
overflow, underflow, and inexact.

■ Four rounding directions: toward the nearest representable value, with “even” values

preferred whenever there are two nearest representable values; toward negative
infinity (down); toward positive infinity (up); and toward 0 (chop).

■ Rounding precision; for example, if a system delivers results in double extended

format, the user should be able to specify that such results are to be rounded to

the precision of either the single or double format.

The IEEE standard also recommends support for user handling of exceptions.

The features required by the IEEE standard make it possible to support interval

arithmetic, the retrospective diagnosis of anomalies, efficient implementations of

standard elementary functions like exp and cos , multiple precision arithmetic, and

many other tools that are useful in numerical computation.

IEEE 754 floating-point arithmetic offers users greater control over computation than

does any other kind of floating-point arithmetic. The IEEE standard simplifies the

task of writing numerically sophisticated, portable programs not only by imposing

rigorous requirements on conforming implementations, but also by allowing such

implementations to provide refinements and enhancements to the standard itself.
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IEEE Formats

This section describes how floating-point data is stored in memory. It summarizes

the precisions and ranges of the different IEEE storage formats.

Storage Formats

A floating-point format is a data structure specifying the fields that comprise a

floating-point numeral, the layout of those fields, and their arithmetic interpretation.

A floating-point storage format specifies how a floating-point format is stored in

memory. The IEEE standard defines the formats, but it leaves to implementors the

choice of storage formats.

Assembly language software sometimes relies on using the storage formats, but

higher level languages usually deal only with the linguistic notions of floating-point

data types. These types have different names in different high-level languages, and

correspond to the IEEE formats as shown in TABLE 2-1.

IEEE 754 specifies exactly the single and double floating-point formats, and it

defines a class of extended formats for each of these two basic formats. The long
double and REAL*16 types shown in TABLE 2-1 refer to one of the class of double

extended formats defined by the IEEE standard.

The following sections describe in detail each of the storage formats used for the

IEEE floating-point formats on SPARC and x86 platforms.

TABLE 2-1 IEEE Formats and Language Types

IEEE Precision C, C++ Fortran (SPARC only)

single float REALor REAL*4

double double DOUBLE PRECISIONor REAL*8

double extended long double REAL*16
Chapter 2 IEEE Arithmetic 5



Single Format

The IEEE single format consists of three fields: a 23-bit fraction, f ; an 8-bit biased

exponent, e; and a 1-bit sign, s . These fields are stored contiguously in one 32-bit

word, as shown in FIGURE 2-1. Bits 0:22 contain the 23-bit fraction, f , with bit 0 being

the least significant bit of the fraction and bit 22 being the most significant; bits 23:30

contain the 8-bit biased exponent, e, with bit 23 being the least significant bit of the

biased exponent and bit 30 being the most significant; and the highest-order bit 31

contains the sign bit, s .

FIGURE 2-1 Single-Storage Format

TABLE 2-2 shows the correspondence between the values of the three constituent

fields s , e and f , on the one hand, and the value represented by the single- format

bit pattern on the other; u means don’t care, that is, the value of the indicated field is

irrelevant to the determination of the value of the particular bit patterns in single

format.

Notice that when e < 255, the value assigned to the single format bit pattern is

formed by inserting the binary radix point immediately to the left of the fraction’s

most significant bit, and inserting an implicit bit immediately to the left of the binary

point, thus representing in binary positional notation a mixed number (whole

number plus fraction, wherein 0 ≤ Ò3fraction < 1).

TABLE 2-2 Values Represented by Bit Patterns in IEEE Single Format

Single-Format Bit Pattern Value

0 < e < 255 (–1)s × 2e–127 × 1.f (normal numbers)

e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–126 × 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 255; f = 0

(all bits in f are zero)

+INF (positive infinity)

s = 1; e = 255; f = 0

(all bits in f are zero)

–INF (negative infinity)

s = u; e = 255; f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

31 30 23 22 0

s e[30:23] f[22:0]
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The mixed number thus formed is called the single-format significand. The implicit bit

is so named because its value is not explicitly given in the single- format bit pattern,

but is implied by the value of the biased exponent field.

For the single format, the difference between a normal number and a subnormal

number is that the leading bit of the significand (the bit to left of the binary point) of

a normal number is 1, whereas the leading bit of the significand of a subnormal

number is 0. Single-format subnormal numbers were called single-format

denormalized numbers in IEEE Standard 754.

The 23-bit fraction combined with the implicit leading significand bit provides 24

bits of precision in single-format normal numbers.

Examples of important bit patterns in the single-storage format are shown in

TABLE 2-3. The maximum positive normal number is the largest finite number

representable in IEEE single format. The minimum positive subnormal number is

the smallest positive number representable in IEEE single format. The minimum

positive normal number is often referred to as the underflow threshold. (The

decimal values for the maximum and minimum normal and subnormal numbers are

approximate; they are correct to the number of figures shown.)

A NaN (Not a Number) can be represented with any of the many bit patterns that

satisfy the definition of a NaN. The hex value of the NaN shown in TABLE 2-3 is just

one of the many bit patterns that can be used to represent a NaN.

TABLE 2-3 Bit Patterns in Single-Storage Format and Their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+0 00000000 0.0

–0 80000000 –0.0

1 3f800000 1.0

2 40000000 2.0

maximum normal number 7f7fffff 3.40282347e+38

minimum positive normal

number

00800000 1.17549435e–38

maximum subnormal number 007fffff 1.17549421e–38

minimum positive subnormal

number

00000001 1.40129846e–45

+ 7f800000 Infinity

– ff800000 –Infinity

Not-a-Number 7fc00000 NaN

∞
∞
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Double Format

The IEEE double format consists of three fields: a 52-bit fraction, f ; an 11-bit biased

exponent, e; and a 1-bit sign, s . These fields are stored contiguously in two

successively addressed 32-bit words, as shown in FIGURE 2-2.

In the SPARC architecture, the higher address 32-bit word contains the least

significant 32 bits of the fraction, while in the x86 architecture the lower address

32-bit word contains the least significant 32 bits of the fraction.

If we denote f [31:0] the least significant 32 bits of the fraction, then bit 0 is the least

significant bit of the entire fraction and bit 31 is the most significant of the 32 least

significant fraction bits.

In the other 32-bit word, bits 0:19 contain the 20 most significant bits of the fraction,

f [51:32], with bit 0 being the least significant of these 20 most significant fraction

bits, and bit 19 being the most significant bit of the entire fraction; bits 20:30 contain

the 11-bit biased exponent, e, with bit 20 being the least significant bit of the biased

exponent and bit 30 being the most significant; and the highest-order bit 31 contains

the sign bit, s .

FIGURE 2-2 numbers the bits as though the two contiguous 32-bit words were one

64-bit word in which bits 0:51 store the 52-bit fraction, f ; bits 52:62 store the 11-bit

biased exponent, e; and bit 63 stores the sign bit, s .

FIGURE 2-2 Double-Storage Format

The values of the bit patterns in these three fields determine the value represented

by the overall bit pattern.

31 0

63 62 52 51 32

f[31:0]

s e[52:62] f[51:32]
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TABLE 2-4 shows the correspondence between the values of the bits in the three

constituent fields, on the one hand, and the value represented by the double-format

bit pattern on the other; u means don’t care, because the value of the indicated field is

irrelevant to the determination of value for the particular bit pattern in double

format.

Notice that when e < 2047, the value assigned to the double-format bit pattern is

formed by inserting the binary radix point immediately to the left of the fraction’s

most significant bit, and inserting an implicit bit immediately to the left of the binary

point. The number thus formed is called the significand. The implicit bit is so named

because its value is not explicitly given in the double-format bit pattern, but is

implied by the value of the biased exponent field.

For the double format, the difference between a normal number and a subnormal

number is that the leading bit of the significand (the bit to the left of the binary

point) of a normal number is 1, whereas the leading bit of the significand of a

subnormal number is 0. Double-format subnormal numbers were called double-

format denormalized numbers in IEEE Standard 754.

The 52-bit fraction combined with the implicit leading significand bit provides 53

bits of precision in double-format normal numbers.

Examples of important bit patterns in the double-storage format are shown in

TABLE 2-5. The bit patterns in the second column appear as two 8-digit hexadecimal

numbers. For the SPARC architecture, the left one is the value of the lower

addressed 32-bit word, and the right one is the value of the higher addressed 32-bit

word, while for the x86 architecture, the left one is the higher addressed word, and

the right one is the lower addressed word. The maximum positive normal number is

the largest finite number representable in the IEEE double format. The minimum

TABLE 2-4 Values Represented by Bit Patterns in IEEE Double Format

Double-Format Bit Pattern Value

0 < e < 2047 (–1)s × 2e–1023 x 1.f (normal numbers)

e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s × 2–1022 x 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(–1)s × 0.0 (signed zero)

s = 0; e = 2047; f = 0

(all bits in f are zero)

+INF (positive infinity)

s = 1; e = 2047; f = 0

(all bits in f are zero)

–INF (negative infinity)

s = u; e = 2047; f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)
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positive subnormal number is the smallest positive number representable in IEEE

double format. The minimum positive normal number is often referred to as the

underflow threshold. (The decimal values for the maximum and minimum normal

and subnormal numbers are approximate; they are correct to the number of figures

shown.)

A NaN (Not a Number) can be represented by any of the many bit patterns that

satisfy the definition of NaN. The hex value of the NaN shown in TABLE 2-5 is just

one of the many bit patterns that can be used to represent a NaN.

Double-Extended Format (SPARC)

The SPARC floating-point environment’s quadruple-precision format conforms to

the IEEE definition of double-extended format. The quadruple-precision format

occupies four 32-bit words and consists of three fields: a 112-bit fraction, f; a 15-bit

biased exponent, e; and a 1-bit sign, s. These are stored contiguously as shown in

FIGURE 2-3.

The highest addressed 32-bit word contains the least significant 32-bits of the

fraction, denoted f[31:0]. The next two 32-bit words contain f[63:32] and f[95:64],

respectively. Bits 0:15 of the next word contain the 16 most significant bits of the

TABLE 2-5 Bit Patterns in Double-Storage Format and Their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+ 0 00000000 00000000 0.0

– 0 80000000 00000000 –0.0

1 3ff00000 00000000 1.0

2 40000000 00000000 2.0

max normal

number

7fefffff ffffffff 1.7976931348623157e+308

min positive

normal number

00100000 00000000 2.2250738585072014e–308

max subnormal

number

000fffff ffffffff 2.2250738585072009e–308

min positive

subnormal number

00000000 00000001 4.9406564584124654e–324

+ 7ff00000 00000000 Infinity

– fff00000 00000000 –Infinity

Not-a-Number 7ff80000 00000000 NaN

∞
∞
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fraction, f[111:96], with bit 0 being the least significant of these 16 bits, and bit 15

being the most significant bit of the entire fraction. Bits 16:30 contain the 15-bit

biased exponent, e, with bit 16 being the least significant bit of the biased exponent

and bit 30 being the most significant; and bit 31 contains the sign bit, s .

FIGURE 2-3 numbers the bits as though the four contiguous 32-bit words were one

128-bit word in which bits 0:111 store the fraction, f ; bits 112:126 store the 15-bit

biased exponent, e; and bit 127 stores the sign bit, s .

FIGURE 2-3 Double-Extended Format (SPARC)

The values of the bit patterns in the three fields f , e, and s , determine the value

represented by the overall bit pattern.

TABLE 2-6 shows the correspondence between the values of the three constituent

fields and the value represented by the bit pattern in quadruple-precision format. u
means don’t care, because the value of the indicated field is irrelevant to the

determination of values for the particular bit patterns.

TABLE 2-6 Values Represented by Bit Patterns (SPARC)

Double-Extended Bit Pattern (SPARC) Value

0 < e < 32767 (–1)s x 2e–16383 × 1.f (normal numbers)

e = 0, f ≠ 0

(at least one bit in f is nonzero)

(–1)s x 2–16382 × 0.f (subnormal numbers)

e = 0, f = 0

(all bits in f are zero)

(–1)s x 0.0 (signed zero)

127 126 112 111 96

95 64

63 32

31 0

s e[126:112] f[111:96]

f[95:64]

f[63:32]

f[31:0]
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Examples of important bit patterns in the quadruple-precision double-extended

storage format are shown in TABLE 2-7. The bit patterns in the second column appear

as four 8-digit hexadecimal numbers. The left-most number is the value of the

lowest addressed 32-bit word, and the right-most number is the value of the highest

addressed 32-bit word. The maximum positive normal number is the largest finite

number representable in the quadruple precision format. The minimum positive

subnormal number is the smallest positive number representable in the quadruple

precision format. The minimum positive normal number is often referred to as the

underflow threshold. (The decimal values for the maximum and minimum normal

and subnormal numbers are approximate; they are correct to the number of figures

shown.)

s = 0, e = 32767, f = 0

(all bits in f are zero)

+INF (positive infinity)

s = 1, e = 32767; f = 0

(all bits in f are zero)

-INF (negative infinity)

s = u, e = 32767, f ≠ 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

TABLE 2-7 Bit Patterns in Double-Extended Format (SPARC)

Common
Name Bit Pattern (SPARC) Decimal Value

+0 00000000 00000000 00000000 00000000 0.0

–0 80000000 00000000 00000000 00000000 –0.0

1 3fff0000 00000000 00000000 00000000 1.0

2 40000000 00000000 00000000 00000000 2.0

max

normal

7ffeffff ffffffff ffffffff ffffffff 1.1897314953572317650857593266280070e+4932

min

normal

00010000 00000000 00000000 00000000 3.3621031431120935062626778173217526e–4932

max

subnormal

0000ffff ffffffff ffffffff ffffffff 3.3621031431120935062626778173217520e–4932

min pos

subnormal

00000000 00000000 00000000 00000001 6.4751751194380251109244389582276466e–4966

TABLE 2-6 Values Represented by Bit Patterns (SPARC) (Continued)

Double-Extended Bit Pattern (SPARC) Value
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The hex value of the NaN shown in TABLE 2-7 is just one of the many bit patterns that

can be used to represent NaNs.

Double-Extended Format (x86)

This floating-point environment’s double-extended format conforms to the IEEE

definition of double-extended formats. It consists of four fields: a 63-bit fraction, f ;

a 1-bit explicit leading significand bit, j ; a 15-bit biased exponent, e; and a 1-bit

sign, s .

In the family of x86 architectures, these fields are stored contiguously in ten

successively addressed 8-bit bytes. However, the UNIX System V Application Binary

Interface Intel 386 Processor Supplement (Intel ABI) requires that double-extended

parameters and results occupy three consecutively addressed 32-bit words in the

stack, with the most significant 16 bits of the highest addressed word being unused,

as shown in FIGURE 2-4.

The lowest addressed 32-bit word contains the least significant 32 bits of the fraction,

f [31:0], with bit 0 being the least significant bit of the entire fraction and bit 31 being

the most significant of the 32 least significant fraction bits. In the middle addressed

32-bit word, bits 0:30 contain the 31 most significant bits of the fraction, f [62:32],

with bit 0 being the least significant of these 31 most significant fraction bits, and bit

30 being the most significant bit of the entire fraction; bit 31 of this middle addressed

32-bit word contains the explicit leading significand bit, j .

In the highest addressed 32-bit word, bits 0:14 contain the 15-bit biased exponent, e,

with bit 0 being the least significant bit of the biased exponent and bit 14 being the

most significant; and bit 15 contains the sign bit, s . Although the highest order 16

bits of this highest addressed 32-bit word are unused by the family of x86

architectures, their presence is essential for conformity to the Intel ABI, as indicated

above.

FIGURE 2-4 numbers the bits as though the three contiguous 32-bit words were one

96-bit word in which bits 0:62 store the 63-bit fraction, f ; bit 63 stores the explicit

leading significand bit, j ; bits 64:78 store the 15-bit biased exponent, e; and bit 79

stores the sign bit, s .

+ 7fff0000 00000000 00000000 00000000 +

– ffff0000 00000000 00000000 00000000 –

Not-a-

Number

7fff8000 00000000 00000000 00000000 NaN

TABLE 2-7 Bit Patterns in Double-Extended Format (SPARC) (Continued)

Common
Name Bit Pattern (SPARC) Decimal Value

∞ ∞
∞ ∞
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FIGURE 2-4 Double-Extended Format (x86)

The values of the bit patterns in the four fields f , j , e and s , determine the value

represented by the overall bit pattern.

TABLE 2-8 shows the correspondence between the counting number values of the four

constituent field and the value represented by the bit pattern. u means don’t care,

because the value of the indicated field is irrelevant to the determination of value for

the particular bit patterns.

TABLE 2-8 Values Represented by Bit Patterns (x86)

Double-Extended Bit Pattern (x86) Value

j = 0, 0 < e <32767 Unsupported

j = 1, 0 < e < 32767 (–1)s x 2e–16383 x 1.f (normal numbers)

j = 0, e = 0; f ≠ 0

(at least one bit in f is nonzero)

(–1)s x 2–16382 x 0.f (subnormal numbers)

j = 1, e = 0 (–1)s x 2–16382 x 1.f (pseudo-denormal numbers)

j = 0, e = 0, f = 0

(all bits in f are zero)

(–1)s x 0.0 (signed zero)

j = 1; s = 0; e = 32767; f = 0

(all bits in f are zero)

+INF (positive infinity)

j = 1; s = 1; e = 32767; f = 0

(all bits in f are zero)

–INF (negative infinity)

j = 1; s = u; e = 32767; f = .1uuu — uu QNaN (quiet NaNs)

j = 1; s = u; e = 32767; f = .0uuu — uu ≠ 0

(at least one of the u in f is nonzero)

SNaN (signaling NaNs)

31 0

63 62 32

96 80 79 78 64

f[31:0]

f[62:32]

s

j

e[78:64]
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Notice that bit patterns in double-extended format do not have an implicit leading

significand bit. The leading significand bit is given explicitly as a separate field, j , in

the double-extended format. However, when e ≠ 0, any bit pattern with j = 0 is

unsupported in the sense that using such a bit pattern as an operand in floating-

point operations provokes an invalid operation exception.

The union of the disjoint fields j and f in the double extended format is called the

significand. When e < 32767 and j = 1, or when e = 0 and j = 0, the significand is

formed by inserting the binary radix point between the leading significand bit, j ,

and the fraction’s most significant bit.

In the x86 double-extended format, a bit pattern whose leading significand bit j is 0

and whose biased exponent field e is also 0 represents a subnormal number, whereas

a bit pattern whose leading significand bit j is 1 and whose biased exponent field e
is nonzero represents a normal number. Because the leading significand bit is

represented explicitly rather than being inferred from the value of the exponent, this

format also admits bit patterns whose biased exponent is 0, like the subnormal

numbers, but whose leading significand bit is 1. Each such bit pattern actually

represents the same value as the corresponding bit pattern whose biased exponent

field is 1, i.e., a normal number, so these bit patterns are called pseudo-denormals.

(Subnormal numbers were called denormalized numbers in IEEE Standard 754.)

Pseudo-denormals are merely an artifact of the x86 double-extended format’s

encoding; they are implicitly converted to the corresponding normal numbers when

they appear as operands, and they are never generated as results.

Examples of important bit patterns in the double-extended storage format appear in

TABLE 2-9. The bit patterns in the second column appear as one 4-digit hexadecimal

counting number, which is the value of the 16 least significant bits of the highest

addressed 32-bit word (recall that the most significant 16 bits of this highest

addressed 32-bit word are unused, so their value is not shown), followed by two 8-

digit hexadecimal counting numbers, of which the left one is the value of the middle

addressed 32-bit word, and the right one is the value of the lowest addressed 32-bit

word. The maximum positive normal number is the largest finite number

representable in the x86 double-extended format. The minimum positive subnormal

number is the smallest positive number representable in the double-extended

format. The minimum positive normal number is often referred to as the underflow
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threshold. (The decimal values for the maximum and minimum normal and

subnormal numbers are approximate; they are correct to the number of figures

shown.)

A NaN (Not a Number) can be represented by any of the many bit patterns that

satisfy the definition of NaN. The hex values of the NaNs shown in TABLE 2-9

illustrate that the leading (most significant) bit of the fraction field determines

whether a NaN is quiet (leading fraction bit = 1) or signaling (leading fraction bit = 0).

Ranges and Precisions in Decimal Representation

This section covers the notions of range and precision for a given storage format. It

includes the ranges and precisions corresponding to the IEEE single and double

formats and to the implementations of IEEE double-extended format on SPARC and

x86 architectures. For concreteness, in defining the notions of range and precision we

refer to the IEEE single format.

TABLE 2-9 Bit Patterns in Double-Extended Format and Their Values (x86)

Common Name Bit Pattern (x86) Decimal Value

+0 0000 00000000 00000000 0.0

–0 8000 00000000 00000000 –0.0

1 3fff 80000000 00000000 1.0

2 4000 80000000 00000000 2.0

max normal 7ffe ffffffff ffffffff 1.18973149535723176505e+4932

min positive normal 0001 80000000 00000000 3.36210314311209350626e–4932

max subnormal 0000 7fffffff ffffffff 3.36210314311209350608e–4932

min positive subnormal 0000 00000000 00000001 3.64519953188247460253e–4951

+ 7fff 80000000 00000000 +

– ffff 80000000 00000000 –

quiet NaN with greatest fraction 7fff ffffffff ffffffff QNaN

quiet NaN with least fraction 7fff c0000000 00000000 QNaN

signaling NaN with greatest fraction 7fff bfffffff ffffffff SNaN

signaling NaN with least fraction 7fff 80000000 00000001 SNaN

∞ ∞
∞ ∞
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The IEEE standard specifies that 32 bits be used to represent a floating point number

in single format. Because there are only finitely many combinations of 32 zeroes and

ones, only finitely many numbers can be represented by 32 bits.

One natural question is:

What are the decimal representations of the largest and smallest positive numbers

that can be represented in this particular format?

Rephrase the question and introduce the notion of range:

What is the range, in decimal notation, of numbers that can be represented by the

IEEE single format?

Taking into account the precise definition of IEEE single format, one can prove that

the range of floating-point numbers that can be represented in IEEE single format (if

restricted to positive normalized numbers) is as follows:

1.175... × (10-38) to 3.402... × (10+38)

A second question refers to the precision (not to be confused with the accuracy or

the number of significant digits) of the numbers represented in a given format. These

notions are explained by looking at some pictures and examples.

The IEEE standard for binary floating-point arithmetic specifies the set of numerical

values representable in the single format. Remember that this set of numerical

values is described as a set of binary floating-point numbers. The significand of the

IEEE single format has 23 bits, which together with the implicit leading bit, yield 24

digits (bits) of (binary) precision.

One obtains a different set of numerical values by marking the numbers:

x = (x1.x2 x3...xq) × (10n)

(representable by q decimal digits in the significand) on the number line.

FIGURE 2-5 exemplifies this situation:
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FIGURE 2-5 Comparison of a Set of Numbers Defined by Digital and Binary Representation

Notice that the two sets are different. Therefore, estimating the number of significant

decimal digits corresponding to 24 significant binary digits, requires reformulating

the problem.

Reformulate the problem in terms of converting floating-point numbers between

binary representations (the internal format used by the computer) and the decimal

format (the format users are usually interested in). In fact, you may want to convert

from decimal to binary and back to decimal, as well as convert from binary to

decimal and back to binary.

It is important to notice that because the sets of numbers are different, conversions

are in general inexact. If done correctly, converting a number from one set to a

number in the other set results in choosing one of the two neighboring numbers

from the second set (which one specifically is a question related to rounding).

Consider some examples. Suppose one is trying to represent a number with the

following decimal representation in IEEE single format:

x = x1.x2 x3... × 10n

0

0

1

100 101 20

3 5 10 204 6 7 8 92

0

0

1

20 21 2322 24

2 4 8 161/2

2-1

Decimal Representation:

Binary Representation:
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Because there are only finitely many real numbers that can be represented exactly in

IEEE single format, and not all numbers of the above form are among them, in

general it will be impossible to represent such numbers exactly. For example, let

y = 838861.2, z = 1.3

and run the following Fortran program:

The output from this program should be similar to:

The difference between the value 8.388612 × 105 assigned to y and the value printed

out is 0.000000125, which is seven decimal orders of magnitude smaller than y. The

accuracy of representing y in IEEE single format is about 6 to 7 significant digits, or

that y has about six significant digits if it is to be represented in IEEE single format.

Similarly, the difference between the value 1.3 assigned to z and the value printed

out is 0.00000004768, which is eight decimal orders of magnitude smaller than z. The

accuracy of representing z in IEEE single format is about 7 to 8 significant digits, or

that z has about seven significant digits if it is to be represented in IEEE single format.

Now formulate the question:

Assume you convert a decimal floating point number a to its IEEE single format

binary representation b, and then translate b back to a decimal number c; how many

orders of magnitude are between a and a - c?

Rephrase the question:

What is the number of significant decimal digits of a in the IEEE single format

representation, or how many decimal digits are to be trusted as accurate when one

represents x in IEEE single format?

The number of significant decimal digits is always between 6 and 9, that is, at least 6

digits, but not more than 9 digits are accurate (with the exception of cases when the

conversions are exact, when infinitely many digits could be accurate).

REAL Y, Z
Y = 838861.2
Z = 1.3
WRITE(*,40) Y

40 FORMAT("y: ",1PE18.11)
WRITE(*,50) Z

50 FORMAT("z: ",1PE18.11)

y: 8.38861187500E+05
z: 1.29999995232E+00
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Conversely, if you convert a binary number in IEEE single format to a decimal

number, and then convert it back to binary, generally, you need to use at least 9

decimal digits to ensure that after these two conversions you obtain the number you

started from.

The complete picture is given in TABLE 2-10:

Base Conversion in the Solaris Environment

Base conversion is used by I/O routines, like printf and scanf in C, and read ,

write , and print in Fortran. For these functions you need conversions between

numbers representations in bases 2 and 10:

■ Base conversion from base 10 to base 2 occurs when reading in a number in

conventional decimal notation and storing it in internal binary format.

■ Base conversion from base 2 to base 10 occurs when printing an internal binary

value as an ASCII string of decimal digits.

In the Solaris environment, the fundamental routines for base conversion in all

languages are contained in the standard C library, libc . These routines use table-

driven algorithms that yield correctly-rounded conversion between any input and

output formats. In addition to their accuracy, table-driven algorithms reduce the

worst-case times for correctly-rounded base conversion.

The IEEE standard requires correct rounding for typical numbers whose magnitudes

range from 10–44 to 10+44 but permits slightly incorrect rounding for larger exponents.

(See section 5.6 of IEEE Standard 754.) The libc table-driven algorithms round

correctly throughout the entire range of single, double, and double extended formats.

In C, conversions between decimal strings and binary floating point values are

always rounded correctly in accordance with IEEE 754: the converted result is the

number representable in the result's format that is nearest to the original value in the

TABLE 2-10 Range and Precision of Storage Formats

Format Significant Digits
(Binary)

Smallest Positive
Normal Number

Largest Positive
Number

Significant Digits
(Decimal)

single 24 1.175... 10-38 3.402... 10+38 6-9

double 53 2.225... 10-308 1.797... 10+308 15-17

double

extended

(SPARC)

113 3.362... 10-4932 1.189... 10+4932 33-36

double

extended

(x86)

64 3.362... 10-4932 1.189... 10+4932 18-21
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direction specified by the current rounding mode. When the rounding mode is

round-to-nearest and the original value lies exactly halfway between two

representable numbers in the result format, the converted result is the one whose

least significant digit is even. These rules apply to conversions of constants in source

code performed by the compiler as well as to conversions of data performed by the

program using standard library routines.

In Fortran, conversions between decimal strings and binary floating point values are

rounded correctly following the same rules as C by default. For I/O conversions, the

“round-ties-to-even” rule in round-to-nearest mode can be overridden, either by

using the ROUNDING=specifier in the program or by compiling with the -iorounding
flag. See the Fortran User’s Guide and the f95 (1) man page for more information.

See Appendix F for references on base conversion. Particularly good references are

Coonen’s thesis and Sterbenz’s book.

Underflow

Underflow occurs, roughly speaking, when the result of an arithmetic operation is so

small that it cannot be stored in its intended destination format without suffering a

rounding error that is larger than usual.

Underflow Thresholds

TABLE 2-11 shows the underflow thresholds for single, double, and double-extended

precision.

TABLE 2-11 Underflow Thresholds

Destination Precision Underflow Threshold

single smallest normal number

largest subnormal number

1.17549435e–38

1.17549421e–38

double smallest normal number

largest subnormal number

2.2250738585072014e–308

2.2250738585072009e–308

double-extended

(SPARC)

smallest normal number

largest subnormal number

3.3621031431120935062626778173217526e–4932

3.3621031431120935062626778173217520e–4932

double-extended (x86) smallest normal number

largest subnormal number

3.36210314311209350626e–4932

3.36210314311209350590e–4932
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The positive subnormal numbers are those numbers between the smallest normal

number and zero. Subtracting two (positive) tiny numbers that are near the smallest

normal number might produce a subnormal number. Or, dividing the smallest

positive normal number by two produces a subnormal result.

The presence of subnormal numbers provides greater precision to floating-point

calculations that involve small numbers, although the subnormal numbers

themselves have fewer bits of precision than normal numbers. Producing subnormal

numbers (rather than returning the answer zero) when the mathematically correct

result has magnitude less than the smallest positive normal number is known as

gradual underflow.

There are several other ways to deal with such underflow results. One way, common

in the past, was to flush those results to zero. This method is known as Store 0 and

was the default on most mainframes before the advent of the IEEE Standard.

The mathematicians and computer designers who drafted IEEE Standard 754

considered several alternatives while balancing the desire for a mathematically

robust solution with the need to create a standard that could be implemented

efficiently.

How Does IEEE Arithmetic Treat Underflow?

IEEE Standard 754 chooses gradual underflow as the preferred method for dealing

with underflow results. This method amounts to defining two representations for

stored values, normal and subnormal.

Recall that the IEEE format for a normal floating-point number is:

where s is the sign bit, e is the biased exponent, and f is the fraction. Only s, e, and f
need to be stored to fully specify the number. Because the implicit leading bit of the

significand is defined to be 1 for normal numbers, it need not be stored.

The smallest positive normal number that can be stored, then, has the negative

exponent of greatest magnitude and a fraction of all zeros. Even smaller numbers

can be accommodated by considering the leading bit to be zero rather than one. In

the double-precision format, this effectively extends the minimum exponent from

10-308 to 10-324, because the fraction part is 52 bits long (roughly 16 decimal digits.)

These are the subnormal numbers; returning a subnormal number (rather than

flushing an underflowed result to zero) is gradual underflow.

1–( )s 2 e bias–( )( )× 1.× f
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Clearly, the smaller a subnormal number, the fewer nonzero bits in its fraction;

computations producing subnormal results do not enjoy the same bounds on relative

roundoff error as computations on normal operands. However, the key fact about

gradual underflow is that its use implies:

■ Underflowed results need never suffer a loss of accuracy any greater than that

which results from ordinary roundoff error.

■ Addition, subtraction, comparison, and remainder are always exact when the

result is very small.

Recall that the IEEE format for a subnormal floating-point number is:

where s is the sign bit, the biased exponent e is zero, and f is the fraction. Note that

the implicit power-of-two bias is one greater than the bias in the normal format, and

the implicit leading bit of the fraction is zero.

Gradual underflow allows you to extend the lower range of representable numbers.

It is not smallness that renders a value questionable, but its associated error.

Algorithms exploiting subnormal numbers have smaller error bounds than other

systems. The next section provides some mathematical justification for gradual

underflow.

Why Gradual Underflow?

The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as

some other arithmetic models do. Rather, subnormal numbers eliminate underflow

as a cause for concern for a variety of computations (typically, multiply followed by

add). For a more detailed discussion, see Underflow and the Reliability of Numerical
Software by James Demmel and Combatting the Effects of Underflow and Overflow in
Determining Real Roots of Polynomials by S. Linnainmaa.

The presence of subnormal numbers in the arithmetic means that untrapped

underflow (which implies loss of accuracy) cannot occur on addition or subtraction.

If x and y are within a factor of two, then x – y is error-free. This is critical to a

number of algorithms that effectively increase the working precision at critical

places in algorithms.

In addition, gradual underflow means that errors due to underflow are no worse

than usual roundoff error. This is a much stronger statement than can be made about

any other method of handling underflow, and this fact is one of the best justifications

for gradual underflow.

1–( )s 2 bias– 1+( )( )× 0.× f
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Error Properties of Gradual Underflow

Most of the time, floating-point results are rounded:

computed result = true result + roundoff

How large can the roundoff be? One convenient measure of its size is called a unit in
the last place, abbreviated ulp. The least significant bit of the fraction of a floating-

point number in its standard representation is its last place. The value represented by

this bit (e.g., the absolute difference between the two numbers whose

representations are identical except for this bit) is a unit in the last place of that

number. If the computed result is obtained by rounding the true result to the nearest

representable number, then clearly the roundoff error is no larger than half a unit in

the last place of the computed result. In other words, in IEEE arithmetic with

rounding mode to nearest,

0 ≤ |roundoff| ≤ 1/2 ulp

of the computed result.

Note that an ulp is a relative quantity. An ulp of a very large number is itself very

large, while an ulp of a tiny number is itself tiny. This relationship can be made

explicit by expressing an ulp as a function: ulp(x) denotes a unit in the last place of

the floating-point number x.

Moreover, an ulp of a floating-point number depends on the precision to which that

number is represented. For example, TABLE 2-12 shows the values of ulp(1) in each of

the four floating-point formats described above:

Recall that only a finite set of numbers can be exactly represented in any computer

arithmetic. As the magnitudes of numbers get smaller and approach zero, the gap

between neighboring representable numbers narrows. Conversely, as the magnitude

of numbers gets larger, the gap between neighboring representable numbers widens.

For example, imagine you are using a binary arithmetic that has only 3 bits of

precision. Then, between any two powers of 2, there are 23 = 8 representable

numbers, as shown in FIGURE 2-6.

TABLE 2-12 ulp(1) in Four Different Precisions

Precision Value

single ulp(1) = 2^-23 ~ 1.192093e-07

double ulp(1) = 2^-52 ~ 2.220446e-16

double extended (x86) ulp(1) = 2^-63 ~ 1.084202e-19

quadruple (SPARC) ulp(1) = 2^-112 ~ 1.925930e-34
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FIGURE 2-6 Number Line

The number line shows how the gap between numbers doubles from one exponent

to the next.

In the IEEE single format, the difference in magnitude between the two smallest

positive subnormal numbers is approximately 10-45, whereas the difference in

magnitude between the two largest finite numbers is approximately 1031!

In TABLE 2-13, nextafter(x,+ ∞) denotes the next representable number after x as

you move along the number line towards +∞.

Any conventional set of representable floating-point numbers has the property that

the worst effect of one inexact result is to introduce an error no worse than the

distance to one of the representable neighbors of the computed result. When

subnormal numbers are added to the representable set and gradual underflow is

implemented, the worst effect of one inexact or underflowed result is to introduce an

error no greater than the distance to one of the representable neighbors of the

computed result.

TABLE 2-13 Gaps Between Representable Single-Format Floating-Point Numbers

x nextafter(x, + ∞) Gap

0.0 1.4012985e–45 1.4012985e–45

1.1754944e–38 1.1754945e–38 1.4012985e–45

1.0 1.0000001 1.1920929e–07

2.0 2.0000002 2.3841858e–07

16.000000 16.000002 1.9073486e–06

128.00000 128.00002 1.5258789e–05

1.0000000e+20 1.0000001e+20 8.7960930e+12

9.9999997e+37 1.0000001e+38 1.0141205e+31

0

0

1

20 21 2322 24

2 4 8 161/2

2-1
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In particular, in the region between zero and the smallest normal number, the

distance between any two neighboring numbers equals the distance between zero

and the smallest subnormal number. The presence of subnormal numbers eliminates

the possibility of introducing a roundoff error that is greater than the distance to the

nearest representable number.

Because no calculation incurs roundoff error greater than the distance to any of the

representable neighbors of the computed result, many important properties of a

robust arithmetic environment hold, including these three:

■ x ≠ y ⇔ x – y ≠ 0

■ ( x – y) + y ≈ x, to within a rounding error in the larger of x and y
■ 1/(1/ x) ≈ x, when x is a normalized number, implying 1/ x ≠ 0

An alternative underflow scheme is Store 0 , which flushes underflow results to

zero. Store 0 violates the first and second properties whenever x – y underflows.

Also, Store 0 violates the third property whenever 1/x underflows.

Let λ represent the smallest positive normalized number, which is also known as the

underflow threshold. Then the error properties of gradual underflow and Store 0
can be compared in terms of λ.

gradual underflow: |error| < ulp in λ

Store 0: |error| ≈ λ

There is a significant difference between half a unit in the last place of λ, and λ itself.

Two Examples of Gradual Underflow Versus

Store 0

The following are two well-known mathematical examples. The first example is code

that computes an inner product.

With gradual underflow, the result is as accurate as roundoff allows. In Store 0 , a

small but nonzero sum could be delivered that looks plausible but is wrong in nearly

every digit. However, in fairness, it must be admitted that to avoid just these sorts of

problems, clever programmers scale their calculations if they are able to anticipate

where minuteness might degrade accuracy.

sum = 0;
for (i = 0; i < n; i++) {

sum = sum + a[i] * y[i];
}
return sum;

1
2
---
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The second example, deriving a complex quotient, is not amenable to scaling:

, assuming

It can be shown that, despite roundoff, the computed complex result differs from the

exact result by no more than what would have been the exact result if and

each had been perturbed by no more than a few ulps. This error analysis

holds in the face of underflows, except that when both a and b underflow, the error

is bounded by a few ulps of . Neither conclusion is true when underflows

are flushed to zero.

This algorithm for computing a complex quotient is robust, and amenable to error

analysis, in the presence of gradual underflow. A similarly robust, easily analyzed,

and efficient algorithm for computing the complex quotient in the face of Store 0
does not exist. In Store 0 , the burden of worrying about low-level, complicated

details shifts from the implementor of the floating-point environment to its users.

The class of problems that succeed in the presence of gradual underflow, but fail

with Store 0 , is larger than the fans of Store 0 may realize. Many frequently used

numerical techniques fall in this class:

■ Linear equation solving

■ Polynomial equation solving

■ Numerical integration

■ Convergence acceleration

■ Complex division

Does Underflow Matter?

Despite these examples, it can be argued that underflow rarely matters, and so, why

bother? However, this argument turns upon itself.

In the absence of gradual underflow, user programs need to be sensitive to the

implicit inaccuracy threshold. For example, in single precision, if underflow occurs

in some parts of a calculation, and Store 0 is used to replace underflowed results

with 0, then accuracy can be guaranteed only to around 10-31, not 10-38, the usual

lower range for single-precision exponents.

This means that programmers need to implement their own method of detecting

when they are approaching this inaccuracy threshold, or else abandon the quest for

a robust, stable implementation of their algorithm.

a i b⋅+ p i q⋅+
r i s⋅+
-------------------= r s⁄ 1≤

p r s⁄( ) q+⋅( ) i q r s⁄( ) p–⋅( )+
s r r s⁄( )⋅+

-------------------------------------------------------------------------------=

p i q⋅+
r i s⋅+

a i b⋅+
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Some algorithms can be scaled so that computations don’t take place in the

constricted area near zero. However, scaling the algorithm and detecting the

inaccuracy threshold can be difficult and time-consuming for each numerical

program.
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CHAPTER 3

The Math Libraries

This chapter describes the math libraries provided with the Solaris operating

environment and Forte Developer compilers. Besides listing each of the libraries

along with its contents, this chapter discusses some of the features supported by the

math libraries provided with the Forte Developer compilers, including IEEE

supporting functions, random number generators, and functions that convert data

between IEEE and non-IEEE formats.

The contents of the libm and libsunmath libraries are also listed on the

Intro (3M) man page.

Standard Math Library

The libm math library contains the functions required by the various standards to

which the Solaris operating environment conforms. This library is bundled with the

Solaris operating environment in two forms: libm.a , the static version, and

libm.so , the shared version.

The default directories for a standard installation of libm are:

/usr/lib/libm.a

/usr/lib/libm.so

The default directories for standard installation of the header files for libm are:

/usr/include/floatingpoint.h

/usr/include/math.h

/usr/include/sys/ieeefp.h
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TABLE 3-1 lists the functions in libm .

Note that the functions gamma_r and lgamma_r are reentrant versions of gamma
and lgamma.

See the ld (1) and compiler manual pages for more information about dynamic and

static linking and the options and environment variables that determine which

shared objects are loaded when a program is run.

Additional Math Libraries

Sun Math Library

The library libsunmath is part of the libraries supplied with all Sun language

products. The library libsunmath contains a set of functions that were incorporated

in previous versions of libm from Sun.

TABLE 3-1 Contents of libm

Type Function Name

Algebraic functions cbrt , hypot , sqrt

Elementary transcendental

functions

asin , acos , atan , atan2 , asinh , acosh , atanh,

exp , expm1, pow,

log , log1p , log10 ,

sin , cos , tan , sinh , cosh , tanh

Higher transcendental functions j0 , j1 , jn , y0 , y1 , yn ,

erf , erfc , gamma, lgamma, gamma_r, lgamma_r

Integral rounding functions ceil , floor , rint

IEEE standard recommended functions copysign , fmod , ilogb , nextafter ,

remainder, scalbn , fabs

IEEE classification functions isnan

Old style floating-point functions logb , scalb , significand

Error handling routine (user-defined) matherr
30 Numerical Computation Guide • May 2002



The default directories for a standard installation of libsunmath are:

/opt/SUNWspro/prod/lib/libsunmath.a

/opt/SUNWspro/lib/libsunmath.so

The default directories for standard installation of the header files for libsunmath
are:

/opt/SUNWspro/prod/include/cc/sunmath.h

/opt/SUNWspro/prod/include/floatingpoint.h

TABLE 3-2 lists the functions in libsunmath . For each mathematical function, the

table gives only the name of the double precision version of the function as it would

be called from a C program.

TABLE 3-2 Contents of libsunmath

Type Function Name

Functions from TABLE 3-1 single and extended/quadruple precision available, except

for matherr

Elementary transcendental

functions

exp2 , exp10 , log2,

sincos

Trigonometric functions in

degrees

asind , acosd , atand , atan2d ,

sind , cosd , sincosd , tand

Trigonometric functions

scaled in π
asinpi , acospi , atanpi , atan2pi,

sinpi , cospi , sincospi , tanpi

Trigonometric functions

with double precision π
argument reduction

asinp , acosp , atanp,

sinp , cosp , sincosp , tanp

Financial functions annuity , compound

Integral rounding functions aint , anint , irint , nint

IEEE standard

recommended functions

signbit

IEEE classification functions fp_class , isinf , isnormal , issubnormal , iszero

Functions that supply useful

IEEE values

min_subnormal , max_subnormal ,

min_normal , max_normal,

infinity , signaling_nan , quiet_nan
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Optimized Libraries

Optimized versions of some of the routines in libm are provided in the library

libmopt . Optimized versions of some of the support routines in libc are provided

in the library libcopt . Finally, on SPARC systems, alternate forms of some libc
support routines are provided in libcx .

Additive random number

generators

i_addran_ , i_addrans_ , i_init_addrans_ ,

i_get_addrans_ , i_set_addrans_ , r_addran_ ,

r_addrans_ , r_init_addrans_ , r_get_addrans_ ,

r_set_addrans_ , d_addran_ , d_addrans_ ,

d_init_addrans_ , d_get_addrans_ , d_set_addrans_ ,

u_addrans_

Linear congruential random

number generators

i_lcran_ , i_lcrans_ , i_init_lcrans_ ,

i_get_lcrans_ , i_set_lcrans_ , r_lcran_ , r_lcrans_ ,

d_lcran_ , d_lcrans_ , u_lcrans_

Multiply-with-carry random

number generators

i_mwcran_ , i_mwcrans_ , i_init_mwcrans_ ,

i_get_mwcrans_ , i_set_mwcrans , i_lmwcran_ ,

i_lmwcrans_ , i_llmwcran_ , i_llmwcrans_ , u_mwcran_ ,

u_mwcrans_ , u_lmwcran_ , u_lmwcrans , u_llmwcran_ ,

u_llmwcrans_ , r_mwcran_ , r_mwcrans_ , d_mwcran_ ,

d_mwcrans_ , smwcran_

Random number shufflers i_shufrans_ , r_shufrans_ , d_shufrans_ ,

u_shufrans_

Data conversion convert_external

Control rounding mode and

floating-point exception

flags

ieee_flags

Floating-point trap handling ieee_handler,sigfpe

Show status ieee_retrospective

Enable/disable nonstandard

arithmetic

standard_arithmetic , nonstandard_arithmetic

TABLE 3-2 Contents of libsunmath (Continued)

Type Function Name
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The default directories for a standard installation of libmopt , libcopt , and libcx
are:

/opt/SUNWspro/prod/lib/< arch>/libmopt.a

/opt/SUNWspro/prod/lib/< arch>/libcopt.a

/opt/SUNWspro/prod/lib/< arch>/libcx.a (SPARC only)

/opt/SUNWspro/prod/lib/< arch>/libcx.so.1 (SPARC only)

Here <arch> denotes one of the architecture-specific library directories. On SPARC,

these directories include v7 , v8 , v8a , v8plus , v8plusa , v8plusb , v9 , v9a , and v9b .

On x86 platforms, the only directory provided is f80387 .

For a complete description of -xarch , see the Fortran, C, or C++ user’s guide.

The routines contained in libcopt are not intended to be called by the user directly.

Instead, they replace support routines in libc that are used by the compiler.

The routines contained in libmopt replace corresponding routines in libm . The

libmopt versions are generally noticeably faster. Note that unlike the libm
versions, which can be configured to provide any of ANSI/POSIX, SVID, X/Open,

or IEEE-style treatment of exceptional cases, the libmopt routines only support

IEEE-style handling of these cases. (See Appendix E.)

To link with both libmopt and libcopt using cc , give the -lmopt and -lcopt
options on the command line. (For best results, put -lmopt immediately before -l m
and put -lcopt last.) To link with both libraries using any other compiler, specify

the -xlibmopt flag anywhere on the command line.

SPARC: Library libcx contains faster versions of the 128-bit quadruple precision

floating point arithmetic support routines. These routines are not intended to be

called directly by the user; instead, they are called by the compiler. The C++

compiler links with libcx automatically, but the C compiler does not automatically

link with libcx . To use libcx with C programs, link with -lcx .

A shared version of libcx , called libcx.so.1 , is also provided. This version can be

preloaded at run time by setting the environment variable LD_PRELOADto the full

path name of the libcx.so.1 file. For best performance, use the appropriate version

of libcx.so.1 for your system’s architecture. For example, on an UltraSPARC

system, assuming the library is installed in the default location, set LD_PRELOADas

follows:

csh:

setenv LD_PRELOAD /opt/SUNWspro/lib/v8plus/libcx.so.1

sh:

LD_PRELOAD=/opt/SUNWspro/lib/v8plus/libcx.so.1

export LD_PRELOAD
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Vector Math Library (SPARC only)

On SPARC platforms, the library libmvec provides routines that evaluate common

mathematical functions for an entire vector of arguments.

The default directory for a standard installation of libmvec is:

/opt/SUNWspro/prod/lib/< arch>/libmvec.a

/opt/SUNWspro/prod/lib/< arch>/libmvec_mt.a

Here <arch> denotes one of the architecture-specific library directories. On SPARC,

these directories include v7 , v8 , v8a , v8plus , v8plusa , v8plusb , v9 , v9a , and v9b .

On x86 platforms, the only directory provided is f80387 .

TABLE 3-3 lists the functions in libmvec .

Note that libmvec_mt.a provides parallel versions of the vector functions that rely

on multiprocessor parallelization. To use libmvec_mt.a , you must link with

-xparallel .

See the libmvec (3m) and clibmvec (3m) manual pages for more information.

libm9x Math Library

The libm9x math library contains some of the math and floating-point related

functions specified in C99. In the Forte Developer compilers release, this library

contains the <fenv.h> Floating-Point Environment functions as well as

enhancements to support improved handling of floating-point exceptions.

TABLE 3-3 Contents of libmvec

Type Function Name

Algebraic functions vhypot_ , vhypotf_ , vc_abs_ , vz_abs_, vsqrt_, vsqrtf_,
vrsqrt_, vrsqrtf_

Exponential and

related functions

vexp_ , vexpf_ , vlog_ , vlogf_ , vpow_ , vpowf_ , vc_exp_ ,

vz_exp_ , vc_log_ , vz_log_ , vc_pow_ , vz_pow_

Trigonometric

functions

vatan_ , vatanf_ , vatan2_ , vatan2f_ , vcos_ , vcosf_ , vsin_ ,

vsinf_ , vsincos_ , vsincosf_
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The default directory for a standard installation of libm9x is:

/opt/SUNWspro/lib/libm9x.so

The default directories for standard installation of the header files for libm9x are:

/opt/SUNWspro/prod/include/cc/fenv.h

/opt/SUNWspro/prod/include/cc/fenv96.h

TABLE 3-4 lists the functions in libm9x . (The precision control functions fegetprec
and fesetprec are available only on x86 platforms.)

Note that libm9x is provided as a shared library only. The cc compiler does not

automatically search for libraries in the shared library installation directory when

linking. Therefore, to link with libm9x using cc , you must enable both the static

linker and the run-time linker to locate the library. You can enable the static linker to

locate libm9x in one of three ways:

■ Specify -L/opt/SUNWspro/lib before -lm9x on the command line.

■ Give the full path name /opt/SUNWspro/lib/libm9x.so on the command line.

■ Add /opt/SUNWspro/lib to the list of directories specified by the environment

variable LD_LIBRARY_PATH.

You can enable the run-time linker to locate libm9x in one of three ways:

■ Specify -R/opt/SUNWspro/lib when linking.

■ Add /opt/SUNWspro/lib to the list of directories specified by the environment

variable LD_RUN_PATHwhen linking.

■ Add /opt/SUNWspro/lib to the list of directories specified by the environment

variable LD_LIBRARY_PATHat run time.

TABLE 3-4 Contents of libm9x

Type Function Name

C99 standard floating point

environment functions

feclearexcept , fegetenv , fegetexceptflag ,

fegetround , feholdexcept , feraiseexcept ,

fesetenv , fesetexceptflag , fesetround ,

fetestexcept , feupdateenv

Precision control (x86) fegetprec , fesetprec

Exception handling and

retrospective diagnostics

fex_get_handling , fex_get_log ,

fex_get_log_depth , fex_getexcepthandler ,

fex_log_entry , fex_merge_flags ,

fex_set_handling , fex_set_log ,

fex_set_log_depth, fex_setexcepthandler
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Note – Adding /opt/SUNWspro/lib to the environment variable

LD_LIBRARY_PATHcan cause a program linked with the Sun Performance Library

to use a different version of that library than the one best suited for the system on

which the program is run. To use both libm9x and the Sun Performance Library in

a program linked with cc , do not add /opt/SUNWspro/lib to LD_LIBRARY_PATH.

Instead, just specify -xlic_lib=sunperf before -lm9x on the command line.

All other Forte Developer compilers automatically search the shared library

installation directory. To link with libm9x using any of these compilers, simply

specify -lm9x on the command line. (While libm9x is primarily intended to be

used with C/C++ programs, it is possible to use it with Fortran programs; see

Appendix A for an example.)

Single, Double, and Long Double
Precision

Most numerical functions are available in single, double, and long-double precision.

Examples of calling different precision versions from different languages are shown

in TABLE 3-5.

TABLE 3-5 Calling Single, Double, and Quadruple Functions

Language Single Double Quadruple

C, C++ #include <sunmath.h>
float x,y,z;
x = sinf(y);
x = fmodf(y,z);
x = max_normalf();
x = r_addran_();

#include <math.h>
double x,y,z;
x = sin(y);
x = fmod(y,z);

#include <sunmath.h>
double x,y,z;
x = max_normal();
x = d_addran_();

#include <sunmath.h>
long double x,y,z;
x = sinl(y);
x = fmodl(y,z);
x = max_normall();

Fortran REAL x,y,z
x = sin(y)
x = r_fmod(y,z)
x = r_max_normal()
x = r_addran()

REAL*8 x,y,z
x = sin(y)
x = d_fmod(y,z)
x = d_max_normal()
x = d_addran()

REAL*16 x,y,z
x = sin(y)
x = q_fmod(y,z)
x = q_max_normal()
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In C, names of single-precision functions are formed by appending f to the double-

precision name, and names of quadruple-precision functions are formed by adding

l . Because Fortran calling conventions differ, libsunmath provides r_ ..., d_ ..., and

q_ ... versions for single, double, and quadruple precision functions, respectively.

Fortran intrinsic functions can be called by the generic name for all three precisions.

Not all functions have q_ ... versions. Refer to math.h and sunmath.h for names

and definitions of libm and libsunmath functions.

In Fortran programs, remember to declare r_ ... functions as real , d_ ... functions as

double precision, and q_ ... functions as REAL*16 . Otherwise, type mismatches might

result.

Note – The x86 edition of C supports long double.

IEEE Support Functions

This section describes the IEEE recommended functions, the functions that supply

useful values, ieee_flags , ieee_retrospective , and standard_arithmetic
and nonstandard_arithmetic . Refer to Chapter 4 for more information on the

functions ieee_flags and ieee_handler .

ieee_functions (3m) and ieee_sun (3m)

The functions described by ieee_functions (3m) and ieee_sun (3m) provide

capabilities either required by the IEEE standard or recommended in its appendix.

These are implemented as efficient bit mask operations.
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TABLE 3-6 ieee_functions (3m)

Function Description

math.h Header file

copysign(x,y) x with y ’s sign bit

fabs(x) Absolute value of x

fmod(x, y) Remainder of x with respect to y

ilogb(x) Base 2 unbiased exponent of x in integer format

nextafter(x,y) Next representable number after x , in the direction y

remainder(x,y) Remainder of x with respect to y

scalbn(x,n) x × 2n

TABLE 3-7 ieee_sun (3m)

Function Description

sunmath.h Header file

fp_class(x) Classification function

isinf(x) Classification function

isnormal(x) Classification function

issubnormal(x) Classification function

iszero(x) Classification function

signbit(x) Classification function

nonstandard_arithmetic(void) Toggle hardware

standard_arithmetic(void) Toggle hardware

ieee_retrospective(*f)
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The remainder(x,y) is the operation specified in IEEE Standard 754-1985. The

difference between remainder(x,y) and fmod(x,y) is that the sign of the result

returned by remainder(x,y) might not agree with the sign of either x or y,

whereas fmod(x,y) always returns a result whose sign agrees with x . Both

functions return exact results and do not generate inexact exceptions.

Note – You must declare d_ function as double precision and q_ function as REAL*16
in the Fortran program that uses them.

ieee_values (3m)

IEEE values like infinity, NaN, maximum and minimum positive floating-point

numbers are provided by the functions described by the ieee_values (3m) man

page. TABLE 3-10, TABLE 3-11, TABLE 3-12, and TABLE 3-12 show the decimal values and

hexadecimal IEEE representations of the values provided by ieee_values (3m)

functions.

TABLE 3-8 Calling ieee_functions From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

copysign(x,y) t=r_copysign(x,y) z=d_copysign(x,y) z=q_copysign(x,y)

ilogb(x) i=ir_ilogb(x) i=id_ilogb(x) i=iq_ilogb(x)

nextafter(x,y) t=r_nextafter(x,y) z=d_nextafter(x,y) z=q_nextafter(x,y)

scalbn(x,n) t=r_scalbn(x,n) z=d_scalbn(x,n) z=q_scalbn(x,n)

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)

TABLE 3-9 Calling ieee_sun From Fortran

IEEE Function Single Precision Double Precision Quadruple Precision

signbit(x) i=ir_signbit(x) i=id_signbit(x) i=iq_signbit(x)
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TABLE 3-10 IEEE Values: Single Precision

IEEE value
Decimal value
hexadecimal representation

C, C++
Fortran

max normal 3.40282347e+38
7f7fffff

r = max_normalf();
r = r_max_normal()

min normal 1.17549435e–38
00800000

r = min_normalf();
r = r_min_normal()

max subnormal 1.17549421e–38
007fffff

r = max_subnormalf();
r = r_max_subnormal()

min subnormal 1.40129846e–45
00000001

r = min_subnormalf();
r = r_min_subnormal()

Infinity
7f800000

r = infinityf();
r = r_infinity()

quiet NaN NaN
7fffffff

r = quiet_nanf(0);
r = r_quiet_nan(0)

signaling NaN NaN
7f800001

r = signaling_nanf(0);
r = r_signaling_nan(0)

TABLE 3-11 IEEE Values: Double Precision

IEEE value
Decimal Value
hexadecimal representation

C, C++
Fortran

max normal 1.7976931348623157e+308

7fefffff ffffffff

d = max_normal();
d = d_max_normal()

min normal 2.2250738585072014e–308

00100000 00000000

d = min_normal();
d = d_min_normal()

max subnormal 2.2250738585072009e–308

000fffff ffffffff

d = max_subnormal();
d = d_max_subnormal()

min subnormal 4.9406564584124654e–324

00000000 00000001

d = min_subnormal();
d = d_min_subnormal()

Infinity

7ff00000 00000000

d = infinity();
d = d_infinity()

quiet NaN NaN
7fffffff ffffffff

d = quiet_nan(0);
d = d_quiet_nan(0)

signaling NaN NaN
7ff00000 00000001

d = signaling_nan(0);
d = d_signaling_nan(0)

∞

∞
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TABLE 3-12 IEEE Values: Quadruple Precision (SPARC)

IEEE value
Decimal value
hexadecimal representation

C, C++
Fortran

max normal 1.1897314953572317650857593266280070e +4932

7ffeffff ffffffff ffffffff ffffffff

q = max_normall();
q = q_max_normal()

min normal 3.3621031431120935062626778173217526e–4932

00010000 00000000 00000000 00000000

q = min_normall();
q = q_min_normal()

max subnormal 3.3621031431120935062626778173217520e–4932

0000ffff ffffffff ffffffff ffffffff

q = max_subnormall();
q = q_max_subnormal()

min subnormal 6.4751751194380251109244389582276466e–4966

00000000 00000000 00000000 00000001

q = min_subnormall();
q = q_min_subnormal()

Infinity

7fff0000 00000000 00000000 00000000

q = infinityl();
q = q_infinity()

quiet NaN NaN

7fff8000 00000000 00000000 00000000

q = quiet_nanl(0);
q = q_quiet_nan(0)

signaling NaN NaN

7fff0000 00000000 00000000 00000001

q = signaling_nanl(0);
q = q_signaling_nan(0)

TABLE 3-13 IEEE Values: Double Extended Precision (x86)

IEEE value
Decimal value
hexadecimal representation (80 bits) C, C++

max normal 1.18973149535723176505 e+4932

7ffe ffffffff ffffffff

x = max_normall();

min positive

normal

3.36210314311209350626e–4932

0001 80000000 00000000

x = min_normall();

max subnormal 3.36210314311209350608e–4932

0000 7fffffff ffffffff

x = max_subnormall();

min positive

subnormal

1.82259976594123730126e–4951

0000 00000000 00000001

x = min_subnormall();

Infinity

7fff 80000000 00000000

x = infinityl();

quiet NaN NaN

7fff c0000000 00000000

x = q

signaling NaN NaN

7fff 80000000 00000001

x = signaling_nanl(0);

∞

∞
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ieee_flags (3m)

ieee_flags (3m) is the Sun interface to:

■ Query or set rounding direction mode

■ Query or set rounding precision mode

■ Examine, clear, or set accrued exception flags

The syntax for a call to ieee_flags (3m) is:

i = ieee_flags( action, mode, in, out) ;

The ASCII strings that are the possible values for the parameters are shown in

TABLE 3-14:

The ieee_flags (3m) man page describes the parameters in complete detail.

Some of the arithmetic features that can be modified by using ieee_flags are

covered in the following paragraphs. Chapter 4 contains more information on

ieee_flags and IEEE exception flags.

When mode is direction , the specified action applies to the current rounding

direction. The possible rounding directions are: round towards nearest, round

towards zero, round towards +∞, or round towards −∞. The IEEE default rounding

direction is round towards nearest. This means that when the mathematical result of

an operation lies strictly between two adjacent representable numbers, the one

nearest to the mathematical result is delivered. (If the mathematical result lies

exactly halfway between the two nearest representable numbers, then the result

delivered is the one whose least significant bit is zero. The round towards nearest
mode is sometimes called round to nearest even to emphasize this.)

Rounding towards zero is the way many pre-IEEE computers work, and corresponds

mathematically to truncating the result. For example, if 2/3 is rounded to 6 decimal

digits, the result is .666667 when the rounding mode is round towards nearest, but

.666666 when the rounding mode is round towards zero.

TABLE 3-14 Parameter Values for ieee_flags

Parameter C or C++ Type All Possible Values

action char * get , set , clear , clearall

mode char * direction , precision , exception

in char * nearest , tozero , negative , positive , extended ,

double , single , inexact , division , underflow ,

overflow , invalid , all , common

out char ** nearest , tozero , negative , positive , extended ,

double , single , inexact , division , underflow ,

overflow , invalid , all , common
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When using ieee_flags to examine, clear, or set the rounding direction, possible

values for the four input parameters are shown in TABLE 3-15.

When mode is precision , the specified action applies to the current rounding

precision. On x86 platforms, the possible rounding precisions are: single, double,

and extended. The default rounding precision is extended; in this mode, arithmetic

operations that deliver a result to a floating point register round their result to the

full 64-bit precision of the extended double register format. When the rounding

precision is single or double, arithmetic operations that deliver a result to a floating

point register round their result to 24 or 53 significant bits, respectively. Although

most programs produce results that are at least as accurate, if not more so, when

extended rounding precision is used, some programs that require strict adherence to

the semantics of IEEE arithmetic will not work correctly in extended rounding

precision mode and must be run with the rounding precision set to single or double

as appropriate.

Rounding precision cannot be set on systems using SPARC processors. On these

systems, calling ieee_flags with mode = precision has no effect on computation.

Finally, when mode is exception , the specified action applies to the current IEEE

exception flags. See Chapter 4 for more information about using ieee_flags to

examine and control the IEEE exception flags.

ieee_retrospective (3m)

The libsunmath function ieee_retrospective prints information about

unrequited exceptions and nonstandard IEEE modes. It reports:

■ Outstanding exceptions.

■ Enabled traps.

■ If rounding direction or precision is set to other than the default.

■ If nonstandard arithmetic is in effect.

The necessary information is obtained from the hardware floating-point status

register.

TABLE 3-15 ieee_flags Input Values for the Rounding Direction

Parameter Possible value (mode is direction )

action get , set , clear , clearall

in nearest , tozero , negative , positive

out nearest , tozero , negative , positive
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ieee_retrospective prints information about exception flags that are raised, and

exceptions for which a trap is enabled. These two distinct, if related, pieces of

information should not be confused. If an exception flag is raised, then that

exception occurred at some point during program execution. If a trap is enabled for

an exception, then the exception may not have actually occurred (but if it had, a

SIGFPE signal would have been delivered). The ieee_retrospective message is

meant to alert you about exceptions that may need to be investigated (if the

exception flag is raised), or to remind you that exceptions may have been handled by

a signal handler (if the exception’s trap is enabled.) Chapter 4 discusses exceptions,

signals, and traps, and shows how to investigate the cause of a raised exception.

A program can explicitly call ieee_retrospective at any time. Fortran programs

compiled with f95 in -f77 compatibility mode automatically call

ieee_retrospective before they exit. C/C++ programs and Fortran programs

compiled with f95 in the default mode do not automatically call

ieee_retrospective .

Note, though, that the f95 compiler enables trapping on common exceptions by

default, so unless a program either explicitly disables trapping or installs a SIGFPE
handler, it will immediately abort when such an exception occurs. In -f77
compatibility mode, the compiler does not enable trapping, so when floating point

exceptions occur, the program continues execution and reports those exceptions via

the ieee_retrospective output on exit.

The syntax for calling this function is:

C, C++ ieee_retrospective( fp);

Fortran call ieee_retrospective()

For the C function, the argument fp specifies the file to which the output will be

written. The Fortran function always prints output on stderr .

The following example shows four of the six ieee_retrospective warning

messages:

A warning message appears only if trapping is enabled or an exception was raised.

 Note: IEEE floating-point exception flags raised:
    Inexact; Underflow;
 Rounding direction toward zero
 IEEE floating-point exception traps enabled:
    overflow;
 See the Numerical Computation Guide, ieee_flags(3M),
    ieee_handler(3M), ieee_sun(3m)
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You can suppress ieee_retrospective messages from Fortran programs by one

of three methods. One approach is to clear all outstanding exceptions, disable traps,

and restore round-to-nearest, extended precision, and standard modes before the

program exits. To do this, call ieee_flags , ieee_handler , and

standard_arithmetic as follows:

Note – Clearing outstanding exceptions without investigating their cause is not

recommended.

Another way to avoid seeing ieee_retrospective messages is to redirect stderr
to a file. Of course, this method should not be used if the program sends output

other than ieee_retrospective messages to stderr .

The third approach is to include a dummy ieee_retrospective function in the

program, for example:

nonstandard_arithmetic (3m)

As discussed in Chapter 2, IEEE arithmetic handles underflowed results using

gradual underflow. On some SPARC systems, gradual underflow is often

implemented partly with software emulation of the arithmetic. If many calculations

underflow, this may cause performance degradation.

To obtain some information about whether this is a case in a specific program, you

can use ieee_retrospective or ieee_flags to determine if underflow

exceptions occur, and check the amount of system time used by the program. If a

program spends an unusually large amount of time in the operating system, and

raises underflow exceptions, gradual underflow may be the cause. In this case, using

non-IEEE arithmetic may speed up program execution.

character*8 out
i = ieee_flags('clearall', '', '', out)
call ieee_handler('clear', 'all', 0)
call standard_arithmetic()

subroutine ieee_retrospective
return
end
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The function nonstandard_arithmetic causes underflowed results to be flushed

to zero on those SPARC implementations that have a mode in hardware in which

flushing to zero is faster. The trade-off for speed is accuracy, because the benefits of

gradual underflow are lost.

The function standard_arithmetic resets the hardware to use the default IEEE

arithmetic. Both functions have no effect on implementations that provide only the

default IEEE 754 style of arithmetic—SuperSPARC™ is such an implementation.

C99 Floating Point Environment
Functions

This section describes the <fenv.h > floating point environment functions in C99. In

the Forte Developer compilers release, these functions are available in the

libm9x.so library. They provide many of the same capabilities as the ieee_flags
function, but they use a more natural C interface, and because they are defined by

C99, they may prove to be more portable in the future.

Note – For consistent behavior, do not use both C99 floating point environment

functions and exception handling extensions in libm9x.so and the ieee_flags
and ieee_handler functions in libsunmath in the same program.

Exception Flag Functions

The fenv.h file defines macros for each of the five IEEE floating point exception

flags: FE_INEXACT, FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO, and

FE_INVALID . In addition, the macro FE_ALL_EXCEPTis defined to be the bitwise

“or” of all five flag macros. In the following descriptions, the excepts parameter may

be a bitwise “or” of any of the five flag macros or the value FE_ALL_EXCEPT. For the

fegetexceptflag and fesetexceptflag functions, the flagp parameter must be

a pointer to an object of type fexcept_t . (This type is defined in fenv.h .)
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C99 defines the following exception flag functions:

The feclearexcept function clears the specified flags. The fetestexcept function

returns a bitwise “or” of the macro values corresponding to the subset of flags

specified by the excepts argument that are set. For example, if the only flags currently

set are inexact, underflow, and division by zero, then

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);

would set i to FE_DIVBYZERO.

The feraiseexcept function causes a trap if any of the specified exceptions’ trap is

enabled. (See Chapter 4 for more information on exception traps.) Otherwise, it

merely sets the corresponding flags.

The fegetexceptflag and fesetexceptflag functions provide a convenient

way to temporarily save the state of certain flags and later restore them. In

particular, the fesetexceptflag function does not cause a trap; it merely restores

the values of the specified flags.

Rounding Control

The fenv.h file defines macros for each of the four IEEE rounding direction modes:

FE_TONEAREST, FE_UPWARD(toward positive infinity), FE_DOWNWARD(toward

negative infinity), and FE_TOWARDZERO. C99 defines two functions to control

rounding direction modes: fesetround sets the current rounding direction to the

direction specified by its argument (which must be one of the four macros above),

and fegetround returns the value of the macro corresponding to the current

rounding direction.

On x86 platforms, the fenv.h file defines macros for each of three rounding

precision modes: FE_FLTPREC(single precision), FE_DBLPREC(double precision),

and FE_LDBLPREC(extended double precision). Although they are not part of C99,

libm9x.so on x86 provides two functions to control the rounding precision mode:

TABLE 3-16 C99 Standard Exception Flag Functions

Function Action

feclearexcept( excepts) clear specified flags

fetestexcept( excepts) return settings of specified flags

feraiseexcept( excepts) raise specified exceptions

fegetexceptflag( flagp, excepts) save specified flags in *flagp

fesetexceptflag( flagp, excepts) restore specified flags from *flagp
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fesetprec sets the current rounding precision to the precision specified by its

argument (which must be one of the three macros above), and fegetprec returns

the value of the macro corresponding to the current rounding precision.

Environment Functions

The fenv.h file defines the data type fenv_t , which represents the entire floating

point environment including exception flags, rounding control modes, exception

handling modes, and, on SPARC, nonstandard mode. In the descriptions that follow,

the envp parameter must be a pointer to an object of type fenv_t .

C99 defines four functions to manipulate the floating point environment.

l ibm9x.so provides an additional function that may be useful in multi-threaded

programs. These functions are summarized in the following table:

The fegetenv and fesetenv functions respectively save and restore the floating

point environment. The argument to fesetenv may be either a pointer to an

environment previously saved by a call to fegetenv or feholdexcept or the

constant FE_DFL_ENVdefined in fenv.h . The latter represents the default

environment with all exception flags clear, rounding to nearest (and to extended

double precision on x86), nonstop exception handling mode (i.e., traps disabled),

and on SPARC, nonstandard mode disabled.

The feholdexcept function saves the current environment and then clears all

exception flags and establishes nonstop exception handling mode for all exceptions.

The feupdateenv function restores a saved environment (which may be one saved

by a call to fegetenv or feholdexcept or the constant FE_DFL_ENV), then raises

those exceptions whose flags were set in the previous environment. If the restored

environment has traps enabled for any of those exceptions, a trap occurs; otherwise

TABLE 3-17 libm9x.so Floating Point Environment Functions

Function Action

fegetenv (envp) save environment in *envp

fesetenv (envp) restore environment from *envp

feholdexcept (envp) save environment in *envp and establish nonstop mode

feupdateenv (envp) restore environment from *envp and raise exceptions

fex_merge_flags (envp) “or” exception flags from *envp
48 Numerical Computation Guide • May 2002



the flags are set. These two functions may be used in conjunction to make a

subroutine call appear to be atomic with regard to exceptions, as the following code

sample shows:

The fex_merge_flags function performs a logical ORof the exception flags from

the saved environment into the current environment without provoking any traps.

This function may be used in a multi-threaded program to preserve information in

the parent thread about flags that were raised by a computation in a child thread.

See Appendix A for an example showing the use of fex_merge_flags .

Implementation Features of libm and
libsunmath
This section describes implementation features of libm and libsunmath :

■ Argument reduction using infinitely precise π, and trigonometric functions scaled

in π.

■ Data conversion routines for converting floating-point data between IEEE and

non-IEEE formats.

■ Random number generators.

#include <fenv.h>

void myfunc(...) {
    fenv_t env;

    /* save the environment, clear flags, and disable traps */
    feholdexcept(&env);
    /* do a computation that may incur exceptions */
    ...
    /* check for spurious exceptions */
    if (fetestexcept(...)) {
        /* handle them appropriately and clear their flags */
        ...
        feclearexcept(...);
    }
    /* restore the environment and raise relevant exceptions */
    feupdateenv(&env);
}
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About the Algorithms

The elementary functions in libm and libsunmath on SPARC systems are

implemented with an ever-changing combination of table-driven and

polynomial/rational approximation algorithms. Some elementary functions in libm
and libsunmath on x86 platforms are implemented using the elementary function

kernel instructions provided in the x86 instruction set; other functions are

implemented using the same table-driven or polynomial/rational approximation

algorithms used on SPARC.

Both the table-driven and polynomial/rational approximation algorithms for the

common elementary functions in libm and the common single precision elementary

functions in libsunmath deliver results that are accurate to within one unit in the

last place (ulp). On SPARC, the common quadruple precision elementary functions

in libsunmath deliver results that are accurate to within one ulp, except for the

expm1l and log1pl functions, which deliver results accurate to within two ulps.

(The common functions include the exponential, logarithm, and power functions

and circular trigonometric functions of radian arguments. Other functions, such as

the hyperbolic trig functions and higher transcendental functions, are less accurate.)

These error bounds have been obtained by direct analysis of the algorithms. Users

can also test the accuracy of these routines using BeEF, the Berkeley Elementary

Function test programs, available from netlib in the ucbtest package

(http://www.netlib.org/fp/ucbtest.tgz ).

Argument Reduction for Trigonometric Functions

Trigonometric functions for radian arguments outside the range [–π/4,π/4] are

usually computed by reducing the argument to the indicated range by subtracting

integral multiples of π/2.

Because π is not a machine-representable number, it must be approximated. The

error in the final computed trigonometric function depends on the rounding errors

in argument reduction (with an approximate π as well as the rounding), and

approximation errors in computing the trigonometric function of the reduced

argument. Even for fairly small arguments, the relative error in the final result might

be dominated by the argument reduction error, while even for fairly large

arguments, the error due to argument reduction may be no worse than the other

errors.

There is widespread misapprehension that trigonometric functions of all large

arguments are inherently inaccurate, and all small arguments relatively accurate.

This is based on the simple observation that large enough machine-representable

numbers are separated by a distance greater than π.
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There is no inherent boundary at which computed trigonometric function values

suddenly become bad, nor are the inaccurate function values useless. Provided that

the argument reduction is done consistently, the fact that the argument reduction is

performed with an approximation to π is practically undetectable, because all

essential identities and relationships are as well preserved for large arguments as for

small.

libm and libsunmath trigonometric functions use an “infinitely” precise π for

argument reduction. The value 2/π is computed to 916 hexadecimal digits and

stored in a lookup table to use during argument reduction.

The group of functions sinpi , cospi , and tanpi (see TABLE 3-2) scales the input

argument by π to avoid inaccuracies introduced by range reduction.

Data Conversion Routines

In libm and libsunmath , there is a flexible data conversion routine,

convert_external , used to convert binary floating-point data between IEEE and

non-IEEE formats.

Formats supported include those used by SPARC (IEEE), IBM PC, VAX, IBM S/370,

and Cray.

Refer to the man page on convert_external (3m) for an example of taking data

generated on a Cray, and using the function convert_external to convert the data

into the IEEE format expected on SPARC systems.

Random Number Facilities

There are three facilities for generating uniform pseudo-random numbers in 32-bit

integer, single precision floating point, and double precision floating point formats:

■ The functions described in the addrans (3m) manual page are based on a family

of table-driven additive random number generators.

■ The functions described in the lcrans (3m) manual page are based on a linear

congruential random number generator.

■ The functions described in the mwcrans (3m) manual page are based on multiply-

with-carry random number generators. These functions also include generators

that supply uniform pseudo-random numbers in 64-bit integer formats.

In addition, the functions described on the shufrans (3m) manual page may be

used in conjunction with any of these generators to shuffle an array of pseudo-

random numbers, thereby providing even more randomness for applications that

need it. (Note that there is no facility for shuffling arrays of 64-bit integers.)
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Each of the random number facilities includes routines that generate one random

number at a time (i.e., one per function call) as well as routines that generate an

array of random numbers in a single call. The functions that generate one random

number at a time deliver numbers that lie in the ranges shown in TABLE 3-18.

The functions that generate an entire array of random numbers in a single call allow

the user to specify the interval in which the generated numbers will lie. Appendix A

gives several examples that show how to generate arrays of random numbers

uniformly distributed over different intervals.

Note that the addrans and mwcrans generators are generally more efficient than

the lcrans generators, but their theory is not as refined. “Random Number

Generators: Good Ones Are Hard To Find”, by S. Park and K. Miller, Communications
of the ACM, October 1988, discusses the theoretical properties of linear congruential

algorithms. Additive random number generators are discussed in Volume 2 of

Knuth’s The Art of Computer Programming.

TABLE 3-18 Intervals for Single-Value Random Number Generators

Function Lower Bound Upper Bound

i_addran_ -2147483648 2147483647

r_addran_ 0 0.9999999403953552246

d_addran_ 0 0.9999999999999998890

i_lcran_ 1 2147483646

r_lcran_ 4.656612873077392578E-10 1

d_lcran_ 4.656612875245796923E-10 0.9999999995343387127

i_mwcran_ 0 2147483647

u_mwcran_ 0 4294967295

i_llmwcran_ 0 9223372036854775807

u_llmwcran_ 0 18446744073709551615

r_mwcran_ 0 0.9999999403953552246

d_mwcran_ 0 0.9999999999999998890
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CHAPTER 4

Exceptions and Exception Handling

This chapter describes IEEE floating point exceptions and shows how to detect,

locate, and handle them.

The floating point environment provided by the Forte Developer compilers and the

Solaris operating environment on SPARC and x86 platforms supports all of the

exception handling facilities required by the IEEE standard as well as many of the

recommended optional facilities. One objective of these facilities is explained in the

IEEE 854 Standard (IEEE 854, page 18):

... to minimize for users the complications arising from exceptional conditions.

The arithmetic system is intended to continue to function on a computation as

long as possible, handling unusual situations with reasonable default responses,

including setting appropriate flags.

To achieve this objective, the standards specify default results for exceptional

operations and require that an implementation provide status flags, which can be

sensed, set, or cleared by a user, to indicate that exceptions have occurred. The

standards also recommend that an implementation provide a means for a program

to trap (i.e., interrupt normal control flow) when an exception occurs. The program

can optionally supply a trap handler that handles the exception in an appropriate

manner, for example by providing an alternate result for the exceptional operation

and resuming execution. This chapter lists the exceptions defined by IEEE 754 along

with their default results and describes the features of the floating point

environment that support status flags, trapping, and exception handling.
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What Is an Exception?

It is hard to define exceptions. To quote W. Kahan,

An arithmetic exception arises when an attempted atomic arithmetic

operation has no result that would be acceptable universally. The

meanings of atomic and acceptable vary with time and place. (See

Handling Arithmetic Exceptions by W. Kahan.)

For example, an exception arises when a program attempts to take the square root of

a negative number. (This example is one case of an invalid operation exception.) When

such an exception occurs, the system responds in one of two ways:

■ If the exception’s trap is disabled (the default case), the system records the fact

that the exception occurred and continues executing the program using the

default result specified by IEEE 754 for the excepting operation.

■ If the exception’s trap is enabled, the system generates a SIGFPE signal. If the

program has installed a SIGFPE signal handler, the system transfers control to that

handler; otherwise, the program aborts.

IEEE 754 defines five basic types of floating point exceptions: invalid operation,
division by zero, overflow, underflow and inexact. The first three (invalid, division, and

overflow) are sometimes collectively called common exceptions. These exceptions can

seldom be ignored when they occur. ieee_handler (3m) gives an easy way to trap

on common exceptions only. The other two exceptions (underflow and inexact) are

seen more often—in fact, most floating point operations incur the inexact

exception—and they can usually, though not always, be safely ignored.

TABLE 4-1 condenses information found in IEEE Standard 754. It describes the five

floating point exceptions and the default response of an IEEE arithmetic

environment when these exceptions are raised.
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TABLE 4-1 IEEE Floating Point Exceptions

IEEE
Exception Reason Why This Arises Example

Default Result When
Trap is Disabled

Invalid

operation

An operand is invalid for

the operation about to be

performed.

(On x86, this exception is

also raised when the

floating point stack

underflows or overflows,

though that is not part of

the IEEE standard.)

0 × ∞
0 ⁄ 0

∞ ⁄ ∞
x REM 0

Square root of negative operand

Any operation with a signaling

NaN operand

Unordered comparison

(see note 1)

Invalid conversion (see note 2)

Quiet NaN

Division by

zero

An exact infinite result is

produced by an operation

on finite operands.

x ⁄ 0 for finite, nonzero x
log (0)

Correctly signed infinity

Overflow The correctly rounded

result would be larger in

magnitude than the

largest finite number

representable in the

destination format (i.e.,

the exponent range is

exceeded).

Double precision:

DBL_MAX+ 1.0e294

exp (709.8)

Single precision:

(float)DBL_MAX

FLT_MAX+ 1.0e32

expf (88.8)

Depends on rounding mode

(RM), and the sign of the

intermediate result:

RM+ –

RN+∞ –∞
RZ +max –max

R–+max –∞
R+ +∞ –max

Underflow Either the exact result or

the correctly rounded

result would be smaller

in magnitude than the

smallest normal number

representable in the

destination format (see

note 3).

Double precision:

nextafter (min_normal,-∞)

nextafter (min_subnormal,-∞)

DBL_MIN ⁄3.0

exp (-708.5)

Single precision:

(float)DBL_MIN

nextafterf (FLT_MIN, -∞)

expf (-87.4)

Subnormal or zero

Inexact The rounded result of a

valid operation is

different from the

infinitely precise result.

(Most floating point

operations raise this

exception.)

2.0 / 3.0

(float)1.12345678

log (1.1)

DBL_MAX+ DBL_MAX,
when no overflow trap

The result of the operation

(rounded, overflowed, or

underflowed)
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Notes for Table 4-1

1. Unordered comparison: Any pair of floating point values can be compared, even

if they are not of the same format. Four mutually exclusive relations are possible:

less than, greater than, equal, or unordered. Unordered means that at least one of

the operands is a NaN (not a number).

Every NaN compares “unordered” with everything, including itself. TABLE 4-2

shows which predicates cause the invalid operation exception when the relation is

unordered.

2. Invalid conversion: Attempt to convert NaN or infinity to an integer, or integer

overflow on conversion from floating point format.

3. The smallest normal numbers representable in the IEEE single, double, and

extended formats are 2-126, 2-1022, and 2-16382, respectively. See Chapter 2 for a

description of the IEEE floating point formats.

The x86 floating point environment provides another exception not mentioned in the

IEEE standards: the denormal operand exception. This exception is raised whenever a

floating point operation is performed on a subnormal number.

Exceptions are prioritized in the following order: invalid (highest priority), overflow,

division, underflow, inexact (lowest priority). On x86 platforms, the denormal

operand exception has the lowest priority of all.

The only combinations of standard exceptions that can occur simultaneously are

overflow with inexact and underflow with inexact. On x86, the denormal operand

exception can occur with any of the five standard exceptions. If trapping on

overflow, underflow, and inexact is enabled, the overflow and underflow traps take

precedence over the inexact trap; they all take precedence over a denormal operand

trap on x86.

TABLE 4-2 Unordered Comparisons

Predicates Invalid Exception

math c, c++ f95 (if unordered)

= == .EQ. no

≠ != .NE. no

> > .GT. yes

≥ >= .GE. yes

< < .LT. yes

≤ <= .LE. yes
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Detecting Exceptions

As required by the IEEE standard, the floating point environments on SPARC and

x86 platforms provide status flags that record the occurrence of floating point

exceptions. A program can test these flags to determine which exceptions have

occurred. The flags can also be explicitly set and cleared. The ieee_flags function

provides one way to access these flags. In programs written in C or C++, the C99

floating point environment functions in libm9x.so provide another.

On SPARC, each exception has two flags associated with it, current and accrued. The

current exception flags always indicate the exceptions raised by the last floating

point instruction to complete execution. These flags are also accumulated (i.e.,

“or”-ed) into the accrued exception flags thereby providing a record of all untrapped

exceptions that have occurred since the program began execution or since the

accrued flags were last cleared by the program. (When a floating point instruction

incurs a trapped exception, the current exception flag corresponding to the exception

that caused the trap is set, but the accrued flags are unchanged.) Both the current

and accrued exception flags are contained in the floating point status register, %fsr .

On x86, the floating point status word (SW) provides flags for accrued exceptions as

well as flags for the status of the floating point stack.

ieee_flags (3m)

The syntax for a call to ieee_flags (3m) is:

i = ieee_flags( action, mode, in, out) ;

A program can test, set, or clear the accrued exception status flags using the

ieee_flags function by supplying the string "exception" as the second argument.

For example, to clear the overflow exception flag from Fortran, write:

To determine whether an exception has occurred from C or C++, use:

      character*8 out
      call ieee_flags('clear', 'exception', 'overflow', out)

      i = ieee_flags("get", "exception", in, out);
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When the action is " get " , the string returned in out is:

■ "not available" — if information on exceptions is not available

■ "" (an empty string) — if there are no accrued exceptions or, in the case of x86,

the denormal operand is the only accrued exception

■ the name of the exception named in the third argument, in, if that exception has

occurred

■ otherwise, the name of the highest priority exception that has occurred.

For example, in the Fortran call:

the string returned in out is "division" if the division-by-zero exception has

occurred; otherwise it is the name of the highest priority exception that has occurred.

Note that in is ignored unless it names a particular exception; for example, the

argument "all" is ignored in the C call:

Besides returning the name of an exception in out, ieee_flags returns an integer

value that combines all of the exception flags currently raised. This value is the

bitwise “or” of all the accrued exception flags, where each flag is represented by a

single bit as shown in TABLE 4-3. The positions of the bits corresponding to each

exception are given by the fp_exception_type values defined in the file

sys/ieeefp.h . (Note that these bit positions are machine-dependent and need not

be contiguous.)

      character*8 out
      i = ieee_flags('get', 'exception', 'division', out)

      i = ieee_flags("get", "exception", "all", out);

TABLE 4-3 Exception Bits

Exception Bit Position Accrued Exception Bit

invalid fp_invalid i & (1 << fp_invalid)

overflow fp_overflow i & (1 << fp_overflow)

division fp_division i & (1 << fp_division)

underflow fp_underflow i & (1 << fp_underflow)

inexact fp_inexact i & (1 << fp_inexact)

denormalized fp_denormalized i & (1 << fp_denormalized) (x86 only)
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This fragment of a C or C++ program shows one way to decode the return value.

C99 Exception Flag Functions

C/C++ programs can test, set, and clear the floating point exception flags using the

C99 floating point environment functions in libm9x.so . The header file fenv.h
defines five macros corresponding to the five standard exceptions: FE_INEXACT,
FE_UNDERFLOW, FE_OVERFLOW, FE_DIVBYZERO, and FE_INVALID . It also defines the

macro FE_ALL_EXCEPTto be the bitwise “or” of all five exception macros. These

macros can be combined to test or clear any subset of the exception flags or raise any

combination of exceptions. The following examples show the use of these macros

with several of the C99 floating point environment functions; see the

feclearexcept (3M) manual page for more information. (Note: For consistent

behavior, do not use both the C99 floating point environment functions and

extensions in libm9x.so and the ieee_flags and ieee_handler functions in

libsunmath in the same program.)

To clear all five exception flags:

/*
 *   Decode integer that describes all accrued exceptions.
 *   fp_inexact etc. are defined in <sys/ieeefp.h>
 */

char *out;
int invalid, division, overflow, underflow, inexact;

code = ieee_flags("get", "exception", "", &out);
printf ("out is %s, code is %d, in hex: 0x%08X\n",

out, code, code);
inexact = (code >> fp_inexact)& 0x1;
division = (code >> fp_division)& 0x1;
underflow = (code >> fp_underflow)& 0x1;
overflow = (code >> fp_overflow)& 0x1;
invalid = (code >> fp_invalid)& 0x1;
printf("%d %d %d %d %d \n", invalid, division, overflow,

underflow, inexact);

feclearexcept(FE_ALL_EXCEPT);
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To test whether the invalid operation or division by zero flags have been raised:

To simulate raising an overflow exception (note that this will provoke a trap if the

overflow trap is enabled):

The fegetexceptflag and fesetexceptflag functions provide a way to save and

restore a subset of the flags. The next example shows one way to use these functions.

Locating an Exception

Often, programmers do not write programs with exceptions in mind, so when an

exception is detected, the first question asked is: Where did the exception occur? One

way to locate where an exception occurs is to test the exception flags at various

points throughout a program, but to isolate an exception precisely by this approach

can require many tests and carry a significant overhead.

int i;

i = fetestexcept(FE_INVALID | FE_DIVBYZERO);
if (i & FE_INVALID)
    /* invalid flag was raised */
else if (i & FE_DIVBYZERO)
    /* division by zero flag was raised */

feraiseexcept(FE_OVERFLOW);

fexcept_t flags;

/* save the underflow, overflow, and inexact flags */
fegetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW | FE_INEXACT);
/* clear these flags */
feclearexcept(FE_UNDERFLOW | FE_OVERFLOW | FE_INEXACT);
/* do a computation that can underflow or overflow */
...
/* check for underflow or overflow */
if (fetestexcept(FE_UNDERFLOW | FE_OVERFLOW) != 0) {
    ...
}
/* restore the underflow, overflow, and inexact flags */
fesetexceptflag(&flags, FE_UNDERFLOW | FE_OVERFLOW, | FE_INEXACT);
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An easier way to determine where an exception occurs is to enable its trap. When an

exception whose trap is enabled occurs, the operating system notifies the program

by sending a SIGFPE signal (see the signal (5) manual page). Thus, by enabling

trapping for an exception, you can determine where the exception occurs either by

running under a debugger and stopping on receipt of a SIGFPE signal or by

establishing a SIGFPE handler that prints the address of the instruction where the

exception occurred. Note that trapping must be enabled for an exception to generate

a SIGFPE signal; when trapping is disabled and an exception occurs, the

corresponding flag is set and execution continues with the default result specified in

TABLE 4-1, but no signal is delivered.

Using the Debuggers to Locate an Exception

This section gives examples showing how to use dbx (source-level debugger) and

adb (assembly-level debugger) to investigate the cause of a floating point exception

and locate the instruction that raised it. Recall that in order to use the source-level

debugging features of dbx , programs should be compiled with the –g flag. Refer to

the Debugging a Program With dbx manual for more information.

Consider the following C program:

Compiling and running this program produces:

#include <stdio.h>
#include <math.h>
double sqrtm1(double x)
{
   return sqrt(x) - 1.0;
}

int main(void)
{
   double x, y;

   x = -4.2;
   y = sqrtm1(x);
   printf("%g  %g\n", x, y);
   return 0;
}

 -4.2  NaN
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The appearance of a NaN in the output suggests that an invalid operation exception

might have occurred. To determine whether this is the case, you can recompile with

the -ftrap option to enable trapping on invalid operations and use either dbx or

adb to run the program and stop when a SIGFPE signal is delivered. Alternatively,

you can use adb or dbx without recompiling the program by linking with a startup

routine that enables the invalid operation trap or by manually enabling the trap.

Using dbx to Locate the Instruction Causing an Exception

The simplest way to locate the code that causes a floating point exception is to

recompile with the -g and -ftrap flags and then use dbx to track down the location

where the exception occurs. First, recompile the program as follows:

Compiling with -g allows you to use the source-level debugging features of dbx .

Specifying -ftrap=invalid causes the program to run with trapping enabled for

invalid operation exceptions. Next, invoke dbx , issue the catch fpe command to

stop when a SIGFPE is issued, and run the program. On SPARC, the result resembles

this:

The output shows that the exception occurred in the sqrtm1 function as a result of

attempting to take the square root of a negative number.

 example% cc -g -ftrap=invalid ex.c -lm

      example% dbx a.out
      Reading a.out
      ... etc.
      (dbx) catch fpe
      (dbx) run
      Running: a.out
      (process id 2532)
      signal FPE (invalid floating point operation) in __sqrt at 0xff36b3c4
      0xff36b3c4: __sqrt+0x003c:      be      __sqrt+0x98
      Current function is sqrtm1
          6           return sqrt(x) - 1.0;
      (dbx) print x
      x = -4.2
      (dbx)
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Using adb to Locate the Instruction Causing an Exception

You can also use adb to identify the cause of an exception, although adb can’t locate

the source file and line number as dbx can. Again, the first step is to recompile with

-ftrap :

Now invoke adb and run the program. When an invalid operation exception occurs,

adb stops at an instruction following the one that caused the exception. To find the

instruction that caused the exception, disassemble several instructions and look for

the last floating point instruction prior to the instruction at which adb has stopped.

On SPARC, the result might resemble the following transcript.

The output shows that the exception was caused by an fsqrtd instruction.

Examining the source register shows that the exception was a result of attempting to

take the square root of a negative number.

On x86, because instructions do not have a fixed length, finding the correct address

from which to disassemble the code might involve some trial and error. In this

example, the exception occurs close to the beginning of a function, so we can

disassemble from there. (Note that this output assumes the program has been

compiled with the -xlibmil flag.) The following might be a typical result.

 example% cc -ftrap=invalid ex.c -lm

example% adb a.out
: r
SIGFPE: Arithmetic Exception (invalid floating point operation)
stopped at:
__sqrt+0x3c:    be      __sqrt+0x98
__sqrt+30?4i
__sqrt+0x30:    sethi   %hi(0x7ff00000), %o0
                and     %i0, %o0, %o1
                fsqrtd  %f0, %f30
                be      __sqrt+0x98
<f0=F
                -4.2000000000000002e+00
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The output reveals that the exception was caused by a fsqrt instruction;

examination of the floating point registers reveals that the exception was a result of

attempting to take the square root of a negative number.

Enabling Traps Without Recompilation

In the preceding examples, trapping on invalid operation exceptions was enabled by

recompiling the main subprogram with the -ftrap flag. In some cases, recompiling

the main program might not be possible, so you might need to resort to other means

to enable trapping. There are several ways to do this.

example% adb a.out
:r
SIGFPE: Arithmetic Exception (invalid floating point operation)
stopped at:
sqrtm1+0x16:    fstpl  -0x10(%ebp) [0xfffffff0]
sqrtm1?12i
sqrtm1:
sqrtm1:         pushl  %ebp
                movl   %esp,%ebp
                subl   $0x10,%esp [0x10,-]
                movl   0xc(%ebp),%eax [0xc,-]
                pushl  %eax
                movl   0x8(%ebp),%eax [8,-]
                pushl  %eax
                fldl   (%esp,1)
                fsqrt
                addl   $0x8,%esp [8,-]
                fstpl  -0x10(%ebp) [0xfffffff0]
                fldl   -0x10(%ebp) [0xfffffff0]
$x
80387 chip is present.
cw      0x137e
sw      0x3800
cssel 0x17 ipoff 0x691 datasel 0x1f dataoff 0x0

 st[0]  -4.2000000000000001776356839              VALID
 st[1]  +0.0                                      EMPTY
 st[2]  +0.0                                      EMPTY
 st[3]  +0.0                                      EMPTY
 st[4]  +0.0                                      EMPTY
 st[5]  +0.0                                      EMPTY
 st[6]  +0.0                                      EMPTY
 st[7]  +0.0                                      EMPTY
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When you are using dbx , you can enable traps manually by directly modifying the

floating point status register. On SPARC, this can be somewhat tricky because the

operating system does not enable the floating point unit until the first time it is used

within a program, at which point the floating point status register is reset with all

traps disabled. Thus, you cannot manually enable trapping until after the program

has executed at least one floating point instruction. In our example, the floating

point unit has already been accessed by the time the sqrtm1 function is called, so we

can set a breakpoint on entry to that function, enable trapping on invalid operation

exceptions, instruct dbx to stop on the receipt of a SIGFPE signal, and continue

execution. The steps are as follows (note the use of the assign command to modify

the %fsr to enable trapping on invalid operation exceptions):

On x86, the startup code that the compiler automatically links into every program

initializes the floating point unit before transferring control to the main program.

Thus, you can manually enable trapping at any time after the main program begins.

The following example shows the steps involved:

 example% dbx a.out
 Reading a.out
 ... etc.

(dbx) stop in sqrtm1
dbx: warning: 'sqrtm1' has no debugger info -- will trigger on first instruction

 (2) stop in sqrtm1
 (dbx) run
 Running: a.out
 (process id 23086)
 stopped in sqrtm1 at 0x106d8
 0x000106d8: sqrtm1       :      save    %sp, -0x70, %sp
 (dbx) assign $fsr=0x08000000
 dbx: warning: unknown language, 'ansic' assumed
 (dbx) catch fpe
 (dbx) cont
 signal FPE (invalid floating point operation) in __sqrt at 0xff36b3c4
 0xff36b3c4: __sqrt+0x003c:      be      __sqrt+0x98
 (dbx)
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You can also enable trapping without recompiling the main program or using dbx by

establishing an initialization routine that enables traps. (This might be useful, for

example, if you want to abort the program when an exception occurs without

running under a debugger.) There are two ways to establish such a routine.

If the object files and libraries that comprise the program are available, you can

enable trapping by relinking the program with an appropriate initialization routine.

First, create a C source file similar to the following:

example% dbx a.out
Reading a.out
... etc.
(dbx) stop in main
dbx: warning: 'main' has no debugger info -- will trigger on first instruction
(2) stop in main
(dbx) run
Running: a.out
(process id 25055)
stopped in main at 0x80506b0
0x080506b0: main       :        pushl  %ebp
(dbx) assign $fctrl=0x137e
dbx: warning: unknown language, 'ansic' assumed
(dbx) catch fpe
(dbx) cont
signal FPE (invalid floating point operation) in sqrtm1 at 0x8050696
0x08050696: sqrtm1+0x0016:      fstpl  -16(%ebp)
(dbx)

#include <ieeefp.h>

#pragma init (trapinvalid)

void trapinvalid()
{
     /* FP_X_INV et al are defined in ieeefp.h */
     fpsetmask(FP_X_INV);
}
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Now compile this file to create an object file and link the original program with this

object file:

If relinking is not possible but the program has been dynamically linked, you can

enable trapping by using the shared object preloading facility of the runtime linker.

To do this on SPARC systems, create the same C source file as above, but compile as

follows:

Now to enable trapping, add the path name of the init.so object to the list of

preloaded shared objects specified by the environment variable LD_PRELOAD, for

example:

(See the Linker and Libraries Guide for more information about creating and

preloading shared objects.)

In principle, you can change the way any floating point control modes are initialized

by preloading a shared object as described above. Note, though, that initialization

routines in shared objects, whether preloaded or explicitly linked, are executed by

the runtime linker before it passes control to the startup code that is part of the main

executable. The startup code then establishes any nondefault modes selected via the

-ftrap , -fround , -fns (SPARC), or -fprecision (x86) compiler flags, executes any

initialization routines that are part of the main executable (including those that are

statically linked), and finally passes control to the main program. Therefore, on

SPARC (i) any floating point control modes established by initialization routines in

shared objects, such as the traps enabled in the example above, will remain in effect

throughout the execution of the program unless they are overridden; (ii) any

nondefault modes selected via the compiler flags will override modes established by

initialization routines in shared objects (but default modes selected via compiler

flags will not override previously established modes); and (iii) any modes

established either by initialization routines that are part of the main executable or by

the main program itself will override both.

example% cc -c init.c
example% cc ex.o init.o -lm
example% a.out
Arithmetic Exception

example% cc -Kpic -G -ztext init.c -o init.so -lc

example% env LD_PRELOAD=./init.so a.out
Arithmetic Exception
Chapter 4 Exceptions and Exception Handling 67



On x86, the situation is complicated by the fact that the system kernel initializes the

floating point hardware with some nondefault modes whenever a new process is

begun, but the startup code automatically supplied by the compiler resets some of

those modes to the default before passing control to the main program. Therefore,

initialization routines in shared objects, unless they change the floating point control

modes, run with trapping enabled for invalid operation, division by zero, and

overflow exceptions and with the rounding precision set to round to 53 significant

bits. Once the runtime linker passes control to the startup code, this code calls the

routine __fpstart (found in the standard C library, libc ), which disables all traps

and sets the rounding precision to 64 significant bits. The startup code then

establishes any nondefault modes selected by the -fround , -ftrap , or -fprecision
flags before executing any statically linked initialization routines and passing control

to the main program. As a consequence, in order to enable trapping (or change the

rounding precision mode) on x86 platforms by preloading a shared object with an

initialization routine, you must override the __fpstart routine so that it does not

reset the trap enable and rounding precision modes. The substitute __fpstart
routine should still perform the rest of the initialization functions that the standard

routine does; however, the following code shows one way to do this.

#include <ieeefp.h>
#include <sunmath.h>
#include <sys/sysi86.h>

#pragma init (trapinvalid)

void trapinvalid()
{
     /* FP_X_INV et al are defined in ieeefp.h */
     fpsetmask(FP_X_INV);
}

extern int  __fltrounds(), __flt_rounds;
extern long _fp_hw;

void __fpstart()
{
    char *out;

    /* perform the same floating point initializations as
       the standard __fpstart() function defined by the
       System V ABI Intel processor supplement _but_ leave
       all trapping modes as is */
    __flt_rounds = __fltrounds();
    sysi86(SI86FPHW, &_fp_hw);
    _fp_hw &= 0xff;
    ieee_flags("set", "precision", "extended", &out);
}
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Note that the __fpstart routine above calls ieee_flags , which is contained in

libsunmath . Thus, in order to create a shared object from this code, you must use

the -R and -L options to specify the location of the shared object libsunmath.so .

This library is located in the Forte Developer product installation area. Assuming

you have installed Forte Developer in the default location, the steps for compiling

the code above to create a shared object and preloading this shared object to enable

trapping are as follows.

Using a Signal Handler to Locate an Exception

The previous section presented several methods for enabling trapping at the outset

of a program in order to locate the first occurrence of an exception. In contrast, you

can isolate any particular occurrence of an exception by enabling trapping within the

program itself. If you enable trapping but do not install a SIGFPE handler, the

program will abort on the next occurrence of the trapped exception. Alternatively, if

you install a SIGFPE handler, the next occurrence of the trapped exception will cause

the system to transfer control to the handler, which can then print diagnostic

information, such as the address of the instruction where the exception occurred,

and either abort or resume execution. (In order to resume execution with any

prospect for a meaningful outcome, the handler might need to supply a result for the

exceptional operation as described in the next section.)

You can use ieee_handler to simultaneously enable trapping on any of the five

IEEE floating point exceptions and either request that the program abort when the

specified exception occurs or establish a SIGFPE handler. You can also install a

SIGFPE handler using one of the lower-level functions sigfpe (3), signal (3c), or

sigaction (2); however, these functions do not enable trapping as ieee_handler
does. (Remember that a floating point exception triggers a SIGFPE signal only when

its trap is enabled.)

ieee_handler (3m)

The syntax of a call to ieee_handler is:

i = ieee_handler (action, exception, handler)

The two input parameters action and exception are strings. The third input parameter,

handler, is of type sigfpe_handler_type , which is defined in floatingpoint.h .

 example% cc -Kpic -G -ztext init.c -o init.so -R/opt/SUNWspro/lib
-L/opt/SUNWspro/lib -lsunmath -lc
example% env LD_PRELOAD=./init.so a.out
Arithmetic Exception
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The three input parameters can take the following values:

When the requested action is "set" , ieee_handler establishes the handling

function specified by handler for the exceptions named by exception. The handling

function can be SIGFPE_DEFAULTor SIGFPE_IGNORE, both of which select the default

IEEE behavior, SIGFPE_ABORT, which causes the program to abort on the occurrence

of any of the named exceptions, or the address of a user-supplied subroutine, which

causes that subroutine to be invoked (with the parameters described in the

sigaction (2) manual page for a signal handler installed with the SA_SIGINFO flag

set) when any of the named exceptions occurs. If the handler is SIGFPE_DEFAULTor

SIGFPE_IGNORE, ieee_handler also disables trapping on the specified exceptions;

for any other handler, ieee_handler enables trapping. (On x86 platforms, the

floating point hardware traps whenever an exception’s trap is enabled and its

corresponding flag is raised. Therefore, to avoid spurious traps, a program should

clear the flag for each specified exception before calling ieee_handler to enable

trapping.)

When the requested action is "clear" , ieee_handler revokes whatever handling

function is currently installed for the specified exception and disables its trap. (This is

the same as "set" ting SIGFPE_DEFAULT.) The third parameter is ignored when action
is "clear" .

For both the "set" and "clear" actions, ieee_handler returns 0 if the requested

action is available and a nonzero value otherwise.

When the requested action is "get" , ieee_handler returns the address of the

handler currently installed for the specified exception (or SIGFPE_DEFAULT, if no

handler is installed).

Input Parameter C or C++ Type Possible Value

action char * get , set , clear

exception char * invalid , division , overflow,

underflow , inexact,

all , common

handler sigfpe_handler_type user-defined routine

SIGFPE_DEFAULT

SIGFPE_IGNORE

SIGFPE_ABORT
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The following examples show a few code fragments illustrating the use of

ieee_handler . This C code causes the program to abort on division by zero:

Here is the equivalent Fortran code:

This C fragment restores IEEE default exception handling for all exceptions:

Here is the same action in Fortran:

Reporting an Exception From a Signal Handler

When a SIGFPE handler installed via ieee_handler is invoked, the operating

system provides additional information indicating the type of exception that

occurred, the address of the instruction that caused it, and the contents of the

machine’s integer and floating point registers. The handler can examine this

information and print a message identifying the exception and the location at which

it occurred.

#include <sunmath.h>
/* uncomment the following line on x86 systems */
    /* ieee_flags("clear", "exception", "division", NULL); */
    if (ieee_handler("set", "division", SIGFPE_ABORT) != 0)
        printf("ieee trapping not supported here \n");

#include <floatingpoint.h>
c uncomment the following line on x86 systems
c     ieee_flags('clear', 'exception', 'division', %val(0))
      i = ieee_handler('set', 'division', SIGFPE_ABORT)
      if(i.ne.0) print *,'ieee trapping not supported here'

#include <sunmath.h>
    if (ieee_handler("clear", "all", 0) != 0)
        printf("could not clear exception handlers\n");

      i = ieee_handler('clear', 'all', 0)
if (i.ne.0) print *, 'could not clear exception handlers'
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To access the information supplied by the system, declare the handler as follows.

(The remainder of this chapter presents sample code in C; see Appendix A for

examples of SIGFPE handlers in Fortran.)

When the handler is invoked, the sig parameter contains the number of the signal

that was sent. Signal numbers are defined in sys/signal.h ; the SIGFPE signal

number is 8.

The sip parameter points to a structure that records additional information about the

signal. For a SIGFPEsignal, the relevant members of this structure are sip->si_code
and sip->si_addr (see sys/siginfo.h ). The significance of these members

depends on the system and on what event triggered the SIGFPE signal.

The sip->si_code member is one of the SIGFPE signal types listed in TABLE 4-4.

(The tokens shown are defined in sys/machsig.h .)

As the table shows, each type of IEEE floating point exception has a corresponding

SIGFPE signal type. Integer division by zero (FPE_INTDIV ) and integer overflow

(FPE_INTOVF) are also included among the SIGFPE types, but because they are not

IEEE floating point exceptions you cannot install handlers for them via

ieee_handler . (You can install handlers for these SIGFPE types via sigfpe (3); note,

though, that integer overflow is ignored by default on all SPARC and x86 platforms.

Special instructions can cause the delivery of a SIGFPE signal of type FPE_INTOVF,
but Sun compilers do not generate these instructions.)

#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}

TABLE 4-4 Types for Arithmetic Exceptions

SIGFPE Type IEEE Type

FPE_INTDIV

FPE_INTOVF

FPE_FLTRES inexact

FPE_FLTDIV division

FPE_FLTUND underflow

FPE_FLTINV invalid

FPE_FLTOVF overflow
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For a SIGFPE signal corresponding to an IEEE floating point exception, the

sip->si_code member indicates which exception occurred on SPARC systems,

while on x86 platforms it indicates the highest priority exception whose flag is raised

(excluding the denormal operand flag). The sip->si_addr member holds the

address of the instruction that caused the exception on SPARC systems, and on x86

platforms it holds the address of the instruction at which the trap was taken (usually

the next floating point instruction following the one that caused the exception).

Finally, the uap parameter points to a structure that records the state of the system at

the time the trap was taken. The contents of this structure are system-dependent; see

sys/reg.h for definitions of some of its members.

Using the information provided by the operating system, we can write a SIGFPE
handler that reports the type of exception that occurred and the address of the

instruction that caused it. CODE EXAMPLE 4-1 shows such a handler.

CODE EXAMPLE 4-1 SIGFPE Handler

#include <stdio.h>
#include <sys/ieeefp.h>
#include <sunmath.h>
#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    unsigned    code, addr;

#ifdef i386
    unsigned    sw;

sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status &
~uap->uc_mcontext.fpregs.fp_reg_set.fpship_state.state[0];

    if (sw & (1 << fp_invalid))
        code = FPE_FLTINV;
    else if (sw & (1 << fp_division))
        code = FPE_FLTDIV;
    else if (sw & (1 << fp_overflow))
        code = FPE_FLTOVF;
    else if (sw & (1 << fp_underflow))
        code = FPE_FLTUND;
    else if (sw & (1 << fp_inexact))
        code = FPE_FLTRES;
    else
        code = 0;
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On SPARC systems, the output from this program resembles the following:

    addr = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.
       state[3];
#else
    code = sip->si_code;
    addr = (unsigned) sip->si_addr;
#endif
    fprintf(stderr, "fp exception %x at address %x\n", code,
        addr);
}
int main()
{
    double  x;

    /* trap on common floating point exceptions */
    if (ieee_handler("set", "common", handler) != 0)
        printf("Did not set exception handler\n");
    /* cause an underflow exception (will not be reported) */
    x = min_normal();
    printf("min_normal = %g\n", x);
    x = x / 13.0;
    printf("min_normal / 13.0 = %g\n", x);

    /* cause an overflow exception (will be reported) */
    x = max_normal();
    printf("max_normal = %g\n", x);
    x = x * x;
    printf("max_normal * max_normal = %g\n", x);
    ieee_retrospective(stderr);
    return 0;
}

min_normal = 2.22507e-308
min_normal / 13.0 = 1.7116e-309
max_normal = 1.79769e+308
fp exception 4 at address 10d0c
max_normal * max_normal = 1.79769e+308
 Note: IEEE floating-point exception flags raised:
    Inexact;  Underflow;
 IEEE floating-point exception traps enabled:
    overflow; division by zero; invalid operation;
See the Numerical Computation Guide, ieee_flags(3M), ieee_handler(3M)

CODE EXAMPLE 4-1 SIGFPE Handler (Continued)
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On x86 platforms, the operating system saves a copy of the accrued exception flags

and then clears them before invoking a SIGFPE handler. Unless the handler takes

steps to preserve them, the accrued flags are lost once the handler returns. Thus, the

output from the preceding program does not indicate that an underflow exception

was raised.

In most cases, the instruction that causes the exception does not deliver the IEEE

default result when trapping is enabled: in the preceding outputs, the value reported

for max_normal * max_normal is not the default result for an operation that

overflows (i.e., a correctly signed infinity). In general, a SIGFPE handler must supply

a result for an operation that causes a trapped exception in order to continue the

computation with meaningful values. See “Handling Exceptions” on page 82 for one

way to do this.

Using libm9x.so Exception Handling Extensions

to Locate an Exception

C/C++ programs can use the exception handling extensions to the C99 floating point

environment functions in libm9x.so to locate exceptions in several ways. These

extensions include functions that can establish handlers and simultaneously enable

traps, just as ieee_handler does, but they provide more flexibility. They also

support logging of retrospective diagnostic messages regarding floating point

exceptions to a selected file.

fex_set_handling (3m)

The fex_set_handling function allows you to select one of several options, or

modes, for handling each type of floating point exception. The syntax of a call to

fex_set_handling is:

ret = fex_set_handling( ex, mode, handler);

min_normal = 2.22507e-308
min_normal / 13.0 = 1.7116e-309
max_normal = 1.79769e+308
fp exception 4 at address 8048fe6
max_normal * max_normal = 1.79769e+308
 Note: IEEE floating-point exception traps enabled:
    overflow;  division by zero;  invalid operation;
 See the Numerical Computation Guide, ieee_handler(3M)
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The ex argument specifies the set of exceptions to which the call applies. It must be a

bitwise “or” of the values listed in the first column of TABLE 4-5. (These values are

defined in fenv.h .)

For convenience, fenv.h also defines the following values: FEX_NONE(no

exceptions), FEX_INVALID (all invalid operation exceptions), FEX_COMMON(overflow,

division by zero, and all invalid operations), and FEX_ALL (all exceptions).

The mode argument specifies the exception handling mode to be established for the

indicated exceptions. There are five possible modes:

■ FEX_NONSTOPmode provides the IEEE 754 default nonstop behavior. This is

equivalent to leaving the exception’s trap disabled. (Note that unlike

ieee_handler , fex_set_handling allows you to establish nondefault handling

for certain types of invalid operation exceptions and retain IEEE default handling

for the rest.)

■ FEX_NOHANDLERmode is equivalent to enabling the exception’s trap without

providing a handler. When an exception occurs, the system transfers control to a

previously installed SIGFPE handler, if present, or aborts.

■ FEX_ABORTmode causes the program to call abort (3c) when the exception occurs.

■ FEX_SIGNAL installs the handling function specified by the handler argument for

the indicated exceptions. When any of these exceptions occurs, the handler is

invoked with the same arguments as if it had been installed by ieee_handler .

TABLE 4-5 Exception Codes for fex_set_handling

Value Exception

FEX_INEXACT inexact result

FEX_UNDERFLOW underflow

FEX_OVERFLOW overflow

FEX_DIVBYZERO division by zero

FEX_INV_ZDZ 0/0 invalid operation

FEX_INV_IDI infinity/infinity invalid operation

FEX_INV_ISI infinity-infinity invalid operation

FEX_INV_ZMI 0*infinity invalid operation

FEX_INV_SQRT square root of negative number

FEX_INV_SNAN operation on signaling NaN

FEX_INV_INT invalid integer conversion

FEX_INV_CMP invalid unordered comparison
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■ FEX_CUSTOMinstalls the handling function specified by handler for the indicated

exceptions. Unlike FEX_SIGNAL mode, when an exception occurs, the handler is

invoked with a simplified argument list. The arguments consist of an integer

whose value is one of the values listed in TABLE 4-5 and a pointer to a structure

that records additional information about the operation that caused the exception.

The contents of this structure are described in the next section and in the

fex_set_handling (3m) manual page.

Note that the handler parameter is ignored if the specified mode is FEX_NONSTOP,
FEX_NOHANDLER, or FEX_ABORT. fex_set_handling returns a nonzero value if the

specified mode is established for the indicated exceptions, and returns zero

otherwise. (In the examples below, the return value is ignored.)

The following examples suggest ways to use fex_set_handling to locate certain

types of exceptions. To abort on a 0/0 exception:

To install a SIGFPE handler for overflow and division by zero:

In the previous example, the handler function could print the diagnostic information

supplied via the sip parameter to a SIGFPE handler, as shown in the previous

subsection. By contrast, the following example prints the information about the

exception that is supplied to a handler installed in FEX_CUSTOMmode. (See the

fex_set_handling (3m) manual page for more information.)

fex_set_handling(FEX_INV_ZDZ, FEX_ABORT, NULL);

fex_set_handling(FEX_OVERFLOW | FEX_DIVBYZERO, FEX_SIGNAL,
    handler);

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM
Mode

#include <fenv.h>

void handler(int ex, fex_info_t *info)
{
    switch (ex) {
    case FEX_OVERFLOW:
        printf("Overflow in ");
        break;
    case FEX_DIVBYZERO:
        printf("Division by zero in ");
        break;
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    default:
        printf("Invalid operation in ");
    }
    switch (info->op) {
    case fex_add:
        printf("floating point add\n");
        break;
    case fex_sub:
        printf("floating point subtract\n");
        break;
    case fex_mul:
        printf("floating point multiply\n");
        break;
    case fex_div:
        printf("floating point divide\n");
        break;
    case fex_sqrt:
        printf("floating point square root\n");
        break;
    case fex_cnvt:
        printf("floating point conversion\n");
        break;
    case fex_cmp:
        printf("floating point compare\n");
        break;
    default:
        printf("unknown operation\n");
    }
    switch (info->op1.type) {
    case fex_int:
        printf("operand 1: %d\n", info->op1.val.i);
        break;
    case fex_llong:
        printf("operand 1: %lld\n", info->op1.val.l);
        break;
    case fex_float:
        printf("operand 1: %g\n", info->op1.val.f);
        break;
    case fex_double:
        printf("operand 1: %g\n", info->op1.val.d);
        break;

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM
Mode (Continued)
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The handler in the preceding example reports the type of exception that occurred,

the type of operation that caused it, and the operands. It does not indicate where the

exception occurred. To find out where the exception occurred, you can use

retrospective diagnostics.

Retrospective Diagnostics

Another way to locate an exception using the libm9x.so exception handling

extensions is to enable logging of retrospective diagnostic messages regarding

floating point exceptions. When you enable logging of retrospective diagnostics, the

system records information about certain exceptions. This information includes the

type of exception, the address of the instruction that caused it, the manner in which

it will be handled, and a stack trace similar to that produced by a debugger. (The stack

trace recorded with a retrospective diagnostic message contains only instruction

addresses and function names; for additional debugging information such as line

numbers, source file names, and argument values, you must use a debugger.)

    case fex_ldouble:
        printf("operand 1: %Lg\n", info->op1.val.q);
        break;
    }
    switch (info->op2.type) {
    case fex_int:
        printf("operand 2: %d\n", info->op2.val.i);
        break;
    case fex_llong:
        printf("operand 2: %lld\n", info->op2.val.l);
        break;
    case fex_float:
        printf("operand 2: %g\n", info->op2.val.f);
        break;
    case fex_double:
        printf("operand 2: %g\n", info->op2.val.d);
        break;
    case fex_ldouble:
        printf("operand 2: %Lg\n", info->op2.val.q);
        break;
    }
}
...
fex_set_handling(FEX_COMMON, FEX_CUSTOM, handler);

CODE EXAMPLE 4-2 Printing Information Supplied to Handler Installed in FEX_CUSTOM
Mode (Continued)
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The log of retrospective diagnostics does not contain information about every single

exception that occurs; if it did, a typical log would be huge, and it would be

impossible to isolate unusual exceptions. Instead, the logging mechanism eliminates

redundant messages. A message is considered redundant under either of two

circumstances:

■ The same exception has been previously logged at the same location (i.e., with the

same instruction address and stack trace), or

■ FEX_NONSTOPmode is in effect for the exception and its flag has been previously

raised.

In particular, in most programs, only the first occurrence of each type of exception

will be logged. (When FEX_NONSTOPhandling mode is in effect for an exception,

clearing its flag via any of the C99 floating point environment functions allows the

next occurrence of that exception to be logged, provided it does not occur at a

location at which it was previously logged.)

To enable logging, use the fex_set_log function to specify the file to which

messages should be delivered. For example, to log messages to the standard error

file, use:

CODE EXAMPLE 4-3 combines logging of retrospective diagnostics with the shared

object preloading facility illustrated in the previous section. By creating the following

C source file, compiling it to a shared object, preloading the shared object by

supplying its path name in the LD_PRELOADenvironment variable, and specifying the

names of one or more exceptions (separated by commas) in the FTRAPenvironment

variable, you can simultaneously abort the program on the specified exceptions and

obtain retrospective diagnostic output showing where each exception occurs.

fex_set_log(stderr);

CODE EXAMPLE 4-3 Combined Logging of Retrospective Diagnostics With Shared Object
Preloading

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fenv.h>

static struct ftrap_string {
    const char  *name;
    int         value;
} ftrap_table[] = {
    { "inexact", FEX_INEXACT },
    { "division", FEX_DIVBYZERO },
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Using the preceding code with the example program given at the beginning of this

section produces the following results on SPARC:

    { "underflow", FEX_UNDERFLOW },
    { "overflow", FEX_OVERFLOW },
    { "invalid", FEX_INVALID },
    { NULL, 0 }
};

#pragma init (set_ftrap)
void set_ftrap()
{
    struct ftrap_string  *f;
    char                 *s, *s0;
    int                  ex = 0;

    if ((s = getenv("FTRAP")) == NULL)
        return;

    if ((s0 = strtok(s, ",")) == NULL)
        return;

    do {
        for (f = &trap_table[0]; f->name != NULL; f++) {
            if (!strcmp(s0, f->name))
                ex |= f->value;
        }
    } while ((s0 = strtok(NULL, ",")) != NULL);

    fex_set_handling(ex, FEX_ABORT, NULL);
    fex_set_log(stderr);
}

example% cc -Kpic -G -ztext init.c -o init.so -R/opt/SUNWspro/lib
-L/opt/SUNWspro/lib -lm9x -lc
example% env FTRAP=invalid LD_PRELOAD=./init.so a.out
Floating point invalid operation (sqrt) at 0x00010c24 sqrtm1_, abort
  0x00010c30  sqrtm1_
  0x00010b48  MAIN_
  0x00010ccc  main
Abort

CODE EXAMPLE 4-3 Combined Logging of Retrospective Diagnostics With Shared Object
Preloading (Continued)
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The preceding output shows that the invalid operation exception was raised as a

result of a square root operation in the routine sqrtm1 .

(As noted above, to enable trapping from an initialization routine in a shared object

on x86 platforms, you must override the standard __fpstart routine.)

Appendix A gives more examples showing typical log outputs. For general

information, see the fex_set_log (3m) man page.

Handling Exceptions

Historically, most numerical software has been written without regard to exceptions

(for a variety of reasons), and many programmers have become accustomed to

environments in which exceptions cause a program to abort immediately. Now, some

high-quality software packages such as LAPACK are being carefully designed to

avoid exceptions such as division by zero and invalid operations and to scale their

inputs aggressively to preclude overflow and potentially harmful underflow. Neither

of these approaches to dealing with exceptions is appropriate in every situation.

However, ignoring exceptions can pose problems when one person writes a program

or subroutine that is intended to be used by someone else (perhaps someone who

does not have access to the source code), and attempting to avoid all exceptions can

require many defensive tests and branches and carry a significant cost (see Demmel

and Li, “Faster Numerical Algorithms via Exception Handling,” IEEE Trans. Comput.
43 (1994), pp. 983–992.)

The default exception response, status flags, and optional trapping facility of IEEE

arithmetic are intended to provide a third alternative: continuing a computation in

the presence of exceptions and either detecting them after the fact or intercepting

and handling them as they occur. As described above, ieee_flags or the C99

floating point environment functions can be used to detect exceptions after the fact,

and ieee_handler or fex_set_handling can be used to enable trapping and install

a handler to intercept exceptions as they occur. In order to continue the computation,

however, the IEEE standard recommends that a trap handler be able to provide a

result for the operation that incurred an exception. A SIGFPE handler installed via

ieee_handler or fex_set_handling in FEX_SIGNAL mode can accomplish this

using the uap parameter supplied to a signal handler by the Solaris operating

environment. An FEX_CUSTOMmode handler installed via fex_set_handling can

provide a result using the info parameter supplied to such a handler.
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Recall that a SIGFPE signal handler can be declared in C as follows:

When a SIGFPE signal handler is invoked as a result of a trapped floating point

exception, the uap parameter points to a data structure that contains a copy of the

machine’s integer and floating point registers as well as other system-dependent

information describing the exception. If the signal handler returns normally, the

saved data are restored and the program resumes execution at the point at which the

trap was taken. Thus, by accessing and decoding the information in the data

structure that describes the exception and possibly modifying the saved data, a

SIGFPE handler can substitute a user-supplied value for the result of an exceptional

operation and continue computation.

An FEX_CUSTOMmode handler can be declared as follows:

When a FEX_CUSTOMhandler is invoked, the ex parameter indicates which type of

exception occurred (it is one of the values listed in TABLE 4-5) and the info parameter

points to a data structure that contains more information about the exception.

Specifically, this structure contains a code representing the arithmetic operation that

caused the exception and structures recording the operands, if they are available. It

also contains a structure recording the default result that would have been

substituted if the exception were not trapped and an integer value holding the

bitwise “or” of the exception flags that would have accrued. The handler can modify

the latter members of the structure to substitute a different result or change the set of

flags that are accrued. (Note that if the handler returns without modifying these

data, the program will continue with the default untrapped result and flags just as if

the exception were not trapped.)

As an illustration, the following section shows how to substitute a scaled result for

an operation that underflows or overflows. See Appendix A for further examples.

#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
    ...
}

#include <fenv.h>

void handler(int ex, fex_info_t *info)
{
    ...
}
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Substituting IEEE Trapped Under/Overflow Results

The IEEE standard recommends that when underflow and overflow are trapped, the

system should provide a way for a trap handler to substitute an exponent-wrapped
result, i.e., a value that agrees with what would have been the rounded result of the

operation that underflowed or overflowed except that the exponent is wrapped

around the end of its usual range, thereby effectively scaling the result by a power of

two. The scale factor is chosen to map underflowed and overflowed results as nearly

as possible to the middle of the exponent range so that subsequent computations

will be less likely to underflow or overflow further. By keeping track of the number

of underflows and overflows that occur, a program can scale the final result to

compensate for the exponent wrapping. This under/overflow “counting mode” can

be used to produce accurate results in computations that would otherwise exceed

the range of the available floating point formats. (See P. Sterbenz, Floating-Point
Computation.)

On SPARC, when a floating point instruction incurs a trapped exception, the system

leaves the destination register unchanged. Thus, in order to substitute the exponent-

wrapped result, an under/overflow handler must decode the instruction, examine

the operand registers, and generate the scaled result itself. CODE EXAMPLE 4-4 shows

a handler that performs these steps. (In order to use this handler with code compiled

for UltraSPARC systems, compile the handler on a system running Solaris 2.6,

Solaris 7, or Solaris 8 and define the preprocessor token V8PLUS.)

CODE EXAMPLE 4-4 Substituting IEEE Trapped Under/Overflow Handler Results for
SPARC Systems

#include <stdio.h>

#include <ieeefp.h>

#include <math.h>

#include <sunmath.h>

#include <siginfo.h>

#include <ucontext.h>

#ifdef V8PLUS

/* The upper 32 floating point registers are stored in an area

   pointed to by uap->uc_mcontext.xrs.xrs_prt. Note that this

   pointer is valid ONLY when uap->uc_mcontext.xrs.xrs_id ==

   XRS_ID (defined in sys/procfs.h). */

#include <assert.h>

#include <sys/procfs.h>

#define FPxreg(x)  ((prxregset_t*)uap->uc_mcontext.xrs.xrs_ptr)

->pr_un.pr_v8p.pr_xfr.pr_regs[(x)]

#endif
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#define FPreg(x)   uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[(x)]

/*

* Supply the IEEE 754 default result for trapped under/overflow

*/

void

ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)

{

    unsigned    instr, opf, rs1, rs2, rd;

    long double qs1, qs2, qd, qscl;

    double      ds1, ds2, dd, dscl;

    float       fs1, fs2, fd, fscl;

    /* get the instruction that caused the exception */

    instr = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

    /* extract the opcode and source and destination register

       numbers */

    opf = (instr >> 5) & 0x1ff;

    rs1 = (instr >> 14) & 0x1f;

    rs2 = instr & 0x1f;

    rd = (instr >> 25) & 0x1f;

    /* get the operands */

    switch (opf & 3) {

    case 1: /* single precision */

        fs1 = *(float*)&FPreg(rs1);

        fs2 = *(float*)&FPreg(rs2);

        break;

    case 2: /* double precision */

#ifdef V8PLUS

        if (rs1 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            ds1 = *(double*)&FPxreg(rs1 & 0x1e);

        }

        else

            ds1 = *(double*)&FPreg(rs1);

        if (rs2 & 1)
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        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            ds2 = *(double*)&FPxreg(rs2 & 0x1e);

        }

        else

            ds2 = *(double*)&FPreg(rs2);

#else

        ds1 = *(double*)&FPreg(rs1);

        ds2 = *(double*)&FPreg(rs2);

#endif

        break;

    case 3: /* quad precision */

#ifdef V8PLUS

        if (rs1 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            qs1 = *(long double*)&FPxreg(rs1 & 0x1e);

        }

        else

            qs1 = *(long double*)&FPreg(rs1);

        if (rs2 & 1)

        {

            assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

            qs2 = *(long double*)&FPxreg(rs2 & 0x1e);

        }

        else

            qs2 = *(long double*)&FPreg(rs2);

#else

        qs1 = *(long double*)&FPreg(rs1);

        qs2 = *(long double*)&FPreg(rs2);

#endif

        break;

    }

    /* set up scale factors */

    if (sip->si_code == FPE_FLTOVF) {

        fscl = scalbnf(1.0f, -96);

        dscl = scalbn(1.0, -768);

        qscl = scalbnl(1.0, -12288);
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    } else {

        fscl = scalbnf(1.0f, 96);

        dscl = scalbn(1.0, 768);

        qscl = scalbnl(1.0, 12288);

    }

    /* disable traps and generate the scaled result */

    fpsetmask(0);

    switch (opf) {

    case 0x41: /* add single */

        fd = fscl * (fscl * fs1 + fscl * fs2);

        break;

    case 0x42: /* add double */

        dd = dscl * (dscl * ds1 + dscl * ds2);

        break;

    case 0x43: /* add quad */

        qd = qscl * (qscl * qs1 + qscl * qs2);

        break;

    case 0x45: /* subtract single */

        fd = fscl * (fscl * fs1 - fscl * fs2);

        break;

    case 0x46: /* subtract double */

        dd = dscl * (dscl * ds1 - dscl * ds2);

        break;

    case 0x47: /* subtract quad */

        qd = qscl * (qscl * qs1 - qscl * qs2);

        break;

    case 0x49: /* multiply single */

        fd = (fscl * fs1) * (fscl * fs2);

        break;

    case 0x4a: /* multiply double */

        dd = (dscl * ds1) * (dscl * ds2);

        break;
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    case 0x4b: /* multiply quad */

        qd = (qscl * qs1) * (qscl * qs2);

        break;

    case 0x4d: /* divide single */

        fd = (fscl * fs1) / (fs2 / fscl);

        break;

    case 0x4e: /* divide double */

        dd = (dscl * ds1) / (ds2 / dscl);

        break;

    case 0x4f: /* divide quad */

        qd = (qscl * qs1) / (qs2 / dscl);

        break;

    case 0xc6: /* convert double to single */

        fd = (float) (fscl * (fscl * ds1));

        break;

    case 0xc7: /* convert quad to single */

        fd = (float) (fscl * (fscl * qs1));

        break;

    case 0xcb: /* convert quad to double */

        dd = (double) (dscl * (dscl * qs1));

        break;

    }

    /* store the result in the destination */

    if (opf & 0x80) {

        /* conversion operation */

        if (opf == 0xcb) {

            /* convert quad to double */

#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(double*)&FPxreg(rd & 0x1e) = dd;

            }
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            else

                *(double*)&FPreg(rd) = dd;

#else

            *(double*)&FPreg(rd) = dd;

#endif

        } else

            /* convert quad/double to single */

            *(float*)&FPreg(rd) = fd;

    } else {

        /* arithmetic operation */

        switch (opf & 3) {

        case 1: /* single precision */

            *(float*)&FPreg(rd) = fd;

            break;

        case 2: /* double precision */

#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(double*)&FPxreg(rd & 0x1e) = dd;

            }

            else

                *(double*)&FPreg(rd) = dd;

#else

            *(double*)&FPreg(rd) = dd;

#endif

            break;

        case 3: /* quad precision */

#ifdef V8PLUS

            if (rd & 1)

            {

                assert(uap->uc_mcontext.xrs.xrs_id == XRS_ID);

                *(long double*)&FPxreg(rd & 0x1e) = qd;

            }

            else

                *(long double*)&FPreg(rd & 0x1e) = qd;
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In this example, the variables a, b, x , and y have been declared volatile only to

prevent the compiler from evaluating a * b , etc., at compile time. In typical usage,

the volatile declarations would not be needed.

#else

            *(long double*)&FPreg(rd & 0x1e) = qd;

#endif

            break;

        }

    }

}

int

main()

{

    volatile float   a, b;

    volatile double  x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);

    ieee_handler("set", "overflow", ieee_trapped_default);

    a = b = 1.0e30f;

a *= b; /* overflow; will be wrapped to a moderate number */

    printf( "%g\n", a );

    a /= b;

    printf( "%g\n", a );

    a /= b; /* underflow; will wrap back */

    printf( "%g\n", a );

    x = y = 1.0e300;

x *= y; /* overflow; will be wrapped to a moderate number */

    printf( "%g\n", x );

    x /= y;

    printf( "%g\n", x );

    x /= y; /* underflow; will wrap back */

    printf( "%g\n", x );

    ieee_retrospective(stdout);

    return 0;

}
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The output from the preceding program is:

On x86, the floating point hardware provides the exponent-wrapped result when a

floating point instruction incurs a trapped underflow or overflow and its destination

is a register. When trapped underflow or overflow occurs on a floating point store

instruction, however, the hardware traps without completing the store (and without

popping the stack, if the store instruction is a store-and-pop). Thus, in order to

implement counting mode, an under/overflow handler must generate the scaled

result and fix up the stack when a trap occurs on a store instruction.

CODE EXAMPLE 4-5 illustrates such a handler.

159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
 Note: IEEE floating-point exception traps enabled:
    underflow;  overflow;
 See the Numerical Computation Guide, ieee_handler(3M)
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#include <stdio.h>
#include <ieeefp.h>
#include <math.h>
#include <sunmath.h>
#include <siginfo.h>
#include <ucontext.h>

/* offsets into the saved fp environment */
#define CW    0    /* control word */
#define SW    1    /* status word */
#define TW    2    /* tag word */
#define OP    4    /* opcode */
#define EA    5    /* operand address */

#define FPenv(x)    uap->uc_mcontext.fpregs.fp_reg_set.
fpchip_state.state[(x)]

#define FPreg(x)    *(long double *)(10*(x)+(char*)&uap->
uc_mcontext.fpregs.fp_reg_set.fpchip_state.state[7])
/*
*  Supply the IEEE 754 default result for trapped under/overflow
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*/
void
ieee_trapped_default(int sig, siginfo_t *sip, ucontext_t *uap)
{
    double      dscl;
    float       fscl;
    unsigned    sw, op, top;
    int         mask, e;

    /* preserve flags for untrapped exceptions */
    sw = uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.status;
    FPenv(SW) |= (sw & (FPenv(CW) & 0x3f));
    /* if the excepting instruction is a store, scale the stack
       top, store it, and pop the stack if need be */
    fpsetmask(0);
    op = FPenv(OP) >> 16;
    switch (op & 0x7f8) {
    case 0x110:
    case 0x118:
    case 0x150:
    case 0x158:
    case 0x190:
    case 0x198:
        fscl = scalbnf(1.0f, (sip->si_code == FPE_FLTOVF)?
            -96 : 96);
        *(float *)FPenv(EA) = (FPreg(0) * fscl) * fscl;
        if (op & 8) {
            /* pop the stack */
            FPreg(0) = FPreg(1);
            FPreg(1) = FPreg(2);
            FPreg(2) = FPreg(3);
            FPreg(3) = FPreg(4);
            FPreg(4) = FPreg(5);
            FPreg(5) = FPreg(6);
            FPreg(6) = FPreg(7);
            top = (FPenv(SW) >> 10) & 0xe;
            FPenv(TW) |= (3 << top);
            top = (top + 2) & 0xe;
            FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);
        }
        break;

    case 0x510:
    case 0x518:
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    case 0x550:
    case 0x558:
    case 0x590:
    case 0x598:
        dscl = scalbn(1.0, (sip->si_code == FPE_FLTOVF)?
            -768 : 768);
        *(double *)FPenv(EA) = (FPreg(0) * dscl) * dscl;
        if (op & 8) {
            /* pop the stack */
            FPreg(0) = FPreg(1);
            FPreg(1) = FPreg(2);
            FPreg(2) = FPreg(3);
            FPreg(3) = FPreg(4);
            FPreg(4) = FPreg(5);
            FPreg(5) = FPreg(6);
            FPreg(6) = FPreg(7);
            top = (FPenv(SW) >> 10) & 0xe;
            FPenv(TW) |= (3 << top);
            top = (top + 2) & 0xe;
            FPenv(SW) = (FPenv(SW) & ~0x3800) | (top << 10);
        }
        break;
    }
}

int main()
{
    volatile float    a, b;
    volatile double    x, y;

    ieee_handler("set", "underflow", ieee_trapped_default);
    ieee_handler("set", "overflow", ieee_trapped_default);
    a = b = 1.0e30f;
    a *= b;
    printf( "%g\n", a );
    a /= b;
    printf( "%g\n", a );
    a /= b;
    printf( "%g\n", a );
    x = y = 1.0e300;
    x *= y;
    printf( "%g\n", x );
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As on SPARC, the output from the preceding program on x86 is:

C/C++ programs can use the fex_set_handling function in libm9x.so to install a

FEX_CUSTOMhandler for underflow and overflow. On SPARC systems, the

information supplied to such a handler always includes the operation that caused

the exception and the operands, and this information is sufficient to allow the

handler to compute the IEEE exponent-wrapped result, as shown above. On x86, the

available information might not always indicate which particular operation caused

the exception; when the exception is raised by one of the transcendental instructions,

for example, the info->op parameter is set to fex_other . (See the fenv.h file for

definitions.) Moreover, the x86 hardware delivers an exponent-wrapped result

automatically, and this can overwrite one of the operands if the destination of the

excepting instruction is a floating point register.

Fortunately, the fex_set_handling feature provides a simple way for a handler

installed in FEX_CUSTOMmode to substitute the IEEE exponent-wrapped result for an

operation that underflows or overflows. When either of these exceptions is trapped,

the handler can set

info->res.type = fex_nodata;

    x /= y;
    printf( "%g\n", x );
    x /= y;
    printf( "%g\n", x );

    ieee_retrospective(stdout);
    return 0;
}

159.309
1.59309e-28
1
4.14884e+137
4.14884e-163
1
 Note: IEEE floating-point exception traps enabled:
    underflow;  overflow;
 See the Numerical Computation Guide, ieee_handler(3M)
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to indicate that the exponent-wrapped result should be delivered. Here is an

example showing such a handler:

#include <stdio.h>
#include <fenv.h>

void handler(int ex, fex_info_t *info) {
    info->res.type = fex_nodata;
}
int main()
{
    volatile float  a, b;
    volatile double x, y;

    fex_set_log(stderr);
    fex_set_handling(FEX_UNDERFLOW | FEX_OVERFLOW, FEX_CUSTOM,
        handler);
    a = b = 1.0e30f;

a *= b; /* overflow; will be wrapped to a moderate number */
    printf("%g\n", a);
    a /= b;
    printf("%g\n", a);
    a /= b; /* underflow; will wrap back */
    printf("%g\n", a);

    x = y = 1.0e300;
x *= y; /* overflow; will be wrapped to a moderate number */

    printf("%g\n", x);
    x /= y;

    printf("%g\n", x);
    x /= y; /* underflow; will wrap back */
    printf("%g\n", x);

    return 0;
}
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The output from the preceding program resembles the following:

Floating point overflow at 0x00010924 main, handler: handler
  0x00010928 main
159.309
1.59309e-28
Floating point underflow at 0x00010994 main, handler: handler
  0x00010998 main
1
Floating point overflow at 0x000109e4 main, handler: handler
  0x000109e8 main
4.14884e+137
4.14884e-163
Floating point underflow at 0x00010a4c main, handler: handler
  0x00010a50 main
1

96 Numerical Computation Guide • May 2002



APPENDIX A

Examples

This appendix provides examples of how to accomplish some popular tasks. The

examples are written either in Fortran or ANSI C, and many depend on the current

versions of libm and libsunmath . These examples were tested with the current C

and Fortran compilers in the Solaris operating environment.

IEEE Arithmetic

The following examples show one way you can examine the hexadecimal

representations of floating-point numbers. Note that you can also use the debuggers

to look at the hexadecimal representations of stored data.

The following C program prints a double precision approximation to π and single

precision infinity:

CODE EXAMPLE A-1 Double Precision Example

#include <math.h>
#include <sunmath.h>

int main() {
union {

float       flt;
unsigned un;

} r;
union {

double      dbl;
unsigned    un[2];

} d;
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On SPARC, the output of the preceding program looks like this:

The following Fortran program prints the smallest normal numbers in each format:

/* double precision */
d.dbl = M_PI;
(void) printf("DP Approx pi = %08x %08x = %18.17e \n",
   d.un[0], d.un[1], d.dbl);

/* single precision */
r.flt = infinityf();
(void) printf("Single Precision %8.7e : %08x \n",
   r.flt, r.un);

return 0;
}

DP Approx pi = 400921fb 54442d18 = 3.14159265358979312e+00
Single Precision Infinity: 7f800000

CODE EXAMPLE A-2 Print Smallest Normal Numbers in Each Format

program print_ieee_values
c
c the purpose of the implicit statements is to ensure
c that the floatingpoint pseudo-intrinsic functions
c are declared with the correct type
c

implicit real*16 (q)
implicit double precision (d)
implicit real (r)
real*16           z
double precision  x
real              r

c
z = q_min_normal()
write(*,7) z, z

 7 format('min normal, quad: ',1pe47.37e4,/,' in hex ',z32.32)
c

x = d_min_normal()
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On SPARC, the corresponding output reads:

The Math Libraries

This section shows examples that use functions from the math library.

Random Number Generator

The following example calls a random number generator to generate an array of

numbers and uses a timing function to measure the time it takes to compute the EXP
of the given numbers:

write(*,14) x, x
 14 format('min normal, double: ',1pe23.16,' in hex ',z16.16)
c

r = r_min_normal()
write(*,27) r, r

 27 format('min normal, single: ',1pe14.7,' in hex ',z8.8)
c

end

min normal, quad:   3.3621031431120935062626778173217526026D-4932
 in hex 00010000000000000000000000000000
min normal, double:  2.2250738585072014-308 in hex 0010000000000000
min normal, single:  1.1754944E-38 in hex 00800000

CODE EXAMPLE A-3 Random Number Generator

#ifdef DP

#define GENERIC double precision

#else

#define GENERIC real

#endif

#define SIZE 400000
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To compile the preceding example, place the source code in a file with the suffix F
(not f ) so that the compiler will automatically invoke the preprocessor, and specify

either -DSP or -DDP on the command line to select single or double precision.

program example

c

implicit GENERIC (a-h,o-z)

GENERIC x(SIZE), y, lb, ub

real tarray(2), u1, u2

c

c compute EXP on random numbers in [-ln2/2,ln2/2]

lb = -0.3465735903

ub = 0.3465735903

c

c generate array of random numbers

#ifdef DP

call d_init_addrans()

call d_addrans(x,SIZE,lb,ub)

#else

call r_init_addrans()

call r_addrans(x,SIZE,lb,ub)

#endif

c

c start the clock

call dtime(tarray)

u1 = tarray(1)

c

c compute exponentials

do 16 i=1,SIZE

y = exp(x(i))

 16 continue

c

c get the elapsed time

call dtime(tarray)

u2 = tarray(1)

print *,'time used by EXP is ',u2-u1

print *,'last values for x and exp(x) are ',x(SIZE),y

c

call flush(6)

end
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This example shows how to use d_addrans to generate blocks of random data

uniformly distributed over a user-specified range:

CODE EXAMPLE A-4 Using d_addrans

/*

 * test SIZE*LOOPS random arguments to sin in the range

 * [0, threshold] where

 * threshold = 3E30000000000000 (3.72529029846191406e-09)

 */

#include <math.h>

#include <sunmath.h>

#define SIZE 10000

#define LOOPS 100

int main()

{

doublex[SIZE], y[SIZE];

int i, j, n;

doublelb, ub;

union {

unsigned u[2];

double d;

}  upperbound;

upperbound.u[0] = 0x3e300000;

upperbound.u[1] = 0x00000000;

/* initialize the random number generator */

d_init_addrans_();

/* test (SIZE * LOOPS) arguments to sin */

for (j = 0; j < LOOPS; j++) {

/*

* generate a vector, x, of length SIZE,

* of random numbers to use as

* input to the trig functions.

*/

n = SIZE;

ub = upperbound.d;

lb = 0.0;
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IEEE Recommended Functions

This Fortran example uses some functions recommended by the IEEE standard:

d_addrans_(x, &n, &lb, &ub);

for (i = 0; i < n; i++)

 y[i] = sin(x[i]);

/* is sin(x) == x?  It ought to, for tiny x. */

for (i = 0; i < n; i++)

if (x[i] != y[i])

printf(

" OOPS: %d sin(%18.17e)=%18.17e \n",

i, x[i], y[i]);

}

printf(" comparison ended; no differences\n");

ieee_retrospective_();

return 0;

}

CODE EXAMPLE A-5 IEEE Recommended Functions

c
c Demonstrate how to call 5 of the more interesting IEEE
c recommended functions from Fortran. These are implemented
c with "bit-twiddling", and so are as efficient as you could
c hope. The IEEE standard for floating-point arithmetic
c doesn't require these, but recommends that they be
c included in any IEEE programming environment.
c
c For example, to accomplish
c y = x * 2**n,
c since the hardware stores numbers in base 2,
c shift the exponent by n places.
c
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c Refer to
c ieee_functions(3m)
c libm_double(3f)
c libm_single(3f)
c
c The 5 functions demonstrated here are:
c
c ilogb(x): returns the base 2 unbiased exponent of x in
c integer format
c signbit(x): returns the sign bit, 0 or 1
c copysign(x,y): returns x with y's sign bit
c nextafter(x,y): next representable number after x, in
c the direction y
c scalbn(x,n): x * 2**n
c
c function double precision single precision
c --------------------------------------------------------
c ilogb(x) i = id_ilogb(x) i = ir_ilogb(r)
c signbit(x) i = id_signbit(x) i = ir_signbit(r)
c copysign(x,y) x = d_copysign(x,y) r = r_copysign(r,s)
c nextafter(x,y) z = d_nextafter(x,y) r = r_nextafter(r,s)
c scalbn(x,n) x = d_scalbn(x,n) r = r_scalbn(r,n)

program ieee_functions_demo
implicit double precision (d)
implicit real (r)
double precision   x, y, z, direction
real               r, s, t, r_direction
integer            i, scale

print *
print *, 'DOUBLE PRECISION EXAMPLES:'
print *

x = 32.0d0
i = id_ilogb(x)
write(*,1) x, i

 1 format(' The base 2 exponent of ', F4.1, ' is ', I2)

x = -5.5d0
y = 12.4d0
z = d_copysign(x,y)
write(*,2) x, y, z

 2    format(F5.1, ' was given the sign of ', F4.1,
     *   ' and is now ', F4.1)

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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x = -5.5d0
i = id_signbit(x)
print *, 'The sign bit of ', x, ' is ', i

x = d_min_subnormal()
direction = -d_infinity()
y = d_nextafter(x, direction)
write(*,3) x

 3 format(' Starting from ', 1PE23.16E3,
     -   ', the next representable number ')

write(*,4) direction, y
 4 format('    towards ', F4.1, ' is ', 1PE23.16E3)

x = d_min_subnormal()
direction = 1.0d0

    y = d_nextafter(x, direction)
write(*,3) x
write(*,4) direction, y
x = 2.0d0
scale = 3
y = d_scalbn(x, scale)
write (*,5) x, scale, y

 5 format(' Scaling ', F4.1, ' by 2**', I1, ' is ', F4.1)
print *
print *, 'SINGLE PRECISION EXAMPLES:'
print *

r = 32.0
i = ir_ilogb(r)
write (*,1) r, i

r = -5.5
i = ir_signbit(r)
print *, 'The sign bit of ', r, ' is ', i

r = -5.5
s = 12.4
t = r_copysign(r,s)
write (*,2) r, s, t

r = r_min_subnormal()
r_direction = -r_infinity()
s = r_nextafter(r, r_direction)
write(*,3) r
write(*,4) r_direction, s

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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The output from this program is shown in CODE EXAMPLE A-6.

r = r_min_subnormal()
r_direction = 1.0e0
s = r_nextafter(r, r_direction)
write(*,3) r
write(*,4) r_direction, s

r = 2.0
scale = 3
s = r_scalbn(r, scale)
write (*,5) r, scale, y

print *
end

CODE EXAMPLE A-6 Output of CODE EXAMPLE A-5

DOUBLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is  5
-5.5 was given the sign of 12.4 and is now  5.5
The sign bit of    -5.5 is   1
Starting from  4.9406564584124654E-324, the next representable
   number towards -Inf is  0.0000000000000000E+000
Starting from  4.9406564584124654E-324, the next representable
   number towards  1.0 is  9.8813129168249309E-324
Scaling  2.0 by 2**3 is 16.0

SINGLE PRECISION EXAMPLES:

The base 2 exponent of 32.0 is  5
The sign bit of    -5.5 is   1
-5.5 was given the sign of 12.4 and is now  5.5
Starting from  1.4012984643248171E-045, the next representable
   number towards -Inf is  0.0000000000000000E+000
Starting from  1.4012984643248171E-045, the next representable
   number towards  1.0 is  2.8025969286496341E-045
Scaling  2.0 by 2**3 is 16.0

CODE EXAMPLE A-5 IEEE Recommended Functions (Continued)
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If using the f95 compiler with the -f77 compatibility option, the following

additional messages are displayed.

IEEE Special Values

This C program calls several of the ieee_values (3m) functions:

Remember to specify both -lsunmath and -lm when linking.

On SPARC, the output looks like this:

Note:IEEE floating-point exception flags raised:
   Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)

#include <math.h>
#include <sunmath.h>

int main()
{

double   x;
float   r;

x = quiet_nan(0);
printf("quiet NaN: %.16e = %08x %08x \n",

x, ((int *) &x)[0], ((int *) &x)[1]);

x = nextafter(max_subnormal(), 0.0);
printf("nextafter(max_subnormal,0) = %.16e\n",x);
printf("                           = %08x %08x\n",

((int *) &x)[0], ((int *) &x)[1]);

r = min_subnormalf();
printf("single precision min subnormal = %.8e = %08x\n",
    r, ((int *) &r)[0]);

return 0;
}

quiet NaN: NaN = 7fffffff  ffffffff
nextafter(max_subnormal,0) = 2.2250738585072004e-308
                           = 000fffff  fffffffe
single precision min subnormal = 1.40129846e-45 = 00000001
106  Numerical Computation Guide • May 2002



Because the x86 architecture is “little-endian”, the output on x86 is slightly different

(the high and low order words of the hexadecimal representations of the double

precision numbers are reversed):

Fortran programs that use ieee_values functions should take care to declare those

functions’ types:

On SPARC, the output reads as follows:

quiet NaN: NaN = ffffffff 7fffffff
nextafter(max_subnormal,0) = 2.2250738585072004e-308
                           = fffffffe 000ffff f
single precision min subnormal = 1.40129846e-45 = 00000001

program print_ieee_values
c
c the purpose of the implicit statements is to insure
c that the floatingpoint pseudo-instrinsic
c functions are declared with the correct type
c

implicit real*16 (q)
implicit double precision (d)
implicit real (r)
real*16 z, zero, one
double precision    x
real                r

c
zero = 0.0
one = 1.0
z = q_nextafter(zero, one)
x = d_infinity()
r = r_max_normal()

c
print *, z
print *, x
print *, r

c
end

  6.4751751194380251109244389582276466-4966
  Inf
  3.40282E+38
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ieee_flags — Rounding Direction

The following example demonstrates how to set the rounding mode to round towards
zero:

#include <math.h>
#include <sunmath.h>

int main()
{

int         i;
double      x, y;
char        *out_1, *out_2, *dummy;

/* get prevailing rounding direction */
i = ieee_flags("get", "direction", "", &out_1);

x = sqrt(.5);
printf("With rounding direction %s, \n", out_1);
printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
       ((int *) &x)[0], ((int *) &x)[1], x);

/* set rounding direction */
if (ieee_flags("set", "direction", "tozero", &dummy) != 0)

printf("Not able to change rounding direction!\n");
i = ieee_flags("get", "direction", "", &out_2);

x = sqrt(.5);
/*
 * restore original rounding direction before printf, since
 * printf is also affected by the current rounding direction
 */
if (ieee_flags("set", "direction", out_1, &dummy) != 0)

printf("Not able to change rounding direction!\n");
printf("\nWith rounding direction %s,\n", out_2);
printf("sqrt(.5) = 0x%08x 0x%08x = %16.15e\n",
       ((int *) &x)[0], ((int *) &x)[1], x);

return 0;
}
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(SPARC) The output of this short program shows the effects of rounding towards zero:

(x86) The output of this short program shows the effects of rounding towards zero:

To set rounding direction towards zero from a Fortran program:

The output is as follows:

demo% cc rounding_direction.c -lsunmath -lm
demo% a.out
With rounding direction nearest,
sqrt(.5) = 0x3fe6a09e  0x667f3bcd  = 7.071067811865476e-01

With rounding direction tozero,
sqrt(.5) = 0x3fe6a09e 0x667f3bcc  = 7.071067811865475e-01
demo%

demo% cc rounding_direction.c -lsunmath -lm
demo% a.out
With rounding direction nearest,
sqrt(.5) = 0x667f3bcd 0x3fe6a09e  = 7.071067811865476e-01

With rounding direction tozero,
sqrt(.5) = 0x667f3bcc 0x3fe6a09e  = 7.071067811865475e-01
demo%

program ieee_flags_demo
character*16 out

i = ieee_flags('set', 'direction', 'tozero', out)
if (i.ne.0) print *, 'not able to set rounding direction'

i = ieee_flags('get', 'direction', '', out)
print *, 'Rounding direction is: ', out

end

demo% f95 ieee_flags_demo.f
demo% a.out
 Rounding direction is: tozero
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If the program is compiled using the f95 compiler with the -f77 compatibility

option, the output includes the following additional messages.

C99 Floating Point Environment Functions

The next example illustrates the use of several of the C99 floating point environment

functions. The norm function computes the Euclidean norm of a vector and uses the

environment functions to handle underflow and overflow. The main program calls

this function with vectors that are scaled to ensure that underflows and overflows

occur, as the retrospective diagnostic output shows.

demo% f95 -f77 ieee_flags_demo.f
ieee_flags_demo.f:
 MAIN ieee_flags_demo:
demo% a.out
 Rounding direction is: tozero
 Note: Rounding direction toward zero
 See the Numerical Computation Guide, ieee_flags(3M)

CODE EXAMPLE A-7 C99 Floating Point Environment Functions

#include <stdio.h>

#include <math.h>

#include <sunmath.h>

#include <fenv.h>

/*

*  Compute the euclidean norm of the vector x avoiding

*  premature underflow or overflow

*/

double norm(int n, double *x)

{

    fenv_t  env;

    double  s, b, d, t;

    int     i, f;

    /* save the environment, clear flags, and establish nonstop

       exception handling */

    feholdexcept(&env);
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    /* attempt to compute the dot product x.x */

    d = 1.0; /* scale factor */

    s = 0.0;

    for (i = 0; i < n; i++)

        s += x[i] * x[i];

    /* check for underflow or overflow */

    f = fetestexcept(FE_UNDERFLOW | FE_OVERFLOW);

    if (f & FE_OVERFLOW) {

        /* first attempt overflowed, try again scaling down */

        feclearexcept(FE_OVERFLOW);

        b = scalbn(1.0, -640);

        d = 1.0 / b;

        s = 0.0;

        for (i = 0; i < n; i++) {

            t = b * x[i];

            s += t * t;

        }

    }

    else if (f & FE_UNDERFLOW && s < scalbn(1.0, -970)) {

        /* first attempt underflowed, try again scaling up */

        b = scalbn(1.0, 1022);

        d = 1.0 / b;

        s = 0.0;

        for (i = 0; i < n; i++) {

            t = b * x[i];

            s += t * t;

        }

    }

    /* hide any underflows that have occurred so far */

    feclearexcept(FE_UNDERFLOW);

    /* restore the environment, raising any other exceptions

       that have occurred */

    feupdateenv(&env);

    /* take the square root and undo any scaling */

    return d * sqrt(s);

}

CODE EXAMPLE A-7 C99 Floating Point Environment Functions (Continued)
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On SPARC, compiling and running this program produces the following:

CODE EXAMPLE A-8 shows the effect of the fesetprec function on x86. (This

function is not available on SPARC.) The while loops attempt to determine the

available precision by finding the largest power of two that rounds off entirely when

it is added to one. As the first loop shows, this technique does not always work as

int main()

{

    double x[100], l, u;

    int    n = 100;

    fex_set_log(stdout);

    l = 0.0;

    u = min_normal();

    d_lcrans_(x, &n, &l, &u);

    printf("norm: %g\n", norm(n, x));

    l = sqrt(max_normal());

    u = l * 2.0;

    d_lcrans_(x, &n, &l, &u);

    printf("norm: %g\n", norm(n, x));

    return 0;

}

demo% cc norm.c -R/opt/SUNWspro/lib -L/opt/SUNWspro/lib -lm9x
-lsunmath -lm
demo% a.out
Floating point underflow at 0x000153a8 __d_lcrans_, nonstop mode
  0x000153b4  __d_lcrans_
  0x00011594  main
Floating point underflow at 0x00011244 norm, nonstop mode
  0x00011248  norm
  0x000115b4  main
norm: 1.32533e-307
Floating point overflow at 0x00011244 norm, nonstop mode
  0x00011248  norm
  0x00011660  main
norm: 2.02548e+155

CODE EXAMPLE A-7 C99 Floating Point Environment Functions (Continued)
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expected on architectures like x86 that evaluate all intermediate results in extended

precision. Thus, the fesetprec function may be used to guarantee that all results

will be rounded to the desired precision, as the second loop shows.

The output from this program on x86 systems is:

CODE EXAMPLE A-8 fesetprec Function (x86)

#include <math.h>

#include <fenv.h>

int main()

{

    double  x;

    x = 1.0;

    while (1.0 + x != 1.0)

        x *= 0.5;

    printf("%d significant bits\n", -ilogb(x));

    fesetprec(FE_DBLPREC);

    x = 1.0;

    while (1.0 + x != 1.0)

        x *= 0.5;

    printf("%d significant bits\n", -ilogb(x));

    return 0;

}

64 significant bits
53 significant bits
Appendix A Examples 113



Finally, CODE EXAMPLE A-9 shows one way to use the environment functions in a

multi-threaded program to propagate floating point modes from a parent thread to a

child thread and recover exception flags raised in the child thread when it joins with

the parent. (See the Solaris Multithreaded Programming Guide for more information on

writing multi-threaded programs.)

CODE EXAMPLE A-9 Using Environment Functions in Multi-Thread Program

#include <thread.h>

#include <fenv.h>

fenv_t  env;

void child(void *p)

{

    /* inherit the parent's environment on entry */

    fesetenv(&env);

    ...

    /* save the child's environment before exit */

    fegetenv(&env);

}

void parent()

{

    thread_t tid;

    void *arg;

    ...

/* save the parent's environment before creating the child */

    fegetenv(&env);

    thr_create(NULL, NULL, child, arg, NULL, &tid);

    ...

    /* join with the child */

    thr_join(tid, NULL, &arg);

    /* merge exception flags raised in the child into the

       parent's environment */

    fex_merge_flags(&env);

    ...

}
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Exceptions and Exception Handling

ieee_flags — Accrued Exceptions

Generally, a user program examines or clears the accrued exception bits.

CODE EXAMPLE A-10 is a C program that examines the accrued exception flags.

CODE EXAMPLE A-10 Examining the Accrued Exception Flags

#include <sunmath.h>

#include <sys/ieeefp.h>

int main()

{

int code, inexact, division, underflow, overflow, invalid;

double  x;

char    *out;

/* cause an underflow exception */

x = max_subnormal() / 2.0;

/* this statement insures that the previous */

/* statement is not optimized away          */

printf("x = %g\n",x);

/* find out which exceptions are raised */

code = ieee_flags("get", "exception", "", &out);

/* decode the return value */

inexact =      (code >> fp_inexact)     & 0x1;

underflow =    (code >> fp_underflow)   & 0x1;

division =     (code >> fp_division)    & 0x1;

overflow =     (code >> fp_overflow)    & 0x1;

invalid =      (code >> fp_invalid)     & 0x1;
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The output from running this program:

The same can be done from Fortran:

/* "out" is the raised exception with the highest priority */

printf(" Highest priority exception is: %s\n", out);

/* The value 1 means the exception is raised, */

/* 0 means it isn't.                          */

printf("%d %d %d %d %d\n", invalid, overflow, division,

underflow, inexact);

ieee_retrospective_();

return 0;

}

demo% a.out
x = 1.11254e-308
 Highest priority exception is: underflow
0 0 0 1 1
 Note:IEEE floating-point exception flags raised:
    Inexact;  Underflow;
 See the Numerical Computation Guide, ieee_flags(3M)

CODE EXAMPLE A-11 Examining the Accrued Exception Flags – Fortran

/*
A Fortran example that:
    *  causes an underflow exception
    *  uses ieee_flags to determine which exceptions are raised
    *  decodes the integer value returned by ieee_flags
    *  clears all outstanding exceptions
Remember to save this program in a file with the suffix .F, so that
the c preprocessor is invoked to bring in the header file
floatingpoint.h.
*/
#include <floatingpoint.h>

CODE EXAMPLE A-10 Examining the Accrued Exception Flags (Continued)
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The output is as follows:

    program decode_accrued_exceptions
    double precision   x
    integer            accrued, inx, div, under, over, inv
    character*16       out
    double precision   d_max_subnormal
c Cause an underflow exception
    x = d_max_subnormal() / 2.0

c Find out which exceptions are raised
    accrued = ieee_flags('get', 'exception', '', out)

c Decode value returned by ieee_flags using bit-shift intrinsics
    inx   = and(rshift(accrued, fp_inexact)  , 1)
    under = and(rshift(accrued, fp_underflow), 1)
    div   = and(rshift(accrued, fp_division) , 1)
    over  = and(rshift(accrued, fp_overflow) , 1)
    inv   = and(rshift(accrued, fp_invalid)  , 1)

c The exception with the highest priority is returned in "out"
    print *, "Highest priority exception is ", out

c The value 1 means the exception is raised; 0 means it is not
    print *, inv, over, div, under, inx

c Clear all outstanding exceptions
    i = ieee_flags('clear', 'exception', 'all', out)
    end

 Highest priority exception is underflow
   0  0  0  1  1

CODE EXAMPLE A-11 Examining the Accrued Exception Flags – Fortran (Continued)
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While it is unusual for a user program to set exception flags, it can be done. This is

demonstrated in the following C example.

On SPARC, the output from the preceding program is:

On x86, the output is:

#include <sunmath.h>

int main()
{

int     code;
char    *out;

if (ieee_flags("clear", "exception", "all", &out) != 0)
    printf("could not clear exceptions\n");
if (ieee_flags("set", "exception", "division", &out) != 0)
    printf("could not set exception\n");
code = ieee_flags("get", "exception", "", &out);
printf("out is: %s , fp exception code is: %X \n",
out, code);

return 0;
}

out is: division , fp exception code is: 2

out is: division , fp exception code is: 4
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ieee_handler — Trapping Exceptions

Note – The examples below apply only to the Solaris operating environment.

Here is a Fortran program that installs a signal handler to locate an exception (for

SPARC systems only):

CODE EXAMPLE A-12 Trap on Underflow – SPARC

program demo

c declare signal handler function

external fp_exc_hdl

double precision   d_min_normal

double precision   x

c set up signal handler

i = ieee_handler('set', 'common', fp_exc_hdl)

if (i.ne.0) print *, 'ieee trapping not supported here'

c cause an underflow exception (it will not be trapped)

x = d_min_normal() / 13.0

print *, 'd_min_normal() / 13.0 = ', x

c cause an overflow exception

c the value printed out is unrelated to the result

x = 1.0d300*1.0d300

print *, '1.0d300*1.0d300 = ', x

end

c

c the floating-point exception handling function

c

integer function fp_exc_hdl(sig, sip, uap)

integer sig, code, addr

character label*16

c

c The structure /siginfo/ is a translation of siginfo_t

c from <sys/siginfo.h>

c
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structure /fault/

integer address

end structure

structure /siginfo/

integer si_signo

integer si_code

integer si_errno

record /fault/ fault

end structure

record /siginfo/ sip

c See <sys/machsig.h> for list of FPE codes

c Figure out the name of the SIGFPE

code = sip.si_code

if (code.eq.3) label = 'division'

if (code.eq.4) label = 'overflow'

if (code.eq.5) label = 'underflow'

if (code.eq.6) label = 'inexact'

if (code.eq.7) label = 'invalid'

addr = sip.fault.address

c Print information about the signal that happened

write (*,77) code, label, addr

 77 format ('floating-point exception code ', i2, ',',

     *       a17, ',', ' at address ', z8 )

end

CODE EXAMPLE A-12 Trap on Underflow – SPARC (Continued)
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The output is:

(SPARC) Here is a more complex C example:

 d_min_normal() / 13.0 =     1.7115952757748-309
floating-point exception code 4, overflow , at address
1131C
 1.0d300*1.0d300 =     1.0000000000000+300
 Note: IEEE floating-point exception flags raised:
    Inexact;  Underflow;
 IEEE floating-point exception traps enabled:
    overflow; division by zero; invalid operation;
 See the Numerical Computation Guide, ieee_flags(3M),
    ieee_handler(3M)

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact –
SPARC

/*

 * Generate the 5 IEEE exceptions: invalid, division,

 * overflow, underflow and inexact.

 *
 * Trap on any floating point exception, print a message,

 * and continue.

 *
 * Note that you could also inquire about raised exceptions by

 *    i = ieee("get","exception","",&out);

 * where out contains the name of the highest exception

 * raised, and i can be decoded to find out about all the

 * exceptions raised.

 */

#include <sunmath.h>

#include <signal.h>

#include <siginfo.h>

#include <ucontext.h>

extern void trap_all_fp_exc(int sig, siginfo_t *sip,

ucontext_t *uap);
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int main()

{

doublex, y, z;

char*out;

/*

 * Use ieee_handler to establish "trap_all_fp_exc"

 * as the signal handler to use whenever any floating

 * point exception occurs.

 */

if (ieee_handler("set", "all", trap_all_fp_exc) != 0)

printf(" IEEE trapping not supported here.\n");

/* disable trapping (uninteresting) inexact exceptions */

if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

printf("Trap handler for inexact not cleared.\n");

/* raise invalid */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("1. Invalid: signaling_nan(0) * 2.5\n");

x = signaling_nan(0);

y = 2.5;

z = x * y;

/* raise division */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("2. Div0: 1.0 / 0.0\n");

x = 1.0;

y = 0.0;

z = x / y;

/* raise overflow */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("3. Overflow: -max_normal() - 1.0e294\n");

x = -max_normal();

y = -1.0e294;

z = x + y;

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact –
SPARC (Continued)
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/* raise underflow */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("4. Underflow: min_normal() * min_normal()\n");

x = min_normal();

y = x;

z = x * y;

/* enable trapping on inexact exception */

if (ieee_handler("set", "inexact", trap_all_fp_exc) != 0)

printf("Could not set trap handler for inexact.\n");

/* raise inexact */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("5. Inexact: 2.0 / 3.0\n");

x = 2.0;

y = 3.0;

z = x / y;

/* don't trap on inexact */

if (ieee_handler("set", "inexact", SIGFPE_IGNORE) != 0)

printf(" could not reset inexact trap\n");

/* check that we're not trapping on inexact anymore */

if (ieee_flags("clear", "exception", "all", &out) != 0)

printf(" could not clear exceptions\n");

printf("6. Inexact trapping disabled; 2.0 / 3.0\n");

x = 2.0;

y = 3.0;

z = x / y;

/* find out if there are any outstanding exceptions */

ieee_retrospective_();

/* exit gracefully */

return 0;

}

void trap_all_fp_exc(int sig, siginfo_t *sip, ucontext_t *uap) {

char*label = "undefined";

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact –
SPARC (Continued)
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The output is similar to the following:

/* see /usr/include/sys/machsig.h for SIGFPE codes */

switch (sip->si_code) {

case FPE_FLTRES:

label = "inexact";

break;

case FPE_FLTDIV:

label = "division";

break;

case FPE_FLTUND:

label = "underflow";

break;

case FPE_FLTINV:

label = "invalid";

break;

case FPE_FLTOVF:

label = "overflow";

break;

}

printf(

" signal %d, sigfpe code %d: %s exception at address %x\n",

sig, sip->si_code, label, sip->_data._fault._addr);

}

1. Invalid: signaling_nan(0) * 2.5
   signal 8, sigfpe code 7: invalid exception at address 10da8
2. Div0: 1.0 / 0.0
   signal 8, sigfpe code 3: division exception at address 10e44
3. Overflow: -max_normal() - 1.0e294
   signal 8, sigfpe code 4: overflow exception at address 10ee8
4. Underflow: min_normal() * min_normal()

signal 8, sigfpe code 5: underflow exception at address 10f80
5. Inexact: 2.0 / 3.0
   signal 8, sigfpe code 6: inexact exception at address 1106c
6. Inexact trapping disabled; 2.0 / 3.0
Note: IEEE floating-point exception traps enabled:
   underflow; overflow; division by zero; invalid operation;
See the Numerical Computation Guide, ieee_handler(3M)

CODE EXAMPLE A-13 Trap on Invalid, Division by 0, Overflow, Underflow, and Inexact –
SPARC (Continued)
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(SPARC) CODE EXAMPLE A-14 shows how you can use ieee_handler and the

include files to modify the default result of certain exceptional situations:

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations

/*

 * Cause a division by zero exception and use the

 * signal handler to substitute MAXDOUBLE (or MAXFLOAT)

 * as the result.

 *

 * compile with the flag -Xa

 */

#include <values.h>

#include <siginfo.h>

#include <ucontext.h>

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

double x, y, z;

float r, s, t;

char *out;

/*

 * Use ieee_handler to establish division_handler as the

 * signal handler to use for the IEEE exception division.

 */

if (ieee_handler("set","division",division_handler)!=0) {

printf(" IEEE trapping not supported here.\n");

}

/* Cause a division-by-zero exception */

x = 1.0;

y = 0.0;

z = x / y;

/*

 * Check to see that the user-supplied value, MAXDOUBLE,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

 */

printf("double precision division: %g/%g = %g \n",x,y,z);
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/* Cause a division-by-zero exception */

r = 1.0;

s = 0.0;

t = r / s;

/*

 * Check to see that the user-supplied value, MAXFLOAT,

 * is indeed substituted in place of the IEEE default

 * value, infinity.

 */

printf("single precision division: %g/%g = %g \n",r,s,t);

ieee_retrospective_();

return 0;

}

void division_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

int inst;

unsigned rd, mask, single_prec=0;

float f_val = MAXFLOAT;

double d_val = MAXDOUBLE;

long *f_val_p = (long *) &f_val;

/* Get instruction that caused exception. */

inst = uap->uc_mcontext.fpregs.fpu_q->FQu.fpq.fpq_instr;

/*

 * Decode the destination register. Bits 29:25 encode the

 * destination register for any SPARC floating point

 * instruction.

 */

mask = 0x1f;

rd = (mask & (inst >> 25));

/*

 * Is this a single precision or double precision

 * instruction?  Bits 5:6 encode the precision of the

 * opcode; if bit 5 is 1, it's sp, else, dp.

 */

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations (Continued)
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As expected, the output is:

ieee_handler — Abort on Exceptions

You can use ieee_handler to force a program to abort in case of certain floating-

point exceptions:

mask = 0x1;

single_prec = (mask & (inst >> 5));

/* put user-defined value into destination register */

if (single_prec) {

uap->uc_mcontext.fpregs.fpu_fr.fpu_regs[rd] =

f_val_p[0];

} else {

uap->uc_mcontext.fpregs.fpu_fr.fpu_dregs[rd/2] = d_val;

}

}

double precision division: 1/0 = 1.79769e+308
single precision division: 1/0 = 3.40282e+38
Note: IEEE floating-point exception traps enabled:
   division by zero;
See the Numerical Computation Guide, ieee_handler(3M)

#include <floatingpoint.h>
program abort

c
ieeer = ieee_handler('set', 'division', SIGFPE_ABORT)
if (ieeer .ne. 0) print *, ' ieee trapping not supported'
r = 14.2
s = 0.0
r = r/s

c
print *, 'you should not see this; system should abort'

c
end

CODE EXAMPLE A-14 Modifying the Default Result of Exceptional Situations (Continued)
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libm9x.so Exception Handling Features

The following examples show how to use some of the exception handling features

provided by libm9x.so . The first example is based on the following task: given a

number x and coefficients a0, a1,..., aN, and b0, b1,..., bN-1, evaluate the function f(x)
and its first derivative f’(x), where f is the continued fraction

f(x) = a0 + b0/(x + a1 + b1/(x + ... /(x + aN-1 + bN-1/(x + aN))...)).

Computing f is straightforward in IEEE arithmetic: even if one of the intermediate

divisions overflows or divides by zero, the default value specified by the standard (a

correctly signed infinity) turns out to yield the correct result. Computing f’, on the

other hand, can be more difficult because the simplest form for evaluating it can

have removable singularities. If the computation encounters one of these

singularities, it will attempt to evaluate one of the indeterminate forms 0/0,

0*infinity, or infinity/infinity, all of which raise invalid operation exceptions. W.

Kahan has proposed a method for handling these exceptions via a feature called

“presubstitution”.

Presubstitution is an extension of the IEEE default response to exceptions that lets

the user specify in advance the value to be substituted for the result of an

exceptional operation. Using libm9x.so , a program can implement presubstitution

easily by installing a handler in the FEX_CUSTOMexception handling mode. This

mode allows the handler to supply any value for the result of an exceptional

operation simply by storing that value in the data structure pointed to by the info
parameter passed to the handler. Here is a sample program to compute the

continued fraction and its derivative using presubstitution implemented with a

FEX_CUSTOMhandler.

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the
FEX_CUSTOMHandler

#include <stdio.h>

#include <sunmath.h>

#include <fenv.h>

volatile double p;

void handler(int ex, fex_info_t *info)

{

    info->res.type = fex_double;

    if (ex == FEX_INV_ZMI)

        info->res.val.d = p;

    else

        info->res.val.d = infinity();

}
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/*

* Evaluate the continued fraction given by coefficients a[j] and

* b[j] at the point x; return the function value in *pf and the

*  derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

    double x, double *pf, double *pf1)

{

fex_handler_t oldhdl; /* for saving/restoring handlers */

    volatile double  t;

    double           f, f1, d, d1, q;

    int              j;

    fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    fex_set_handling(FEX_DIVBYZERO, FEX_NONSTOP, NULL);

    fex_set_handling(FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI,

        FEX_CUSTOM, handler);

    f1 = 0.0;

    f = a[N];

    for (j = N - 1; j >= 0; j--) {

        d = x + f;

        d1 = 1.0 + f1;

        q = b[j] / d;

        /* the following assignment to the volatile variable t

           is needed to maintain the correct sequencing between

           assignments to p and evaluation of f1 */

        t = f1 = (-d1 / d) * q;

        p = b[j-1] * d1 / b[j];

        f = a[j] + q;

    }

    fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    *pf = f;

    *pf1 = f1;

}

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the
FEX_CUSTOMHandler (Continued)
Appendix A Examples 129



Several comments about the program are in order. On entry, the function

continued_fraction saves the current exception handling modes for division by

zero and all invalid operation exceptions. It then establishes nonstop exception

handling for division by zero and a FEX_CUSTOMhandler for the three indeterminate

forms. This handler will substitute infinity for both 0/0 and infinity/infinity, but it

will substitute the value of the global variable p for 0*infinity. Note that p must be

recomputed each time through the loop that evaluates the function in order to

supply the correct value to substitute for a subsequent 0*infinity invalid operation.

Note also that p must be declared volatile to prevent the compiler from

eliminating it, since it is not explicitly mentioned elsewhere in the loop. Finally, to

prevent the compiler from moving the assignment to p above or below the

computation that can incur the exception for which p provides the presubstitution

value, the result of that computation is also assigned to a volatile variable (called

t in the program). The final call to fex_setexcepthandler restores the original

handling modes for division by zero and the invalid operations.

The main program enables logging of retrospective diagnostics by calling the

fex_set_log function. Before it does so, it raises the inexact flag; this has the effect

of preventing the logging of inexact exceptions. (Recall that in FEX_NONSTOPmode,

an exception is not logged if its flag is raised, as explained in the section

“Retrospective Diagnostics” on page 79.) The main program also establishes

/* For the following coefficients, x = -3, 1, 4, and 5 will all

   encounter intermediate exceptions */

double a[] = { -1.0, 2.0, -3.0, 4.0, -5.0 };

double b[] = { 2.0, 4.0, 6.0, 8.0 };

int main()

{

    double  x, f, f1;

    int     i;

    feraiseexcept(FE_INEXACT); /* prevent logging of inexact */

    fex_set_log(stdout);

    fex_set_handling(FEX_COMMON, FEX_ABORT, NULL);

    for (i = -5; i <= 5; i++) {

        x = i;

        continued_fraction(4, a, b, x, &f, &f1);

        printf("f(% g) = %12g, f’(% g) = %12g\n", x, f, x, f1);

    }

    return 0;

}

CODE EXAMPLE A-15 Computing the Continued Fraction and Its Derivative Using the
FEX_CUSTOMHandler (Continued)
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FEX_ABORTmode for the common exceptions to ensure that any unusual exceptions

not explicitly handled by continued_fraction will cause program termination.

Finally, the program evaluates a particular continued fraction at several different

points. As the following sample output shows, the computation does indeed

encounter intermediate exceptions:

(The exceptions that occur in the computation of f’(x) at x = 1, 4, and 5 do not result

in retrospective diagnostic messages because they occur at the same site in the

program as the exceptions that occur when x = –3.)

The preceding program may not represent the most efficient way to handle the

exceptions that can occur in the evaluation of a continued fraction and its derivative.

One reason is that the presubstitution value must be recomputed in each iteration of

the loop regardless of whether or not it is needed. In this case, the computation of

the presubstitution value involves a floating point division, and on modern SPARC

and x86 processors, floating point division is a relatively slow operation. Moreover,

the loop itself already involves two divisions, and because most SPARC and x86

processors cannot overlap the execution of two different division operations,

divisions are likely to be a bottleneck in the loop; adding another division would

exacerbate the bottleneck.

f(-5) =     -1.59649,   f’(-5) =      -0.1818
f(-4) =     -1.87302,   f’(-4) =    -0.428193
Floating point division by zero at 0x08048dbe continued_fraction,
nonstop mode
  0x08048dc1  continued_fraction
  0x08048eda  main
Floating point invalid operation (inf/inf) at 0x08048dcf
continued_fraction, handler: handler
  0x08048dd2  continued_fraction
  0x08048eda  main
Floating point invalid operation (0*inf) at 0x08048dd2
continued_fraction, handler: handler
  0x08048dd8  continued_fraction
  0x08048eda  main
f(-3) =           -3,   f’(-3) =     -3.16667
f(-2) = -4.44089e-16,   f’(-2) =     -3.41667
f(-1) =     -1.22222,   f’(-1) =    -0.444444
f( 0) =     -1.33333,   f’( 0) =     0.203704
f( 1) =           -1,   f’( 1) =     0.333333
f( 2) =    -0.777778,   f’( 2) =      0.12037
f( 3) =    -0.714286,   f’( 3) =    0.0272109
f( 4) =    -0.666667,   f’( 4) =     0.203704
f( 5) =    -0.777778,   f’( 5) =    0.0185185
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It is possible to rewrite the loop so that only one division is needed, and in

particular, the computation of the presubstitution value need not involve a division.

(To rewrite the loop in this way, one must precompute the ratios of adjacent

elements of the coefficients in the b array.) This would remove the bottleneck of

multiple division operations, but it would not eliminate all of the arithmetic

operations involved in the computation of the presubstitution value. Furthermore,

the need to assign both the presubstitution value and the result of the operation to

be presubstituted to volatile variables introduces additional memory operations

that slow the program. While those assignments are necessary to prevent the

compiler from reordering certain key operations, they effectively prevent the

compiler from reordering other unrelated operations, too. Thus, handling the

exceptions in this example via presubstitution requires additional memory

operations and precludes some optimizations that might otherwise be possible. Can

these exceptions be handled more efficiently?

In the absence of special hardware support for fast presubstitution, the most efficient

way to handle exceptions in this example may be to use flags, as the following

version does:

CODE EXAMPLE A-16 Using Flags to Handle Exceptions

#include <stdio.h>

#include <math.h>

#include <fenv.h>

/*

* Evaluate the continued fraction given by coefficients a[j] and

* b[j] at the point x; return the function value in *pf and the

*  derivative in *pf1

*/

void continued_fraction(int N, double *a, double *b,

    double         x, double *pf, double *pf1)

{

    fex_handler_t  oldhdl;

    fexcept_t      oldinvflag;

    double         f, f1, d, d1, pd1, q;

    int            j;

    fex_getexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    fegetexceptflag(&oldinvflag, FE_INVALID);

fex_set_handling(FEX_DIVBYZERO | FEX_INV_ZDZ | FEX_INV_IDI |

        FEX_INV_ZMI, FEX_NONSTOP, NULL);

    feclearexcept(FE_INVALID);
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In this version, the first loop attempts the computation of f(x) and f’(x) in the default

nonstop mode. If the invalid flag is raised, the second loop recomputes f(x) and f’(x)
explicitly testing for the appearance of a NaN. Usually, no invalid operation

exception occurs, so the program only executes the first loop. This loop has no

references to volatile variables and no extra arithmetic operations, so it will run

as fast as the compiler can make it go. The cost of this efficiency is the need to write

a second loop nearly identical to the first to handle the case when an exception

occurs. This trade-off is typical of the dilemmas that floating point exception

handling can pose.

    f1 = 0.0;

    f = a[N];

    for (j = N - 1; j >= 0; j--) {

        d = x + f;

        d1 = 1.0 + f1;

        q = b[j] / d;

        f1 = (-d1 / d) * q;

        f = a[j] + q;

    }

    if (fetestexcept(FE_INVALID)) {

        /* recompute and test for NaN */

        f1 = pd1 = 0.0;

        f = a[N];

        for (j = N - 1; j >= 0; j--) {

            d = x + f;

            d1 = 1.0 + f1;

            q = b[j] / d;

            f1 = (-d1 / d) * q;

            if (isnan(f1))

                f1 = b[j] * pd1 / b[j+1];

            pd1 = d1;

            f = a[j] + q;

        }

    }

    fesetexceptflag(&oldinvflag, FE_INVALID);

    fex_setexcepthandler(&oldhdl, FEX_DIVBYZERO | FEX_INVALID);

    *pf = f;

    *pf1 = f1;

}

CODE EXAMPLE A-16 Using Flags to Handle Exceptions (Continued)
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Using libm9x.so With Fortran Programs

libm9x.so is primarily intended to be used from C/C++ programs, but by using

the Sun Fortran language interoperability features, you can call some libm9x.so
functions from Fortran programs as well.

Note – For consistent behavior, do not use both the libm9x.so exception handling

functions and the ieee_flags and ieee_handler functions in the same program.

The following example shows a Fortran version of the program to evaluate a

continued fraction and its derivative using presubstitution (SPARC only):

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using
Presubstitution – SPARC

c

c Presubstitution handler

c

      subroutine handler(ex, info)

      structure /fex_numeric_t/

          integer type

          union

          map

              integer i

          end map

          map

              integer*8 l

          end map

          map

              real f

          end map

          map

              real*8 d

          end map

          map

              real*16 q

          end map

          end union

      end structure
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      structure /fex_info_t/

          integer op, flags

          record /fex_numeric_t/ op1, op2, res

      end structure

      integer ex

      record /fex_info_t/ info

      common /presub/ p

      double precision  p, d_infinity

      volatile          p

c 4 = fex_double; see <fenv.h> for this and other constants

      info.res.type = 4

c x'80' = FEX_INV_ZMI

      if (loc(ex) .eq. x'80') then

          info.res.d = p

      else

          info.res.d = d_infinity()

      endif

      return

      end

c

c Evaluate the continued fraction given by coefficients a(j) and

c b(j) at the point x; return the function value in f and the

c derivative in f1

c

      subroutine continued_fraction(n, a, b, x, f, f1)

      integer           n

      double precision  a(*), b(*), x, f, f1

      common            /presub/ p

      integer           j, oldhdl

      dimension        oldhdl(24)

      double precision d, d1, q, p, t

      volatile         p, t

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using
Presubstitution – SPARC (Continued)
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      external fex_getexcepthandler, fex_setexcepthandler

      external fex_set_handling, handler

c$pragma c(fex_getexcepthandler, fex_setexcepthandler)

c$pragma c(fex_set_handling)

c x'ff2' = FEX_DIVBYZERO | FEX_INVALID

      call fex_getexcepthandler(oldhdl, %val(x'ff2'))

c x'2' = FEX_DIVBYZERO, 0 = FEX_NONSTOP

      call fex_set_handling(%val(x'2'), %val(0), %val(0))

c x'b0' = FEX_INV_ZDZ | FEX_INV_IDI | FEX_INV_ZMI , 3 = FEX_CUSTOM

      call fex_set_handling(%val(x'b0'), %val(3), handler)

      f1 = 0.0d0

      f = a(n+1)

      do j = n, 1, -1

          d = x + f

          d1 = 1.0d0 + f1

          q = b(j) / d

          f1 = (-d1 / d) * q

c

c         the following assignment to the volatile variable t

c         is needed to maintain the correct sequencing between

c         assignments to p and evaluation of f1

          t = f1

          p = b(j-1) * d1 / b(j)

          f = a(j) + q

      end do

      call fex_setexcepthandler(oldhdl, %val(x'ff2'))

      return

      end

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using
Presubstitution – SPARC (Continued)
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The output from this program reads:

c Main program

c

      program cf

      integer            i

      double precision   a, b, x, f, f1

      dimension          a(5), b(4)

      data a /-1.0d0, 2.0d0, -3.0d0, 4.0d0, -5.0d0/

      data b /2.0d0, 4.0d0, 6.0d0, 8.0d0/

      external fex_set_handling

c$pragma c(fex_set_handling)

c x'ffa' = FEX_COMMON, 1 = FEX_ABORT

      call fex_set_handling(%val(x'ffa'), %val(1), %val(0))

      do i = -5, 5

          x = dble(i)

          call continued_fraction(4, a, b, x, f, f1)

          write (*, 1) i, f, i, f1

      end do

1 format('f(', I2, ') = ', G12.6, ', f’'(', I2, ') = ', G12.6)

      end

f(-5) = -1.59649    , f’(-5) = -.181800
f(-4) = -1.87302    , f’(-4) = -.428193
f(-3) = -3.00000    , f’(-3) = -3.16667
f(-2) = -.444089E-15, f’(-2) = -3.41667
f(-1) = -1.22222    , f’(-1) = -.444444
f( 0) = -1.33333    , f’( 0) = 0.203704
f( 1) = -1.00000    , f’( 1) = 0.333333
f( 2) = -.777778    , f’( 2) = 0.120370
f( 3) = -.714286    , f’( 3) = 0.272109E-01
f( 4) = -.666667    , f’( 4) = 0.203704
f( 5) = -.777778    , f’( 5) = 0.185185E-01
 Note: IEEE floating-point exception flags raised:
    Inexact;  Division by Zero;  Invalid Operation;
 IEEE floating-point exception traps enabled:
    overflow;  division by zero;  invalid operation;
 See the Numerical Computation Guide, ieee_flags(3M),
ieee_handler(3M)

CODE EXAMPLE A-17 Evaluating a Continued Fraction and Its Derivative Using
Presubstitution – SPARC (Continued)
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Miscellaneous

sigfpe — Trapping Integer Exceptions

The previous section showed examples of using ieee_handler . In general, when

there is a choice between using ieee_handler or sigfpe , the former is

recommended.

Note – sigfpe is available only in the Solaris operating environment.

(SPARC) There are instances, such as trapping integer arithmetic exceptions, when

sigfpe is the handler to be used. CODE EXAMPLE A-18 traps on integer division by

zero.

CODE EXAMPLE A-18 Trapping Integer Exceptions

/* Generate the integer division by zero exception */

#include <siginfo.h>

#include <ucontext.h>

#include <signal.h>

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap);

int main() {

int a, b, c;

/*

* Use sigfpe(3) to establish "int_handler" as the signal handler

 * to use on integer division by zero

 */

/*

 * Integer division-by-zero aborts unless a signal

 * handler for integer division by zero is set up

 */

sigfpe(FPE_INTDIV, int_handler);
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Calling Fortran From C

Here is a simple example of a C driver calling Fortran subroutines. Refer to the

appropriate C and Fortran manuals for more information on working with C and

Fortran. The following is the C driver (save it in a file named driver.c) :

a = 4;

b = 0;

c = a / b;

printf("%d / %d = %d\n\n", a, b, c);

return 0;

}

void int_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

printf("Signal %d, code %d, at addr %x\n",

sig, sip->si_code, sip->_data._fault._addr);

/*

* Increment the program counter; the operating system does this

 * automatically for floating-point exceptions but not for

 * integer division by zero.

 */

uap->uc_mcontext.gregs[REG_PC] =

uap->uc_mcontext.gregs[REG_nPC];

}

CODE EXAMPLE A-19 Calling Fortran From C

/*

 * a demo program that shows:

* 1. how to call f95 subroutine from C, passing an array argument

 * 2. how to call single precision f95 function from C

 * 3. how to call double precision f95 function from C

 */

extern int      demo_one_(double *);

extern float    demo_two_(float *);

extern double   demo_three_(double *);

CODE EXAMPLE A-18 Trapping Integer Exceptions (Continued)
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int main()

{

doublearray[3][4];

floatf, g;

doublex, y;

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

array[i][j] = i + 2*j;

g = 1.5;

y = g;

/* pass an array to a fortran function (print the array) */

demo_one_(&array[0][0]);

printf(" from the driver\n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 4; j++)

printf("    array[%d][%d] = %e\n",

i, j, array[i][j]);

printf("\n");

}

/* call a single precision fortran function */

f = demo_two_(&g);

printf(

" f = sin(g) from a single precision fortran function\n");

printf("    f, g: %8.7e, %8.7e\n", f, g);

printf("\n");

/* call a double precision fortran function */

x = demo_three_(&y);

printf(

 " x = sin(y) from a double precision fortran function\n");

printf("    x, y: %18.17e, %18.17e\n", x, y);

ieee_retrospective_();

return 0;

}

CODE EXAMPLE A-19 Calling Fortran From C (Continued)
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Save the Fortran subroutines in a file named drivee.f :

Then, perform the compilation and linking:

subroutine demo_one(array)
double precision array(4,3)
print *, 'from the fortran routine:'
do 10 i =1,4
do 20 j = 1,3

print *, '   array[', i, '][', j, '] = ', array(i,j)
 20 continue

print *
 10 continue

return
end

real function demo_two(number)
real number
demo_two = sin(number)
return
end

double precision function demo_three(number)
double precision number
demo_three = sin(number)
return
end

cc -c driver.c
f95 -c drivee.f

demo_one:
demo_two:
demo_three:

f95 -o driver driver.o drivee.o
Appendix A Examples 141



The output looks like this:

 from the fortran routine:
    array[ 1 ][ 1 ] =  0.0E+0
    array[ 1 ][ 2 ] =  1.0
    array[ 1 ][ 3 ] =  2.0

    array[ 2 ][ 1 ] =  2.0
    array[ 2 ][ 2 ] =  3.0
    array[ 2 ][ 3 ] =  4.0

    array[ 3 ][ 1 ] =  4.0
    array[ 3 ][ 2 ] =  5.0
    array[ 3 ][ 3 ] =  6.0

    array[ 4 ][ 1 ] =  6.0
    array[ 4 ][ 2 ] =  7.0
    array[ 4 ][ 3 ] =  8.0

 from the driver
    array[0][0] = 0.000000e+00
    array[0][1] = 2.000000e+00
    array[0][2] = 4.000000e+00
    array[0][3] = 6.000000e+00

    array[1][0] = 1.000000e+00
    array[1][1] = 3.000000e+00
    array[1][2] = 5.000000e+00
    array[1][3] = 7.000000e+00

    array[2][0] = 2.000000e+00
    array[2][1] = 4.000000e+00
    array[2][2] = 6.000000e+00
    array[2][3] = 8.000000e+00

 f = sin(g) from a single precision fortran function
    f, g: 9.9749500e-01, 1.5000000e+00

 x = sin(y) from a double precision fortran function
    x, y: 9.97494986604054446e-01, 1.50000000000000000e+00
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Useful Debugging Commands

TABLE A-1 shows examples of debugging commands for the SPARC architecture.

TABLE A-1 Some Debugging Commands (SPARC)

Action dbx adb

Set breakpoint

at function

at line number

at absolute address

at relative address

stop in myfunct

stop at 29

myfunct:b

23a8:b

main+0x40:b

Run until breakpoint met run :r

Examine source code list <pc,10?ia

Examine a fp register

IEEE single precision

decimal equivalent (Hex)

IEEE double precision

decimal equivalent (Hex)

print $f0

print -fx $f0

print $f0f1

print -flx $f0f1
print -flx $d0

<f0=X

<f0=f

<f0=X; <f1=X

<f0=F

Examine all fp registers regs -F $x for f0-f15

$X for f16-f31

Examine all registers regs $r; $x; $X

Examine fp status register print -fx $fsr <fsr=X

Put single precision 1.0 in f0
Put double prec 1.0 in f0/f1

assign $f0=1.0

assign $f0f1=1.0

3f800000>f0

3ff00000>f0; 0>f1

Continue execution cont :c

Single step step (or next) :s

Exit the debugger quit $q
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TABLE A-2 shows examples of debugging commands for the x86 architecture.

The following examples show two ways to set a breakpoint at the beginning of the

code corresponding to a routine myfunction in adb . First you can say:

Second, you can determine the absolute address that corresponds to the beginning of

the piece of code corresponding to myfunction , and then set a break at that

absolute address:

The main subroutine in a Fortran program compiled with f95 is known as MAIN_ to

adb . To set a breakpoint at MAIN_ in adb :

   MAIN_:b

TABLE A-2 Some Debugging Commands (x86)

Action dbx adb

Set breakpoint

at function

at line number

at absolute address

at relative address

stop in myfunct

stop at 29

myfunct:b

23a8:b

main+0x40:b

Run until breakpoint met run :r

Examine source code list <pc,10?ia

Examine fp registers print $st0

...

print $st7

$x

Examine all registers examine &$gs/19X $r

Examine fp status register examine &$fstat/X <fstat=X

or $x

Continue execution cont :c

Single step step (or next) :s

Exit the debugger quit $q

myfunction:b

myfunction=X
23a8

23a8:b
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When examining the contents of floating-point registers, the hex value shown by the

dbx command regs -F is the base-16 representation, not the number’s decimal

representation. For SPARC, the adb commands $x and $X display both the

hexadecimal representation, and the decimal value. For x86, the adb command $x
displays only the decimal value. For SPARC, the double precision values show the

decimal value next to the odd-numbered register.

Because the operating system disables the floating-point unit until it is first used by

a process, you cannot modify the floating-point registers until they have been

accessed by the program being debugged.

(SPARC) When displaying floating point numbers, you should keep in mind that the

size of registers is 32 bits, a single precision floating-point number occupies 32 bits

(hence it fits in one register), and double precision floating-point numbers occupy 64

bits (therefore two registers are used to hold a double precision number). In the

hexadecimal representation 32 bits correspond to 8-digit numbers. In the following

snapshot of FPU registers displayed with adb , the display is organized as follows:

<name of fpu register> <IEEE hex value> <single precision> <double precision>

(SPARC) The third column holds the single precision decimal interpretation of the

hexadecimal pattern shown in the second column. The fourth column interprets

pairs of registers. For example, the fourth column of the f11 line interprets f10 and

f11 as a 64-bit IEEE double precision number.

(SPARC) Because f10 and f11 are used to hold a double precision value, the

interpretation (on the f10 line) of the first 32 bits of that value, 7ff00000 , as +NaN,

is irrelevant. The interpretation of all 64 bits, 7ff00000 00000000 , as +Infinity ,

happens to be the meaningful translation.
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(SPARC) The adb command $x , that was used to display the first 16 floating-point

data registers, also displayed fsr (the floating-point status register):

(x86) The corresponding output on x86 looks like:

Note – (x86) cw is the control word; sw is the status word.

$x
fsr    40020
f0 400921fb     +2.1426990e+00
f1 54442d18     +3.3702806e+12     +3.1415926535897931e+00
f2        2     +2.8025969e-45
f3        0     +0.0000000e+00     +4.2439915819305446e-314
f4 40000000     +2.0000000e+00
f5        0     +0.0000000e+00     +2.0000000000000000e+00
f6 3de0b460     +1.0971904e-01
f7        0     +0.0000000e+00     +1.2154188766544394e-10
f8 3de0b460     +1.0971904e-01
f9        0     +0.0000000e+00     +1.2154188766544394e-10
f10 7ff00000     +NaN
f11        0     +0.0000000e+00     +Infinity
f12 ffffffff     -NaN
f13 ffffffff     -NaN                -NaN
f14 ffffffff     -NaN
f15 ffffffff     -NaN                -NaN

$x
80387 chip is present.
cw      0x137f
sw      0x3920
cssel 0x17 ipoff 0x2d93 datasel 0x1f dataoff 0x5740

 st[0]  +3.24999988079071044921875 e-1            VALID
 st[1]  +5.6539133243479549034419688 e73          EMPTY
 st[2]  +2.0000000000000008881784197              EMPTY
 st[3]  +1.8073218308070440556016047 e-1          EMPTY
 st[4]  +7.9180300235748291015625 e-1             EMPTY
 st[5]  +4.201639036693904927233234 e-13          EMPTY
 st[6]  +4.201639036693904927233234 e-13          EMPTY
 st[7]  +2.7224999213218694649185636              EMPTY
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APPENDIX B

SPARC Behavior and
Implementation

This chapter discusses issues related to the floating-point units used in SPARC

workstations and describes a way to determine which code generation flags are best

suited for a particular workstation.

Floating-Point Hardware

This section lists a number of SPARC floating-point units and describes the

instruction sets and exception handling features they support. See the SPARC
Architecture Manual Version 8 Appendix N, “SPARC IEEE 754 Implementation

Recommendations”, and Version 9 Appendix B, “IEEE Std 754-1985 Requirements

for SPARC-V9”, for brief descriptions of what happens when a floating-point trap is

taken, the distinction between trapped and untrapped underflow, and recommended

possible courses of action for SPARC implementations that provide a non-IEEE

(nonstandard) arithmetic mode.

TABLE B-1 lists the hardware floating-point implementations used by SPARC

workstations. Many early SPARC systems have floating-point units derived from

cores developed by TI or Weitek:

■ TI family – includes the TI8847 and the TMS390C602A

■ Weitek family – includes the 1164/1165, the 3170, and 3171
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These two families of FPUs have been licensed to other workstation vendors, so

chips from other semiconductor manufacturers may be found in some SPARC

workstations. Some of these other chips are also shown in the table.

TABLE B-1 SPARC Floating-Point Options

FPU
Description or
Processor Name Appropriate for Machines Notes

Optimum -xchip
and -xarch

Weitek

1164/1165-

based FPU

or no FPU

Kernel emulates

floating-point

instructions

Obsolete Slow; not

recommended

-xchip=old
-xarch=v7

TI 8847-based

FPU

TI 8847;

controller from

Fujitsu or LSI

Sun-4/1xx

Sun-4/2xx

Sun-4/3xx

Sun-4/4xx

SPARCstation 1 (4/60)

1989

Most SPARCstation

1 workstations have

Weitek 3170

-xchip=old
-xarch=v7

Weitek 3170-

based FPU

SPARCstation 1 (4/60)

SPARCstation 1+ (4/65)

1989, 1990 -xchip=old
-xarch=v7

TI 602a SPARCstation 2 (4/75) 1990 -xchip=old
-xarch=v7

Weitek 3172-

based FPU

SPARCstation SLC (4/20)

SPARCstation IPC (4/40)

1990 -xchip=old
-xarch=v7

Weitek 8601 or

Fujitsu 86903

Integrated CPU

and FPU

SPARCstation IPX (4/50)

SPARCstation ELC (4/25)

1991

IPX uses 40 MHz

CPU/FPU; ELC

uses 33 MHz

-xchip=old
-xarch=v7

Cypress 602 Resides on Mbus

Module

SPARCserver 6xx 1991 -xchip=old
-xarch=v7

TI TMS390S10

(STP1010)

microSPARC-I SPARCstation LX

SPARCclassic

1992

No FsMULd in

hardware

-xchip=micro
-xarch=v8a

Fujitsu 86904

(STP1012)

microSPARC-II SPARCstation 4 and 5

SPARCstation Voyager

No FsMULd in

hardware

-xchip=micro2
-xarch=v8a

TI TMS390Z50

(STP1020A)

SuperSPARC-I SPARCserver 6xx

SPARCstation 10

SPARCstation 20

SPARCserver 1000

SPARCcenter 2000

-xchip=super
-xarch=v8
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The last column in the preceding table shows the compiler flags to use to obtain the

fastest code for each FPU. These flags control two independent attributes of code

generation: the -xarch flag determines the instruction set the compiler may use, and

the -xchip flag determines the assumptions the compiler will make about a

processor’s performance characteristics in scheduling the code. Because all SPARC

floating-point units implement at least the floating-point instruction set defined in

the SPARC Architecture Manual Version 7, a program compiled with -xarch=v7 will

run on any SPARC system, although it may not take full advantage of the features of

later processors. Likewise, a program compiled with a particular -xchip value will

run on any SPARC system that supports the instruction set specified with -xarch ,

but it may run more slowly on systems with processors other than the one specified.

The floating-point units listed in the table preceding the microSPARC-I implement

the floating-point instruction set defined in the SPARC Architecture Manual Version 7.

Programs that must run on systems with these FPUs should be compiled with

-xarch=v7 . The compilers make no special assumptions regarding the performance

characteristics of these processors, so they all share the single -xchip option

STP1021A SuperSPARC-II SPARCserver 6xx

SPARCstation 10

SPARCstation 20

SPARCserver 1000

SPARCcenter 2000

-xchip=super2
-xarch=v8

Ross RT620 hyperSPARC SPARCstation 10/HSxx

SPARCstation 20/HSxx

-xchip=hyper
-xarch=v8

Fujitsu 86907 TurboSPARC SPARCstation 4 and 5 -xchip=micro2
-xarch=v8

STP1030A UltraSPARC I Ultra-1, Ultra-2

Ex000

V9+VIS -xchip=ultra
-xarch=v8plusa

STP1031 UltraSPARC II Ultra-2, E450

Ultra-30, Ultra-60,

Ultra-80, Ex500

Ex000, E10000

V9+VIS -xchip=ultra2
-xarch=v8plusa

SME1040 UltraSPARC IIi Ultra-5, Ultra-10 V9+VIS -xchip=ultra2i
-xarch=v8plusa

UltraSPARC IIe Sun Blade 100 V9+VIS -xchip=ultra2e

-xarch=v8plusa

UltraSPARC III Sun Blade 1000 V9+VIS -xchip=ultra3

-xarch=v8plusa

TABLE B-1 SPARC Floating-Point Options (Continued)

FPU
Description or
Processor Name Appropriate for Machines Notes

Optimum -xchip
and -xarch
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-xchip=old . (Not all of the systems listed in TABLE B-1 are still supported by Forte

Developer compilers; they are listed solely for historical purposes. Refer to the

appropriate version of the Numerical Computation Guide for the code generation

flags to use with compilers supporting these systems.)

The microSPARC-I and microSPARC-II floating-point units implement the floating-

point instruction set defined in the SPARC Architecture Manual Version 8 except for

the FsMULd and quad precision instructions. Programs compiled with -xarch=v8
will run on systems with these processors, but because unimplemented floating-

point instructions must be emulated by the system kernel, programs that use

FsMULd extensively (such as Fortran programs that perform a lot of single precision

complex arithmetic), may encounter severe performance degradation. To avoid this,

compile programs for systems with these processors with -xarch=v8a .

The SuperSPARC-I, SuperSPARC-II, hyperSPARC, and TurboSPARC floating-point

units implement the floating-point instruction set defined in the SPARC Architecture
Manual Version 8 except for the quad precision instructions. To get the best

performance on systems with these processors, compile with -xarch=v8 .

The UltraSPARC I, UltraSPARC II, UltraSPARC IIe, UltraSPARC IIi, and

UltraSPARC III floating-point units implement the floating-point instruction set

defined in the SPARC Architecture Manual Version 9 except for the quad precision

instructions; in particular, they provide 32 double precision floating-point registers.

To allow the compiler to use these registers, compile with -xarch=v8plus (for

programs that run under a 32-bit OS) or -xarch=v9 (for programs that run under a

64-bit OS). These processors also provide extensions to the standard instruction set.

The additional instructions, known as the Visual Instruction Set or VIS, are rarely

generated automatically by the compilers, but they may be used in assembly code.

Therefore, to take full advantage of the instruction set these processors support, use

-xarch=v8plusa (32-bit) or -xarch=v9a (64-bit).

The -xarch and -xchip options can be specified simultaneously using the

-xtarget macro option. (That is, the -xtarget flag simply expands to a suitable

combination of -xarch , -xchip , and -xcache flags.) The default code generation

option is -xtarget=generic . See the cc (1), CC(1), and f95 (1) man pages and the

compiler manuals for more information including a complete list of -xarch ,

-xchip , and -xtarget values. Additional -xarch information is provided in the

Fortran User’s Guide, C User’s Guide, and C++ User’s Guide.

Floating-Point Status Register and Queue

All SPARC floating-point units, regardless of which version of the SPARC

architecture they implement, provide a floating-point status register (FSR) that

contains status and control bits associated with the FPU. All SPARC FPUs that

implement deferred floating-point traps provide a floating-point queue (FQ) that

contains information about currently executing floating-point instructions. The FSR
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can be accessed by user software to detect floating-point exceptions that have

occurred and to control rounding direction, trapping, and nonstandard arithmetic

modes. The FQ is used by the operating system kernel to process floating-point traps

and is normally invisible to user software.

Software accesses the floating-point status register via STFSRand LDFSRinstructions

that store the FSR in memory and load it from memory, respectively. In SPARC

assembly language, these instructions are written as follows:

The inline template file libm.il located in the directory containing the libraries

supplied with the Forte Developer compilers contains examples showing the use of

STFSRand LDFSRinstructions.

FIGURE B-1 shows the layout of bit fields in the floating-point status register.

FIGURE B-1 SPARC Floating-Point Status Register

In versions 7 and 8 of the SPARC architecture, the FSR occupies 32 bits as shown. In

version 9, the FSR is extended to 64 bits, of which the lower 32 match the figure; the

upper 32 are largely unused, containing only three additional floating point

condition code fields.

Here res refers to bits that are reserved, ver is a read-only field that identifies the

version of the FPU, and ftt and qne are used by the system when it processes

floating-point traps. The remaining fields are described in the following table.

        st      %fsr, [addr]  ! store FSR at specified address
        ld      [addr], %fsr  ! load FSR from specified address

TABLE B-2 Floating-Point Status Register Fields

Field Contains

RM rounding direction mode

TEM trap enable modes

NS nonstandard mode

fcc floating point condition code

aexc accrued exception flags

cexc current exception flags

RD res TEM NS res ver ftt qneres fcc aexc cexc

31:30 29:28 27:23 22 21:20 19:17 16:14 13 12 11:10 9:5 4:0
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The RMfield holds two bits that specify the rounding direction for floating-point

operations. The NSbit enables nonstandard arithmetic mode on SPARC FPUs that

implement it; on others, this bit is ignored. The fcc field holds floating-point

condition codes generated by floating-point compare instructions and used by

branch and conditional move operations. Finally, the TEM, aexc , and cexc fields

contain five bits that control trapping and record accrued and current exception flags

for each of the five IEEE 754 floating-point exceptions. These fields are subdivided as

shown in TABLE B-3.

(The symbols NV, OF, UF, DZ, and NX above stand for the invalid operation,

overflow, underflow, division-by-zero, and inexact exceptions respectively.)

Special Cases Requiring Software Support

In most cases, SPARC floating-point units execute instructions completely in

hardware without requiring software support. There are four situations, however,

when the hardware will not successfully complete a floating-point instruction:

■ The floating-point unit is disabled.

■ The instruction is not implemented by the hardware (such as fsqrt[sd] on

Weitek 1164/1165-based FPUs, fsmuld on microSPARC-I and microSPARC-II

FPUs, or quad precision instructions on any SPARC FPU).

■ The hardware is unable to deliver the correct result for the instruction’s operands.

■ The instruction would cause an IEEE 754 floating-point exception and that

exception’s trap is enabled.

In each situation, the initial response is the same: the process “traps” to the system

kernel, which determines the cause of the trap and takes the appropriate action. (The

term “trap” refers to an interruption of the normal flow of control.) In the first three

situations, the kernel emulates the trapping instruction in software. Note that the

emulated instruction can also incur an exception whose trap is enabled.

TABLE B-3 Exception Handling Fields

Field Corresponding bits in register

TEM, trap enable modes NVM

27

OFM

26

UFM

25

DZM 24 NXM 23

aexc , accrued exception flags nva

9

ofa

8

ufa

7

dza

6

nxa

5

cexc , current exception flags nvc

4

ofc

3

ufc

2

dzc

1

nxc

0
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In the first three situations above, if the emulated instruction does not incur an IEEE

floating-point exception whose trap is enabled, the kernel completes the instruction.

If the instruction is a floating-point compare, the kernel updates the condition codes

to reflect the result; if the instruction is an arithmetic operation, it delivers the

appropriate result to the destination register. It also updates the current exception

flags to reflect any (untrapped) exceptions raised by the instruction, and it “or”s

those exceptions into the accrued exception flags. It then arranges to continue

execution of the process at the point at which the trap was taken.

When an instruction executed by hardware or emulated by the kernel software

incurs an IEEE floating-point exception whose trap is enabled, the instruction is not

completed. The destination register, floating point condition codes, and accrued

exception flags are unchanged, the current exception flags are set to reflect the

particular exception that caused the trap, and the kernel sends a SIGFPE signal to the

process.

The following pseudo-code summarizes the handling of floating-point traps. Note

that the aexc field can normally only be cleared by software.

A program will encounter severe performance degradation when many floating-

point instructions must be emulated by the kernel. The relative frequency with which

this happens can depend on several factors including, of course, the type of trap.

Under normal circumstances, the fp_disabled trap should occur only once per

process. The system kernel disables the floating-point unit when a process is first

started, so the first floating-point operation executed by the process will cause a trap.

After processing the trap, the kernel enables the floating-point unit, and it remains

enabled for the duration of the process. (It is possible to disable the floating-point

unit for the entire system, but this is not recommended and is done only for kernel

or hardware debugging purposes.)

FPop provokes a trap;
if trap type is fp_disabled, unimplemented_FPop, or
  unfinished_FPop then
    emulate FPop;
texc ¨ all IEEE exceptions generated by FPop;
if (texc and TEM) = 0 then
    f[rd]  ¨ fp_result;  // if fpop is an arithmetic op
    fcc ¨ fcc_result;  // if fpop is a compare
    cexc ¨ texc;
    aexc ¨ (aexc or texc);
else
    cexc ¨ trapped IEEE exception generated by FPop;
    throw SIGFPE;
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An unimplemented_FPop trap will obviously occur any time the floating-point unit

encounters an instruction it does not implement. Since most current SPARC floating-

point units implement at least the instruction set defined by the SPARC Architecture
Manual Version 8 except for the quad precision instructions, and the Forte Developer

compilers do not generate quad precision instructions, this type of trap should not

occur on most systems. As mentioned above, two notable exceptions are the

microSPARC-I and microSPARC-II processors, which do not implement the FsMULd

instruction. To avoid unimplemented_FPop traps on these processors, compile

programs with the -xarch=v8a option.

The remaining two trap types, unfinished_FPop and trapped IEEE exceptions, are

usually associated with special computational situations involving NaNs, infinities,

and subnormal numbers.

IEEE Floating-Point Exceptions, NaNs, and Infinities

When a floating-point instruction encounters an IEEE floating-point exception whose

trap is enabled, the instruction is not completed; instead the system delivers a

SIGFPE signal to the process. If the process has established a SIGFPE signal handler,

that handler is invoked, and otherwise, the process aborts. Since trapping is most

often enabled for the purpose of aborting the program when an exception occurs,

either by invoking a signal handler that prints a message and terminates the

program or by resorting to the system default behavior when no signal handler is

installed, most programs do not incur many trapped IEEE floating-point exceptions.

As described in Chapter 4, however, it is possible to arrange for a signal handler to

supply a result for the trapping instruction and continue execution. Note that severe

performance degradation can result if many floating-point exceptions are trapped

and handled in this way.

Most SPARC floating-point units will also trap on at least some cases involving

infinite or NaN operands or IEEE floating-point exceptions even when trapping is

disabled or an instruction would not cause an exception whose trap is enabled. This

happens when the hardware does not support such special cases; instead it generates

an unfinished_FPop trap and leaves the kernel emulation software to complete the

instruction. Different SPARC FPUs vary as to the conditions that result in an

unfinished_FPop trap: for example, most early SPARC FPUs as well as the

hyperSPARC FPU trap on all IEEE floating-point exceptions regardless of whether

trapping is enabled, while UltraSPARC FPUs can trap “pessimistically” when a

floating-point exception’s trap is enabled and the hardware is unable to determine

whether or not an instruction would raise that exception. On the other hand, the

SuperSPARC-I, SuperSPARC-II, TurboSPARC, microSPARC-I, and microSPARC-II

FPUs handle all exceptional cases in hardware and never generate unfinished_FPop
traps.
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Since most unfinished_FPop traps occur in conjunction with floating-point

exceptions, a program can avoid incurring an excessive number of these traps by

employing exception handling (i.e., testing the exception flags, trapping and

substituting results, or aborting on exceptions). Of course, care must be taken to

balance the cost of handling exceptions with that of allowing exceptions to result in

unfinished_FPop traps.

Subnormal Numbers and Nonstandard Arithmetic

The most common situations in which some SPARC floating-point units will trap

with an unfinished_FPop involve subnormal numbers. Many SPARC FPUs will

trap whenever a floating-point operation involves subnormal operands or must

generate a nonzero subnormal result (i.e., a result that incurs gradual underflow).

Because underflow is somewhat rare but difficult to program around, and because

the accuracy of underflowed intermediate results often has little effect on the overall

accuracy of the final result of a computation, the SPARC architecture includes a

nonstandard arithmetic mode that provides a way for a user to avoid the performance

degradation associated with unfinished_FPop traps involving subnormal numbers.

The SPARC architecture does not precisely define nonstandard arithmetic mode; it

merely states that when this mode is enabled, processors that support it may

produce results that do not conform to the IEEE 754 standard. However, all existing

SPARC implementations that support this mode use it to disable gradual underflow,

replacing all subnormal operands and results with zero. (There is one exception:

Weitek 1164/1165 FPUs only flush subnormal results to zero in nonstandard mode,

they do not treat subnormal operands as zero.)

Not all SPARC implementations provide a nonstandard mode. Specifically, the

SuperSPARC-I, SuperSPARC-II, TurboSPARC, microSPARC-I, and microSPARC-II

floating-point units handle subnormal operands and generate subnormal results

entirely in hardware, so they do not need to support nonstandard arithmetic. (Any

attempt to enable nonstandard mode on these processors is ignored.) Therefore,

gradual underflow incurs no performance loss on these processors.

To determine whether gradual underflows are affecting the performance of a

program, you should first determine whether underflows are occurring at all and

then check how much system time is used by the program. To determine whether

underflows are occurring, you can use the math library function

ieee_retrospective() to see if the underflow exception flag is raised when the

program exits. Fortran programs call ieee_retrospective() by default. C and C++
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programs need to call ieee_retrospective() explicitly prior to exit. If any

underflows have occurred, ieee_retrospective() prints a message similar to the

following:

If the program encounters underflows, you might want to determine how much

system time the program is using by timing the program execution with the time
command.

If the system time (the third figure shown above) is unusually high, multiple

underflows might be the cause. If so, and if the program does not depend on the

accuracy of gradual underflow, you can enable nonstandard mode for better

performance. There are two ways to do this. First, you can compile with the -fns
flag (which is implied as part of the macros -fast and -fnonstd ) to enable

nonstandard mode at program startup. Second, the value-added math library

libsunmath provides two functions to enable and disable nonstandard mode,

respectively: calling nonstandard_arithmetic() enables nonstandard mode (if it is

supported), while calling standard_arithmetic() restores IEEE behavior. The C

and Fortran syntax for calling these functions is as follows:

Caution – Since nonstandard arithmetic mode defeats the accuracy benefits of

gradual underflow, you should use it with caution. For more information about

gradual underflow, see Chapter 2.

Note: IEEE floating-point exception flags raised:
 Inexact; Underflow;
See the Numerical Computation Guide, ieee_flags(3M)

demo% /bin/time myprog > myprog.output
305.3 real      32.4 user 271.9 sys

C, C++ nonstandard_arithmetic();

standard_arithmetic();

Fortran call nonstandard_arithmetic()

call standard_arithmetic()
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Nonstandard Arithmetic and Kernel Emulation

On SPARC floating-point units that implement nonstandard mode, enabling this

mode causes the hardware to treat subnormal operands as zero and flush subnormal

results to zero. The kernel software that is used to emulate trapped floating-point

instructions, however, does not implement nonstandard mode, in part because the

effect of this mode is undefined and implementation-dependent and because the

added cost of handling gradual underflow is negligible compared to the cost of

emulating a floating-point operation in software.

If a floating-point operation that would be affected by nonstandard mode is

interrupted (for example, it has been issued but not completed when a context

switch occurs or another floating-point instruction causes a trap), it will be emulated

by kernel software using standard IEEE arithmetic. Thus, under unusual

circumstances, a program running in nonstandard mode might produce slightly

varying results depending on system load. This behavior has not been observed in

practice. It would affect only those programs that are very sensitive to whether one

particular operation out of millions is executed with gradual underflow or with

abrupt underflow.

fpversion (1) Function — Finding
Information About the FPU

The fpversion utility distributed with the compilers identifies the installed CPU

and estimates the processor and system bus clock speeds. fpversion determines the

CPU and FPU types by interpreting the identification information stored by the CPU

and FPU. It estimates their clock speeds by timing a loop that executes simple

instructions that run in a predictable amount of time. The loop is executed many

times to increase the accuracy of the timing measurements. For this reason,

fpversion is not instantaneous; it can take several seconds to run.

fpversion also reports the best -xtarget code generation option to use for the host

system.
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On an Ultra 4 workstation, fpversion displays information similar to the following.

(There may be variations due to differences in timing or machine configuration.)

See the fpversion(1) manual page for more information.

demo% fpversion
 A SPARC-based CPU is available.
 CPU’s clock rate appears to be approximately 461.1 MHz.
 Kernel says CPU’s clock rate is 480.0 MHz.
 Kernel says main memory’s clock rate is 120.0 MHz.

 Sun-4 floating-point controller version 0 found.
 An UltraSPARC chip is available.
 FPU's frequency appears to be approximately 492.7 MHz.

 Use “-xtarget=ultra2 -xcache=16/32/1:2048/64/1” code-
generation option.

 Hostid = hardware_host_id
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APPENDIX C

x86 Behavior and Implementation

This appendix discusses x86 and SPARC compatibility issues related to the floating-

point units used in x86 platforms.

The hardware is 80386, 80486, and Pentium™ microprocessors from x86 and

compatible microprocessors from other manufacturers. While great effort went into

compatibility with the SPARC platform, several differences exist.

On x86:

■ The floating-point registers are 80-bits wide. Because intermediate results of

arithmetic computations can be in extended precision, computation results can

differ. The -fstore flag minimizes these discrepancies. However, using the

-fstore flag introduces a penalty in performance.

■ Each time a single or double precision floating-point number is loaded or stored,

a conversion to or from double extended precision occurs. Thus loads and stores

of floating-point numbers can cause exceptions.

■ Gradual underflow is implemented entirely in hardware. There is no nonstandard

mode.

■ The fpversion utility is not provided.

■ The extended double format admits certain bit patterns that do not represent any

floating point values (see TABLE 2-8). The hardware generally treats these

“unsupported formats” like NaNs, but the math libraries are not consistent in

their handling of such representations. Since these bit patterns are never

generated by the hardware, they can only be created by invalid memory

references (such as reading beyond the end of an array) or from explicit coercions

of data in memory from one type to another (via C’s union construct, for

example). Therefore, in most numerical programs, these bit patterns do not arise.
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APPENDIX D

What Every Computer Scientist
Should Know About Floating-Point
Arithmetic

Note – This appendix is an edited reprint of the paper What Every Computer Scientist
Should Know About Floating-Point Arithmetic, by David Goldberg, published in the

March, 1991 issue of Computing Surveys. Copyright 1991, Association for

Computing Machinery, Inc., reprinted by permission.

Abstract

Floating-point arithmetic is considered an esoteric subject by many people. This is

rather surprising because floating-point is ubiquitous in computer systems. Almost

every language has a floating-point datatype; computers from PCs to

supercomputers have floating-point accelerators; most compilers will be called upon

to compile floating-point algorithms from time to time; and virtually every operating

system must respond to floating-point exceptions such as overflow. This paper

presents a tutorial on those aspects of floating-point that have a direct impact on

designers of computer systems. It begins with background on floating-point

representation and rounding error, continues with a discussion of the IEEE floating-

point standard, and concludes with numerous examples of how computer builders

can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]:

General — instruction set design; D.3.4 [Programming Languages]: Processors —
compilers, optimization; G.1.0 [Numerical Analysis]: General — computer arithmetic,
error analysis, numerical algorithms (Secondary)

D.2.1 [Software Engineering]: Requirements/Specifications — languages; D.3.4

Programming Languages]: Formal Definitions and Theory — semantics; D.4.1

Operating Systems]: Process Management — synchronization.

General Terms: Algorithms, Design, Languages
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Additional Key Words and Phrases: Denormalized number, exception, floating-

point, floating-point standard, gradual underflow, guard digit, NaN, overflow,

relative error, rounding error, rounding mode, ulp, underflow.

Introduction

Builders of computer systems often need information about floating-point

arithmetic. There are, however, remarkably few sources of detailed information

about it. One of the few books on the subject, Floating-Point Computation by Pat

Sterbenz, is long out of print. This paper is a tutorial on those aspects of floating-

point arithmetic (floating-point hereafter) that have a direct connection to systems

building. It consists of three loosely connected parts. The first section, “Rounding

Error” on page 162, discusses the implications of using different rounding strategies

for the basic operations of addition, subtraction, multiplication and division. It also

contains background information on the two methods of measuring rounding error,

ulps and relative error . The second part discusses the IEEE floating-point

standard, which is becoming rapidly accepted by commercial hardware

manufacturers. Included in the IEEE standard is the rounding method for basic

operations. The discussion of the standard draws on the material in the section

“Rounding Error” on page 162. The third part discusses the connections between

floating-point and the design of various aspects of computer systems. Topics include

instruction set design, optimizing compilers and exception handling.

I have tried to avoid making statements about floating-point without also giving

reasons why the statements are true, especially since the justifications involve

nothing more complicated than elementary calculus. Those explanations that are not

central to the main argument have been grouped into a section called “The Details,”

so that they can be skipped if desired. In particular, the proofs of many of the

theorems appear in this section. The end of each proof is marked with the ❚ symbol.

When a proof is not included, the ❚ appears immediately following the statement of

the theorem.

Rounding Error

Squeezing infinitely many real numbers into a finite number of bits requires an

approximate representation. Although there are infinitely many integers, in most

programs the result of integer computations can be stored in 32 bits. In contrast,

given any fixed number of bits, most calculations with real numbers will produce

quantities that cannot be exactly represented using that many bits. Therefore the

result of a floating-point calculation must often be rounded in order to fit back into
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its finite representation. This rounding error is the characteristic feature of floating-

point computation. The section “Relative Error and Ulps” on page 165 describes how

it is measured.

Since most floating-point calculations have rounding error anyway, does it matter if

the basic arithmetic operations introduce a little bit more rounding error than

necessary? That question is a main theme throughout this section. The section

“Guard Digits” on page 166 discusses guard digits, a means of reducing the error

when subtracting two nearby numbers. Guard digits were considered sufficiently

important by IBM that in 1968 it added a guard digit to the double precision format

in the System/360 architecture (single precision already had a guard digit), and

retrofitted all existing machines in the field. Two examples are given to illustrate the

utility of guard digits.

The IEEE standard goes further than just requiring the use of a guard digit. It gives

an algorithm for addition, subtraction, multiplication, division and square root, and

requires that implementations produce the same result as that algorithm. Thus,

when a program is moved from one machine to another, the results of the basic

operations will be the same in every bit if both machines support the IEEE standard.

This greatly simplifies the porting of programs. Other uses of this precise

specification are given in “Exactly Rounded Operations” on page 173.

Floating-point Formats

Several different representations of real numbers have been proposed, but by far the

most widely used is the floating-point representation.1 Floating-point

representations have a base β (which is always assumed to be even) and a precision

p. If β = 10 and p = 3, then the number 0.1 is represented as 1.00 × 10-1. If β = 2 and

p = 24, then the decimal number 0.1 cannot be represented exactly, but is

approximately 1.10011001100110011001101 × 2-4.

In general, a floating-point number will be represented as ± d.dd… d × βe, where

d.dd… d is called the significand2 and has p digits. More precisely ± d0 . d1 d2 … dp-1 ×
βe represents the number

. (1)

1. Examples of other representations are floating slash and signed logarithm [Matula and Kornerup 1985;
Swartzlander and Alexopoulos 1975].

2. This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa.

d0 d1β 1– … dp 1– β p 1–( )–+ + + 
  βe 0 di β<≤( ),±
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The term floating-point number will be used to mean a real number that can be exactly

represented in the format under discussion. Two other parameters associated with

floating-point representations are the largest and smallest allowable exponents, emax
and emin. Since there are βp possible significands, and emax – emin + 1 possible

exponents, a floating-point number can be encoded in

bits, where the final +1 is for the sign bit. The precise encoding is not important for

now.

There are two reasons why a real number might not be exactly representable as a

floating-point number. The most common situation is illustrated by the decimal

number 0.1. Although it has a finite decimal representation, in binary it has an

infinite repeating representation. Thus when β = 2, the number 0.1 lies strictly

between two floating-point numbers and is exactly representable by neither of them.

A less common situation is that a real number is out of range, that is, its absolute

value is larger than β × or smaller than 1.0 × . Most of this paper discusses

issues due to the first reason. However, numbers that are out of range will be

discussed in the sections “Infinity” on page 184 and “Denormalized Numbers” on

page 187.

Floating-point representations are not necessarily unique. For example, both

0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0 ≠ 0 in

equation (1) above), then the representation is said to be normalized. The floating-

point number 1.00 × 10-1 is normalized, while 0.01 × 101 is not. When β = 2, p = 3,

emin = -1 and emax = 2 there are 16 normalized floating-point numbers, as shown in

FIGURE D-1. The bold hash marks correspond to numbers whose significand is 1.00.

Requiring that a floating-point representation be normalized makes the

representation unique. Unfortunately, this restriction makes it impossible to

represent zero! A natural way to represent 0 is with 1.0 × , since this preserves

the fact that the numerical ordering of nonnegative real numbers corresponds to the

lexicographic ordering of their floating-point representations.1 When the exponent is

stored in a k bit field, that means that only 2k - 1 values are available for use as

exponents, since one must be reserved to represent 0.

Note that the × in a floating-point number is part of the notation, and different from

a floating-point multiply operation. The meaning of the × symbol should be clear

from the context. For example, the expression (2.5 × 10-3) × (4.0 × 102) involves only a

single floating-point multiplication.

1. This assumes the usual arrangement where the exponent is stored to the left of the significand.

log2 emax emin– 1+( )[ ] log2 βp( )[ ] 1+ +

βemax βemin

βemin 1–
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FIGURE D-1 Normalized Numbers When β = 2, p = 3, emin = -1, emax = 2

Relative Error and Ulps

Since rounding error is inherent in floating-point computation, it is important to

have a way to measure this error. Consider the floating-point format with β = 10 and

p = 3, which will be used throughout this section. If the result of a floating-point

computation is 3.12 × 10-2, and the answer when computed to infinite precision is

.0314, it is clear that this is in error by 2 units in the last place. Similarly, if the real

number .0314159 is represented as 3.14 × 10-2, then it is in error by .159 units in the

last place. In general, if the floating-point number d.d…d × βe is used to represent z,

then it is in error by d.d…d − (z/βe)βp-1 units in the last place.1, 2 The term ulps will

be used as shorthand for “units in the last place.” If the result of a calculation is the

floating-point number nearest to the correct result, it still might be in error by as

much as .5 ulp. Another way to measure the difference between a floating-point

number and the real number it is approximating is relative error, which is simply the

difference between the two numbers divided by the real number. For example the

relative error committed when approximating 3.14159 by 3.14 × 100 is

.00159/3.14159 ≈ .0005.

To compute the relative error that corresponds to .5 ulp, observe that when a real

number is approximated by the closest possible floating-point number d.dd...dd × βe,

the error can be as large as 0.00...00β′ × βe, where β’ is the digit β/2, there are p units

in the significand of the floating-point number, and p units of 0 in the significand of

the error. This error is ((β/2)β-p) × βe. Since numbers of the form d.dd…dd × βe all

have the same absolute error, but have values that range between βe and β × βe, the

relative error ranges between ((β/2)β-p) × βe/βe and ((β/2)β-p) × βe/βe+1. That is,

(2)

1. Unless the number z is larger than +1 or smaller than . Numbers which are out of range in this
fashion will not be considered until further notice.

2. Let z’ be the floating-point number that approximates z. Then d.d…d - (z/βe)βp-1 is equivalent to
z’-z/ulp(z’). A more accurate formula for measuring error is z’-z/ulp(z). – Ed.

0 0.5 1 2 3 4 5 6 7

β
emax β

emin

1
2
---β p– 1

2
---ulp

β
2
---β p–≤≤
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In particular, the relative error corresponding to .5 ulp can vary by a factor of β. This

factor is called the wobble. Setting ε = (β/2)β-p to the largest of the bounds in (2)

above, we can say that when a real number is rounded to the closest floating-point

number, the relative error is always bounded by e, which is referred to as machine
epsilon.

In the example above, the relative error was .00159/3.14159 ≈ .0005. In order to avoid

such small numbers, the relative error is normally written as a factor times ε, which

in this case is ε = (β/2)β-p = 5(10)-3 = .005. Thus the relative error would be expressed

as (.00159/3.14159)/.005) ε ≈ 0.1ε.

To illustrate the difference between ulps and relative error, consider the real number

x = 12.35. It is approximated by = 1.24 × 101. The error is 0.5 ulps, the relative error

is 0.8ε. Next consider the computation 8 . The exact value is 8x = 98.8, while the

computed value is 8 = 9.92 × 101. The error is now 4.0 ulps, but the relative error is

still 0.8ε. The error measured in ulps is 8 times larger, even though the relative error

is the same. In general, when the base is β, a fixed relative error expressed in ulps

can wobble by a factor of up to β. And conversely, as equation (2) above shows, a

fixed error of .5 ulps results in a relative error that can wobble by β.

The most natural way to measure rounding error is in ulps. For example rounding to

the nearest floating-point number corresponds to an error of less than or equal to .5

ulp. However, when analyzing the rounding error caused by various formulas,

relative error is a better measure. A good illustration of this is the analysis on

Section , “The exact difference is x - y, so the error is (x - y) - (x - + δ) = - y + δ. There

are three cases. If x - y ≥ 1 then the relative error is bounded by” on page D-207.

Since ε can overestimate the effect of rounding to the nearest floating-point number

by the wobble factor of β, error estimates of formulas will be tighter on machines

with a small β.

When only the order of magnitude of rounding error is of interest, ulps and ε may

be used interchangeably, since they differ by at most a factor of β. For example,

when a floating-point number is in error by n ulps, that means that the number of

contaminated digits is logβ n. If the relative error in a computation is nε, then

contaminated digits ≈ logβ n. (3)

Guard Digits

One method of computing the difference between two floating-point numbers is to

compute the difference exactly and then round it to the nearest floating-point

number. This is very expensive if the operands differ greatly in size. Assuming p = 3,

2.15 × 1012 – 1.25 × 10-5 would be calculated as

x̃
x̃

x̃
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x = 2.15 × 1012

y = .0000000000000000125 × 1012

x – y = 2.1499999999999999875 × 1012

which rounds to 2.15 × 1012. Rather than using all these digits, floating-point

hardware normally operates on a fixed number of digits. Suppose that the number

of digits kept is p, and that when the smaller operand is shifted right, digits are

simply discarded (as opposed to rounding). Then 2.15 × 1012 – 1.25 × 10-5 becomes

x = 2.15 × 1012

y = 0.00 × 1012

x – y = 2.15 × 1012

The answer is exactly the same as if the difference had been computed exactly and

then rounded. Take another example: 10.1 – 9.93. This becomes

x = 1.01 × 101

y = 0.99 × 101

x – y = .02 × 101

The correct answer is .17, so the computed difference is off by 30 ulps and is wrong

in every digit! How bad can the error be?

Theorem 1

Using a floating-point format with parameters β and p, and computing differences using p
digits, the relative error of the result can be as large as β – 1.

Proof

A relative error of β - 1 in the expression x - y occurs when x = 1.00…0 and y =

.ρρ…ρ, where ρ = β - 1. Here y has p digits (all equal to ρ). The exact difference is

x - y = β-p. However, when computing the answer using only p digits, the rightmost

digit of y gets shifted off, and so the computed difference is β-p+1. Thus the error is

β-p – β-p+1 = β-p (β - 1), and the relative error is β-p(β – 1)/β-p = β – 1. ❚

When β=2, the relative error can be as large as the result, and when β=10, it can be 9

times larger. Or to put it another way, when β=2, equation (3) shows that the number

of contaminated digits is log2(1/ε) = log2(2
p) = p. That is, all of the p digits in the

result are wrong! Suppose that one extra digit is added to guard against this

situation (a guard digit). That is, the smaller number is truncated to p + 1 digits, and

then the result of the subtraction is rounded to p digits. With a guard digit, the

previous example becomes

x = 1.010 × 101

y = 0.993 × 101

x – y = .017 × 101
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and the answer is exact. With a single guard digit, the relative error of the result may

be greater than ε, as in 110 – 8.59.

x = 1.10 × 102

y = .085 × 102

x - y = 1.015 × 102

This rounds to 102, compared with the correct answer of 101.41, for a relative error

of .006, which is greater than ε = .005. In general, the relative error of the result can

be only slightly larger than ε. More precisely,

Theorem 2

If x and y are floating-point numbers in a format with parameters β and p, and if subtraction
is done with p + 1 digits (i.e. one guard digit), then the relative rounding error in the result
is less than 2ε.

This theorem will be proven in “Rounding Error” on page 206. Addition is included

in the above theorem since x and y can be positive or negative.

Cancellation

The last section can be summarized by saying that without a guard digit, the relative

error committed when subtracting two nearby quantities can be very large. In other

words, the evaluation of any expression containing a subtraction (or an addition of

quantities with opposite signs) could result in a relative error so large that all the

digits are meaningless (Theorem 1). When subtracting nearby quantities, the most

significant digits in the operands match and cancel each other. There are two kinds

of cancellation: catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding errors. For

example in the quadratic formula, the expression b2 - 4ac occurs. The quantities b2

and 4ac are subject to rounding errors since they are the results of floating-point

multiplications. Suppose that they are rounded to the nearest floating-point number,

and so are accurate to within .5 ulp. When they are subtracted, cancellation can

cause many of the accurate digits to disappear, leaving behind mainly digits

contaminated by rounding error. Hence the difference might have an error of many

ulps. For example, consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 - 4ac
is .0292. But b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final answer is .1

which is an error by 70 ulps, even though 11.2 - 11.1 is exactly equal to .11. The

subtraction did not introduce any error, but rather exposed the error introduced in

the earlier multiplications.

1. 700, not 70. Since .1 - .0292 = .0708, the error in terms of ulp(0.0292) is 708 ulps. – Ed.
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Benign cancellation occurs when subtracting exactly known quantities. If x and y have

no rounding error, then by Theorem 2 if the subtraction is done with a guard digit,

the difference x-y has a very small relative error (less than 2ε).

A formula that exhibits catastrophic cancellation can sometimes be rearranged to

eliminate the problem. Again consider the quadratic formula

(4)

When , then does not involve a cancellation and

.

But the other addition (subtraction) in one of the formulas will have a catastrophic

cancellation. To avoid this, multiply the numerator and denominator of r1 by

(and similarly for r2) to obtain

(5)

If and b > 0, then computing r1 using formula (4) will involve a cancellation.

Therefore, use formula (5) for computing r1 and (4) for r2. On the other hand, if b < 0,

use (4) for computing r1 and (5) for r2.

The expression x2 - y2 is another formula that exhibits catastrophic cancellation. It is

more accurate to evaluate it as (x - y)(x + y).1 Unlike the quadratic formula, this

improved form still has a subtraction, but it is a benign cancellation of quantities

without rounding error, not a catastrophic one. By Theorem 2, the relative error in

x – y is at most 2ε. The same is true of x + y. Multiplying two quantities with a small

relative error results in a product with a small relative error (see the section

“Rounding Error” on page 206).

In order to avoid confusion between exact and computed values, the following

notation is used. Whereas x – y denotes the exact difference of x and y, x y denotes

the computed difference (i.e., with rounding error). Similarly ⊕, ⊗, and denote

computed addition, multiplication, and division, respectively. All caps indicate the

computed value of a function, as in LN(x) or SQRT(x) . Lowercase functions and

traditional mathematical notation denote their exact values as in ln(x) and .

1. Although the expression (x – y)(x + y) does not cause a catastrophic cancellation, it is slightly less accurate
than x2 – y2 if or . In this case, (x – y)(x + y) has three rounding errors, but x2 – y2 has only two
since the rounding error committed when computing the smaller of x2 and y2 does not affect the final
subtraction.

r1
b– b2 4ac–+

2a
--------------------------------------- r2, b– b2 4ac––

2a
--------------------------------------= =

b2 ac» b2 4ac–

b2 4ac– b≈

b– b2 4ac––

r1
2c

b– b2 4ac––
-------------------------------------- r2, 2c

b– b2 4ac–+
---------------------------------------= =

b2 ac»

x y» x y«

x
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Although (x y) ⊗ (x ⊕ y) is an excellent approximation to x2 – y2, the floating-

point numbers x and y might themselves be approximations to some true quantities

and . For example, and might be exactly known decimal numbers that

cannot be expressed exactly in binary. In this case, even though x y is a good

approximation to x – y, it can have a huge relative error compared to the true

expression , and so the advantage of (x + y)(x – y) over x2 – y2 is not as

dramatic. Since computing (x + y)(x - y) is about the same amount of work as

computing x2 - y2, it is clearly the preferred form in this case. In general, however,

replacing a catastrophic cancellation by a benign one is not worthwhile if the

expense is large, because the input is often (but not always) an approximation. But

eliminating a cancellation entirely (as in the quadratic formula) is worthwhile even if

the data are not exact. Throughout this paper, it will be assumed that the floating-

point inputs to an algorithm are exact and that the results are computed as

accurately as possible.

The expression x2 – y2 is more accurate when rewritten as (x – y)(x + y) because a

catastrophic cancellation is replaced with a benign one. We next present more

interesting examples of formulas exhibiting catastrophic cancellation that can be

rewritten to exhibit only benign cancellation.

The area of a triangle can be expressed directly in terms of the lengths of its sides a,

b, and c as

(6)

(Suppose the triangle is very flat; that is, a ≈ b + c. Then s ≈ a, and the term (s - a) in

formula (6) subtracts two nearby numbers, one of which may have rounding error.

For example, if a = 9.0, b = c = 4.53, the correct value of s is 9.03 and A is 2.342....

Even though the computed value of s (9.05) is in error by only 2 ulps, the computed

value of A is 3.04, an error of 70 ulps.

There is a way to rewrite formula (6) so that it will return accurate results even for

flat triangles [Kahan 1986]. It is

(7)

If a, b, and c do not satisfy a ≥ b ≥ c, rename them before applying (7). It is

straightforward to check that the right-hand sides of (6) and (7) are algebraically

identical. Using the values of a, b, and c above gives a computed area of 2.35, which

is 1 ulp in error and much more accurate than the first formula.

Although formula (7) is much more accurate than (6) for this example, it would be

nice to know how well (7) performs in general.

x̂ ŷ x̂ ŷ

x̂ ŷ–

A s s a–( ) s b–( ) s c–( ) wheres, a b c+ +( ) 2⁄= =

A
a b c+( )+( ) c a b–( )–( ) c a b–( )+( ) a b c–( )+( )

4
-------------------------------------------------------------------------------------------------------------------------------- a b c≥ ≥,=
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Theorem 3

The rounding error incurred when using (7) to compute the area of a triangle is at most 11ε,
provided that subtraction is performed with a guard digit, e ≤ .005, and that square roots are
computed to within 1/2 ulp.

The condition that e < .005 is met in virtually every actual floating-point system. For

example when β = 2, p ≥ 8 ensures that e < .005, and when β = 10, p ≥ 3 is enough.

In statements like Theorem 3 that discuss the relative error of an expression, it is

understood that the expression is computed using floating-point arithmetic. In

particular, the relative error is actually of the expression

SQRT((a ⊕ (b ⊕ c)) ⊗ (c (a b)) ⊗ (c ⊕ (a b)) ⊗ (a ⊕ (b c))) 4 (8)

Because of the cumbersome nature of (8), in the statement of theorems we will

usually say the computed value of E rather than writing out E with circle notation.

Error bounds are usually too pessimistic. In the numerical example given above, the

computed value of (7) is 2.35, compared with a true value of 2.34216 for a relative

error of 0.7ε, which is much less than 11ε. The main reason for computing error

bounds is not to get precise bounds but rather to verify that the formula does not

contain numerical problems.

A final example of an expression that can be rewritten to use benign cancellation is

(1 + x)n, where . This expression arises in financial calculations. Consider

depositing $100 every day into a bank account that earns an annual interest rate of

6%, compounded daily. If n = 365 and i = .06, the amount of money accumulated at

the end of one year is

100

dollars. If this is computed using β = 2 and p = 24, the result is $37615.45 compared

to the exact answer of $37614.05, a discrepancy of $1.40. The reason for the problem

is easy to see. The expression 1 + i/n involves adding 1 to .0001643836, so the low

order bits of i/n are lost. This rounding error is amplified when 1 + i/n is raised to

the nth power.

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where now the

problem is to compute ln(1 + x) for small x. One approach is to use the

approximation ln(1 + x) ≈ x, in which case the payment becomes $37617.26, which is

off by $3.21 and even less accurate than the obvious formula. But there is a way to

compute ln(1 + x) very accurately, as Theorem 4 shows [Hewlett-Packard 1982]. This

formula yields $37614.07, accurate to within two cents!

x 1«

1 i n⁄+( )n 1–
i n⁄

------------------------------
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Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The problem it

solves is that when x is small, LN(1 ⊕ x) is not close to ln(1 + x) because 1 ⊕ x has lost

the information in the low order bits of x. That is, the computed value of ln(1 + x) is

not close to its actual value when .

Theorem 4

If ln(1 + x) is computed using the formula

the relative error is at most 5ε when 0 ≤ x < 3/4, provided subtraction is performed with a
guard digit, e < 0.1, and ln is computed to within 1/2 ulp.

This formula will work for any value of x but is only interesting for , which is

where catastrophic cancellation occurs in the naive formula ln(1 + x). Although the

formula may seem mysterious, there is a simple explanation for why it works. Write

ln(1 + x) as

.

The left hand factor can be computed exactly, but the right hand factor µ(x) =

ln(1 + x)/x will suffer a large rounding error when adding 1 to x. However, µ is

almost constant, since ln(1 + x) ≈ x. So changing x slightly will not introduce much

error. In other words, if , computing will be a good approximation to

xµ(x) = ln(1 + x). Is there a value for for which and can be computed

accurately? There is; namely = (1 ⊕ x) 1, because then 1 + is exactly equal to

1 ⊕ x.

The results of this section can be summarized by saying that a guard digit

guarantees accuracy when nearby precisely known quantities are subtracted (benign

cancellation). Sometimes a formula that gives inaccurate results can be rewritten to

have much higher numerical accuracy by using benign cancellation; however, the

procedure only works if subtraction is performed using a guard digit. The price of a

guard digit is not high, because it merely requires making the adder one bit wider.

For a 54 bit double precision adder, the additional cost is less than 2%. For this price,

you gain the ability to run many algorithms such as formula (6) for computing the

area of a triangle and the expression ln(1 + x). Although most modern computers

have a guard digit, there are a few (such as Cray systems) that do not.
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Exactly Rounded Operations

When floating-point operations are done with a guard digit, they are not as accurate

as if they were computed exactly then rounded to the nearest floating-point number.

Operations performed in this manner will be called exactly rounded.1 The example

immediately preceding Theorem 2 shows that a single guard digit will not always

give exactly rounded results. The previous section gave several examples of

algorithms that require a guard digit in order to work properly. This section gives

examples of algorithms that require exact rounding.

So far, the definition of rounding has not been given. Rounding is straightforward,

with the exception of how to round halfway cases; for example, should 12.5 round to

12 or 13? One school of thought divides the 10 digits in half, letting {0, 1, 2, 3, 4}

round down, and {5, 6, 7, 8, 9} round up; thus 12.5 would round to 13. This is how

rounding works on Digital Equipment Corporation’s VAX computers. Another

school of thought says that since numbers ending in 5 are halfway between two

possible roundings, they should round down half the time and round up the other

half. One way of obtaining this 50% behavior to require that the rounded result have

its least significant digit be even. Thus 12.5 rounds to 12 rather than 13 because 2 is

even. Which of these methods is best, round up or round to even? Reiser and Knuth

[1975] offer the following reason for preferring round to even.

Theorem 5

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0 y) ⊕ y, …, xn =
(xn-1 y) ⊕ y. If ⊕ and are exactly rounded using round to even, then either xn = x for
all n or xn = x1 for all n ≥ 1. ❚

To clarify this result, consider β = 10, p = 3 and let x = 1.00, y = -.555. When rounding

up, the sequence becomes

x0 y = 1.56, x1 = 1.56 .555 = 1.01, x1 y = 1.01 ⊕ .555 = 1.57,

and each successive value of xn increases by .01, until xn = 9.45 (n ≤ 845)2. Under

round to even, xn is always 1.00. This example suggests that when using the round

up rule, computations can gradually drift upward, whereas when using round to

even the theorem says this cannot happen. Throughout the rest of this paper, round

to even will be used.

One application of exact rounding occurs in multiple precision arithmetic. There are

two basic approaches to higher precision. One approach represents floating-point

numbers using a very large significand, which is stored in an array of words, and

codes the routines for manipulating these numbers in assembly language. The

1. Also commonly referred to as correctly rounded. – Ed.

2. When n = 845, xn= 9.45, xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45. Therefore, xn = x845 for n > 845.
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second approach represents higher precision floating-point numbers as an array of

ordinary floating-point numbers, where adding the elements of the array in infinite

precision recovers the high precision floating-point number. It is this second

approach that will be discussed here. The advantage of using an array of floating-

point numbers is that it can be coded portably in a high level language, but it

requires exactly rounded arithmetic.

The key to multiplication in this system is representing a product xy as a sum, where

each summand has the same precision as x and y. This can be done by splitting x and

y. Writing x = xh + xl and y = yh + yl, the exact product is

xy = xh yh + xh yl + xl yh + xl yl.

If x and y have p bit significands, the summands will also have p bit significands

provided that xl, xh, yh, yl can be represented using [p/2] bits. When p is even, it is

easy to find a splitting. The number x0.x1 … xp - 1 can be written as the sum of

x0.x1 … xp/2 - 1 and 0.0 … 0xp/2 … xp - 1. When p is odd, this simple splitting method

will not work. An extra bit can, however, be gained by using negative numbers. For

example, if β = 2, p = 5, and x = .10111, x can be split as xh = .11 and xl = -.00001.

There is more than one way to split a number. A splitting method that is easy to

compute is due to Dekker [1971], but it requires more than a single guard digit.

Theorem 6

Let p be the floating-point precision, with the restriction that p is even when β > 2, and
assume that floating-point operations are exactly rounded. Then if k = [p/2] is half the
precision (rounded up) and m = βk + 1, x can be split as x = xh + xl, where

xh = (m ⊗ x) (m ⊗ x x), xl = x xh,

and each xi is representable using [p/2] bits of precision.

To see how this theorem works in an example, let β = 10, p = 4, b = 3.476, a = 3.463,

and c = 3.479. Then b2 – ac rounded to the nearest floating-point number is .03480,

while b ⊗ b = 12.08, a ⊗ c = 12.05, and so the computed value of b2 – ac is .03. This is

an error of 480 ulps. Using Theorem 6 to write b = 3.5 – .024, a = 3.5 - .037, and c =

3.5 - .021, b2 becomes 3.52 – 2 × 3.5 × .024 + .0242. Each summand is exact, so b2 =

12.25 – .168 + .000576, where the sum is left unevaluated at this point. Similarly, ac =

3.52 – (3.5 × .037 + 3.5 × .021) + .037 × .021 = 12.25 – .2030 +.000777. Finally,

subtracting these two series term by term gives an estimate for b2 – ac of

0 ⊕ .0350 .000201 = .03480, which is identical to the exactly rounded result. To

show that Theorem 6 really requires exact rounding, consider p = 3, β = 2, and x = 7.

Then m = 5, mx = 35, and m ⊗ x = 32. If subtraction is performed with a single guard

digit, then (m ⊗ x) x = 28. Therefore, xh = 4 and xl = 3, hence xl is not representable

with [p/2] = 1 bit.
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As a final example of exact rounding, consider dividing m by 10. The result is a

floating-point number that will in general not be equal to m/10. When β = 2,

multiplying m/10 by 10 will restore m, provided exact rounding is being used.

Actually, a more general fact (due to Kahan) is true. The proof is ingenious, but

readers not interested in such details can skip ahead to section “The IEEE Standard”

on page 176.

Theorem 7

When β = 2, if m and n are integers with |m| < 2p - 1 and n has the special form n = 2i + 2j,
then (m n) ⊗ n = m, provided floating-point operations are exactly rounded.

Proof

Scaling by a power of two is harmless, since it changes only the exponent, not the

significand. If q = m/n, then scale n so that 2p - 1 ≤ n < 2p and scale m so that 1/2 < q
< 1. Thus, 2p - 2 < m < 2p. Since m has p significant bits, it has at most one bit to the

right of the binary point. Changing the sign of m is harmless, so assume that q > 0.

If = m n, to prove the theorem requires showing that

(9)

That is because m has at most 1 bit right of the binary point, so n will round to m.

To deal with the halfway case when |n - m| = 1/4, note that since the initial

unscaled m had |m| < 2p - 1, its low-order bit was 0, so the low-order bit of the scaled

m is also 0. Thus, halfway cases will round to m.

Suppose that q = .q1q2 …, and let = .q1q2 … qp1. To estimate |n - m|, first compute

| - q| = |N/2p + 1 - m/n|,

where N is an odd integer. Since n = 2i + 2j and 2p - 1 ≤ n < 2p, it must be that n =

2p - 1 + 2k for some k ≤ p - 2, and thus

.
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The numerator is an integer, and since N is odd, it is in fact an odd integer. Thus,

| - q| ≥ 1/(n2p + 1 - k).

Assume q < (the case q > is similar).1 Then n < m, and

|m-n |= m-n = n(q- ) = n(q-( -2-p-1)) ≤

=(2p-1+2k)2-p-1–2-p-1+k =

This establishes (9) and proves the theorem.2 ❚

The theorem holds true for any base β, as long as 2i + 2j is replaced by βi + βj. As β
gets larger, however, denominators of the form βi + βj are farther and farther apart.

We are now in a position to answer the question, Does it matter if the basic

arithmetic operations introduce a little more rounding error than necessary? The

answer is that it does matter, because accurate basic operations enable us to prove

that formulas are “correct” in the sense they have a small relative error. The section

“Cancellation” on page 168 discussed several algorithms that require guard digits to

produce correct results in this sense. If the input to those formulas are numbers

representing imprecise measurements, however, the bounds of Theorems 3 and 4

become less interesting. The reason is that the benign cancellation x – y can become

catastrophic if x and y are only approximations to some measured quantity. But

accurate operations are useful even in the face of inexact data, because they enable

us to establish exact relationships like those discussed in Theorems 6 and 7. These

are useful even if every floating-point variable is only an approximation to some

actual value.

The IEEE Standard

There are two different IEEE standards for floating-point computation. IEEE 754 is a

binary standard that requires β = 2, p = 24 for single precision and p = 53 for double

precision [IEEE 1987]. It also specifies the precise layout of bits in a single and

double precision. IEEE 854 allows either β = 2 or β = 10 and unlike 754, does not

specify how floating-point numbers are encoded into bits [Cody et al. 1984]. It does

not require a particular value for p, but instead it specifies constraints on the

allowable values of p for single and double precision. The term IEEE Standard will be

used when discussing properties common to both standards.

1. Notice that in binary, q cannot equal . – Ed.

2. Left as an exercise to the reader: extend the proof to bases other than 2. – Ed.
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This section provides a tour of the IEEE standard. Each subsection discusses one

aspect of the standard and why it was included. It is not the purpose of this paper to

argue that the IEEE standard is the best possible floating-point standard but rather

to accept the standard as given and provide an introduction to its use. For full

details consult the standards themselves [IEEE 1987; Cody et al. 1984].

Formats and Operations

Base

It is clear why IEEE 854 allows β = 10. Base ten is how humans exchange and think

about numbers. Using β = 10 is especially appropriate for calculators, where the

result of each operation is displayed by the calculator in decimal.

There are several reasons why IEEE 854 requires that if the base is not 10, it must be

2. The section “Relative Error and Ulps” on page 165 mentioned one reason: the

results of error analyses are much tighter when β is 2 because a rounding error of .5

ulp wobbles by a factor of β when computed as a relative error, and error analyses

are almost always simpler when based on relative error. A related reason has to do

with the effective precision for large bases. Consider β = 16, p = 1 compared to β = 2,

p = 4. Both systems have 4 bits of significand. Consider the computation of 15/8.

When β = 2, 15 is represented as 1.111 × 23, and 15/8 as 1.111 × 20. So 15/8 is exact.

However, when β = 16, 15 is represented as F × 160, where F is the hexadecimal digit

for 15. But 15/8 is represented as 1 × 160, which has only one bit correct. In general,

base 16 can lose up to 3 bits, so that a precision of p hexadecimal digits can have an

effective precision as low as 4p - 3 rather than 4p binary bits. Since large values of β
have these problems, why did IBM choose β = 16 for its system/370? Only IBM

knows for sure, but there are two possible reasons. The first is increased exponent

range. Single precision on the system/370 has β = 16, p = 6. Hence the significand

requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the exponent and

one for the sign bit. Thus the magnitude of representable numbers ranges from

about to about = . To get a similar exponent range when β = 2

would require 9 bits of exponent, leaving only 22 bits for the significand. However, it

was just pointed out that when β = 16, the effective precision can be as low as

4p - 3 = 21 bits. Even worse, when β = 2 it is possible to gain an extra bit of precision

(as explained later in this section), so the β = 2 machine has 23 bits of precision to

compare with a range of 21 - 24 bits for the β = 16 machine.

Another possible explanation for choosing β = 16 has to do with shifting. When

adding two floating-point numbers, if their exponents are different, one of the

significands will have to be shifted to make the radix points line up, slowing down

the operation. In the β = 16, p = 1 system, all the numbers between 1 and 15 have the

same exponent, and so no shifting is required when adding any of the ( ) = 105

16 26– 1626
228

15
2
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possible pairs of distinct numbers from this set. However, in the β = 2, p = 4 system,

these numbers have exponents ranging from 0 to 3, and shifting is required for 70 of

the 105 pairs.

In most modern hardware, the performance gained by avoiding a shift for a subset

of operands is negligible, and so the small wobble of β = 2 makes it the preferable

base. Another advantage of using β = 2 is that there is a way to gain an extra bit of

significance.1 Since floating-point numbers are always normalized, the most

significant bit of the significand is always 1, and there is no reason to waste a bit of

storage representing it. Formats that use this trick are said to have a hidden bit. It was

already pointed out in “Floating-point Formats” on page 163 that this requires a

special convention for 0. The method given there was that an exponent of emin – 1

and a significand of all zeros represents not , but rather 0.

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits for the

exponent, and 23 bits for the significand. However, it uses a hidden bit, so the

significand is 24 bits (p = 24), even though it is encoded using only 23 bits.

Precision

The IEEE standard defines four different precisions: single, double, single-extended,

and double-extended. In IEEE 754, single and double precision correspond roughly

to what most floating-point hardware provides. Single precision occupies a single 32

bit word, double precision two consecutive 32 bit words. Extended precision is a

format that offers at least a little extra precision and exponent range (TABLE D-1).

1. This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes
this idea to Konrad Zuse.

TABLE D-1 IEEE 754 Format Parameters

Parameter

Format

Single Single-Extended Double
Double-
Extended

p 24 ≥ 32 53 ≥ 64

emax +127 ≥ 1023 +1023 > 16383

emin -126 ≤ -1022 -1022 ≤ -16382

Exponent width in bits 8 ≤ 11 11 ≥ 15

Format width in bits 32 ≥ 43 64 ≥ 79

1.0 2
emin 1–

×
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The IEEE standard only specifies a lower bound on how many extra bits extended

precision provides. The minimum allowable double-extended format is sometimes

referred to as 80-bit format, even though the table shows it using 79 bits. The reason

is that hardware implementations of extended precision normally do not use a

hidden bit, and so would use 80 rather than 79 bits.1

The standard puts the most emphasis on extended precision, making no

recommendation concerning double precision, but strongly recommending that

Implementations should support the extended format corresponding to the widest basic
format supported, …

One motivation for extended precision comes from calculators, which will often

display 10 digits, but use 13 digits internally. By displaying only 10 of the 13 digits,

the calculator appears to the user as a “black box” that computes exponentials,

cosines, etc. to 10 digits of accuracy. For the calculator to compute functions like exp,

log and cos to within 10 digits with reasonable efficiency, it needs a few extra digits

to work with. It is not hard to find a simple rational expression that approximates

log with an error of 500 units in the last place. Thus computing with 13 digits gives

an answer correct to 10 digits. By keeping these extra 3 digits hidden, the calculator

presents a simple model to the operator.

Extended precision in the IEEE standard serves a similar function. It enables libraries

to efficiently compute quantities to within about .5 ulp in single (or double)

precision, giving the user of those libraries a simple model, namely that each

primitive operation, be it a simple multiply or an invocation of log, returns a value

accurate to within about .5 ulp. However, when using extended precision, it is

important to make sure that its use is transparent to the user. For example, on a

calculator, if the internal representation of a displayed value is not rounded to the

same precision as the display, then the result of further operations will depend on

the hidden digits and appear unpredictable to the user.

To illustrate extended precision further, consider the problem of converting between

IEEE 754 single precision and decimal. Ideally, single precision numbers will be

printed with enough digits so that when the decimal number is read back in, the

single precision number can be recovered. It turns out that 9 decimal digits are

enough to recover a single precision binary number (see the section “Binary to

Decimal Conversion” on page 215). When converting a decimal number back to its

unique binary representation, a rounding error as small as 1 ulp is fatal, because it

will give the wrong answer. Here is a situation where extended precision is vital for

an efficient algorithm. When single-extended is available, a very straightforward

method exists for converting a decimal number to a single precision binary one. First

read in the 9 decimal digits as an integer N, ignoring the decimal point. From

TABLE D-1, p ≥ 32, and since 109 < 232 ≈ 4.3 × 109, N can be represented exactly in

single-extended. Next find the appropriate power 10P necessary to scale N. This will

be a combination of the exponent of the decimal number, together with the position

1. According to Kahan, extended precision has 64 bits of significand because that was the widest precision
across which carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan
1988].
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of the (up until now) ignored decimal point. Compute 10|P|. If |P| ≤ 13, then this is

also represented exactly, because 1013 = 213513, and 513 < 232. Finally multiply (or

divide if p < 0) N and 10|P|. If this last operation is done exactly, then the closest

binary number is recovered. The section “Binary to Decimal Conversion” on

page 215 shows how to do the last multiply (or divide) exactly. Thus for |P| ≤ 13,

the use of the single-extended format enables 9-digit decimal numbers to be

converted to the closest binary number (i.e. exactly rounded). If |P| > 13, then

single-extended is not enough for the above algorithm to always compute the

exactly rounded binary equivalent, but Coonen [1984] shows that it is enough to

guarantee that the conversion of binary to decimal and back will recover the original

binary number.

If double precision is supported, then the algorithm above would be run in double

precision rather than single-extended, but to convert double precision to a 17-digit

decimal number and back would require the double-extended format.

Exponent

Since the exponent can be positive or negative, some method must be chosen to

represent its sign. Two common methods of representing signed numbers are

sign/magnitude and two’s complement. Sign/magnitude is the system used for the

sign of the significand in the IEEE formats: one bit is used to hold the sign, the rest

of the bits represent the magnitude of the number. The two’s complement

representation is often used in integer arithmetic. In this scheme, a number in the

range [-2p–1, 2p–1 – 1] is represented by the smallest nonnegative number that is

congruent to it modulo 2p.

The IEEE binary standard does not use either of these methods to represent the

exponent, but instead uses a biased representation. In the case of single precision,

where the exponent is stored in 8 bits, the bias is 127 (for double precision it is 1023).

What this means is that if is the value of the exponent bits interpreted as an

unsigned integer, then the exponent of the floating-point number is – 127. This is

often called the unbiased exponent to distinguish from the biased exponent .

Referring to TABLE D-1, single precision has emax = 127 and emin = -126. The reason for

having |emin| < emax is so that the reciprocal of the smallest number will

not overflow. Although it is true that the reciprocal of the largest number will

underflow, underflow is usually less serious than overflow. The section “Base” on

page 177 explained that emin - 1 is used for representing 0, and “Special Quantities”

on page 182 will introduce a use for emax + 1. In IEEE single precision, this means

that the biased exponents range between emin – 1 = -127 and emax + 1 = 128, whereas

the unbiased exponents range between 0 and 255, which are exactly the nonnegative

numbers that can be represented using 8 bits.

k
k

k

1 2
emin⁄( )
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Operations

The IEEE standard requires that the result of addition, subtraction, multiplication

and division be exactly rounded. That is, the result must be computed exactly and

then rounded to the nearest floating-point number (using round to even). The

section “Guard Digits” on page 166 pointed out that computing the exact difference

or sum of two floating-point numbers can be very expensive when their exponents

are substantially different. That section introduced guard digits, which provide a

practical way of computing differences while guaranteeing that the relative error is

small. However, computing with a single guard digit will not always give the same

answer as computing the exact result and then rounding. By introducing a second

guard digit and a third sticky bit, differences can be computed at only a little more

cost than with a single guard digit, but the result is the same as if the difference were

computed exactly and then rounded [Goldberg 1990]. Thus the standard can be

implemented efficiently.

One reason for completely specifying the results of arithmetic operations is to

improve the portability of software. When a program is moved between two

machines and both support IEEE arithmetic, then if any intermediate result differs, it

must be because of software bugs, not from differences in arithmetic. Another

advantage of precise specification is that it makes it easier to reason about floating-

point. Proofs about floating-point are hard enough, without having to deal with

multiple cases arising from multiple kinds of arithmetic. Just as integer programs

can be proven to be correct, so can floating-point programs, although what is proven

in that case is that the rounding error of the result satisfies certain bounds. Theorem

4 is an example of such a proof. These proofs are made much easier when the

operations being reasoned about are precisely specified. Once an algorithm is proven

to be correct for IEEE arithmetic, it will work correctly on any machine supporting

the IEEE standard.

Brown [1981] has proposed axioms for floating-point that include most of the

existing floating-point hardware. However, proofs in this system cannot verify the

algorithms of sections “Cancellation” on page 168 and “Exactly Rounded

Operations” on page 173, which require features not present on all hardware.

Furthermore, Brown’s axioms are more complex than simply defining operations to

be performed exactly and then rounded. Thus proving theorems from Brown’s

axioms is usually more difficult than proving them assuming operations are exactly

rounded.

There is not complete agreement on what operations a floating-point standard

should cover. In addition to the basic operations +, -, × and /, the IEEE standard also

specifies that square root, remainder, and conversion between integer and floating-

point be correctly rounded. It also requires that conversion between internal formats

and decimal be correctly rounded (except for very large numbers). Kulisch and

Miranker [1986] have proposed adding inner product to the list of operations that

are precisely specified. They note that when inner products are computed in IEEE

arithmetic, the final answer can be quite wrong. For example sums are a special case

of inner products, and the sum ((2 × 10-30 + 1030) – 1030) – 10-30 is exactly equal to
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10-30, but on a machine with IEEE arithmetic the computed result will be -10-30. It is

possible to compute inner products to within 1 ulp with less hardware than it takes

to implement a fast multiplier [Kirchner and Kulish 1987].1 2

All the operations mentioned in the standard are required to be exactly rounded

except conversion between decimal and binary. The reason is that efficient

algorithms for exactly rounding all the operations are known, except conversion. For

conversion, the best known efficient algorithms produce results that are slightly

worse than exactly rounded ones [Coonen 1984].

The IEEE standard does not require transcendental functions to be exactly rounded

because of the table maker’s dilemma. To illustrate, suppose you are making a table of

the exponential function to 4 places. Then exp(1.626) = 5.0835. Should this be

rounded to 5.083 or 5.084? If exp(1.626) is computed more carefully, it becomes

5.08350. And then 5.083500. And then 5.0835000. Since exp is transcendental, this

could go on arbitrarily long before distinguishing whether exp(1.626) is

5.083500…0ddd or 5.0834999…9ddd. Thus it is not practical to specify that the

precision of transcendental functions be the same as if they were computed to

infinite precision and then rounded. Another approach would be to specify

transcendental functions algorithmically. But there does not appear to be a single

algorithm that works well across all hardware architectures. Rational approximation,

CORDIC,3 and large tables are three different techniques that are used for

computing transcendentals on contemporary machines. Each is appropriate for a

different class of hardware, and at present no single algorithm works acceptably

over the wide range of current hardware.

Special Quantities

On some floating-point hardware every bit pattern represents a valid floating-point

number. The IBM System/370 is an example of this. On the other hand, the VAX™

reserves some bit patterns to represent special numbers called reserved operands. This

idea goes back to the CDC 6600, which had bit patterns for the special quantities

INDEFINITE and INFINITY .

The IEEE standard continues in this tradition and has NaNs (Not a Number) and

infinities. Without any special quantities, there is no good way to handle exceptional

situations like taking the square root of a negative number, other than aborting

computation. Under IBM System/370 FORTRAN, the default action in response to

1. Some arguments against including inner product as one of the basic operations are presented by Kahan and
LeBlanc [1985].

2. Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product
per clock cycle. The additionally needed hardware compares to the multiplier array needed anyway for that
speed.

3. CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing
transcendental functions that uses mostly shifts and adds (i.e., very few multiplications and divisions)
[Walther 1971]. It is the method additionally needed hardware compares to the multiplier array needed
anyway for that speed. d used on both the Intel 8087 and the Motorola 68881.
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computing the square root of a negative number like -4 results in the printing of an

error message. Since every bit pattern represents a valid number, the return value of

square root must be some floating-point number. In the case of System/370

FORTRAN, is returned. In IEEE arithmetic, a NaN is returned in this

situation.

The IEEE standard specifies the following special values (see TABLE D-2): ± 0,

denormalized numbers, ±∞ and NaNs (there is more than one NaN, as explained in

the next section). These special values are all encoded with exponents of either

emax + 1 or emin – 1 (it was already pointed out that 0 has an exponent of emin – 1).

NaNs

Traditionally, the computation of 0/0 or has been treated as an unrecoverable

error which causes a computation to halt. However, there are examples where it

makes sense for a computation to continue in such a situation. Consider a subroutine

that finds the zeros of a function f, say zero(f) . Traditionally, zero finders require

the user to input an interval [a, b] on which the function is defined and over which

the zero finder will search. That is, the subroutine is called as zero(f , a, b) . A more

useful zero finder would not require the user to input this extra information. This

more general zero finder is especially appropriate for calculators, where it is natural

to simply key in a function, and awkward to then have to specify the domain.

However, it is easy to see why most zero finders require a domain. The zero finder

does its work by probing the function f at various values. If it probed for a value

outside the domain of f , the code for f might well compute 0/0 or , and the

computation would halt, unnecessarily aborting the zero finding process.

This problem can be avoided by introducing a special value called NaN, and

specifying that the computation of expressions like 0/0 and produce NaN,

rather than halting. A list of some of the situations that can cause a NaN are given in

TABLE D-3. Then when zero(f) probes outside the domain of f , the code for f will

return NaN, and the zero finder can continue. That is, zero(f) is not “punished”

for making an incorrect guess. With this example in mind, it is easy to see what the

result of combining a NaN with an ordinary floating-point number should be.

TABLE D-2 IEEE 754 Special Values

Exponent Fraction Represents

e = emin - 1 f = 0 ±0

e = emin - 1 f ≠ 0

emin ≤ e ≤ emax — 1.f × 2e

e = emax + 1 f = 0 ∞

e = emax + 1 f ≠ 0 NaN

4– 2=

0. f 2
emin×

1–

1–

1–
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Suppose that the final statement of f is return(-b + sqrt(d))/(2*a) . If d < 0,

then f should return a NaN. Since d < 0, sqrt(d) is a NaN, and -b + sqrt(d)
will be a NaN, if the sum of a NaN and any other number is a NaN. Similarly if one

operand of a division operation is a NaN, the quotient should be a NaN. In general,

whenever a NaN participates in a floating-point operation, the result is another

NaN.

Another approach to writing a zero solver that doesn’t require the user to input a

domain is to use signals. The zero-finder could install a signal handler for floating-

point exceptions. Then if f was evaluated outside its domain and raised an

exception, control would be returned to the zero solver. The problem with this

approach is that every language has a different method of handling signals (if it has

a method at all), and so it has no hope of portability.

In IEEE 754, NaNs are often represented as floating-point numbers with the

exponent emax + 1 and nonzero significands. Implementations are free to put system-

dependent information into the significand. Thus there is not a unique NaN, but

rather a whole family of NaNs. When a NaN and an ordinary floating-point number

are combined, the result should be the same as the NaN operand. Thus if the result

of a long computation is a NaN, the system-dependent information in the

significand will be the information that was generated when the first NaN in the

computation was generated. Actually, there is a caveat to the last statement. If both

operands are NaNs, then the result will be one of those NaNs, but it might not be

the NaN that was generated first.

Infinity

Just as NaNs provide a way to continue a computation when expressions like 0/0 or

are encountered, infinities provide a way to continue when an overflow occurs.

This is much safer than simply returning the largest representable number. As an

example, consider computing , when β = 10, p = 3, and emax = 98. If x =

3 × 1070 and y = 4 × 1070, then x2 will overflow, and be replaced by 9.99 × 1098.

Similarly y2, and x2 + y2 will each overflow in turn, and be replaced by 9.99 × 1098. So

the final result will be , which is drastically wrong: the

TABLE D-3 Operations That Produce a NaN

Operation NaN Produced By

+ ∞ + (- ∞)

× 0 × ∞

/ 0/0, ∞/∞

REM x REM0, ∞ REMy

(when x < 0)x

1–

x2 y2+

9.99 1098× 3.16 1049×=
184  Numerical Computation Guide • May 2002



correct answer is 5 × 1070. In IEEE arithmetic, the result of x2 is ∞, as is y2, x2 + y2 and

. So the final result is ∞, which is safer than returning an ordinary floating-

point number that is nowhere near the correct answer.1

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, however,

returns infinity: 1/0 = ∞, -1/0 = -∞. The reason for the distinction is this: if f(x) → 0

and g(x) → 0 as x approaches some limit, then f(x)/g(x) could have any value. For

example, when f(x) = sin x and g(x) = x, then f(x)/g(x) → 1 as x → 0. But when f(x) =

1 - cos x, f(x)/g(x) → 0. When thinking of 0/0 as the limiting situation of a quotient

of two very small numbers, 0/0 could represent anything. Thus in the IEEE

standard, 0/0 results in a NaN. But when c > 0, f(x) → c, and g(x)→0, then

f(x)/g(x) → ±∞, for any analytic functions f and g. If g(x) < 0 for small x, then

f(x)/g(x) → -∞, otherwise the limit is +∞. So the IEEE standard defines c/0 = ±∞, as

long as c ≠ 0. The sign of ∞ depends on the signs of c and 0 in the usual way, so that

-10/0 = -∞, and -10/-0 = +∞. You can distinguish between getting ∞ because of

overflow and getting ∞ because of division by zero by checking the status flags

(which will be discussed in detail in section “Flags” on page 192). The overflow flag

will be set in the first case, the division by zero flag in the second.

The rule for determining the result of an operation that has infinity as an operand is

simple: replace infinity with a finite number x and take the limit as x → ∞. Thus

3/∞ = 0, because

.

Similarly, 4 – ∞ = -∞, and = ∞. When the limit doesn’t exist, the result is a NaN,

so ∞/∞ will be a NaN (TABLE D-3 has additional examples). This agrees with the

reasoning used to conclude that 0/0 should be a NaN.

When a subexpression evaluates to a NaN, the value of the entire expression is also

a NaN. In the case of ±∞ however, the value of the expression might be an ordinary

floating-point number because of rules like 1/∞ = 0. Here is a practical example that

makes use of the rules for infinity arithmetic. Consider computing the function

x/(x2 + 1). This is a bad formula, because not only will it overflow when x is larger

than , but infinity arithmetic will give the wrong answer because it will

yield 0, rather than a number near 1/x. However, x/(x2 + 1) can be rewritten as

1/(x + x-1). This improved expression will not overflow prematurely and because of

infinity arithmetic will have the correct value when x = 0: 1/(0 + 0-1) = 1/(0 + ∞) =

1/∞ = 0. Without infinity arithmetic, the expression 1/(x + x-1) requires a test for x =

0, which not only adds extra instructions, but may also disrupt a pipeline. This

example illustrates a general fact, namely that infinity arithmetic often avoids the

need for special case checking; however, formulas need to be carefully inspected to

make sure they do not have spurious behavior at infinity (as x/(x2 + 1) did).

1. Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to ∞, it is possible to
change the default (see “Rounding Modes” on page 191)

x2 y2+

3 x⁄
x ∞→

lim 0=

∞

ββ
emax 2⁄
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Signed Zero

Zero is represented by the exponent emin – 1 and a zero significand. Since the sign bit

can take on two different values, there are two zeros, +0 and -0. If a distinction were

made when comparing +0 and -0, simple tests like if (x = 0) would have very

unpredictable behavior, depending on the sign of x . Thus the IEEE standard defines

comparison so that +0 = -0, rather than -0 < +0. Although it would be possible

always to ignore the sign of zero, the IEEE standard does not do so. When a

multiplication or division involves a signed zero, the usual sign rules apply in

computing the sign of the answer. Thus 3⋅(+0) = +0, and +0/-3 = -0. If zero did not

have a sign, then the relation 1/(1/x) = x would fail to hold when x = ±∞. The reason

is that 1/-∞ and 1/+∞ both result in 0, and 1/0 results in +∞, the sign information

having been lost. One way to restore the identity 1/(1/x) = x is to only have one

kind of infinity, however that would result in the disastrous consequence of losing

the sign of an overflowed quantity.

Another example of the use of signed zero concerns underflow and functions that

have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to define log

0 = -∞ and log x to be a NaN when x < 0. Suppose that x represents a small negative

number that has underflowed to zero. Thanks to signed zero, x will be negative, so

log can return a NaN. However, if there were no signed zero, the log function could

not distinguish an underflowed negative number from 0, and would therefore have

to return -∞. Another example of a function with a discontinuity at zero is the

signum function, which returns the sign of a number.

Probably the most interesting use of signed zero occurs in complex arithmetic. To

take a simple example, consider the equation . This is certainly true

when z ≥ 0. If z = -1, the obvious computation gives and

. Thus, ! The problem can be traced to the fact

that square root is multi-valued, and there is no way to select the values so that it is

continuous in the entire complex plane. However, square root is continuous if a

branch cut consisting of all negative real numbers is excluded from consideration.

This leaves the problem of what to do for the negative real numbers, which are of

the form -x + i0, where x > 0. Signed zero provides a perfect way to resolve this

problem. Numbers of the form x + i(+0) have one sign and numbers of the

form x + i(-0) on the other side of the branch cut have the other sign . In fact,

the natural formulas for computing will give these results.

Back to . If z =1 = -1 + i0, then

1/z = 1/(-1 + i0) = [(-1– i0)]/[(-1 + i0)(-1 – i0)] = (-1 –- i0)/((-1)2 – 02) = -1 + i(-0),

and so , while . Thus IEEE arithmetic

preserves this identity for all z. Some more sophisticated examples are given by

Kahan [1987]. Although distinguishing between +0 and -0 has advantages, it can

occasionally be confusing. For example, signed zero destroys the relation x =

1 z⁄ 1 z( )⁄=
1 1–( )⁄ 1– i= =

1 1–( )⁄ 1 i⁄ i–= = 1 z⁄ 1 z( )⁄≠

i x( )
i x–( )

1 z⁄ 1 z( )⁄=

1 z⁄ 1– i 0–( )+ i–= = 1 z( )⁄ 1 i⁄ i–= =
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y ⇔ 1/x = 1/y, which is false when x = +0 and y = -0. However, the IEEE committee

decided that the advantages of utilizing the sign of zero outweighed the

disadvantages.

Denormalized Numbers

Consider normalized floating-point numbers with β = 10, p = 3, and emin = -98. The

numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be perfectly ordinary floating-

point numbers, which are more than a factor of 10 larger than the smallest floating-

point number 1.00 × 10-98. They have a strange property, however: x y = 0 even

though x ≠ y! The reason is that x - y = .06 × 10 -97 = 6.0 × 10-99 is too small to be

represented as a normalized number, and so must be flushed to zero. How

important is it to preserve the property

x = y ⇔ x - y = 0 ? (10)

It’s very easy to imagine writing the code fragment, if (x ≠ y) then z = 1/(x-y) ,

and much later having a program fail due to a spurious division by zero. Tracking

down bugs like this is frustrating and time consuming. On a more philosophical

level, computer science textbooks often point out that even though it is currently

impractical to prove large programs correct, designing programs with the idea of

proving them often results in better code. For example, introducing invariants is

quite useful, even if they aren’t going to be used as part of a proof. Floating-point

code is just like any other code: it helps to have provable facts on which to depend.

For example, when analyzing formula (6), it was very helpful to know that

x/2 < y < 2x ⇒ x y = x - y. Similarly, knowing that (10) is true makes writing

reliable floating-point code easier. If it is only true for most numbers, it cannot be

used to prove anything.

The IEEE standard uses denormalized1 numbers, which guarantee (10), as well as

other useful relations. They are the most controversial part of the standard and

probably accounted for the long delay in getting 754 approved. Most high

performance hardware that claims to be IEEE compatible does not support

denormalized numbers directly, but rather traps when consuming or producing

denormals, and leaves it to software to simulate the IEEE standard.2 The idea behind

denormalized numbers goes back to Goldberg [1967] and is very simple. When the

exponent is emin, the significand does not have to be normalized, so that when β = 10,

p = 3 and emin = -98, 1.00 × 10-98 is no longer the smallest floating-point number,

because 0.98 × 10-98 is also a floating-point number.

1. They are called subnormal in 854, denormal in 754.

2. This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow
often run noticeably slower on hardware that uses software traps.
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There is a small snag when β = 2 and a hidden bit is being used, since a number with

an exponent of emin will always have a significand greater than or equal to 1.0

because of the implicit leading bit. The solution is similar to that used to represent 0,

and is summarized in TABLE D-2. The exponent emin is used to represent denormals.

More formally, if the bits in the significand field are b1, b2, …, bp -1, and the value of

the exponent is e, then when e > emin - 1, the number being represented is 1.b1b2…bp -

1 × 2e whereas when e = emin - 1, the number being represented is 0.b1b2…bp - 1 × 2e + 1.

The +1 in the exponent is needed because denormals have an exponent of emin, not

emin - 1.

Recall the example of β = 10, p = 3, emin = -98, x = 6.87 × 10-97 and y = 6.81 × 10-97

presented at the beginning of this section. With denormals, x - y does not flush to

zero but is instead represented by the denormalized number .6 × 10-98. This behavior

is called gradual underflow. It is easy to verify that (10) always holds when using

gradual underflow.

FIGURE D-2 Flush To Zero Compared With Gradual Underflow

FIGURE D-2 illustrates denormalized numbers. The top number line in the figure

shows normalized floating-point numbers. Notice the gap between 0 and the

smallest normalized number . If the result of a floating-point calculation

falls into this gulf, it is flushed to zero. The bottom number line shows what happens

when denormals are added to the set of floating-point numbers. The “gulf” is filled

in, and when the result of a calculation is less than , it is represented by

the nearest denormal. When denormalized numbers are added to the number line,

the spacing between adjacent floating-point numbers varies in a regular way:

adjacent spacings are either the same length or differ by a factor of β. Without

denormals, the spacing abruptly changes from to , which is a

factor of , rather than the orderly change by a factor of β. Because of this,

many algorithms that can have large relative error for normalized numbers close to

the underflow threshold are well-behaved in this range when gradual underflow is

used.

0 βemin βemin 1+ βemin 2+ βemin 3+

0 βemin βemin 1+ βemin 2+ βemin 3+

1.0 β
emin×

1.0 β
emin×

β p– 1+ β
emin β

emin

βp 1–
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Without gradual underflow, the simple expression x - y can have a very large relative

error for normalized inputs, as was seen above for x = 6.87 × 10-97 and y =

6.81 × 10-97. Large relative errors can happen even without cancellation, as the

following example shows [Demmel 1984]. Consider dividing two complex numbers,

a + ib and c + id. The obvious formula

⋅ i

suffers from the problem that if either component of the denominator c + id is larger

than , the formula will overflow, even though the final result may be well

within range. A better method of computing the quotients is to use Smith’s formula:

(11)

Applying Smith’s formula to (2 ⋅ 10-98 + i10-98)/(4 ⋅ 10-98 + i(2 ⋅ 10-98)) gives the correct

answer of 0.5 with gradual underflow. It yields 0.4 with flush to zero, an error of 100

ulps. It is typical for denormalized numbers to guarantee error bounds for

arguments all the way down to 1.0 x .

Exceptions, Flags and Trap Handlers

When an exceptional condition like division by zero or overflow occurs in IEEE

arithmetic, the default is to deliver a result and continue. Typical of the default

results are NaN for 0/0 and , and ∞ for 1/0 and overflow. The preceding

sections gave examples where proceeding from an exception with these default

values was the reasonable thing to do. When any exception occurs, a status flag is

also set. Implementations of the IEEE standard are required to provide users with a

way to read and write the status flags. The flags are “sticky” in that once set, they

remain set until explicitly cleared. Testing the flags is the only way to distinguish

1/0, which is a genuine infinity from an overflow.

Sometimes continuing execution in the face of exception conditions is not

appropriate. The section “Infinity” on page 184 gave the example of x/(x2 + 1). When

x > , the denominator is infinite, resulting in a final answer of 0, which is

totally wrong. Although for this formula the problem can be solved by rewriting it

as 1/(x + x-1), rewriting may not always solve the problem. The IEEE standard

strongly recommends that implementations allow trap handlers to be installed. Then

when an exception occurs, the trap handler is called instead of setting the flag. The

a ib+
c id+
-------------- ac bd+

c2 d2+
------------------ bc ad–

c2 d2+
------------------+=

ββ
emax 2⁄
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c d d c⁄( )+
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d c c d⁄( )+
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value returned by the trap handler will be used as the result of the operation. It is

the responsibility of the trap handler to either clear or set the status flag; otherwise,

the value of the flag is allowed to be undefined.

The IEEE standard divides exceptions into 5 classes: overflow, underflow, division

by zero, invalid operation and inexact. There is a separate status flag for each class

of exception. The meaning of the first three exceptions is self-evident. Invalid

operation covers the situations listed in TABLE D-3, and any comparison that involves

a NaN. The default result of an operation that causes an invalid exception is to

return a NaN, but the converse is not true. When one of the operands to an

operation is a NaN, the result is a NaN but no invalid exception is raised unless the

operation also satisfies one of the conditions in TABLE D-3.1

*x is the exact result of the operation, α = 192 for single precision, 1536 for double, and

xmax = 1.11 …11 × .

The inexact exception is raised when the result of a floating-point operation is not

exact. In the β = 10, p = 3 system, 3.5 ⊗ 4.2 = 14.7 is exact, but 3.5 ⊗ 4.3 = 15.0 is not

exact (since 3.5 ⋅ 4.3 = 15.05), and raises an inexact exception. “Binary to Decimal

Conversion” on page 215 discusses an algorithm that uses the inexact exception. A

summary of the behavior of all five exceptions is given in TABLE D-4.

There is an implementation issue connected with the fact that the inexact exception

is raised so often. If floating-point hardware does not have flags of its own, but

instead interrupts the operating system to signal a floating-point exception, the cost

of inexact exceptions could be prohibitive. This cost can be avoided by having the

status flags maintained by software. The first time an exception is raised, set the

software flag for the appropriate class, and tell the floating-point hardware to mask

off that class of exceptions. Then all further exceptions will run without interrupting

the operating system. When a user resets that status flag, the hardware mask is re-

enabled.

TABLE D-4 Exceptions in IEEE 754*

Exception Result when traps disabled Argument to trap handler

overflow ±∞ or ±xmax round(x2-α)

underflow 0, or denormal round(x2α)

divide by zero ∞ operands

invalid NaN operands

inexact round(x) round(x)

1. No invalid exception is raised unless a “trapping” NaN is involved in the operation. See section 6.2 of IEEE
Std 754-1985. – Ed.

2
emin±

2
emax
190  Numerical Computation Guide • May 2002



Trap Handlers

One obvious use for trap handlers is for backward compatibility. Old codes that

expect to be aborted when exceptions occur can install a trap handler that aborts the

process. This is especially useful for codes with a loop like do S until (x >= 100) .

Since comparing a NaN to a number with <, ≤, >, ≥, or = (but not ≠) always returns

false, this code will go into an infinite loop if x ever becomes a NaN.

There is a more interesting use for trap handlers that comes up when computing

products such as that could potentially overflow. One solution is to use

logarithms, and compute exp instead. The problem with this approach is

that it is less accurate, and that it costs more than the simple expression , even if

there is no overflow. There is another solution using trap handlers called

over/underflow counting that avoids both of these problems [Sterbenz 1974].

The idea is as follows. There is a global counter initialized to zero. Whenever the

partial product overflows for some k, the trap handler increments the

counter by one and returns the overflowed quantity with the exponent wrapped

around. In IEEE 754 single precision, emax = 127, so if pk = 1.45 × 2130, it will overflow

and cause the trap handler to be called, which will wrap the exponent back into

range, changing pk to 1.45 × 2-62 (see below). Similarly, if pk underflows, the counter

would be decremented, and negative exponent would get wrapped around into a

positive one. When all the multiplications are done, if the counter is zero then the

final product is pn. If the counter is positive, the product overflowed, if the counter is

negative, it underflowed. If none of the partial products are out of range, the trap

handler is never called and the computation incurs no extra cost. Even if there are

over/underflows, the calculation is more accurate than if it had been computed with

logarithms, because each pk was computed from pk - 1 using a full precision multiply.

Barnett [1987] discusses a formula where the full accuracy of over/underflow

counting turned up an error in earlier tables of that formula.

IEEE 754 specifies that when an overflow or underflow trap handler is called, it is

passed the wrapped-around result as an argument. The definition of wrapped-

around for overflow is that the result is computed as if to infinite precision, then

divided by 2α, and then rounded to the relevant precision. For underflow, the result

is multiplied by 2α. The exponent α is 192 for single precision and 1536 for double

precision. This is why 1.45 x 2130 was transformed into 1.45 × 2-62 in the example

above.

Rounding Modes

In the IEEE standard, rounding occurs whenever an operation has a result that is not

exact, since (with the exception of binary decimal conversion) each operation is

computed exactly and then rounded. By default, rounding means round toward

nearest. The standard requires that three other rounding modes be provided, namely

round toward 0, round toward +∞, and round toward -∞. When used with the

Πi 1=
n xi

Σ logxi( )
Πxi

pk Πi 1=
k xi=
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convert to integer operation, round toward -∞ causes the convert to become the floor

function, while round toward +∞ is ceiling. The rounding mode affects overflow,

because when round toward 0 or round toward -∞ is in effect, an overflow of

positive magnitude causes the default result to be the largest representable number,

not +∞. Similarly, overflows of negative magnitude will produce the largest negative

number when round toward +∞ or round toward 0 is in effect.

One application of rounding modes occurs in interval arithmetic (another is

mentioned in “Binary to Decimal Conversion” on page 215). When using interval

arithmetic, the sum of two numbers x and y is an interval , where is x ⊕ y
rounded toward -∞, and is x ⊕ y rounded toward +∞. The exact result of the

addition is contained within the interval . Without rounding modes, interval

arithmetic is usually implemented by computing and

, where is machine epsilon.1 This results in overestimates for the

size of the intervals. Since the result of an operation in interval arithmetic is an

interval, in general the input to an operation will also be an interval. If two intervals

, and , are added, the result is , where is with the rounding

mode set to round toward -∞, and is with the rounding mode set to round

toward +∞.

When a floating-point calculation is performed using interval arithmetic, the final

answer is an interval that contains the exact result of the calculation. This is not very

helpful if the interval turns out to be large (as it often does), since the correct answer

could be anywhere in that interval. Interval arithmetic makes more sense when used

in conjunction with a multiple precision floating-point package. The calculation is

first performed with some precision p. If interval arithmetic suggests that the final

answer may be inaccurate, the computation is redone with higher and higher

precisions until the final interval is a reasonable size.

Flags

The IEEE standard has a number of flags and modes. As discussed above, there is

one status flag for each of the five exceptions: underflow, overflow, division by zero,

invalid operation and inexact. There are four rounding modes: round toward

nearest, round toward +∞, round toward 0, and round toward -∞. It is strongly

recommended that there be an enable mode bit for each of the five exceptions. This

section gives some simple examples of how these modes and flags can be put to

good use. A more sophisticated example is discussed in the section “Binary to

Decimal Conversion” on page 215.

1. may be greater than if both x and y are negative. – Ed.

z,z[ ] z
z

z,z[ ]
z x y⊕( ) 1 ε–( )=

z x y⊕( ) 1 ε+( )= ε

z z

x,x[ ] y,y[ ] z,z[ ] z x y⊕
z z y⊕
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Consider writing a subroutine to compute xn, where n is an integer. When n > 0, a

simple routine like

If n < 0, then a more accurate way to compute xn is not to call

PositivePower(1/x, -n) but rather 1/PositivePower(x, -n) , because the

first expression multiplies n quantities each of which have a rounding error from the

division (i.e., 1/x). In the second expression these are exact (i.e., x), and the final

division commits just one additional rounding error. Unfortunately, these is a slight

snag in this strategy. If PositivePower(x, -n) underflows, then either the

underflow trap handler will be called, or else the underflow status flag will be set.

This is incorrect, because if x-n underflows, then xn will either overflow or be in

range.1 But since the IEEE standard gives the user access to all the flags, the

subroutine can easily correct for this. It simply turns off the overflow and underflow

trap enable bits and saves the overflow and underflow status bits. It then computes

1/PositivePower(x, -n) . If neither the overflow nor underflow status bit is set,

it restores them together with the trap enable bits. If one of the status bits is set, it

restores the flags and redoes the calculation using PositivePower(1/x, -n) ,

which causes the correct exceptions to occur.

Another example of the use of flags occurs when computing arccos via the formula

arccos x = 2 arctan .

If arctan(∞) evaluates to π/2, then arccos(-1) will correctly evaluate to 2⋅arctan(∞) =

π, because of infinity arithmetic. However, there is a small snag, because the

computation of (1 – x)/(1 + x) will cause the divide by zero exception flag to be set,

even though arccos(-1) is not exceptional. The solution to this problem is

straightforward. Simply save the value of the divide by zero flag before computing

arccos, and then restore its old value after the computation.

PositivePower(x,n) {
 while (n is even) {
     x = x*x
     n = n/2
 }
 u = x
 while (true) {
     n = n/2
     if (n==0) return u
     x = x*x
     if (n is odd) u = u*x
 }

1. It can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the underflow threshold ,
then , and so may not overflow, since in all IEEE precisions, -emin < emax.

2emin

xn 2
emin–

2
emax<≈

1 x–
1 x+
------------
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Systems Aspects

The design of almost every aspect of a computer system requires knowledge about

floating-point. Computer architectures usually have floating-point instructions,

compilers must generate those floating-point instructions, and the operating system

must decide what to do when exception conditions are raised for those floating-

point instructions. Computer system designers rarely get guidance from numerical

analysis texts, which are typically aimed at users and writers of software, not at

computer designers. As an example of how plausible design decisions can lead to

unexpected behavior, consider the following BASIC program.

When compiled and run using Borland’s Turbo Basic on an IBM PC, the program

prints Not Equal ! This example will be analyzed in the next section

Incidentally, some people think that the solution to such anomalies is never to

compare floating-point numbers for equality, but instead to consider them equal if

they are within some error bound E. This is hardly a cure-all because it raises as

many questions as it answers. What should the value of E be? If x < 0 and y > 0 are

within E, should they really be considered to be equal, even though they have

different signs? Furthermore, the relation defined by this rule, a ~ b ⇔ |a – b| < E, is

not an equivalence relation because a ~ b and b ~ c does not imply that a ~ c.

Instruction Sets

It is quite common for an algorithm to require a short burst of higher precision in

order to produce accurate results. One example occurs in the quadratic formula

( )/2a. As discussed on Section , “If b2 ≈ 4ac, rounding error can

contaminate up to half the digits in the roots computed with the quadratic formula

.” on page D-213, when b2 ≈ 4ac, rounding error can contaminate up to half the digits

in the roots computed with the quadratic formula. By performing the subcalculation

of b2 - 4ac in double precision, half the double precision bits of the root are lost,

which means that all the single precision bits are preserved.

The computation of b2 – 4ac in double precision when each of the quantities a, b, and

c are in single precision is easy if there is a multiplication instruction that takes two

single precision numbers and produces a double precision result. In order to

produce the exactly rounded product of two p-digit numbers, a multiplier needs to

q = 3.0/7.0
if q = 3.0/7.0 then print "Equal":
    else print "Not Equal"

b– b2 4ac–±
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generate the entire 2p bits of product, although it may throw bits away as it

proceeds. Thus, hardware to compute a double precision product from single

precision operands will normally be only a little more expensive than a single

precision multiplier, and much cheaper than a double precision multiplier. Despite

this, modern instruction sets tend to provide only instructions that produce a result

of the same precision as the operands.1

If an instruction that combines two single precision operands to produce a double

precision product was only useful for the quadratic formula, it wouldn’t be worth

adding to an instruction set. However, this instruction has many other uses.

Consider the problem of solving a system of linear equations,

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn= b1

a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn= b2

⋅ ⋅ ⋅

an1x1 + an2x2 + ⋅ ⋅ ⋅+ annxn= bn

which can be written in matrix form as Ax = b, where

Suppose that a solution x(1) is computed by some method, perhaps Gaussian

elimination. There is a simple way to improve the accuracy of the result called

iterative improvement. First compute

ξ = Ax(1) - b (12)

and then solve the system

Ay = ξ (13)

1. This is probably because designers like “orthogonal” instruction sets, where the precisions of a floating-point
instruction are independent of the actual operation. Making a special case for multiplication destroys this
orthogonality.

A

a11 a12 … a1n

a21 a22 … a2 1( )n

…
an1 an2 … ann

=
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Note that if x(1) is an exact solution, then ξ is the zero vector, as is y. In general, the

computation of ξ and y will incur rounding error, so Ay ≈ ξ ≈ Ax(1) - b = A(x(1) - x),

where x is the (unknown) true solution. Then y ≈ x(1) - x, so an improved estimate for

the solution is

x(2) = x(1) – y (14)

The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2), and x(2) with

x(3). This argument that x(i + 1) is more accurate than x(i) is only informal. For more

information, see [Golub and Van Loan 1989].

When performing iterative improvement, ξ is a vector whose elements are the

difference of nearby inexact floating-point numbers, and so can suffer from

catastrophic cancellation. Thus iterative improvement is not very useful unless ξ =

Ax(1) - b is computed in double precision. Once again, this is a case of computing the

product of two single precision numbers (A and x(1)), where the full double precision

result is needed.

To summarize, instructions that multiply two floating-point numbers and return a

product with twice the precision of the operands make a useful addition to a

floating-point instruction set. Some of the implications of this for compilers are

discussed in the next section.

Languages and Compilers

The interaction of compilers and floating-point is discussed in Farnum [1988], and

much of the discussion in this section is taken from that paper.

Ambiguity

Ideally, a language definition should define the semantics of the language precisely

enough to prove statements about programs. While this is usually true for the

integer part of a language, language definitions often have a large grey area when it

comes to floating-point. Perhaps this is due to the fact that many language designers

believe that nothing can be proven about floating-point, since it entails rounding

error. If so, the previous sections have demonstrated the fallacy in this reasoning.

This section discusses some common grey areas in language definitions, including

suggestions about how to deal with them.

Remarkably enough, some languages don’t clearly specify that if x is a floating-point

variable (with say a value of 3.0/10.0 ), then every occurrence of (say) 10.0*x
must have the same value. For example Ada, which is based on Brown’s model,

seems to imply that floating-point arithmetic only has to satisfy Brown’s axioms, and
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thus expressions can have one of many possible values. Thinking about floating-

point in this fuzzy way stands in sharp contrast to the IEEE model, where the result

of each floating-point operation is precisely defined. In the IEEE model, we can

prove that (3.0/10.0)*10.0 evaluates to 3 (Theorem 7). In Brown’s model, we

cannot.

Another ambiguity in most language definitions concerns what happens on

overflow, underflow and other exceptions. The IEEE standard precisely specifies the

behavior of exceptions, and so languages that use the standard as a model can avoid

any ambiguity on this point.

Another grey area concerns the interpretation of parentheses. Due to roundoff

errors, the associative laws of algebra do not necessarily hold for floating-point

numbers. For example, the expression (x+y)+z has a totally different answer than

x+(y+z) when x = 1030, y = -1030 and z = 1 (it is 1 in the former case, 0 in the latter).

The importance of preserving parentheses cannot be overemphasized. The

algorithms presented in theorems 3, 4 and 6 all depend on it. For example, in

Theorem 6, the formula xh = mx - (mx - x) would reduce to xh = x if it weren’t for

parentheses, thereby destroying the entire algorithm. A language definition that

does not require parentheses to be honored is useless for floating-point calculations.

Subexpression evaluation is imprecisely defined in many languages. Suppose that

ds is double precision, but x and y are single precision. Then in the expression

ds + x*y is the product performed in single or double precision? Another example:

in x + m/n where mand n are integers, is the division an integer operation or a

floating-point one? There are two ways to deal with this problem, neither of which is

completely satisfactory. The first is to require that all variables in an expression have

the same type. This is the simplest solution, but has some drawbacks. First of all,

languages like Pascal that have subrange types allow mixing subrange variables

with integer variables, so it is somewhat bizarre to prohibit mixing single and

double precision variables. Another problem concerns constants. In the expression

0.1*x , most languages interpret 0.1 to be a single precision constant. Now suppose

the programmer decides to change the declaration of all the floating-point variables

from single to double precision. If 0.1 is still treated as a single precision constant,

then there will be a compile time error. The programmer will have to hunt down and

change every floating-point constant.

The second approach is to allow mixed expressions, in which case rules for

subexpression evaluation must be provided. There are a number of guiding

examples. The original definition of C required that every floating-point expression

be computed in double precision [Kernighan and Ritchie 1978]. This leads to

anomalies like the example at the beginning of this section. The expression 3.0/7.0
is computed in double precision, but if q is a single-precision variable, the quotient

is rounded to single precision for storage. Since 3/7 is a repeating binary fraction, its

computed value in double precision is different from its stored value in single

precision. Thus the comparison q = 3/7 fails. This suggests that computing every

expression in the highest precision available is not a good rule.
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Another guiding example is inner products. If the inner product has thousands of

terms, the rounding error in the sum can become substantial. One way to reduce this

rounding error is to accumulate the sums in double precision (this will be discussed

in more detail in the section “Optimizers” on page 201). If d is a double precision

variable, and x[] and y[] are single precision arrays, then the inner product loop

will look like d = d + x[i]*y[i] . If the multiplication is done in single precision,

than much of the advantage of double precision accumulation is lost, because the

product is truncated to single precision just before being added to a double precision

variable.

A rule that covers both of the previous two examples is to compute an expression in

the highest precision of any variable that occurs in that expression. Then q =
3.0/7.0 will be computed entirely in single precision1 and will have the boolean

value true, whereas d = d + x[i]*y[i] will be computed in double precision,

gaining the full advantage of double precision accumulation. However, this rule is

too simplistic to cover all cases cleanly. If dx and dy are double precision variables,

the expression y = x + single(dx-dy) contains a double precision variable, but

performing the sum in double precision would be pointless, because both operands

are single precision, as is the result.

A more sophisticated subexpression evaluation rule is as follows. First assign each

operation a tentative precision, which is the maximum of the precisions of its

operands. This assignment has to be carried out from the leaves to the root of the

expression tree. Then perform a second pass from the root to the leaves. In this pass,

assign to each operation the maximum of the tentative precision and the precision

expected by the parent. In the case of q = 3.0/7.0 , every leaf is single precision, so

all the operations are done in single precision. In the case of d = d + x[i]*y[i] , the

tentative precision of the multiply operation is single precision, but in the second

pass it gets promoted to double precision, because its parent operation expects a

double precision operand. And in y = x + single(dx-dy) , the addition is done in

single precision. Farnum [1988] presents evidence that this algorithm in not difficult

to implement.

The disadvantage of this rule is that the evaluation of a subexpression depends on

the expression in which it is embedded. This can have some annoying consequences.

For example, suppose you are debugging a program and want to know the value of

a subexpression. You cannot simply type the subexpression to the debugger and ask

it to be evaluated, because the value of the subexpression in the program depends

on the expression it is embedded in. A final comment on subexpressions: since

converting decimal constants to binary is an operation, the evaluation rule also

affects the interpretation of decimal constants. This is especially important for

constants like 0.1 which are not exactly representable in binary.

1. This assumes the common convention that 3.0 is a single-precision constant, while 3.0D0 is a double
precision constant.
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Another potential grey area occurs when a language includes exponentiation as one

of its built-in operations. Unlike the basic arithmetic operations, the value of

exponentiation is not always obvious [Kahan and Coonen 1982]. If ** is the

exponentiation operator, then (-3)**3 certainly has the value -27. However,

(-3.0)**3.0 is problematical. If the ** operator checks for integer powers, it

would compute (-3.0)**3.0 as -3.03 = -27. On the other hand, if the formula xy =

eylogx is used to define ** for real arguments, then depending on the log function,

the result could be a NaN (using the natural definition of log(x) = NaNwhen x < 0).

If the FORTRAN CLOGfunction is used however, then the answer will be -27,

because the ANSI FORTRAN standard defines CLOG(-3.0) to be iπ + log 3 [ANSI

1978]. The programming language Ada avoids this problem by only defining

exponentiation for integer powers, while ANSI FORTRAN prohibits raising a

negative number to a real power.

In fact, the FORTRAN standard says that

Any arithmetic operation whose result is not mathematically defined is

prohibited...

Unfortunately, with the introduction of ±∞ by the IEEE standard, the meaning of not
mathematically defined is no longer totally clear cut. One definition might be to use the

method shown in section “Infinity” on page 184. For example, to determine the

value of ab, consider non-constant analytic functions f and g with the property that

f(x) → a and g(x) → b as x → 0. If f(x)g(x) always approaches the same limit, then this

should be the value of ab. This definition would set 2∞ = ∞ which seems quite

reasonable. In the case of 1.0∞, when f(x) = 1 and g(x) = 1/x the limit approaches 1,

but when f(x) = 1 - x and g(x) = 1/x the limit is e-1. So 1.0∞, should be a NaN. In the

case of 00, f(x)g(x) = eg(x)log f(x). Since f and g are analytic and take on the value 0 at 0,

f(x) = a1x1 + a2x2 + … and g(x) = b1x1 + b2x2 + …. Thus limx → 0g(x) log f(x) =

limx → 0x log(x(a1 + a2x + …)) = limx → 0x log(a1x) = 0. So f(x)g(x) → e0 = 1 for all f and g,

which means that 00 = 1.1 2 Using this definition would unambiguously define the

exponential function for all arguments, and in particular would define

(-3.0)**3.0 to be -27.

The IEEE Standard

The section “The IEEE Standard” on page 176,” discussed many of the features of

the IEEE standard. However, the IEEE standard says nothing about how these

features are to be accessed from a programming language. Thus, there is usually a

mismatch between floating-point hardware that supports the standard and

programming languages like C, Pascal or FORTRAN. Some of the IEEE capabilities

1. The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this restriction is removed, then
letting f be the identically 0 function gives 0 as a possible value for lim x → 0 f(x)g(x), and so 00 would have to
be defined to be a NaN.

2. In the case of 00, plausibility arguments can be made, but the convincing argument is found in “Concrete
Mathematics” by Graham, Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work.
– Ed.
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can be accessed through a library of subroutine calls. For example the IEEE standard

requires that square root be exactly rounded, and the square root function is often

implemented directly in hardware. This functionality is easily accessed via a library

square root routine. However, other aspects of the standard are not so easily

implemented as subroutines. For example, most computer languages specify at most

two floating-point types, while the IEEE standard has four different precisions

(although the recommended configurations are single plus single-extended or single,

double, and double-extended). Infinity provides another example. Constants to

represent ±∞ could be supplied by a subroutine. But that might make them unusable

in places that require constant expressions, such as the initializer of a constant

variable.

A more subtle situation is manipulating the state associated with a computation,

where the state consists of the rounding modes, trap enable bits, trap handlers and

exception flags. One approach is to provide subroutines for reading and writing the

state. In addition, a single call that can atomically set a new value and return the old

value is often useful. As the examples in the section “Flags” on page 192 show, a

very common pattern of modifying IEEE state is to change it only within the scope

of a block or subroutine. Thus the burden is on the programmer to find each exit

from the block, and make sure the state is restored. Language support for setting the

state precisely in the scope of a block would be very useful here. Modula-3 is one

language that implements this idea for trap handlers [Nelson 1991].

There are a number of minor points that need to be considered when implementing

the IEEE standard in a language. Since x - x = +0 for all x,1 (+0) - (+0) = +0. However,

-(+0) = -0, thus -x should not be defined as 0 - x. The introduction of NaNs can be

confusing, because a NaN is never equal to any other number (including another

NaN), so x = x is no longer always true. In fact, the expression x ≠ x is the simplest

way to test for a NaN if the IEEE recommended function Isnan is not provided.

Furthermore, NaNs are unordered with respect to all other numbers, so x ≤ y cannot

be defined as not x > y. Since the introduction of NaNs causes floating-point numbers

to become partially ordered, a compare function that returns one of <, =, >, or

unordered can make it easier for the programmer to deal with comparisons.

Although the IEEE standard defines the basic floating-point operations to return a

NaN if any operand is a NaN, this might not always be the best definition for

compound operations. For example when computing the appropriate scale factor to

use in plotting a graph, the maximum of a set of values must be computed. In this

case it makes sense for the max operation to simply ignore NaNs.

Finally, rounding can be a problem. The IEEE standard defines rounding very

precisely, and it depends on the current value of the rounding modes. This

sometimes conflicts with the definition of implicit rounding in type conversions or

the explicit round function in languages. This means that programs which wish to

1. Unless the rounding mode is round toward -∞, in which case x - x = -0.
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use IEEE rounding can’t use the natural language primitives, and conversely the

language primitives will be inefficient to implement on the ever increasing number

of IEEE machines.

Optimizers

Compiler texts tend to ignore the subject of floating-point. For example Aho et al.

[1986] mentions replacing x/2.0 with x*0.5 , leading the reader to assume that

x/10.0 should be replaced by 0.1*x . However, these two expressions do not have

the same semantics on a binary machine, because 0.1 cannot be represented exactly

in binary. This textbook also suggests replacing x*y-x*z by x*(y-z) , even though

we have seen that these two expressions can have quite different values when y ≈ z.

Although it does qualify the statement that any algebraic identity can be used when

optimizing code by noting that optimizers should not violate the language

definition, it leaves the impression that floating-point semantics are not very

important. Whether or not the language standard specifies that parenthesis must be

honored, (x+y)+z can have a totally different answer than x+(y+z) , as discussed

above. There is a problem closely related to preserving parentheses that is illustrated

by the following code:

This is designed to give an estimate for machine epsilon. If an optimizing compiler

notices that eps + 1 > 1 ⇔ eps > 0, the program will be changed completely. Instead

of computing the smallest number x such that 1 ⊕ x is still greater than x (x ≈ e ≈
), it will compute the largest number x for which x/2 is rounded to 0 (x ≈ ).

Avoiding this kind of “optimization” is so important that it is worth presenting one

more very useful algorithm that is totally ruined by it.

Many problems, such as numerical integration and the numerical solution of

differential equations involve computing sums with many terms. Because each

addition can potentially introduce an error as large as .5 ulp, a sum involving

thousands of terms can have quite a bit of rounding error. A simple way to correct

for this is to store the partial summand in a double precision variable and to perform

each addition using double precision. If the calculation is being done in single

precision, performing the sum in double precision is easy on most computer

systems. However, if the calculation is already being done in double precision,

doubling the precision is not so simple. One method that is sometimes advocated is

to sort the numbers and add them from smallest to largest. However, there is a much

more efficient method which dramatically improves the accuracy of sums, namely

eps = 1;
do eps = 0.5*eps; while (eps + 1 > 1);

β p– β
emin
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Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

Then the computed sum S is equal to where .

Using the naive formula , the computed sum is equal to where

|δj| < (n - j)e. Comparing this with the error in the Kahan summation formula

shows a dramatic improvement. Each summand is perturbed by only 2e, instead of

perturbations as large as ne in the simple formula. Details are in, “Errors In

Summation” on page 216.

An optimizer that believed floating-point arithmetic obeyed the laws of algebra

would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering the algorithm

completely useless. These examples can be summarized by saying that optimizers

should be extremely cautious when applying algebraic identities that hold for the

mathematical real numbers to expressions involving floating-point variables.

Another way that optimizers can change the semantics of floating-point code

involves constants. In the expression 1.0E-40*x , there is an implicit decimal to

binary conversion operation that converts the decimal number to a binary constant.

Because this constant cannot be represented exactly in binary, the inexact exception

should be raised. In addition, the underflow flag should to be set if the expression is

evaluated in single precision. Since the constant is inexact, its exact conversion to

binary depends on the current value of the IEEE rounding modes. Thus an optimizer

that converts 1.0E-40 to binary at compile time would be changing the semantics

of the program. However, constants like 27.5 which are exactly representable in the

smallest available precision can be safely converted at compile time, since they are

always exact, cannot raise any exception, and are unaffected by the rounding modes.

Constants that are intended to be converted at compile time should be done with a

constant declaration, such as const pi = 3.14159265 .

S = X[1];
C = 0;
for j = 2 to N {
    Y = X[j] - C;
    T = S + Y;
    C = (T - S) - Y;
    S = T;
}

Σ j 1=
N xj

Σx j 1 δ j+( ) O Nε2( )Σ x j ,+ δ j 2ε≤( )

Σx j Σx j 1 δ j+( )
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Common subexpression elimination is another example of an optimization that can

change floating-point semantics, as illustrated by the following code

Although A*B can appear to be a common subexpression, it is not because the

rounding mode is different at the two evaluation sites. Three final examples: x = x
cannot be replaced by the boolean constant true , because it fails when x is a NaN;

-x = 0 - x fails for x = +0; and x < y is not the opposite of x ≥ y, because NaNs are

neither greater than nor less than ordinary floating-point numbers.

Despite these examples, there are useful optimizations that can be done on floating-

point code. First of all, there are algebraic identities that are valid for floating-point

numbers. Some examples in IEEE arithmetic are x + y = y + x, 2 × x = x + x, 1 × x =

x, and 0.5 × x = x/2. However, even these simple identities can fail on a few

machines such as CDC and Cray supercomputers. Instruction scheduling and in-line

procedure substitution are two other potentially useful optimizations.1

As a final example, consider the expression dx = x*y , where x and y are single

precision variables, and dx is double precision. On machines that have an

instruction that multiplies two single precision numbers to produce a double

precision number, dx = x*y can get mapped to that instruction, rather than compiled

to a series of instructions that convert the operands to double and then perform a

double to double precision multiply.

Some compiler writers view restrictions which prohibit converting (x + y) + z to x +

(y + z) as irrelevant, of interest only to programmers who use unportable tricks.

Perhaps they have in mind that floating-point numbers model real numbers and

should obey the same laws that real numbers do. The problem with real number

semantics is that they are extremely expensive to implement. Every time two n bit

numbers are multiplied, the product will have 2n bits. Every time two n bit numbers

with widely spaced exponents are added, the number of bits in the sum is n + the

space between the exponents. The sum could have up to (emax - emin) + n bits, or

roughly 2⋅emax + n bits. An algorithm that involves thousands of operations (such as

solving a linear system) will soon be operating on numbers with many significant

bits, and be hopelessly slow. The implementation of library functions such as sin and

cos is even more difficult, because the value of these transcendental functions aren’t

rational numbers. Exact integer arithmetic is often provided by lisp systems and is

handy for some problems. However, exact floating-point arithmetic is rarely useful.

C = A*B;
RndMode = Up
D = A*B;

1. The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in that they use the
inexpensive jump to subroutine call rather than the slower CALLSand CALLGinstructions.
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The fact is that there are useful algorithms (like the Kahan summation formula) that

exploit the fact that (x + y) + z ≠ x + (y + z), and work whenever the bound

a ⊕ b = (a + b)(1 + δ)

holds (as well as similar bounds for –, × and /). Since these bounds hold for almost

all commercial hardware, it would be foolish for numerical programmers to ignore

such algorithms, and it would be irresponsible for compiler writers to destroy these

algorithms by pretending that floating-point variables have real number semantics.

Exception Handling

The topics discussed up to now have primarily concerned systems implications of

accuracy and precision. Trap handlers also raise some interesting systems issues. The

IEEE standard strongly recommends that users be able to specify a trap handler for

each of the five classes of exceptions, and the section “Trap Handlers” on page 191,

gave some applications of user defined trap handlers. In the case of invalid

operation and division by zero exceptions, the handler should be provided with the

operands, otherwise, with the exactly rounded result. Depending on the

programming language being used, the trap handler might be able to access other

variables in the program as well. For all exceptions, the trap handler must be able to

identify what operation was being performed and the precision of its destination.

The IEEE standard assumes that operations are conceptually serial and that when an

interrupt occurs, it is possible to identify the operation and its operands. On

machines which have pipelining or multiple arithmetic units, when an exception

occurs, it may not be enough to simply have the trap handler examine the program

counter. Hardware support for identifying exactly which operation trapped may be

necessary.

Another problem is illustrated by the following program fragment.

Suppose the second multiply raises an exception, and the trap handler wants to use

the value of a. On hardware that can do an add and multiply in parallel, an

optimizer would probably move the addition operation ahead of the second

multiply, so that the add can proceed in parallel with the first multiply. Thus when

the second multiply traps, a = b + c has already been executed, potentially changing

the result of a. It would not be reasonable for a compiler to avoid this kind of

optimization, because every floating-point operation can potentially trap, and thus

x = y*z;
z = x*w;
a = b + c;
d = a/x;
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virtually all instruction scheduling optimizations would be eliminated. This problem

can be avoided by prohibiting trap handlers from accessing any variables of the

program directly. Instead, the handler can be given the operands or result as an

argument.

But there are still problems. In the fragment

the two instructions might well be executed in parallel. If the multiply traps, its

argument z could already have been overwritten by the addition, especially since

addition is usually faster than multiply. Computer systems that support the IEEE

standard must provide some way to save the value of z , either in hardware or by

having the compiler avoid such a situation in the first place.

W. Kahan has proposed using presubstitution instead of trap handlers to avoid these

problems. In this method, the user specifies an exception and the value he wants to

be used as the result when the exception occurs. As an example, suppose that in

code for computing (sin x)/x, the user decides that x = 0 is so rare that it would

improve performance to avoid a test for x = 0, and instead handle this case when a

0/0 trap occurs. Using IEEE trap handlers, the user would write a handler that

returns a value of 1 and install it before computing sin x/x. Using presubstitution,

the user would specify that when an invalid operation occurs, the value 1 should be

used. Kahan calls this presubstitution, because the value to be used must be

specified before the exception occurs. When using trap handlers, the value to be

returned can be computed when the trap occurs.

The advantage of presubstitution is that it has a straightforward hardware

implementation.1 As soon as the type of exception has been determined, it can be

used to index a table which contains the desired result of the operation. Although

presubstitution has some attractive attributes, the widespread acceptance of the IEEE

standard makes it unlikely to be widely implemented by hardware manufacturers.

The Details

A number of claims have been made in this paper concerning properties of floating-

point arithmetic. We now proceed to show that floating-point is not black magic, but

rather is a straightforward subject whose claims can be verified mathematically. This

section is divided into three parts. The first part presents an introduction to error

x = y*z;
z = a + b;

1. The difficulty with presubstitution is that it requires either direct hardware implementation, or continuable
floating-point traps if implemented in software. – Ed.
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analysis, and provides the details for the section “Rounding Error” on page 162. The

second part explores binary to decimal conversion, filling in some gaps from the

section “The IEEE Standard” on page 176. The third part discusses the Kahan

summation formula, which was used as an example in the section “Systems

Aspects” on page 194.

Rounding Error

In the discussion of rounding error, it was stated that a single guard digit is enough

to guarantee that addition and subtraction will always be accurate (Theorem 2). We

now proceed to verify this fact. Theorem 2 has two parts, one for subtraction and

one for addition. The part for subtraction is

Theorem 9

If x and y are positive floating-point numbers in a format with parameters β and p, and if
subtraction is done with p + 1 digits (i.e. one guard digit), then the relative rounding error
in the result is less than

e ≤ 2e.

Proof

Interchange x and y if necessary so that x > y. It is also harmless to scale x and y so

that x is represented by x0.x1 … xp - 1 × β0. If y is represented as y0.y1 … yp-1, then the

difference is exact. If y is represented as 0.y1 … yp, then the guard digit ensures that

the computed difference will be the exact difference rounded to a floating-point

number, so the rounding error is at most e. In general, let y = 0.0 … 0yk + 1 … yk + p and

be y truncated to p + 1 digits. Then

y - < (β - 1)(β-p - 1 + β-p - 2 + … + β-p - k). (15)

From the definition of guard digit, the computed value of x - y is x - rounded to be

a floating-point number, that is, (x - ) + δ, where the rounding error δ satisfies

|δ| ≤ (β/2)β-p. (16)

β
2
--- 1+ 

  β p– 1 2
β
---+ 

 =

y

y

y
y
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The exact difference is x - y, so the error is (x - y) - (x - + δ) = - y + δ. There are

three cases. If x - y ≥ 1 then the relative error is bounded by

≤ β-p [(β − 1)(β−1 + … + β-k) + β/2] < β-p(1 + β/2). (17)

Secondly, if x - < 1, then δ = 0. Since the smallest that x - y can be is

> (β – 1)(β-1 + … + β-k), where ρ = β – 1,

in this case the relative error is bounded by

. (18)

The final case is when x - y < 1 but x - ≥ 1. The only way this could happen is if

x - = 1, in which case δ = 0. But if δ = 0, then (18) applies, so that again the relative

error is bounded by β-p < β-p(1 + β/2). ❚

When β = 2, the bound is exactly 2e, and this bound is achieved for x= 1 + 22 - p and

y = 21 - p - 21 - 2p in the limit as p → ∞. When adding numbers of the same sign, a

guard digit is not necessary to achieve good accuracy, as the following result shows.

Theorem 10

If x ≥ 0 and y ≥ 0, then the relative error in computing x + y is at most 2ε, even if no guard
digits are used.

Proof

The algorithm for addition with k guard digits is similar to that for subtraction. If

x ≥ y, shift y right until the radix points of x and y are aligned. Discard any digits

shifted past the p + k position. Compute the sum of these two p + k digit numbers

exactly. Then round to p digits.

We will verify the theorem when no guard digits are used; the general case is

similar. There is no loss of generality in assuming that x ≥ y ≥ 0 and that x is scaled

to be of the form d.dd…d × β0. First, assume there is no carry out. Then the digits

shifted off the end of y have a value less than β-p + 1, and the sum is at least 1, so the

relative error is less than β-p+1/1 = 2e. If there is a carry out, then the error from

shifting must be added to the rounding error of

.

y y

y y– δ+
1

--------------------

y

1.0 0.

k

0…0 
  p

ρ…ρ 
 

–      

y y– δ+

β 1–( ) β 1– … β k–+ +( )
------------------------------------------------------------ β 1–( )β p– β 1– … β k–+ +( )

β 1–( ) β 1– … β k–+ +( )
-----------------------------------------------------------------------< β p–=

y
y

1
2
---β p– 2+
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The sum is at least β, so the relative error is less than

≤ 2ε. ❚

It is obvious that combining these two theorems gives Theorem 2. Theorem 2 gives

the relative error for performing one operation. Comparing the rounding error of

x2 - y2 and (x + y) (x – y) requires knowing the relative error of multiple operations.

The relative error of x y is δ1 = [(x y) – (x – y)] / (x – y), which satisfies

|δ1| ≤ 2e. Or to write it another way

x y = (x – y) (1 + δ1), |δ1| ≤ 2e (19)

Similarly

x ⊕ y = (x + y) (1 + δ2), |δ2| ≤ 2e (20)

Assuming that multiplication is performed by computing the exact product and then

rounding, the relative error is at most .5 ulp, so

u ⊗ v = uv (1 + δ3), |δ3| ≤ e (21)

for any floating-point numbers u and v. Putting these three equations together

(letting u = x y and v = x ⊕ y) gives

(x y) ⊗ (x ⊕ y) = (x - y) (1 + δ1) (x + y) (1 + δ2) (1 + δ3) (22)

So the relative error incurred when computing (x - y) (x + y) is

(23)

This relative error is equal to δ1 + δ2 + δ3 + δ1δ2 + δ1δ3 + δ2δ3 + δ1δ2δ3, which is

bounded by 5ε + 8ε2. In other words, the maximum relative error is about 5

rounding errors (since e is a small number, e2 is almost negligible).

A similar analysis of (x ⊗ x) (y ⊗ y) cannot result in a small value for the relative

error, because when two nearby values of x and y are plugged into x2 - y2, the

relative error will usually be quite large. Another way to see this is to try and

duplicate the analysis that worked on (x y) ⊗ (x ⊕ y), yielding

β p– 1+ 1
2
---β p– 2++ 

  β⁄ 1 β 2⁄+( )β p–=

x y–( ) x y+( )⊗ x
2

y
2

–( )–

x
2

y
2

–( )
-------------------------------------------------------------------- 1 δ1+( ) 1 δ2+( ) 1 δ3+( ) 1–=
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(x ⊗ x) (y ⊗ y) = [x2(1 + δ1) - y2(1 + δ2)] (1 + δ3)

= ((x2 - y2) (1 + δ1) + (δ1 - δ2)y
2) (1 + δ3)

When x and y are nearby, the error term (δ1 - δ2)y
2 can be as large as the result x2 - y2.

These computations formally justify our claim that (x – y) (x + y) is more accurate

than x2 – y2.

We next turn to an analysis of the formula for the area of a triangle. In order to

estimate the maximum error that can occur when computing with (7), the following

fact will be needed.

Theorem 11

If subtraction is performed with a guard digit, and y/2 ≤ x ≤ 2y, then x - y is computed
exactly.

Proof

Note that if x and y have the same exponent, then certainly x y is exact.

Otherwise, from the condition of the theorem, the exponents can differ by at most 1.

Scale and interchange x and y if necessary so that 0 ≤ y ≤ x, and x is represented as

x0.x1 … xp - 1 and y as 0.y1 … yp. Then the algorithm for computing x y will

compute x - y exactly and round to a floating-point number. If the difference is of the

form 0.d1 … dp, the difference will already be p digits long, and no rounding is

necessary. Since x ≤ 2y, x - y ≤ y, and since y is of the form 0.d1 … dp, so is x - y. ❚

When β > 2, the hypothesis of Theorem 11 cannot be replaced by y/β ≤ x ≤ βy; the

stronger condition y/2 ≤ x ≤ 2y is still necessary. The analysis of the error in

(x - y) (x + y), immediately following the proof of Theorem 10, used the fact that the

relative error in the basic operations of addition and subtraction is small (namely

equations (19) and (20)). This is the most common kind of error analysis. However,

analyzing formula (7) requires something more, namely Theorem 11, as the following

proof will show.

Theorem 12

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle (a ≥ b ≥ c), then
the relative error in computing (a + (b + c))(c - (a - b))(c + (a - b))(a +(b - c)) is at most 16ε,
provided e < .005.
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Proof

Let’s examine the factors one by one. From Theorem 10, b ⊕ c = (b + c) (1 + δ1), where

δ1 is the relative error, and |δ1| ≤ 2ε. Then the value of the first factor is

(a ⊕ (b ⊕ c)) = (a + (b ⊕ c)) (1 + δ2) = (a + (b + c) (1 + δ1))(1 + δ2),

and thus

(a + b + c) (1 - 2ε)2 ≤ [a + (b + c) (1 - 2ε)] ⋅ (1−2ε)
≤ a ⊕ (b ⊕ c)

≤ [a + (b + c) (1 + 2ε)] (1 + 2ε)

≤ (a + b + c) (1 + 2ε)2

This means that there is an η1 so that

(a ⊕ (b ⊕ c)) = (a + b + c) (1 + η1)
2, |η1| ≤ 2ε. (24)

The next term involves the potentially catastrophic subtraction of c and a b,

because a b may have rounding error. Because a, b and c are the sides of a

triangle, a ≤ b+ c, and combining this with the ordering c ≤ b ≤ a gives a ≤ b + c ≤ 2b
≤ 2a. So a - b satisfies the conditions of Theorem 11. This means that a - b = a b is

exact, hence c (a - b) is a harmless subtraction which can be estimated from

Theorem 9 to be

(c (a b)) = (c - (a - b)) (1 + η2), |η2| ≤ 2ε (25)

The third term is the sum of two exact positive quantities, so

(c ⊕ (a b)) = (c + (a - b)) (1 + η3), |η3| ≤ 2ε (26)

Finally, the last term is

(a ⊕ (b c)) = (a + (b - c)) (1 + η4)
2, |η4| ≤ 2ε, (27)

using both Theorem 9 and Theorem 10. If multiplication is assumed to be exactly

rounded, so that x ⊗ y = xy(1 + ζ) with |ζ| ≤ ε, then combining (24), (25), (26) and (27)

gives

(a ⊕ (b ⊕ c)) (c (a b)) (c ⊕ (a b)) (a ⊕ (b c))

≤(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E
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where

E = (1 + η1)
2 (1 + η2) (1 + η3) (1 +η4)

2 (1 + ζ1)(1 + ζ2) (1 + ζ3)

An upper bound for E is (1 + 2ε)6(1 + ε)3, which expands out to 1 + 15ε + O(ε2). Some

writers simply ignore the O(e2) term, but it is easy to account for it. Writing

(1 + 2ε)6(1 + ε)3 = 1 + 15ε + εR(ε), R(ε) is a polynomial in e with positive coefficients,

so it is an increasing function of ε. Since R(.005) = .505, R(ε) < 1 for all ε < .005, and

hence E ≤ (1 + 2ε)6(1 + ε)3 < 1 + 16ε. To get a lower bound on E, note that

1 - 15ε - εR(ε) < E, and so when ε < .005, 1 - 16ε < (1 - 2ε)6(1 - ε)3. Combining these

two bounds yields 1 - 16ε < E < 1 + 16ε. Thus the relative error is at most 16ε. ❚

Theorem 12 certainly shows that there is no catastrophic cancellation in formula (7).

So although it is not necessary to show formula (7) is numerically stable, it is

satisfying to have a bound for the entire formula, which is what Theorem 3 of

“Cancellation” on page 168 gives.

Proof of Theorem 3

Let

q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))

and

Q = (a ⊕ (b ⊕ c)) ⊗ (c (a b)) ⊗ (c ⊕ (a b)) ⊗ (a ⊕ (b c)).

Then, Theorem 12 shows that Q = q(1 + δ), with δ ≤ 16ε. It is easy to check that

(28)

provided δ ≤ .04/(.52)2 ≈ .15, and since |δ| ≤ 16ε ≤ 16(.005) = .08, δ does satisfy the

condition. Thus

,

with |δ1|≤ .52|δ|≤ 8.5ε. If square roots are computed to within .5 ulp, then the error

when computing is (1 + δ1)(1 + δ2), with |δ2|≤ ε. If β = 2, then there is no further

error committed when dividing by 4. Otherwise, one more factor 1 + δ3 with |δ3| ≤ ε
is necessary for the division, and using the method in the proof of Theorem 12, the

final error bound of (1 +δ1) (1 + δ2) (1 + δ3) is dominated by 1 + δ4, with |δ4| ≤ 11ε. ❚

1 0.52δ 1 δ– 1 δ+ 1 0.52δ+≤ ≤ ≤–

Q q 1 δ+( ) q 1 δ1+( )= =

Q
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To make the heuristic explanation immediately following the statement of Theorem

4 precise, the next theorem describes just how closely µ(x) approximates a constant.

Theorem 13

If µ(x) = ln(1 + x)/x, then for 0 ≤ x ≤ , ≤ µ(x) ≤ 1 and the derivative satisfies
|µ’(x)| ≤ .

Proof

Note that µ(x) = 1 - x/2 + x2/3 - … is an alternating series with decreasing terms, so

for x ≤ 1, µ(x) ≥ 1 - x/2 ≥ 1/2. It is even easier to see that because the series for µ is

alternating, µ(x) ≤ 1. The Taylor series of µ’(x) is also alternating, and if x ≤ has

decreasing terms, so - ≤ µ’(x) ≤ - + 2x/3, or - ≤ µ’(x) ≤ 0, thus |µ’(x)| ≤ . ❚

Proof of Theorem 4

Since the Taylor series for ln

is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error incurred when

approximating ln(1 + x) by x is bounded by x/2. If 1 ⊕ x = 1, then |x| < ε, so the

relative error is bounded by ε/2.

When 1 ⊕ x ≠ 1, define via 1 ⊕ x = 1 + . Then since 0 ≤ x < 1, (1 ⊕ x) 1 = . If

division and logarithms are computed to within ulp, then the computed value of

the expression ln(1 + x)/((1 + x) - 1) is

(1 + δ1) (1 + δ2) = (1 + δ1) (1 + δ2) = µ( ) (1 + δ1) (1 + δ2)

(29)

where |δ1| ≤ ε and |δ2| ≤ ε. To estimate µ( ), use the mean value theorem, which

says that

µ( ) - µ(x) = ( - x)µ′(ξ) (30)

3
4
--- 1

2
---

1
2
---

3
4
---

1
2
--- 1

2
--- 1

2
--- 1

2
---

ln 1 x+( ) x
x2

2
------– x3

3
------ …–+=

x̂ x̂ x̂
1
2
---

1 x⊕( )ln
1 x⊕( ) 1

---------------------------- 1 x̂+( )ln
x̂

---------------------- x̂

x̂

x̂ x̂
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for some ξ between x and . From the definition of , it follows that | - x| ≤ ε, and

combining this with Theorem 13 gives |µ( ) - µ(x)| ≤ ε/2, or |µ( )/µ(x) - 1| ≤
ε/(2|µ(x)|) ≤ ε which means that µ( ) = µ(x) (1 + δ3), with |δ3| ≤ ε. Finally,

multiplying by x introduces a final δ4, so the computed value of

x⋅ln(1 ⊕ x)/((1 ⊕ x) 1)

is

It is easy to check that if ε < 0.1, then

(1 + δ1) (1 + δ2) (1 + δ3) (1 + δ4) = 1 + δ,

with |δ| ≤ 5ε. ❚

An interesting example of error analysis using formulas (19), (20), and (21) occurs in

the quadratic formula . The section “Cancellation” on page 168,

explained how rewriting the equation will eliminate the potential cancellation

caused by the ± operation. But there is another potential cancellation that can occur

when computing d = b2 – 4ac. This one cannot be eliminated by a simple

rearrangement of the formula. Roughly speaking, when b2 ≈ 4ac, rounding error can

contaminate up to half the digits in the roots computed with the quadratic formula.

Here is an informal proof (another approach to estimating the error in the quadratic

formula appears in Kahan [1972]).

If b2 ≈ 4ac, rounding error can contaminate up to half the digits in the roots computed with
the quadratic formula .

Proof: Write (b ⊗ b) (4a ⊗ c) = (b2(1 + δ1) - 4ac(1 + δ2)) (1 + δ3), where |δi|≤ ε. 1

Using d = b2 – 4ac, this can be rewritten as (d(1 + δ1) – 4ac(δ2 – δ1)) (1 + δ3). To get an

estimate for the size of this error, ignore second order terms in δi, in which case the

absolute error is d(δ1 + δ3) – 4acδ4, where |δ4| = |δ1 – δ2| ≤ 2ε. Since , the first

term d(δ1 + δ3) can be ignored. To estimate the second term, use the fact that

ax2 + bx + c = a(x – r1) (x – r2), so ar1r2 = c. Since b2 ≈ 4ac, then r1 ≈ r2, so the second

error term is . Thus the computed value of is

.

The inequality

1. In this informal proof, assume that β = 2 so that multiplication by 4 is exact and doesn’t require a δi.

x̂ x̂ x̂
x̂ x̂

x̂

x ln 1 x+( )
1 x+( ) 1–

--------------------------- 1 δ1+( ) 1 δ2+( ) 1 δ3+( ) 1 δ4+( ), δi ε≤

b– b2 4ac–±( ) 2a⁄

b– b2 4ac–±( ) 2a⁄

d 4ac«

4acδ4 4a2r1δ4
2≈ d

d 4a2r1
2δ4+

p q p2 q2– p2 q2+≤ p q p q 0>≥,+≤ ≤–
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shows that

,

where

,

so the absolute error in a is about . Since δ4 ≈ β-p, , and thus

the absolute error of destroys the bottom half of the bits of the roots r1 ≈ r2. In

other words, since the calculation of the roots involves computing with ,

and this expression does not have meaningful bits in the position corresponding to

the lower order half of ri, then the lower order bits of ri cannot be meaningful. ❚

Finally, we turn to the proof of Theorem 6. It is based on the following fact, which is

proven in the section “Theorem 14 and Theorem 8” on page 221.

Theorem 14

Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are exactly
rounded. Then (m ⊗ x) (m ⊗ x x) is exactly equal to x rounded to p – k significant
digits. More precisely, x is rounded by taking the significand of x, imagining a radix point
just left of the k least significant digits and rounding to an integer.

Proof of Theorem 6

By Theorem 14, xh is x rounded to p – k = places. If there is no carry out, then

certainly xh can be represented with significant digits. Suppose there is a

carry-out. If x = x0.x1 … xp - 1 × βe, then rounding adds 1 to xp - k - 1, and the only way

there can be a carry-out is if xp - k - 1 = β - 1, but then the low order digit of xh is

1 + xp - k- 1 = 0, and so again xh is representable in digits.

To deal with xl, scale x to be an integer satisfying βp - 1 ≤ x ≤ βp - 1. Let

where is the p - k high order digits of x, and is the k low order digits. There

are three cases to consider. If , then rounding x to p - k places is the

same as chopping and , and . Since has at most k digits, if p is

even, then has at most k = = digits. Otherwise, β = 2 and

is representable with k - 1 ≤ significant bits. The second case is when

, and then computing xh involves rounding up, so xh = + βk, and

xl = x - xh = x - − βk = - βk. Once again, has at most k digits, so is

representable with p/2 digits. Finally, if = (β/2)βk - 1, then xh = or + βk

depending on whether there is a round up. So xl is either (β/2)βk - 1 or (β/2)βk - 1 - βk =

-βk/2, both of which are represented with 1 digit. ❚

d 4a2r1
2δ4+ d E+=

E 4a2r1
2 δ4≤

d 2⁄ r1 δ4 δ4 β p 2⁄–≈
r1 δ4

d( ) 2a( )⁄

p 2⁄
p 2⁄

p 2⁄

x xh xl+=
xh xl

xl β 2⁄( )βk 1–<
xh xh= xl xl= xl

xl p 2⁄ p 2⁄ x1 2k 1–<
p 2⁄

x β 2⁄( )βk 1–> xh
xh xl xl

xl xh xh
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Theorem 6 gives a way to express the product of two working precision numbers

exactly as a sum. There is a companion formula for expressing a sum exactly. If

|x| ≥ |y| then x + y = (x ⊕ y) + (x (x ⊕ y)) ⊕ y [Dekker 1971; Knuth 1981,

Theorem C in section 4.2.2]. However, when using exactly rounded operations, this

formula is only true for β = 2, and not for β = 10 as the example x = .99998, y = .99997

shows.

Binary to Decimal Conversion

Since single precision has p = 24, and 224 < 108, you might expect that converting a

binary number to 8 decimal digits would be sufficient to recover the original binary

number. However, this is not the case.

Theorem 15

When a binary IEEE single precision number is converted to the closest eight digit decimal
number, it is not always possible to uniquely recover the binary number from the decimal
one. However, if nine decimal digits are used, then converting the decimal number to the
closest binary number will recover the original floating-point number.

Proof

Binary single precision numbers lying in the half open interval [103, 210) =

[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the right of the

binary point. Thus there are (210 - 103)214 = 393,216 different binary numbers in that

interval. If decimal numbers are represented with 8 digits, then there are

(210 - 103)104 = 240,000 decimal numbers in the same interval. There is no way that

240,000 decimal numbers could represent 393,216 different binary numbers. So 8

decimal digits are not enough to uniquely represent each single precision binary

number.

To show that 9 digits are sufficient, it is enough to show that the spacing between

binary numbers is always greater than the spacing between decimal numbers. This

will ensure that for each decimal number N, the interval

[N - ulp, N + ulp]

contains at most one binary number. Thus each binary number rounds to a unique

decimal number which in turn rounds to a unique binary number.

1
2
--- 1

2
---
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To show that the spacing between binary numbers is always greater than the spacing

between decimal numbers, consider an interval [10n, 10n + 1]. On this interval, the

spacing between consecutive decimal numbers is 10(n + 1) - 9. On [10n, 2m], where m is

the smallest integer so that 10n < 2m, the spacing of binary numbers is 2m - 24, and the

spacing gets larger further on in the interval. Thus it is enough to check that

10(n + 1) - 9 < 2m - 24. But in fact, since 10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. ❚

The same argument applied to double precision shows that 17 decimal digits are

required to recover a double precision number.

Binary-decimal conversion also provides another example of the use of flags. Recall

from the section “Precision” on page 178, that to recover a binary number from its

decimal expansion, the decimal to binary conversion must be computed exactly. That

conversion is performed by multiplying the quantities N and 10|P| (which are both

exact if p < 13) in single-extended precision and then rounding this to single

precision (or dividing if p < 0; both cases are similar). Of course the computation of

N ⋅ 10|P| cannot be exact; it is the combined operation round(N ⋅ 10|P|) that must be

exact, where the rounding is from single-extended to single precision. To see why it

might fail to be exact, take the simple case of β = 10, p = 2 for single, and p = 3 for

single-extended. If the product is to be 12.51, then this would be rounded to 12.5 as

part of the single-extended multiply operation. Rounding to single precision would

give 12. But that answer is not correct, because rounding the product to single

precision should give 13. The error is due to double rounding.

By using the IEEE flags, double rounding can be avoided as follows. Save the

current value of the inexact flag, and then reset it. Set the rounding mode to round-

to-zero. Then perform the multiplication N ⋅ 10|P|. Store the new value of the inexact

flag in ixflag , and restore the rounding mode and inexact flag. If ixflag is 0, then

N ⋅ 10|P| is exact, so round(N ⋅ 10|P|) will be correct down to the last bit. If ixflag
is 1, then some digits were truncated, since round-to-zero always truncates. The

significand of the product will look like 1.b1…b22b23…b31. A double rounding error

may occur if b23 …b31 = 10…0. A simple way to account for both cases is to perform

a logical ORof ixflag with b31. Then round(N ⋅ 10|P|) will be computed correctly in

all cases.

Errors In Summation

The section “Optimizers” on page 201, mentioned the problem of accurately

computing very long sums. The simplest approach to improving accuracy is to

double the precision. To get a rough estimate of how much doubling the precision
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improves the accuracy of a sum, let s1 = x1, s2 = s1 ⊕ x2…, si = si - 1 ⊕ xi. Then si =

(1 + δi) (si - 1 + xi), where δi ≤ ε, and ignoring second order terms in δi gives

(31)

The first equality of (31) shows that the computed value of is the same as if an

exact summation was performed on perturbed values of xj. The first term x1 is

perturbed by nε, the last term xn by only ε. The second equality in (31) shows that

error term is bounded by . Doubling the precision has the effect of squaring

ε. If the sum is being done in an IEEE double precision format, 1/ε ≈ 1016, so that

for any reasonable value of n. Thus, doubling the precision takes the

maximum perturbation of nε and changes it to . Thus the 2ε error bound for

the Kahan summation formula (Theorem 8) is not as good as using double precision,

even though it is much better than single precision.

For an intuitive explanation of why the Kahan summation formula works, consider

the following diagram of the procedure.

Each time a summand is added, there is a correction factor C which will be applied

on the next loop. So first subtract the correction C computed in the previous loop

from Xj, giving the corrected summand Y. Then add this summand to the running

sum S. The low order bits of Y (namely Yl) are lost in the sum. Next compute the

high order bits of Y by computing T - S. When Y is subtracted from this, the low

order bits of Y will be recovered. These are the bits that were lost in the first sum in

sn xj 1 δk
k j=

n
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the diagram. They become the correction factor for the next loop. A formal proof of

Theorem 8, taken from Knuth [1981] page 572, appears in the section “Theorem 14

and Theorem 8” on page 221.”

Summary

It is not uncommon for computer system designers to neglect the parts of a system

related to floating-point. This is probably due to the fact that floating-point is given

very little (if any) attention in the computer science curriculum. This in turn has

caused the apparently widespread belief that floating-point is not a quantifiable

subject, and so there is little point in fussing over the details of hardware and

software that deal with it.

This paper has demonstrated that it is possible to reason rigorously about floating-

point. For example, floating-point algorithms involving cancellation can be proven

to have small relative errors if the underlying hardware has a guard digit, and there

is an efficient algorithm for binary-decimal conversion that can be proven to be

invertible, provided that extended precision is supported. The task of constructing

reliable floating-point software is made much easier when the underlying computer

system is supportive of floating-point. In addition to the two examples just

mentioned (guard digits and extended precision), the section “Systems Aspects” on

page 194 of this paper has examples ranging from instruction set design to compiler

optimization illustrating how to better support floating-point.

The increasing acceptance of the IEEE floating-point standard means that codes that

utilize features of the standard are becoming ever more portable. The section “The

IEEE Standard” on page 176, gave numerous examples illustrating how the features

of the IEEE standard can be used in writing practical floating-point codes.
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Theorem 14 and Theorem 8

This section contains two of the more technical proofs that were omitted from the text.

Theorem 14

Let 0 < k < p, and set m = βk + 1, and assume that floating-point operations are exactly
rounded. Then (m ⊗ x) (m ⊗ x x) is exactly equal to x rounded to p - k significant
digits. More precisely, x is rounded by taking the significand of x, imagining a radix point
just left of the k least significant digits, and rounding to an integer.

Proof

The proof breaks up into two cases, depending on whether or not the computation

of mx = βkx + x has a carry-out or not.

Assume there is no carry out. It is harmless to scale x so that it is an integer. Then the

computation of mx = x + βkx looks like this:

aa...aabb...bb
+aa...aabb...bb
zz...zzbb...bb

where x has been partitioned into two parts. The low order k digits are marked b
and the high order p - k digits are marked a. To compute m ⊗ x from mx involves

rounding off the low order k digits (the ones marked with b) so

m ⊗ x = mx - x mod(βk) + rβk (32)

The value of r is 1 if .bb...b is greater than and 0 otherwise. More precisely

r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise. (33)

1
2
---
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Next compute m ⊗ x – x = mx – x mod(βk) + rβk - x = βk(x + r) – x mod(βk). The

picture below shows the computation of m ⊗ x - x rounded, that is, (m ⊗ x) x. The

top line is βk(x + r), where B is the digit that results from adding r to the lowest

order digit b.

aa...aabb...bB00...00
- bb...bb
zz... zzZ00...00

If .bb...b < then r = 0, subtracting causes a borrow from the digit marked B, but

the difference is rounded up, and so the net effect is that the rounded difference

equals the top line, which is βkx. If .bb...b > then r = 1, and 1 is subtracted from

B because of the borrow, so the result is βkx. Finally consider the case .bb...b = .

If r = 0 then B is even, Z is odd, and the difference is rounded up, giving βkx.

Similarly when r = 1, B is odd, Z is even, the difference is rounded down, so again

the difference is βkx. To summarize

(m ⊗ x) x = βkx (34)

Combining equations (32) and (34) gives (m ⊗ x) - (m ⊗ x x) = x – x mod(βk) + ρ⋅βk.

The result of performing this computation is

r00...00
+ aa...aabb...bb
- bb...bb

aa...aA00...00

The rule for computing r, equation (33), is the same as the rule for rounding a...
ab...b to p – k places. Thus computing mx – (mx – x) in floating-point arithmetic

precision is exactly equal to rounding x to p – k places, in the case when x + βkx
does not carry out.

When x + βkx does carry out, then mx = βkx + x looks like this:

aa...aabb...bb
+aa...aabb...bb
zz...zZbb...bb

Thus, m ⊗ x = mx – x mod(βk) + wβk, where w = -Z if Z < β/2, but the exact value of

w is unimportant. Next, m ⊗ x – x = βkx – x mod(βk) + wβk. In a picture

aa...aabb...bb00...00
- bb... bb
+ w

zz ... zZbb ...bb 1

1. This is the sum if adding w does not generate carry out. Additional argument is needed for the special case
where adding w does generate carry out. – Ed.

1
2
---

1
2
---

1
2
---
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Rounding gives (m ⊗ x) x = βkx + wβk - rβk, where r = 1 if .bb...b > or if

.bb...b = and b0 = 1.1 Finally,

(m ⊗ x) – (m ⊗ x x) = mx – x mod(βk) + wβk – (βkx + wβk – rβk)

= x – x mod(βk) + rβk.

And once again, r = 1 exactly when rounding a...ab...b to p - k places involves

rounding up. Thus Theorem 14 is proven in all cases. ❚

Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

Then the computed sum S is equal to S = Σ xj (1 + δj) + O(Nε2) Σ |xj|, where |δj| ≤ 2ε.

Proof

First recall how the error estimate for the simple formula Σ xi went. Introduce s1 = x1,

si = (1 + δi) (si - 1 + xi). Then the computed sum is sn, which is a sum of terms, each of

which is an xi multiplied by an expression involving δj’s. The exact coefficient of x1 is

(1 + δ2)(1 + δ3) … (1 + δn), and so by renumbering, the coefficient of x2 must be

(1 + δ3)(1 + δ4) … (1 + δn), and so on. The proof of Theorem 8 runs along exactly the

same lines, only the coefficient of x1 is more complicated. In detail s0 = c0 = 0 and

yk = xk ck - 1 = (xk - ck - 1) (1 + ηk)

sk = sk - 1 ⊕≈ yk = (sk-1 + yk) (1 + σk)

ck = (sk sk - 1) yk= [(sk - sk - 1) (1 + γk) - yk] (1 + δk)

where all the Greek letters are bounded by ε. Although the coefficient of x1 in sk is

the ultimate expression of interest, in turns out to be easier to compute the

coefficient of x1 in sk - ck and ck.

1. Rounding gives βkx + wβk - rβk only if (βkx + wβk) keeps the form of βkx. – Ed.

S = X [1];

C = 0;

for j = 2 to N {

Y = X [j] - C;

   T = S + Y;

   C = (T - S) - Y;

   S = T;

}

1
2
---

1
2
---

Σ j 1=
N xj
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When k = 1,

c1 = (s1(1 + γ1) – y1) (1 + d1)

= y1((1 + s1) (1 + γ1) – 1) (1 + d1)

= x1(s1 +γ1 + s1g1) (1 + d1) (1 + h1)

s1 – c1 = x1[(1 + s1) – (s1 + g1 + s1g1) (1 + d1)](1 + h1)

= x1[1 – g1 – s1d1 – s1g1 – d1g1 – s1g1d1](1 + h1)

Calling the coefficients of x1 in these expressions Ck and Sk respectively, then

C1 = 2ε + O(ε2)

S1 = + η1 – γ1 + 4ε2 + O(ε3)

To get the general formula for Sk and Ck, expand the definitions of sk and ck, ignoring

all terms involving xi with i > 1 to get

sk = (sk – 1 + yk)(1 + σk)

= [sk – 1 + (xk – ck – 1) (1 + ηk)](1 + σk)

= [(sk – 1 – ck – 1) – ηkck – 1](1+σk)

ck= [{sk – sk – 1}(1 + γk) – yk](1 + δk)

= [{((sk – 1 – ck – 1) – ηkck – 1)(1 + σk) – sk – 1}(1 + γk) + ck – 1(1 + ηk)](1 + δk)

= [{(sk – 1 – ck – 1)σk – ηkck–1(1 + σk) – ck – 1}(1 + γk) + ck – 1(1 + ηk)](1 + δk)

= [(sk – 1 – ck – 1)σk(1 + γk) – ck – 1(γk + ηk(σk + γk + σkγk))](1 + δk),

sk – ck= ((sk – 1 – ck – 1) – ηkck – 1) (1 + σk)

– [(sk – 1 – ck – 1)σk(1 + γk) – ck – 1(γk + ηk(σk + γk + σkγk)](1 + δk)

= (sk– 1 – ck – 1)((1 + σk) – σk(1 + γk)(1 + δk))

+ ck – 1(-ηk(1 + σk) + (γk + ηk(σk + γk + σkγk)) (1 + δk))

= (s– 1 – ck – 1) (1 – σk(γk + δk + γkδk))

+ ck – 1 – [ηk + γk + ηk(γk + σkγk) + (γk + ηk(σk + γk + σkγk))δk]

Since Sk and Ck are only being computed up to order ε2, these formulas can be

simplified to

Ck= (σk + O(ε2))Sk – 1 + (-γk + O(ε2))Ck – 1

Sk= ((1 + 2ε2 + O(ε3))Sk – 1 + (2ε + Ο(ε2))Ck – 1
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Using these formulas gives

C2 = σ2 + O(ε2)

S2 = 1 + η1 – γ1 + 10ε2 + O(ε3)

and in general it is easy to check by induction that

Ck = σk + O(ε2)

Sk = 1 + η1 – γ1 + (4k+2)ε2 + O(ε3)

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let xn + 1 = 0, let

all the Greek letters with subscripts of n + 1 equal 0, and compute sn + 1. Then sn + 1 =

sn – cn, and the coefficient of x1 in sn is less than the coefficient in sn + 1, which is Sn =

1 + η1 – γ1 + (4n + 2)ε2 = (1 + 2ε + Ο(nε2)). ❚

Differences Among IEEE 754
Implementations

Note – This section is not part of the published paper. It has been added to clarify

certain points and correct possible misconceptions about the IEEE standard that the

reader might infer from the paper. This material was not written by David Goldberg,

but it appears here with his permission.

The preceding paper has shown that floating-point arithmetic must be implemented

carefully, since programmers may depend on its properties for the correctness and

accuracy of their programs. In particular, the IEEE standard requires a careful

implementation, and it is possible to write useful programs that work correctly and

deliver accurate results only on systems that conform to the standard. The reader

might be tempted to conclude that such programs should be portable to all IEEE

systems. Indeed, portable software would be easier to write if the remark “When a

program is moved between two machines and both support IEEE arithmetic, then if

any intermediate result differs, it must be because of software bugs, not from

differences in arithmetic,” were true.

Unfortunately, the IEEE standard does not guarantee that the same program will

deliver identical results on all conforming systems. Most programs will actually

produce different results on different systems for a variety of reasons. For one, most
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programs involve the conversion of numbers between decimal and binary formats,

and the IEEE standard does not completely specify the accuracy with which such

conversions must be performed. For another, many programs use elementary

functions supplied by a system library, and the standard doesn’t specify these

functions at all. Of course, most programmers know that these features lie beyond

the scope of the IEEE standard.

Many programmers may not realize that even a program that uses only the numeric

formats and operations prescribed by the IEEE standard can compute different

results on different systems. In fact, the authors of the standard intended to allow

different implementations to obtain different results. Their intent is evident in the

definition of the term destination in the IEEE 754 standard: “A destination may be

either explicitly designated by the user or implicitly supplied by the system (for

example, intermediate results in subexpressions or arguments for procedures). Some

languages place the results of intermediate calculations in destinations beyond the

user’s control. Nonetheless, this standard defines the result of an operation in terms

of that destination’s format and the operands’ values.” (IEEE 754-1985, p. 7) In other

words, the IEEE standard requires that each result be rounded correctly to the

precision of the destination into which it will be placed, but the standard does not

require that the precision of that destination be determined by a user’s program.

Thus, different systems may deliver their results to destinations with different

precisions, causing the same program to produce different results (sometimes

dramatically so), even though those systems all conform to the standard.

Several of the examples in the preceding paper depend on some knowledge of the

way floating-point arithmetic is rounded. In order to rely on examples such as these,

a programmer must be able to predict how a program will be interpreted, and in

particular, on an IEEE system, what the precision of the destination of each

arithmetic operation may be. Alas, the loophole in the IEEE standard’s definition of

destination undermines the programmer’s ability to know how a program will be

interpreted. Consequently, several of the examples given above, when implemented

as apparently portable programs in a high-level language, may not work correctly

on IEEE systems that normally deliver results to destinations with a different

precision than the programmer expects. Other examples may work, but proving that

they work may lie beyond the average programmer’s ability.

In this section, we classify existing implementations of IEEE 754 arithmetic based on

the precisions of the destination formats they normally use. We then review some

examples from the paper to show that delivering results in a wider precision than a

program expects can cause it to compute wrong results even though it is provably

correct when the expected precision is used. We also revisit one of the proofs in the

paper to illustrate the intellectual effort required to cope with unexpected precision

even when it doesn’t invalidate our programs. These examples show that despite all

that the IEEE standard prescribes, the differences it allows among different

implementations can prevent us from writing portable, efficient numerical software

whose behavior we can accurately predict. To develop such software, then, we must
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first create programming languages and environments that limit the variability the

IEEE standard permits and allow programmers to express the floating-point

semantics upon which their programs depend.

Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two groups

distinguished by the degree to which they support different floating-point formats in

hardware. Extended-based systems, exemplified by the Intel x86 family of processors,

provide full support for an extended double precision format but only partial

support for single and double precision: they provide instructions to load or store

data in single and double precision, converting it on-the-fly to or from the extended

double format, and they provide special modes (not the default) in which the results

of arithmetic operations are rounded to single or double precision even though they

are kept in registers in extended double format. (Motorola 68000 series processors

round results to both the precision and range of the single or double formats in these

modes. Intel x86 and compatible processors round results to the precision of the

single or double formats but retain the same range as the extended double format.)

Single/double systems, including most RISC processors, provide full support for

single and double precision formats but no support for an IEEE-compliant extended

double precision format. (The IBM POWER architecture provides only partial

support for single precision, but for the purpose of this section, we classify it as a

single/double system.)

To see how a computation might behave differently on an extended-based system

than on a single/double system, consider a C version of the example from Section ,

“Systems Aspects” on page D-194:

Here the constants 3.0 and 7.0 are interpreted as double precision floating-point

numbers, and the expression 3.0/7.0 inherits the double data type. On a

single/double system, the expression will be evaluated in double precision since

that is the most efficient format to use. Thus, q will be assigned the value 3.0/7.0

rounded correctly to double precision. In the next line, the expression 3.0/7.0 will

again be evaluated in double precision, and of course the result will be equal to the

value just assigned to q, so the program will print “Equal” as expected.

int main() {
    double  q;

    q = 3.0/7.0;
    if (q == 3.0/7.0) printf("Equal\n");
    else printf("Not Equal\n");
    return 0;
}
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On an extended-based system, even though the expression 3.0/7.0 has type double ,

the quotient will be computed in a register in extended double format, and thus in

the default mode, it will be rounded to extended double precision. When the

resulting value is assigned to the variable q, however, it may then be stored in

memory, and since q is declared double , the value will be rounded to double

precision. In the next line, the expression 3.0/7.0 may again be evaluated in

extended precision yielding a result that differs from the double precision value

stored in q, causing the program to print “Not equal”. Of course, other outcomes are

possible, too: the compiler could decide to store and thus round the value of the

expression 3.0/7.0 in the second line before comparing it with q, or it could keep q
in a register in extended precision without storing it. An optimizing compiler might

evaluate the expression 3.0/7.0 at compile time, perhaps in double precision or

perhaps in extended double precision. (With one x86 compiler, the program prints

“Equal” when compiled with optimization and “Not Equal” when compiled for

debugging.) Finally, some compilers for extended-based systems automatically

change the rounding precision mode to cause operations producing results in

registers to round those results to single or double precision, albeit possibly with a

wider range. Thus, on these systems, we can’t predict the behavior of the program

simply by reading its source code and applying a basic understanding of IEEE 754

arithmetic. Neither can we accuse the hardware or the compiler of failing to provide

an IEEE 754 compliant environment; the hardware has delivered a correctly rounded

result to each destination, as it is required to do, and the compiler has assigned some

intermediate results to destinations that are beyond the user’s control, as it is

allowed to do.

Pitfalls in Computations on Extended-Based

Systems

Conventional wisdom maintains that extended-based systems must produce results

that are at least as accurate, if not more accurate than those delivered on

single/double systems, since the former always provide at least as much precision

and often more than the latter. Trivial examples such as the C program above as well

as more subtle programs based on the examples discussed below show that this

wisdom is naive at best: some apparently portable programs, which are indeed

portable across single/double systems, deliver incorrect results on extended-based

systems precisely because the compiler and hardware conspire to occasionally

provide more precision than the program expects.

Current programming languages make it difficult for a program to specify the

precision it expects. As the section “Languages and Compilers” on Section ,

“Languages and Compilers” on page D-196 mentions, many programming

languages don’t specify that each occurrence of an expression like 10.0*x in the

same context should evaluate to the same value. Some languages, such as Ada, were

influenced in this respect by variations among different arithmetics prior to the IEEE
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standard. More recently, languages like ANSI C have been influenced by standard-

conforming extended-based systems. In fact, the ANSI C standard explicitly allows a

compiler to evaluate a floating-point expression to a precision wider than that

normally associated with its type. As a result, the value of the expression 10.0*x
may vary in ways that depend on a variety of factors: whether the expression is

immediately assigned to a variable or appears as a subexpression in a larger

expression; whether the expression participates in a comparison; whether the

expression is passed as an argument to a function, and if so, whether the argument

is passed by value or by reference; the current precision mode; the level of

optimization at which the program was compiled; the precision mode and

expression evaluation method used by the compiler when the program was

compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression

evaluation. Extended-based systems run most efficiently when expressions are

evaluated in extended precision registers whenever possible, yet values that must be

stored are stored in the narrowest precision required. Constraining a language to

require that 10.0*x evaluate to the same value everywhere would impose a

performance penalty on those systems. Unfortunately, allowing those systems to

evaluate 10.0*x differently in syntactically equivalent contexts imposes a penalty of

its own on programmers of accurate numerical software by preventing them from

relying on the syntax of their programs to express their intended semantics.

Do real programs depend on the assumption that a given expression always

evaluates to the same value? Recall the algorithm presented in Theorem 4 for

computing ln(1 + x), written here in Fortran:

On an extended-based system, a compiler may evaluate the expression 1.0 + x in

the third line in extended precision and compare the result with 1.0 . When the same

expression is passed to the log function in the sixth line, however, the compiler may

store its value in memory, rounding it to single precision. Thus, if x is not so small

that 1.0 + x rounds to 1.0 in extended precision but small enough that 1.0 + x
rounds to 1.0 in single precision, then the value returned by log1p(x) will be zero

instead of x , and the relative error will be one—rather larger than 5ε. Similarly,

suppose the rest of the expression in the sixth line, including the reoccurrence of the

subexpression 1.0 + x , is evaluated in extended precision. In that case, if x is small

but not quite small enough that 1.0 + x rounds to 1.0 in single precision, then the

real function log1p(x)
real x
if (1.0 + x .eq. 1.0) then
   log1p = x
else
   log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)
endif
return
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value returned by log1p(x) can exceed the correct value by nearly as much as x ,

and again the relative error can approach one. For a concrete example, take x to be

2-24 + 2-47, so x is the smallest single precision number such that 1.0 + x rounds up

to the next larger number, 1 + 2-23. Then log(1.0 + x) is approximately 2-23. Because

the denominator in the expression in the sixth line is evaluated in extended

precision, it is computed exactly and delivers x , so log1p(x) returns approximately

2-23, which is nearly twice as large as the exact value. (This actually happens with at

least one compiler. When the preceding code is compiled by the Sun WorkShop

Compilers 4.2.1 Fortran 77 compiler for x86 systems using the -O optimization flag,

the generated code computes 1.0 + x exactly as described. As a result, the function

delivers zero for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8) .)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x must be

evaluated the same way each time it appears; the algorithm can fail on extended-

based systems only when 1.0 + x is evaluated to extended double precision in one

instance and to single or double precision in another. Of course, since log is a

generic intrinsic function in Fortran, a compiler could evaluate the expression

1.0 + x in extended precision throughout, computing its logarithm in the same

precision, but evidently we cannot assume that the compiler will do so. (One can

also imagine a similar example involving a user-defined function. In that case, a

compiler could still keep the argument in extended precision even though the

function returns a single precision result, but few if any existing Fortran compilers

do this, either.) We might therefore attempt to ensure that 1.0 + x is evaluated

consistently by assigning it to a variable. Unfortunately, if we declare that variable

real , we may still be foiled by a compiler that substitutes a value kept in a register

in extended precision for one appearance of the variable and a value stored in

memory in single precision for another. Instead, we would need to declare the

variable with a type that corresponds to the extended precision format. Standard

FORTRAN 77 does not provide a way to do this, and while Fortran 95 offers the

SELECTED_REAL_KINDmechanism for describing various formats, it does not

explicitly require implementations that evaluate expressions in extended precision to

allow variables to be declared with that precision. In short, there is no portable way

to write this program in standard Fortran that is guaranteed to prevent the

expression 1.0 + x from being evaluated in a way that invalidates our proof.

There are other examples that can malfunction on extended-based systems even

when each subexpression is stored and thus rounded to the same precision. The

cause is double-rounding. In the default precision mode, an extended-based system

will initially round each result to extended double precision. If that result is then

stored to double precision, it is rounded again. The combination of these two

roundings can yield a value that is different than what would have been obtained by

rounding the first result correctly to double precision. This can happen when the

result as rounded to extended double precision is a “halfway case”, i.e., it lies exactly

halfway between two double precision numbers, so the second rounding is

determined by the round-ties-to-even rule. If this second rounding rounds in the

same direction as the first, the net rounding error will exceed half a unit in the last

place. (Note, though, that double-rounding only affects double precision
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computations. One can prove that the sum, difference, product, or quotient of two

p-bit numbers, or the square root of a p-bit number, rounded first to q bits and then

to p bits gives the same value as if the result were rounded just once to p bits

provided q ≥ 2p + 2. Thus, extended double precision is wide enough that single

precision computations don’t suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with double-rounding. In

fact, even some algorithms that don’t require correct rounding and work correctly on

a variety of machines that don’t conform to IEEE 754 can fail with double-rounding.

The most useful of these are the portable algorithms for performing simulated

multiple precision arithmetic mentioned on Section , “Theorem 5” on page D-173.

For example, the procedure described in Theorem 6 for splitting a floating-point

number into high and low parts doesn’t work correctly in double-rounding

arithmetic: try to split the double precision number 252 + 3 × 226 – 1 into two parts

each with at most 26 bits. When each operation is rounded correctly to double

precision, the high order part is 252 + 227 and the low order part is 226 – 1, but when

each operation is rounded first to extended double precision and then to double

precision, the procedure produces a high order part of 252 + 228 and a low order part

of –226 – 1. The latter number occupies 27 bits, so its square can’t be computed

exactly in double precision. Of course, it would still be possible to compute the

square of this number in extended double precision, but the resulting algorithm

would no longer be portable to single/double systems. Also, later steps in the

multiple precision multiplication algorithm assume that all partial products have

been computed in double precision. Handling a mixture of double and extended

double variables correctly would make the implementation significantly more

expensive.

Likewise, portable algorithms for adding multiple precision numbers represented as

arrays of double precision numbers can fail in double-rounding arithmetic. These

algorithms typically rely on a technique similar to Kahan’s summation formula. As

the informal explanation of the summation formula given on Section , “Summary”

on page D-218 suggests, if s and y are floating-point variables with |s| ≥ |y| and

we compute:

then in most arithmetics, e recovers exactly the roundoff error that occurred in

computing t . This technique doesn’t work in double-rounded arithmetic, however:

if s = 252 + 1 and y = 1/2 – 2-54, then s + y rounds first to 252 + 3/2 in extended

double precision, and this value rounds to 252 + 2 in double precision by the round-

ties-to-even rule; thus the net rounding error in computing t is 1/2 + 2-54, which is

not representable exactly in double precision and so can’t be computed exactly by

the expression shown above. Here again, it would be possible to recover the

roundoff error by computing the sum in extended double precision, but then a

program would have to do extra work to reduce the final outputs back to double

t = s + y;
e = (s - t) + y;
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precision, and double-rounding could afflict this process, too. For this reason,

although portable programs for simulating multiple precision arithmetic by these

methods work correctly and efficiently on a wide variety of machines, they do not

work as advertised on extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct rounding

may in fact work correctly with double-rounding. In these cases, the cost of coping

with double-rounding lies not in the implementation but in the verification that the

algorithm works as advertised. To illustrate, we prove the following variant of

Theorem 7:

Theorem 7’

If m and n are integers representable in IEEE 754 double precision with |m| < 252 and n has
the special form n = 2i + 2j, then (m n) ⊗ n = m, provided both floating-point operations
are either rounded correctly to double precision or rounded first to extended double precision
and then to double precision.

Proof

Assume without loss that m > 0. Let q = m n. Scaling by powers of two, we can

consider an equivalent setting in which 252 ≤ m < 253 and likewise for q, so that both

m and q are integers whose least significant bits occupy the units place (i.e., ulp(m) =

ulp(q) = 1). Before scaling, we assumed m < 252, so after scaling, m is an even integer.

Also, because the scaled values of m and q satisfy m/2 < q < 2m, the corresponding

value of n must have one of two forms depending on which of m or q is larger: if

q < m, then evidently 1 < n < 2, and since n is a sum of two powers of two, n = 1 + 2-k

for some k; similarly, if q > m, then 1/2 < n < 1, so n = 1/2 + 2-(k + 1). (As n is the sum

of two powers of two, the closest possible value of n to one is n = 1 + 2-52. Because

m/(1 + 2-52) is no larger than the next smaller double precision number less than m,

we can’t have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and the

computed value q ⊗ n will be the (once or twice) rounded value of m + ne. Consider

first the case in which each floating-point operation is rounded correctly to double

precision. In this case, |e| < 1/2. If n has the form 1/2 + 2-(k + 1), then ne = nq – m is

an integer multiple of 2-(k + 1) and |ne| < 1/4 + 2-(k + 2). This implies that |ne| ≤ 1/4.

Recall that the difference between m and the next larger representable number is 1

and the difference between m and the next smaller representable number is either 1

if m > 252 or 1/2 if m = 252. Thus, as |ne| ≤ 1/4, m + ne will round to m. (Even if m =

252 and ne = –1/4, the product will round to m by the round-ties-to-even rule.)

Similarly, if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and

|ne| < 1/2 + 2-(k + 1); this implies |ne| ≤ 1/2. We can’t have m = 252 in this case

because m is strictly greater than q, so m differs from its nearest representable
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neighbors by ±1. Thus, as |ne| ≤ 1/2, again m + ne will round to m. (Even if |ne| =

1/2, the product will round to m by the round-ties-to-even rule because m is even.)

This completes the proof for correctly rounded arithmetic.

In double-rounding arithmetic, it may still happen that q is the correctly rounded

quotient (even though it was actually rounded twice), so |e| < 1/2 as above. In this

case, we can appeal to the arguments of the previous paragraph provided we

consider the fact that q ⊗ n will be rounded twice. To account for this, note that the

IEEE standard requires that an extended double format carry at least 64 significant

bits, so that the numbers m ± 1/2 and m ± 1/4 are exactly representable in extended

double precision. Thus, if n has the form 1/2 + 2-(k + 1), so that |ne| ≤ 1/4, then

rounding m + ne to extended double precision must produce a result that differs

from m by at most 1/4, and as noted above, this value will round to m in double

precision. Similarly, if n has the form 1 + 2-k, so that |ne| ≤ 1/2, then rounding

m + ne to extended double precision must produce a result that differs from m by at

most 1/2, and this value will round to m in double precision. (Recall that m > 252 in

this case.)

Finally, we are left to consider cases in which q is not the correctly rounded quotient

due to double-rounding. In these cases, we have |e| < 1/2 + 2-(d + 1) in the worst case,

where d is the number of extra bits in the extended double format. (All existing

extended-based systems support an extended double format with exactly 64

significant bits; for this format, d = 64 – 53 = 11.) Because double-rounding only

produces an incorrectly rounded result when the second rounding is determined by

the round-ties-to-even rule, q must be an even integer. Thus if n has the form

1/2 + 2-(k + 1), then ne = nq – m is an integer multiple of 2-k, and

|ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2).

If k ≤ d, this implies |ne| ≤ 1/4. If k > d, we have |ne| ≤ 1/4 + 2-(d + 2). In either case,

the first rounding of the product will deliver a result that differs from m by at most

1/4, and by previous arguments, the second rounding will round to m. Similarly, if n
has the form 1 + 2-k, then ne is an integer multiple of 2-(k – 1), and

|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).

If k ≤ d, this implies |ne| ≤ 1/2. If k > d, we have |ne| ≤ 1/2 + 2-(d + 1). In either case,

the first rounding of the product will deliver a result that differs from m by at most

1/2, and again by previous arguments, the second rounding will round to m. ❚

The preceding proof shows that the product can incur double-rounding only if the

quotient does, and even then, it rounds to the correct result. The proof also shows

that extending our reasoning to include the possibility of double-rounding can be

challenging even for a program with only two floating-point operations. For a more
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complicated program, it may be impossible to systematically account for the effects

of double-rounding, not to mention more general combinations of double and

extended double precision computations.

Programming Language Support for Extended

Precision

The preceding examples should not be taken to suggest that extended precision per
se is harmful. Many programs can benefit from extended precision when the

programmer is able to use it selectively. Unfortunately, current programming

languages do not provide sufficient means for a programmer to specify when and

how extended precision should be used. To indicate what support is needed, we

consider the ways in which we might want to manage the use of extended precision.

In a portable program that uses double precision as its nominal working precision,

there are five ways we might want to control the use of a wider precision:

1. Compile to produce the fastest code, using extended precision where possible on

extended-based systems. Clearly most numerical software does not require more

of the arithmetic than that the relative error in each operation is bounded by the

“machine epsilon”. When data in memory are stored in double precision, the

machine epsilon is usually taken to be the largest relative roundoff error in that

precision, since the input data are (rightly or wrongly) assumed to have been

rounded when they were entered and the results will likewise be rounded when

they are stored. Thus, while computing some of the intermediate results in

extended precision may yield a more accurate result, extended precision is not

essential. In this case, we might prefer that the compiler use extended precision

only when it will not appreciably slow the program and use double precision

otherwise.

2. Use a format wider than double if it is reasonably fast and wide enough,

otherwise resort to something else. Some computations can be performed more

easily when extended precision is available, but they can also be carried out in

double precision with only somewhat greater effort. Consider computing the

Euclidean norm of a vector of double precision numbers. By computing the

squares of the elements and accumulating their sum in an IEEE 754 extended

double format with its wider exponent range, we can trivially avoid premature

underflow or overflow for vectors of practical lengths. On extended-based

systems, this is the fastest way to compute the norm. On single/double systems,

an extended double format would have to be emulated in software (if one were

supported at all), and such emulation would be much slower than simply using

double precision, testing the exception flags to determine whether underflow or

overflow occurred, and if so, repeating the computation with explicit scaling.

Note that to support this use of extended precision, a language must provide both

an indication of the widest available format that is reasonably fast, so that a
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program can choose which method to use, and environmental parameters that

indicate the precision and range of each format, so that the program can verify

that the widest fast format is wide enough (e.g., that it has wider range than

double).

3. Use a format wider than double even if it has to be emulated in software. For

more complicated programs than the Euclidean norm example, the programmer

may simply wish to avoid the need to write two versions of the program and

instead rely on extended precision even if it is slow. Again, the language must

provide environmental parameters so that the program can determine the range

and precision of the widest available format.

4. Don’t use a wider precision; round results correctly to the precision of the double

format, albeit possibly with extended range. For programs that are most easily

written to depend on correctly rounded double precision arithmetic, including

some of the examples mentioned above, a language must provide a way for the

programmer to indicate that extended precision must not be used, even though

intermediate results may be computed in registers with a wider exponent range

than double. (Intermediate results computed in this way can still incur double-

rounding if they underflow when stored to memory: if the result of an arithmetic

operation is rounded first to 53 significant bits, then rounded again to fewer

significant bits when it must be denormalized, the final result may differ from

what would have been obtained by rounding just once to a denormalized

number. Of course, this form of double-rounding is highly unlikely to affect any

practical program adversely.)

5. Round results correctly to both the precision and range of the double format. This

strict enforcement of double precision would be most useful for programs that

test either numerical software or the arithmetic itself near the limits of both the

range and precision of the double format. Such careful test programs tend to be

difficult to write in a portable way; they become even more difficult (and error

prone) when they must employ dummy subroutines and other tricks to force

results to be rounded to a particular format. Thus, a programmer using an

extended-based system to develop robust software that must be portable to all

IEEE 754 implementations would quickly come to appreciate being able to

emulate the arithmetic of single/double systems without extraordinary effort.

No current language supports all five of these options. In fact, few languages have

attempted to give the programmer the ability to control the use of extended

precision at all. One notable exception is the ISO/IEC 9899:1999 Programming

Languages - C standard, the latest revision to the C language, which is now in the

final stages of standardization.

The C99 standard allows an implementation to evaluate expressions in a format

wider than that normally associated with their type, but the C99 standard

recommends using one of only three expression evaluation methods. The three

recommended methods are characterized by the extent to which expressions are

“promoted” to wider formats, and the implementation is encouraged to identify
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which method it uses by defining the preprocessor macro FLT_EVAL_METHOD: if

FLT_EVAL_METHODis 0, each expression is evaluated in a format that corresponds to

its type; if FLT_EVAL_METHODis 1, float expressions are promoted to the format

that corresponds to double ; and if FLT_EVAL_METHODis 2, float and double
expressions are promoted to the format that corresponds to long double . (An

implementation is allowed to set FLT_EVAL_METHODto –1 to indicate that the

expression evaluation method is indeterminable.) The C99 standard also requires

that the <math.h> header file define the types float_t and double_t , which are

at least as wide as float and double , respectively, and are intended to match the

types used to evaluate float and double expressions. For example, if

FLT_EVAL_METHODis 2, both float_t and double_t are long double . Finally,

the C99 standard requires that the <float.h> header file define preprocessor

macros that specify the range and precision of the formats corresponding to each

floating-point type.

The combination of features required or recommended by the C99 standard supports

some of the five options listed above but not all. For example, if an implementation

maps the long double type to an extended double format and defines

FLT_EVAL_METHODto be 2, the programmer can reasonably assume that extended

precision is relatively fast, so programs like the Euclidean norm example can simply

use intermediate variables of type long double (or double_t ). On the other hand,

the same implementation must keep anonymous expressions in extended precision

even when they are stored in memory (e.g., when the compiler must spill floating-

point registers), and it must store the results of expressions assigned to variables

declared double to convert them to double precision even if they could have been

kept in registers. Thus, neither the double nor the double_t type can be compiled

to produce the fastest code on current extended-based hardware.

Likewise, the C99 standard provides solutions to some of the problems illustrated by

the examples in this section but not all. A C99 standard version of the log1p
function is guaranteed to work correctly if the expression 1.0 + x is assigned to a

variable (of any type) and that variable used throughout. A portable, efficient C99

standard program for splitting a double precision number into high and low parts,

however, is more difficult: how can we split at the correct position and avoid double-

rounding if we cannot guarantee that double expressions are rounded correctly to

double precision? One solution is to use the double_t type to perform the splitting

in double precision on single/double systems and in extended precision on

extended-based systems, so that in either case the arithmetic will be correctly

rounded. Theorem 14 says that we can split at any bit position provided we know

the precision of the underlying arithmetic, and the FLT_EVAL_METHODand

environmental parameter macros should give us this information.
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The following fragment shows one possible implementation:

Of course, to find this solution, the programmer must know that double
expressions may be evaluated in extended precision, that the ensuing double-

rounding problem can cause the algorithm to malfunction, and that extended

precision may be used instead according to Theorem 14. A more obvious solution is

simply to specify that each expression be rounded correctly to double precision. On

extended-based systems, this merely requires changing the rounding precision

mode, but unfortunately, the C99 standard does not provide a portable way to do

this. (Early drafts of the Floating-Point C Edits, the working document that specified

the changes to be made to the C90 standard to support floating-point, recommended

that implementations on systems with rounding precision modes provide fegetprec
and fesetprec functions to get and set the rounding precision, analogous to the

fegetround and fesetround functions that get and set the rounding direction. This

recommendation was removed before the changes were made to the C99 standard.)

Coincidentally, the C99 standard’s approach to supporting portability among

systems with different integer arithmetic capabilities suggests a better way to

support different floating-point architectures. Each C99 standard implementation

supplies an <stdint.h> header file that defines those integer types the

implementation supports, named according to their sizes and efficiency: for

example, int32_t is an integer type exactly 32 bits wide, int_fast16_t is the

implementation’s fastest integer type at least 16 bits wide, and intmax_t is the

widest integer type supported. One can imagine a similar scheme for floating-point

types: for example, float53_t could name a floating-point type with exactly 53 bit

precision but possibly wider range, float_fast24_t could name the

implementation’s fastest type with at least 24 bit precision, and floatmax_t could

#include <math.h>
#include <float.h>

#if (FLT_EVAL_METHOD==2)
#define PWR2  LDBL_MANT_DIG - (DBL_MANT_DIG/2)
#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))
#define PWR2  DBL_MANT_DIG - (DBL_MANT_DIG/2)
#else
#error FLT_EVAL_METHOD unknown!
#endif

...
    double   x, xh, xl;
    double_t m;

    m = scalbn(1.0, PWR2) + 1.0;  // 2**PWR2 + 1
    xh = (m * x) - ((m * x) - x);
    xl = x - xh;
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name the widest reasonably fast type supported. The fast types could allow

compilers on extended-based systems to generate the fastest possible code subject

only to the constraint that the values of named variables must not appear to change

as a result of register spilling. The exact width types would cause compilers on

extended-based systems to set the rounding precision mode to round to the specified

precision, allowing wider range subject to the same constraint. Finally, double_t
could name a type with both the precision and range of the IEEE 754 double format,

providing strict double evaluation. Together with environmental parameter macros

named accordingly, such a scheme would readily support all five options described

above and allow programmers to indicate easily and unambiguously the floating-

point semantics their programs require.

Must language support for extended precision be so complicated? On single/double

systems, four of the five options listed above coincide, and there is no need to

differentiate fast and exact width types. Extended-based systems, however, pose

difficult choices: they support neither pure double precision nor pure extended

precision computation as efficiently as a mixture of the two, and different programs

call for different mixtures. Moreover, the choice of when to use extended precision

should not be left to compiler writers, who are often tempted by benchmarks (and

sometimes told outright by numerical analysts) to regard floating-point arithmetic as

“inherently inexact” and therefore neither deserving nor capable of the predictability

of integer arithmetic. Instead, the choice must be presented to programmers, and

they will require languages capable of expressing their selection.

Conclusion

The foregoing remarks are not intended to disparage extended-based systems but to

expose several fallacies, the first being that all IEEE 754 systems must deliver

identical results for the same program. We have focused on differences between

extended-based systems and single/double systems, but there are further differences

among systems within each of these families. For example, some single/double

systems provide a single instruction to multiply two numbers and add a third with

just one final rounding. This operation, called a fused multiply-add, can cause the

same program to produce different results across different single/double systems,

and, like extended precision, it can even cause the same program to produce

different results on the same system depending on whether and when it is used. (A

fused multiply-add can also foil the splitting process of Theorem 6, although it can

be used in a non-portable way to perform multiple precision multiplication without

the need for splitting.) Even though the IEEE standard didn’t anticipate such an

operation, it nevertheless conforms: the intermediate product is delivered to a

“destination” beyond the user’s control that is wide enough to hold it exactly, and

the final sum is rounded correctly to fit its single or double precision destination.
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The idea that IEEE 754 prescribes precisely the result a given program must deliver

is nonetheless appealing. Many programmers like to believe that they can

understand the behavior of a program and prove that it will work correctly without

reference to the compiler that compiles it or the computer that runs it. In many

ways, supporting this belief is a worthwhile goal for the designers of computer

systems and programming languages. Unfortunately, when it comes to floating-

point arithmetic, the goal is virtually impossible to achieve. The authors of the IEEE

standards knew that, and they didn’t attempt to achieve it. As a result, despite

nearly universal conformance to (most of) the IEEE 754 standard throughout the

computer industry, programmers of portable software must continue to cope with

unpredictable floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need programming

languages that make floating-point arithmetic predictable. The C99 standard

improves predictability to some degree at the expense of requiring programmers to

write multiple versions of their programs, one for each FLT_EVAL_METHOD.
Whether future languages will choose instead to allow programmers to write a

single program with syntax that unambiguously expresses the extent to which it

depends on IEEE 754 semantics remains to be seen. Existing extended-based systems

threaten that prospect by tempting us to assume that the compiler and the hardware

can know better than the programmer how a computation should be performed on a

given system. That assumption is the second fallacy: the accuracy required in a

computed result depends not on the machine that produces it but only on the

conclusions that will be drawn from it, and of the programmer, the compiler, and the

hardware, at best only the programmer can know what those conclusions may be.
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APPENDIX E

Standards Compliance

The compilers, header files, and libraries in the Forte Developer compilers products

for the Solaris environment support multiple standards: System V Interface

Definition (SVID), Edition 3, X/Open and ANSI C. Accordingly, the mathematical

library libm and related files have been modified so that C programs comply with

the standards. Users’ programs are usually not affected, because the differences

primarily involve exception handling.

SVID History

To understand the differences between exception handling according to SVID and

the point of view represented by the IEEE Standard, it is necessary to review the

circumstances under which both developed. Many of the ideas in SVID trace their

origins to the early days of UNIX, when it was first implemented on mainframe

computers. These early environments have in common that rational floating- point

operations +, - , * and / are atomic machine instructions, while sqrt , conversion to

integral value in floating- point format, and elementary transcendental functions are

subroutines composed of many atomic machine instructions.

Because these environments treat floating- point exceptions in varied ways,

uniformity could only be imposed by checking arguments and results in software

before and after each atomic floating- point instruction. Because this has too great an

impact on performance, SVID does not specify the effect of floating- point exceptions

such as division by zero or overflow.

Operations implemented by subroutines are slow compared to single atomic

floating- point instructions; extra error checking of arguments and results has little

performance impact; so such checking is required by the SVID. When exceptions are

detected, default results are specified, errno is set to EDOMfor improper operands,

or ERANGEfor results that overflow or underflow, and the function matherr() is

called with a record containing details of the exception. This costs little on the
241



machines for which UNIX was originally developed, but the value is

correspondingly small because the far more common exceptions in the basic

operations +, - , * and / are completely unspecified.

IEEE 754 History

The IEEE Standard explicitly states that compatibility with previous

implementations was not a goal. Instead, an exception handling scheme was

developed with efficiency and users’ requirements in mind. This scheme is uniform

across the simple rational operations (+, - , * and / ), and more complicated

operations such as remainder, square root, and conversion between formats.

Although the Standard does not specify transcendental functions, the framers of the

Standard anticipated that the same exception handling scheme would be applied to

elementary transcendental functions in conforming systems.

Elements of IEEE exception handling include suitable default results and

interruption of computation only when requested in advance.

SVID Future Directions

The current SVID, (“Edition 3” or “SVR4”), identifies certain directions for future

development. One of these is compatibility with the IEEE Standard. In particular a

future version of the SVID replaces references to HUGE, intended to be a large finite

number, with HUGE_VAL, which is infinity on IEEE systems. HUGE_VAL, for instance,

is returned as the result of floating- point overflows. The values returned by libm
functions for input arguments that raise exceptions are those in the IEEE column in

TABLE E-1. In addition, errno no longer needs to be set.
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SVID Implementation

The following libm functions provide operand or result checking corresponding to

SVID. The sqrt function is the only function that does not conform to SVID when

called from a C program that uses the libm in- line expansion templates through

-xlibmil , because this causes the hardware instruction for square root,

fsqrt[sd] , to be used in place of a function call.

TABLE E-1 Exceptional Cases and libm Functions

Function errno
error
message SVID X/Open IEEE

acos(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

acosh(x<1) EDOM DOMAIN NaN NaN NaN

asin(|x|>1) EDOM DOMAIN 0.0 0.0 NaN

atan2((+-0,+-0) EDOM DOMAIN 0.0 0.0 +-0.0,+-pi

atanh(|x|>1) EDOM DOMAIN NaN NaN NaN

atanh(+-1) EDOM/ERANGE SING +-HUGE
(EDOM)

+-HUGE_VAL
(ERANGE)

+-infinity

cosh overflow ERANGE - HUGE HUGE_VAL infinity

exp overflow ERANGE - HUGE HUGE_VAL infinity

exp underflow ERANGE - 0.0 0.0 0.0

fmod(x,0) EDOM DOMAIN x NaN NaN

gamma(0 or
-integer)

EDOM SING HUGE HUGE_VAL infinity

gamma overflow ERANGE - HUGE HUGE_VAL infinity

hypot overflow ERANGE - HUGE HUGE_VAL infinity

j0(|x| > X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

j1(|x| > X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

jn(|x| > X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

lgamma(0 or
-integer)

EDOM SING HUGE HUGE_VAL infinity

lgamma overflow ERANGE - HUGE HUGE_VAL infinity

log(0) EDOM/ERANGE SING -HUGE
(EDOM)

-HUGE_VAL
(ERANGE)

-infinity
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log(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

log10(0) EDOM/ERANGE SING -HUGE
(EDOM)

-HUGE_VAL
(ERANGE)

-infinity

log10(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

log1p(-1) EDOM/ERANGE SING -HUGE
(EDOM)

-HUGE_VAL
(ERANGE)

-infinity

log1p(x<-1) EDOM DOMAIN NaN NaN NaN

pow(0,0) EDOM DOMAIN 0.0 1.0 (no error) 1.0 (no error)

pow(NaN,0) EDOM DOMAIN NaN NaN 1.0 (no error)

pow(0,neg) EDOM DOMAIN 0.0 -HUGE_VAL +-infinity

pow(neg,
non-integer)

EDOM DOMAIN 0.0 NaN NaN

pow overflow ERANGE - +-HUGE +-HUGE_VAL +-infinity

pow underflow ERANGE - +-0.0 +-0.0 +-0.0

remainder(x,0) EDOM DOMAIN NaN NaN NaN

scalb overflow ERANGE - +-HUGE_VAL +-HUGE_VAL +-infinity

scalb underflow ERANGE - +-0.0 +-0.0 +-0.0

sinh overflow ERANGE - +-HUGE +-HUGE_VAL +-infinity

sqrt(x<0) EDOM DOMAIN 0.0 NaN NaN

y0(0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

y0(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

y0(x > X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

y1(0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

y1(x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

y1(x > X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

yn(n,0) EDOM DOMAIN -HUGE -HUGE_VAL -infinity

yn(n,x<0) EDOM DOMAIN -HUGE -HUGE_VAL NaN

yn(n, x> X_TLOSS) ERANGE TLOSS 0.0 0.0 correct answer

TABLE E-1 Exceptional Cases and libm Functions (Continued)

Function errno
error
message SVID X/Open IEEE
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General Notes on Exceptional Cases and libm
Functions

TABLE E-1 lists all the libm functions affected by the standards. The value X_TLOSS
is defined in <values.h> . SVID requires <math.h> to define HUGEas MAXFLOAT,
which is approximately 3.4e+38. HUGE_VALis defined as infinity in libc. errno is

a global variable accessible to C and C++ programs.

<errno.h> defines 120 or so possible values for errno ; the two used by the math

library are EDOMfor domain errors and ERANGEfor range errors. See intro (3) and

perror (3).

■ The ANSI C compiler switches - Xt , - Xa, - Xc, - Xs, among other things, control

the level of standards compliance that is enforced by the compiler. Refer to cc (1)

for a description of these switches.

■ As far as libm is concerned, - Xt and - Xa cause SVID and X/Open behavior,

respectively. - Xc corresponds to strict ANSI C behavior.

An additional switch - <x>libmieee , when specified, returns values in the spirit

of IEEE 754. The default behavior for libm and libsunmath is to be

SVID- compliant on Solaris 2.6, Solaris 7, and Solaris 8.

■ For strict ANSI C (- Xc), errno is set always, matherr () is not called, and the

X/Open value is returned.

■ For SVID (- Xt or - Xs), the function matherr () is called with information about

the exception. This includes the value that is the default SVID return value.

A user- supplied matherr () could alter the return value; see matherr (3m). If

there is no user- supplied matherr() , libm sets errno , possibly prints a message

to standard error, and returns the value listed in the SVID column of TABLE E-1.

■ For X/Open (- Xa), the behavior is the same as for the SVID, in that matherr () is

invoked and errno set accordingly. However, no error message is written to

standard error, and the X/Open return values are the same as IEEE return values

in many cases.

■ For the purposes of libm exception handling, - Xs behaves the same as - Xt . That

is, programs compiled with - Xs use the SVID compliant versions of the libm
functions listed in TABLE E-1.

■ For efficiency, programs compiled with inline hardware floating- point do not do

the extra checking required to set EDOMor call matherr() if sqrt encounters a

negative argument. NaN is returned for the function value in situations where

EDOMmight otherwise be set.

Thus, C programs that replace sqrt() function calls with fsqrt[sd]
instructions conform to the IEEE Floating- Point Standard, but may no longer

conform to the error handling requirements of the System V Interface Definition.
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Notes on libm

SVID specifies two floating- point exceptions, PLOSS(partial loss of significance)

and TLOSS(total loss of significance). Unlike sqrt( - 1) , these have no inherent

mathematical meaning, and unlike exp(+ - 10000) , these do not reflect inherent

limitations of a floating- point storage format.

PLOSSand TLOSSreflect instead limitations of particular algorithms for fmod and

for trigonometric functions that suffer abrupt declines in accuracy at definite

boundaries.

Like most IEEE implementations, the libm algorithms do not suffer such abrupt

declines, and so do not signal PLOSS. To satisfy the dictates of SVID compliance, the

Bessel functions do signal TLOSSfor large input arguments, although accurate

results can be safely calculated.

The implementations of sin , cos , and tan treat the essential singularity at infinity

like other essential singularities by returning a NaNand setting EDOMfor infinite

arguments.

Likewise SVID specifies that fmod(x,y) is be zero if x/y overflows, but the libm
implementation of fmod , derived from the IEEE remainder function, does not

compute x/y explicitly and hence always delivers an exact result.

LIA- 1 Conformance

In this section, LIA- 1 refers to ISO/IEC 10967- 1:1994 Information Technology -
Language Independent Arithmetic - Part 1: Integer and floating- point arithmetic.

The C and Fortran 95 compilers (cc and f95 ) contained in the Forte Developer

compilers release conform to LIA- 1 in the following senses (paragraph letters

correspond to those in LIA- 1 section 8):

a. TYPES (LIA 5.1): The LIA- 1 conformant types are C int and Fortran INTEGER.

Other types may conform as well, but they are not specified here. Further

specifications for specific languages await language bindings to LIA- 1 from the

cognizant language standards organizations.

b. PARAMETERS (LIA 5.1):

#include <values.h> /* defines MAXINT */

#define TRUE 1

#define FALSE 0

#define BOUNDED TRUE
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#define MODULO TRUE

#define MAXINT 2147483647

#define MININT -2147483648

logical bounded, modulo

integer maxint, minint

parameter (bounded = .TRUE.)

parameter (modulo = .TRUE.)

parameter (maxint = 2147483647)

parameter (minint = -2147483648)

d. DIV/REM/MOD (LIA 5.1.3):

C / and %, and Fortran / and mod(), provide DIVtI(x,y) and REMtI(x,y) . Also,

modaI(x,y) is available with this code:

int modaI(int x, int y) {

int t = x % y;

if (y < 0 && t > 0)

t -= y;

else if (y > 0 && t < 0)

t += y;

return t;

}

or this:

integer function modaI(x, y)

integer x, y, t

t = mod(x, y)

if (y .lt. 0 .and. t .gt. 0) t = t - y

if (y .gt. 0 .and. t .lt. 0) t = t + y

modaI = t

return

end
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i. NOTATION (LIA 5.1.3): The following table shows the notation by which the LIA

integer operations may be realized.

The following code shows the Fortran notation for signI(x) .

integer function signi(x)

integer x, t

if (x .gt. 0) t=1

if (x .lt. 0) t=-1

if (x .eq. 0) t=0

return

end

j. EXPRESSION EVALUATION: By default, when no optimization is specified,

expressions are evaluated in int (C) or INTEGER(Fortran) precision. Parentheses

are respected. The order of evaluation of associative unparenthesized expressions

such as a + b + c or a * b * c is not specified.

TABLE E-2 LIA- 1 Conformance - Notation

LIA C Fortran if different

addI(x,y) x+y

subI(x,y) x-y

mulI(x,y) x*y

divtI(x,y) x/y

remtI(x,y) x%y mod(x,y)

modaI(x,y) see above

negI(x) -x

absI(x) #include <stdlib.h>

abs(x)

abs(x)

signI(x) #define signI(x) (x > 0

? 1 : (x < 0 ? -1 : 0))

see below

eqI(x,y) x==y x.eq.y

neqI(x,y) x!=y x.ne.y

lssI(x,y) x<y x.lt.y

leqI(x,y) x<=y x.le.y

gtrI(x,y) x>y x.gt.y

geqI(x,y) x>=y x.ge.y
248  Numerical Computation Guide • May 2002



k. METHOD OF OBTAINING PARAMETERS: Include the definitions above in the

source code.

n. NOTIFICATION: Integer exceptions are x/0 and x%0 or mod(x,0). By default,

these exceptions generate SIGFPE. When no signal handler is specified for SIGFPE,

the process terminates and dumps memory.

o. SELECTION MECHANISM: signal (3) or signal (3F) may be used to enable user

exception handling for SIGFPE.
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Glossary

This glossary describes computer floating-point arithmetic terms. It also

describes terms and acronyms associated with parallel processing.

This symbol, “||”, appended to a term designates it as associated with parallel

processing.

accuracy A measure of how well one number approximates another. For example, the

accuracy of a computed result often reflects the extent to which errors in the

computation cause it to differ from the mathematically exact result. Accuracy

can be expressed in terms of significant digits (e.g., “The result is accurate to

six digits”) or more generally in terms of the preservation of relevant

mathematical properties (e.g., “The result has the correct algebraic sign”).

array processing|| A number of processors working simultaneously, each handling one element of

the array, so that a single operation can apply to all elements of the array in

parallel.

associativity|| See cache, direct mapped cache, fully associative cache, set associative cache.

asynchronous
control|| Computer control behavior where a specific operation is begun upon receipt of

an indication (signal) that a particular event has occurred. Asynchronous

control relies on synchronization mechanisms called locks to coordinate

processors. See also mutual exclusion, mutex lock, semaphore lock, single-lock
strategy, spin lock.

barrier|| A synchronization mechanism for coordinating tasks even when data accesses

are not involved. A barrier is analogous to a gate. Processors or threads

operating in parallel reach the gate at different times, but none can pass

through until all processors reach the gate. For example, suppose at the end of

each day, all bank tellers are required to tally the amount of money that was

deposited, and the amount that was withdrawn. These totals are then reported

to the bank vice president, who must check the grand totals to verify debits

equal credits. The tellers operate at their own speeds; that is, they finish

totaling their transactions at different times. The barrier mechanism prevents
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tellers from leaving for home before the grand total is checked. If debits do not

equal credits, all tellers must return to their desks to find the error. The barrier

is removed after the vice president obtains a satisfactory grand total.

biased exponent The sum of the base-2 exponent and a constant (bias) chosen to make the

stored exponent’s range non-negative. For example, the exponent of 2-100 is

stored in IEEE single precision format as (-100) + (single precision bias of 127)

= 27.

binade The interval between any two consecutive powers of two.

blocked state|| A thread is waiting for a resource or data; such as, return data from a pending

disk read, or waiting for another thread to unlock a resource.

bound threads|| For Solaris threads, a thread permanently assigned to a particular LWP is

called a bound thread. Bound threads can be scheduled on a real-time basis in

strict priority with respect to all other active threads in the system, not only

within a process. An LWP is an entity that can be scheduled with the same

default scheduling priority as any UNIX process.

cache|| Small, fast, hardware-controlled memory that acts as a buffer between a

processor and main memory. Cache contains a copy of the most recently used

memory locations—addresses and contents—of instructions and data. Every

address reference goes first to cache. If the desired instruction or data is not in

cache, a cache miss occurs. The contents are fetched across the bus from main

memory into the CPU register specified in the instruction being executed and a

copy is also written to cache. It is likely that the same location will be used

again soon, and, if so, the address is found in cache, resulting in a cache hit. If

a write to that address occurs, the hardware not only writes to cache, but can

also generate a write-through to main memory.

See also associativity, circuit switching, direct mapped cache, fully associative cache,

MBus, packet switching, set associative cache, write-back, write-through, XDBus.

cache locality|| A program does not access all of its code or data at once with equal probability.

Having recently accessed information in cache increases the probability of

finding information locally without having to access memory. The principle of

locality states that programs access a relatively small portion of their address

space at any instant of time. There are two different types of locality: temporal

and spatial.

Temporal locality (locality in time) is the tendency to reuse recently accessed

items. For example, most programs contain loops, so that instructions and data

are likely to be accessed repeatedly. Temporal locality retains recently accessed

items closer to the processor in cache rather than requiring a memory access.

See also cache, competitive-caching, false sharing, write-invalidate, write-update.

Spatial locality (locality in space) is the tendency to reference items whose

addresses are close to other recently accessed items. For example, accesses to

elements of an array or record show a natural spatial locality. Caching takes
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advantage of spatial locality by moving blocks (multiple contiguous words)

from memory into cache and closer to the processor. See also cache, competitive-
caching, false sharing, write-invalidate, write-update.

chaining A hardware feature of some pipeline architectures that allows the result of an

operation to be used immediately as an operand for a second operation,

simultaneously with the writing of the result to its destination register. The

total cycle time of two chained operations is less than the sum of the stand-

alone cycle times for the instructions. For example, the TI 8847 supports

chaining of consecutive fadd , fsub , and fmul (of the same precision).

Chained faddd /fmuld requires 12 cycles, while consecutive unchained

faddd/fmuld requires 17 cycles.

circuit switching|| A mechanism for caches to communicate with each other as well as with main

memory. A dedicated connection (circuit) is established between caches or

between cache and main memory. While a circuit is in place no other traffic can

travel over the bus.

coherence|| In systems with multiple caches, the mechanism that ensures that all

processors see the same image of memory at all times.

common exceptions The three floating point exceptions overflow, invalid, and division are

collectively referred to as the common exceptions for the purposes of

ieee_flags (3m) and ieee_handler (3m). They are called common

exceptions because they are commonly trapped as errors.

competitive-
caching|| Competitive-caching maintains cache coherence by using a hybrid of write-

invalidate and write-update. Competitive-caching uses a counter to age shared

data. Shared data is purged from cache based on a least-recently-used (LRU)

algorithm. This can cause shared data to become private data again, thus

eliminating the need for the cache coherency protocol to access memory (via

backplane bandwidth) to keep multiple copies synchronized. See also cache,
cache locality, false sharing, write-invalidate, write-update.

concurrency|| The execution of two or more active threads or processes in parallel. On a

uniprocessor apparent concurrence is accomplished by rapidly switching

between threads. On a multiprocessor system true parallel execution can be

achieved. See also asynchronous control, multiprocessor system, thread.

concurrent
processes|| Processes that execute in parallel in multiple processors or asynchronously on

a single processor. Concurrent processes can interact with each other, and one

process can suspend execution pending receipt of information from another

process or the occurrence of an external event. See also process, sequential
processes.

condition variable|| For Solaris threads, a condition variable enables threads to atomically block

until a condition is satisfied. The condition is tested under the protection of a

mutex lock. When the condition is false, a thread blocks on a condition variable
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and atomically releases the mutex waiting for the condition to change. When

another thread changes the condition, it can signal the associated condition

variable to cause one or more waiting threads to wake up, reacquire the mutex,

and re-evaluate the condition. Condition variables can be used to synchronize

threads in this process and other processes if the variable is allocated in

memory that is writable and shared among the cooperating processes and have

been initialized for this behavior.

context switch In multitasking operating systems, such as the SunOS™ operating system,

processes run for a fixed time quantum. At the end of the time quantum, the

CPU receives a signal from the timer, interrupts the currently running process,

and prepares to run a new process. The CPU saves the registers for the old

process, and then loads the registers for the new process. Switching from the

old process state to the new is known as a context switch. Time spent switching

contexts is system overhead; the time required depends on the number of

registers, and on whether there are special instructions to save the registers

associated with a process.

control flow model|| The von Neumann model of a computer. This model specifies flow of control;

that is, which instruction is executed at each step of a program. All Sun

workstations are instances of the von Neumann model. See also data flow model,
demand-driven dataflow.

critical region|| An indivisible section of code that can only be executed by one thread at a time

and is not interruptible by other threads; such as, code that accesses a shared

variable. See also mutual exclusion, mutex lock, semaphore lock, single-lock strategy,
spin lock.

critical resource|| A resource that can only be in use by at most one thread at any given time.

Where several asynchronous threads are required to coordinate their access to

a critical resource, they do so by synchronization mechanisms. See also mutual
exclusion, mutex lock, semaphore lock, single-lock strategy, spin lock.

data flow model|| This computer model specifies what happens to data, and ignores instruction

order. That is, computations move forward by nature of availability of data

values instead of the availability of instructions. See also control flow model,
demand-driven dataflow.

data race|| In multithreading, a situation where two or more threads simultaneously

access a shared resource. The results are indeterminate depending on the order

in which the threads accessed the resource. This situation, called a data race,

can produce different results when a program is run repeatedly with the same

input. See also mutual exclusion, mutex lock, semaphore lock, single-lock strategy,
spin lock.

deadlock|| A situation that can arise when two (or more) separately active processes

compete for resources. Suppose that process P requires resources X and Y and

requests their use in that order at the same time that process Q requires

resources Y and X and asks for them in that order. If process P has acquired
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resource X and simultaneously process Q has acquired resource Y, then neither

process can proceed—each process requires a resource that has been allocated

to the other process.

default result The value that is delivered as the result of a floating-point operation that

caused an exception.

demand-driven
dataflow|| A task is enabled for execution by a processor when its results are required by

another task that is also enabled; such as, a graph reduction model. A graph

reduction program consists of reducible expressions that are replaced by their

computed values as the computation progresses through time. Most of the

time, the reductions are done in parallel—nothing prevents parallel reductions

except the availability of data from previous reductions. See also control flow
model, data flow model.

denormalized number
Older nomenclature for subnormal number.

direct mapped
cache|| A direct mapped cache is a one-way set associative cache. That is, each cache

entry holds one block and forms a single set with one element. See also cache,
cache locality, false sharing, fully associative cache, set associative cache, write-
invalidate, write-update.

distributed memory
architecture|| A combination of local memory and processors at each node of the

interconnect network topology. Each processor can directly access only a

portion of the total memory of the system. Message passing is used to

communicate between any two processors, and there is no global, shared

memory. Therefore, when a data structure must be shared, the program issues

send/receive messages to the process that owns that structure. See also

interprocess communication, message passing.

double precision Using two words to represent a number in order to keep or increase precision.

On SPARC workstations, double precision is the 64-bit IEEE double precision.

exception An arithmetic exception arises when an attempted atomic arithmetic operation

has no result that is acceptable universally. The meanings of atomic and

acceptable vary with time and place.

exponent The component of a floating-point number that signifies the integer power to

which the base is raised in determining the value of the represented number.

false sharing|| A condition that occurs in cache when two unrelated data accessed

independently by two threads reside in the same block. This block can end up

’ping-ponging’ between caches for no valid reason. Recognizing such a case

and rearranging the data structure to eliminate the false sharing greatly

increases cache performance. See also cache, cache locality.
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floating-point number
system A system for representing a subset of real numbers in which the spacing

between representable numbers is not a fixed, absolute constant. Such a system

is characterized by a base, a sign, a significand, and an exponent (usually

biased). The value of the number is the signed product of its significand and

the base raised to the power of the unbiased exponent.

fully associative
cache|| A fully associative cache with m entries is an m-way set associative cache. That

is, it has a single set with m blocks. A cache entry can reside in any of the m
blocks within that set. See also cache, cache locality, direct mapped cache, false
sharing, set associative cache, write-invalidate, write-update.

gradual underflow When a floating-point operation underflows, return a subnormal number

instead of 0. This method of handling underflow minimizes the loss of

accuracy in floating-point calculations on small numbers.

hidden bits Extra bits used by hardware to ensure correct rounding, not accessible by

software. For example, IEEE double precision operations use three hidden bits

to compute a 56-bit result that is then rounded to 53 bits.

IEEE Standard 754 The standard for binary floating-point arithmetic developed by the Institute of

Electrical and Electronics Engineers, published in 1985.

in-line template A fragment of assembly language code that is substituted for the function call

it defines, during the inlining pass of Forte Developer compilers. Used (for

example) by the math library in in-line template files (libm.il ) in order to

access hardware implementations of trigonometric functions and other

elementary functions from C programs.

interconnection
network topology|| Interconnection topology describes how the processors are connected. All

networks consist of switches whose links go to processor-memory nodes and to

other switches. There are four generic forms of topology: star, ring, bus, and

fully-connected network. Star topology consists of a single hub processor with

the other processors directly connected to the single hub, the non-hub

processors are not directly connected to each other. In ring topology all

processors are on a ring and communication is generally in one direction

around the ring. Bus topology is noncyclic, with all nodes connected;

consequently, traffic travels in both directions, and some form of arbitration is

needed to determine which processor can use the bus at any particular time. In

a fully-connected (crossbar) network, every processor has a bidirectional link

to every other processor.

Commercially-available parallel processors use multistage network topologies.

A multistage network topology is characterized by 2-dimensional grid, and

boolean n-cube.
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interprocess
communication|| Message passing among active processes. See also circuit switching, distributed

memory architecture, MBus, message passing, packet switching, shared memory,

XDBus.

IPC|| See interprocess communication.

light-weight
process|| Solaris threads are implemented as a user-level library, using the kernel’s

threads of control, that are called light-weight processes (LWPs). In the Solaris

environment, a process is a collection of LWPs that share memory. Each LWP

has the scheduling priority of a UNIX process and shares the resources of that

process. LWPs coordinate their access to the shared memory by using

synchronization mechanisms such as locks. An LWP can be thought of as a

virtual CPU that executes code or system calls. The threads library schedules

threads on a pool of LWPs in the process, in much the same way as the kernel

schedules LWPs on a pool of processors. Each LWP is independently

dispatched by the kernel, performs independent system calls, incurs

independent page faults, and runs in parallel on a multiprocessor system. The

LWPs are scheduled by the kernel onto the available CPU resources according

to their scheduling class and priority.

lock|| A mechanism for enforcing a policy for serializing access to shared data. A

thread or process uses a particular lock in order to gain access to shared

memory protected by that lock. The locking and unlocking of data is voluntary

in the sense that only the programmer knows what must be locked. See also

data race, mutual exclusion, mutex lock, semaphore lock, single-lock strategy, spin
lock.

LWP|| See light-weight process.

MBus|| MBus is a bus specification for a processor/memory/IO interconnect. It is

licensed by SPARC International to several silicon vendors who produce

interoperating CPU modules, IO interfaces and memory controllers. MBus is a

circuit-switched protocol combining read requests and response on a single

bus. MBus level I defines uniprocessor signals; MBus level II defines

multiprocessor extensions for the write-invalidate cache coherence mechanism.

memory|| A medium that can retain information for subsequent retrieval. The term is

most frequently used for referring to a computer’s internal storage that can be

directly addressed by machine instructions. See also cache, distributed memory,

shared memory.

message passing|| In the distributed memory architecture, a mechanism for processes to

communicate with each other. There is no shared data structure in which they

deposit messages. Message passing allows a process to send data to another

process and for the intended recipient to synchronize with the arrival of the

data.

MIMD|| See Multiple Instruction Multiple Data, shared memory.
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mt-safe|| In the Solaris environment, function calls inside libraries are either mt-safe or

not mt-safe; mt-safe code is also called “re-entrant” code. That is, several

threads can simultaneously call a given function in a module and it is up to the

function code to handle this. The assumption is that data shared between

threads is only accessed by module functions. If mutable global data is

available to clients of a module, appropriate locks must also be made visible in

the interface. Furthermore, the module function cannot be made re-entrant

unless the clients are assumed to use the locks consistently and at appropriate

times. See also single-lock strategy.

Multiple Instruction
Multiple Data|| System model where many processors can be simultaneously executing

different instructions on different data. Furthermore, these processors operate

in a largely autonomous manner as if they are separate computers. They have

no central controller, and they typically do not operate in lock-step fashion.

Most real world banks run this way. Tellers do not consult with one another,

nor do they perform each step of every transaction at the same time. Instead,

they work on their own, until a data access conflict occurs. Processing of

transactions occurs without concern for timing or customer order. But

customers A and B must be explicitly prevented from simultaneously accessing

the joint AB account balance. MIMD relies on synchronization mechanisms

called locks to coordinate access to shared resources. See also mutual exclusion,
mutex lock, semaphore lock, single-lock strategy, spin lock.

multiple read single
write|| In a concurrent environment, the first process to access data for writing has

exclusive access to it, making concurrent write access or simultaneous read and

write access impossible. However, the data can be read by multiple readers.

multiprocessor|| See multiprocessor system.

multiprocessor bus|| In a shared memory multiprocessor machine each CPU and cache module are

connected together via a bus that also includes memory and IO connections.

The bus enforces a cache coherency protocol. See also cache, coherence, Mbus,
XDBus.

multiprocessor
system|| A system in which more than one processor can be active at any given time.

While the processors are actively executing separate processes, they run

completely asynchronously. However, synchronization between processors is

essential when they access critical system resources or critical regions of

system code. See also critical region, critical resource, multithreading, uniprocessor
system.

multitasking|| In a uniprocessor system, a large number of threads appear to be running in

parallel. This is accomplished by rapidly switching between threads.
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multithreading|| Applications that can have more than one thread or processor active at one

time. Multithreaded applications can run in both uniprocessor systems and

multiprocessor systems. See also bound thread, mt-safe, single-lock strategy, thread,
unbound thread, uniprocessor.

mutex lock|| Synchronization variable to implement the mutual exclusion mechanism. See

also condition variable, mutual exclusion.

mutual exclusion|| In a concurrent environment, the ability of a thread to update a critical

resource without accesses from competing threads. See also critical region,
critical resource.

NaN Stands for Not a Number. A symbolic entity that is encoded in floating-point

format.

normal number In IEEE arithmetic, a number with a biased exponent that is neither zero nor

maximal (all 1’s), representing a subset of the normal range of real numbers

with a bounded small relative error.

packet switching|| In the shared memory architecture, a mechanism for caches to communicate

with each other as well as with main memory. In packet switching, traffic is

divided into small segments called packets that are multiplexed onto the bus.

A packet carries identification that enables cache and memory hardware to

determine whether the packet is destined for it or to send the packet on to its

ultimate destination. Packet switching allows bus traffic to be multiplexed and

unordered (not sequenced) packets to be put on the bus. The unordered

packets are reassembled at the destination (cache or main memory). See also

cache, shared memory.

paradigm|| A model of the world that is used to formulate a computer solution to a

problem. Paradigms provide a context in which to understand and solve a real-

world problem. Because a paradigm is a model, it abstracts the details of the

problem from the reality, and in doing so, makes the problem easier to solve.

Like all abstractions, however, the model can be inaccurate because it only

approximates the real world. See also Multiple Instruction Multiple Data, Single
Instruction Multiple Data, Single Instruction Single Data, Single Program Multiple
Data.

parallel processing|| In a multiprocessor system, true parallel execution is achieved where a large

number of threads or processes can be active at one time. See also concurrence,
multiprocessor system, multithreading, uniprocessor.

parallelism|| See concurrent processes, multithreading.

pipeline|| If the total function applied to the data can be divided into distinct processing

phases, different portions of data can flow along from phase to phase; such as

a compiler with phases for lexical analysis, parsing, type checking, code

generation and so on. As soon as the first program or module has passed the
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lexical analysis phase, it can be passed on to the parsing phase while the lexical

analyzer starts on the second program or module. See also array processing,
vector processing.

pipelining A hardware feature where operations are reduced to multiple stages, each of

which takes (typically) one cycle to complete. The pipeline is filled when new

operations can be issued each cycle. If there are no dependencies among

instructions in the pipe, new results can be delivered each cycle. Chaining

implies pipelining of dependent instructions. If dependent instructions cannot

be chained, when the hardware does not support chaining of those particular

instructions, then the pipeline stalls.

precision A quantitative measure of the density of representable numbers. For example,

in a binary floating point format that has a precision of 53 significant bits, there

are 253 representable numbers between any two adjacent powers of two

(within the range of normal numbers). Do not confuse precision with accuracy,

which expresses how closely one number approximates another.

process|| A unit of activity characterized by a single sequential thread of execution, a

current state, and an associated set of system resources.

quiet NaN A NaN (not a number) that propagates through almost every arithmetic

operation without raising new exceptions.

radix The base number of any system of numbers. For example, 2 is the radix of a

binary system, and 10 is the radix of the decimal system of numeration. SPARC

workstations use radix-2 arithmetic; IEEE Std 754 is a radix-2 arithmetic

standard.

round Inexact results must be rounded up or down to obtain representable values.

When a result is rounded up, it is increased to the next representable value.

When rounded down, it is reduced to the preceding representable value.

roundoff error The error introduced when a real number is rounded to a machine-

representable number. Most floating-point calculations incur roundoff error.

For any one floating-point operation, IEEE Std 754 specifies that the result shall

not incur more than one rounding error.

semaphore lock|| Synchronization mechanism for controlling access to critical resources by

cooperating asynchronous threads. See also semaphore.

semaphore|| A special-purpose data type introduced by E. W. Dijkstra that coordinates

access to a particular resource or set of shared resources. A semaphore has an

integer value (that cannot become negative) with two operations allowed on it.

The signal (V or up) operation increases the value by one, and in general

indicates that a resource has become free. The wait (P or down) operation

decreases the value by one, when that can be done without the value going

negative, and in general indicates that a free resource is about to start being

used. See also semaphore lock.
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sequential
processes|| Processes that execute in such a manner that one must finish before the next

begins. See also concurrent processes, process.

set associative cache||

In a set associative cache, there are a fixed number of locations (at least two)

where each block can be placed. A set associative cache with n locations for a

block is called an n-way set associative cache. An n-way set associative cache

consists of more than one set, each of which consists of n blocks. A block can

be placed in any location (element) of that set. Increasing the associativity level

(number of blocks in a set) increases the cache hit rate. See also cache, cache
locality, false sharing, write-invalidate, write-update.

shared memory
architecture|| In a bus-connected multiprocessor system, processes or threads communicate

through a global memory shared by all processors. This shared data segment is

placed in the address space of the cooperating processes between their private

data and stack segments. Subsequent tasks spawned by fork() copy all but

the shared data segment in their address space. Shared memory requires

program language extensions and library routines to support the model.

signaling NaN A NaN (not a number) that raises the invalid operation exception whenever it

appears as an operand.

significand The component of a floating-point number that is multiplied by a signed

power of the base to determine the value of the number. In a normalized

number, the significand consists of a single nonzero digit to the left of the radix

point and a fraction to the right.

SIMD|| See Single Instruction Multiple Data.

Single Instruction
Multiple Data|| System model where there are many processing elements, but they are

designed to execute the same instruction at the same time; that is, one program

counter is used to sequence through a single copy of the program. SIMD is

especially useful for solving problems that have lots of data that needs to be

updated on a wholesale basis; such as numerical calculations that are regular.

Many scientific and engineering applications (such as, image processing,

particle simulation, and finite element methods) naturally fall into the SIMD

paradigm. See also array processing, pipeline, vector processing.

Single Instruction
Single Data|| The conventional uniprocessor model, with a single processor fetching and

executing a sequence of instructions that operate on the data items specified

within them. This is the original von Neumann model of the operation of a

computer.

single precision Using one computer word to represent a number.
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Single Program
Multiple Data|| A form of asynchronous parallelism where simultaneous processing of

different data occurs without lock-step coordination. In SPMD, processors can

execute different instructions at the same time; such as, different branches of an

if -then -else statement.

single-lock strategy|| In the single-lock strategy, a thread acquires a single, application-wide mutex

lock whenever any thread in the application is running and releases the lock

before the thread blocks. The single-lock strategy requires cooperation from all

modules and libraries in the system to synchronize on the single lock. Because

only one thread can be accessing shared data at any given time, each thread

has a consistent view of memory. This strategy is quite effective in a

uniprocessor, provided shared memory is put into a consistent state before the

lock is released and that the lock is released often enough to allow other

threads to run. Furthermore, in uniprocessor systems, concurrency is

diminished if the lock is not dropped during most I/O operations. The single-

lock strategy cannot be applied in a multiprocessor system.

SISD|| See Single Instruction Single Data.

snooping|| The most popular protocol for maintaining cache coherency is called snooping.

Cache controllers monitor or snoop on the bus to determine whether or not the

cache contains a copy of a shared block.

For reads, multiple copies can reside in the cache of different processors, but

because the processors need the most recent copy, all processors must get new

values after a write. See also cache, competitive-caching, false sharing, write-
invalidate, write-update.

For writes, a processor must have exclusive access to write to cache. Writes to

unshared blocks do not cause bus traffic. The consequence of a write to shared

data is either to invalidate all other copies or to update the shared copies with

the value being written. See also cache, competitive-caching, false sharing, write-
invalidate, write-update.

spin lock|| Threads use a spin lock to test a lock variable over and over until some other

task releases the lock. That is, the waiting thread spins on the lock until the

lock is cleared. Then, the waiting thread sets the lock while inside the critical

region. After work in the critical region is complete, the thread clears the spin

lock so another thread can enter the critical region. The difference between a

spin lock and a mutex is that an attempt to get a mutex held by someone else

will block and release the LWP; a spin lock does not release the LWP. See also

mutex lock.

SPMD|| See Single Program Multiple Data.

stderr Standard Error is the Unix file pointer to standard error output. This file is

opened when a program is started.

Store 0 Flushing the underflowed result of an arithmetic operation to zero.
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subnormal number In IEEE arithmetic, a nonzero floating point number with a biased exponent of

zero. The subnormal numbers are those between zero and the smallest normal

number.

thread|| A flow of control within a single UNIX process address space. Solaris threads

provide a light-weight form of concurrent task, allowing multiple threads of

control in a common user-address space, with minimal scheduling and

communication overhead. Threads share the same address space, file

descriptors (when one thread opens a file, the other threads can read it), data

structures, and operating system state. A thread has a program counter and a

stack to keep track of local variables and return addresses. Threads interact

through the use of shared data and thread synchronization operations. See also

bound thread, light-weight processes, multithreading, unbound thread.

topology|| See interconnection network topology.

two’s complement The radix complement of a binary numeral, formed by subtracting each digit

from 1, then adding 1 to the least significant digit and executing any required

carries. For example, the two’s complement of 1101 is 0011.

ulp Stands for unit in last place. In binary formats, the least significant bit of the

significand, bit 0, is the unit in the last place.

ulp(x) Stands for ulp of x truncated in working format.

unbound threads|| For Solaris threads, threads scheduled onto a pool of LWPs are called unbound

threads. The threads library invokes and assigns LWPs to execute runnable

threads. If the thread becomes blocked on a synchronization mechanism (such

as a mutex lock) the state of the thread is saved in process memory. The

threads library then assigns another thread to the LWP. See also bound thread,
multithreading, thread.

underflow A condition that occurs when the result of a floating-point arithmetic operation

is so small that it cannot be represented as a normal number in the destination

floating-point format with only normal roundoff.

uniprocessor
system|| A uniprocessor system has only one processor active at any given time. This

single processor can run multithreaded applications as well as the conventional

single instruction single data model. See also multithreading, single instruction
single data, single-lock strategy.

vector processing|| Processing of sequences of data in a uniform manner, a common occurrence in

manipulation of matrices (whose elements are vectors) or other arrays of data.

This orderly progression of data can capitalize on the use of pipeline

processing. See also array processing, pipeline.

word An ordered set of characters that are stored, addressed, transmitted and

operated on as a single entity within a given computer. In the context of

SPARC workstations, a word is 32 bits.
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wrapped number In IEEE arithmetic, a number created from a value that otherwise overflows or

underflows by adding a fixed offset to its exponent to position the wrapped

value in the normal number range. Wrapped results are not currently produced

on SPARC workstations.

write-back|| Write policy for maintaining coherency between cache and main memory.

Write-back (also called copy back or store in) writes only to the block in local

cache. Writes occur at the speed of cache memory. The modified cache block is

written to main memory only when the corresponding memory address is

referenced by another processor. The processor can write within a cache block

multiple times and writes it to main memory only when referenced. Because

every write does not go to memory, write-back reduces demands on bus

bandwidth. See also cache, coherence, write-through.

write-invalidate|| Maintains cache coherence by reading from local caches until a write occurs. To

change the value of a variable the writing processor first invalidates all copies

in other caches. The writing processor is then free to update its local copy until

another processor asks for the variable. The writing processor issues an

invalidation signal over the bus and all caches check to see if they have a copy;

if so, they must invalidate the block containing the word. This scheme allows

multiple readers, but only a single writer. Write-invalidate use the bus only on

the first write to invalidate the other copies; subsequent local writes do not

result in bus traffic, thus reducing demands on bus bandwidth. See also cache,
cache locality, coherence, false sharing, write-update.

write-through|| Write policy for maintaining coherency between cache and main memory.

Write-through (also called store through) writes to main memory as well as to

the block in local cache. Write-through has the advantage that main memory

has the most current copy of the data. See also cache, coherence, write-back.

write-update|| Write-update, also known as write-broadcast, maintains cache coherence by

immediately updating all copies of a shared variable in all caches. This is a

form of write-through because all writes go over the bus to update copies of

shared data. Write-update has the advantage of making new values appear in

cache sooner, which can reduce latency. See also cache, cache locality, coherence,
false sharing, write-invalidate.

XDBus|| The XDBus specification uses low-impedance GTL (Gunning Transceiver

Logic) transceiver signalling to drive longer backplanes at higher clock rates.

XDBus supports a large number of CPUs with multiple interleaved memory

banks for increased throughput. XDBus uses a packet switched protocol with

split requests and responses for more efficient bus utilization. XDBus also

defines an interleaving scheme so that one, two or four separate bus data paths

can be used as a single backplane for increased throughput. XDBus supports

write-invalidate, write-update and competitive-caching coherency schemes,

and has several congestion control mechanisms. See also cache, coherence,
competitive-caching, write-invalidate, write-update.
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floating-point exceptions, 1

abort on exceptions, 127
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default result, 55
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flags, 57
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current, 57
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floating-point options, 148

floating-point queue (FQ), 150

floating-point status register (FSR), 146, 150
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FORTRAN example, 99

Goldberg paper, 161

abstract, 161

acknowledgments, 218

details, 205
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IEEE standards, 173
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references, 219

rounding error, 162

summary, 218
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Inf

SPARC architecture, 12

x86 architecture, 14

NaN
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normal number
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quadruple precision
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x86 architecture, 13
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subnormal number, 9

IEEE formats

relation to language data types, 5

IEEE single format

biased exponent, 6

biased exponent,implicit bit, 6

bit assignments, 6

bit patterns and equivalent values, 7

bit-field assignment, 6

denormalized number, 7

fraction, 6

Inf,positive infinity, 6

mixed number, significand, 7

NaN, not a number, 7

normal number

maximum positive, 7

normal number bit pattern, 6

precision, normal number, 7

sign bit, 6

subnormal number bit pattern, 6

IEEE Standard 754

double extended format, 3

double format, 3

single format, 3

ieee_flags
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ieee_handler
abort on exception
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trap on exception

C example, 119

ieee_handler , 69

example, calling sequence, 62

trap on common exceptions, 54

ieee_retrospective
check underflow exception flag, 156

floating-point exceptions, 43
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random number utilities, 51
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set exception flags

C example, 118

shell prompts, xv

shufrans
shuffle pseudo-random numbers, 51

single format, 6

single precision representation

C example, 97

square root instruction, 152, 243

standard_arithmetic
turn on IEEE behavior, 156
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SVID exceptions
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