
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Fortran User’s Guide

Forte Developer 7

Part No. 816-2467-10
May 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

iii

Contents

Before You Begin xv

Typographic Conventions xv

Shell Prompts xvii

Accessing Forte Developer Development Tools and Man Pages xvii

Accessing Forte Developer Documentation xix

Accessing Related Solaris Documentation xxi

Sending Your Comments xxii

1. Introduction 1-1

1.1 Standards Conformance 1-1

1.2 Features of the Fortran 95 Compiler 1-2

1.3 Other Fortran Utilities 1-3

1.4 Debugging Utilities 1-3

1.5 Sun Performance Library 1-3

1.6 Interval Arithmetic 1-4

1.7 Man Pages 1-4

1.8 README Files 1-5

1.9 Command-Line Help 1-6

iv Fortran User’s Guide • May 2002

2. Using Forte Developer Fortran 95 2-1

2.1 A Quick Start 2-1

2.2 Invoking the Compiler 2-3

2.2.1 Compile-Link Sequence 2-3

2.2.2 Command-Line File Name Conventions 2-4

2.2.3 Source Files 2-5

2.2.4 Source File Preprocessors 2-5

2.2.5 Separate Compiling and Linking 2-5

2.2.6 Consistent Compiling and Linking 2-6

2.2.7 Unrecognized Command-Line Arguments 2-6

2.2.8 Fortran 95 Modules 2-7

2.3 Directives 2-8

2.3.1 General Directives 2-8

2.3.2 Parallelization Directives 2-14

2.4 Library Interfaces and system.inc 2-16

2.5 Compiler Usage Tips 2-17

2.5.1 Determining Hardware Platform 2-17

2.5.2 Using Environment Variables 2-17

2.5.3 Memory Size 2-18

3. Fortran Compiler Options 3-1

3.1 Command Syntax 3-1

3.2 Options Syntax 3-2

3.3 Options Summary 3-3

3.3.1 Commonly Used Options 3-8

3.3.2 Macro Flags 3-8

3.3.3 Backward Compatibility and Legacy Options 3-9

3.3.4 Obsolete Option Flags 3-10

Contents v

3.4 Options Reference 3-11

–a 3-11

-aligncommon [=n] 3-11

–ansi 3-11

-autopar 3-12

–B{ static | dynamic } 3-12

–C 3-13

–c 3-13

–cg89 3-14

–cg92 3-14

–copyargs 3-14

–Dname[=def] 3-14

–dalign 3-15

–dbl_align_all= { yes | no} 3-16

–depend 3-16

-dn 3-16

–dryrun 3-16

–d{ y | n} 3-16

–e 3-17

–erroff= taglist 3-17

–errtags [={ yes | no}] 3-17

–explicitpar 3-18

–ext_names= e 3-19

–F 3-19

–f 3-19

-f77 [=list] 3-20

–fast 3-21

vi Fortran User’s Guide • May 2002

–fixed 3-23

–flags 3-23

–fnonstd 3-23

–fns [={ no | yes }] 3-24

–fpover [={ yes | no}] 3-25

-fpp 3-25

–free 3-25

–fround= r 3-25

–fsimple [=n] 3-26

–ftrap= t 3-27

–G 3-28

–g 3-28

–hname 3-28

–help 3-29

–I path 3-29

–inline= [%auto][[,][no%] f1,…[no%] fn] 3-30

-iorounding= mode 3-30

–Kpic 3-31

–KPIC 3-31

–Lpath 3-31

–l x 3-31

–libmil 3-32

–loopinfo 3-32

–Mpath 3-33

-moddir= path 3-33

–mp={%none | sun | cray | openmp} 3-34

–mt 3-34

Contents vii

–native 3-35

–noautopar 3-35

–nodepend 3-35

–noexplicitpar 3-35

–nolib 3-35

–nolibmil 3-36

–noreduction 3-36

–norunpath 3-36

–O[n] 3-36

–O 3-37

–O1 3-37

–O2 3-37

–O3 3-37

–O4 3-37

–O5 3-38

–o name 3-38

–onetrip 3-38

-openmp 3-38

–PIC 3-39

–p 3-39

–pad [=p] 3-39

–parallel 3-40

–pg 3-41

–pic 3-41

–Qoption pr ls 3-41

–qp 3-42

–R ls 3-42

viii Fortran User’s Guide • May 2002

-r8const 3-42

–reduction 3-42

–S 3-43

–s 3-43

–sb 3-43

–sbfast 3-43

–silent 3-44

–stackvar 3-44

–stop_status= yn 3-45

–temp= dir 3-46

–time 3-46

–U 3-46

-U name 3-46

–u 3-46

–unroll= n 3-46

-use= list 3-47

–V 3-47

–v 3-47

–vpara 3-47

–w[n] 3-48

–Xlist [x] 3-48

–xa 3-50

-xalias [=type_list] 3-50

–xarch= isa 3-51

–xautopar 3-55

–xcache= c 3-55

–xcg89 3-56

Contents ix

–xcg92 3-56

-xcheck= v 3-57

–xchip= c 3-57

–xcode= addr 3-58

–xcommonchk [={ no | yes }] 3-60

–xcrossfile [=n] 3-61

–xdepend 3-62

–xexplicitpar 3-62

–xF 3-62

-xhasc [={ yes | no}] 3-62

–xhelp= h 3-63

-xia [=v] 3-63

–xild { off | on} 3-64

–xinline= list 3-64

-xinterval [=v] 3-64

-xipo [={ 0| 1|2 }] 3-64

-xknown_lib= library 3-66

-xlang=f77 3-66

–xlibmil 3-67

–xlibmopt 3-67

–xlic_lib=sunperf 3-67

–xlicinfo 3-67

–xloopinfo 3-67

–xmaxopt [=n] 3-67

-xmemalign [=<a>] 3-68

–xnolib 3-69

–xnolibmil 3-69

x Fortran User’s Guide • May 2002

–xnolibmopt 3-69

–xOn 3-69

-xopenmp 3-69

–xpad 3-69

–xparallel 3-69

–xpg 3-69

–xpp= { fpp | cpp } 3-69

–xprefetch [=a[,a]] 3-70

-xprefetch_level= n 3-72

–xprofile= p 3-72

-xrecursive 3-74

–xreduction 3-74

–xregs= r 3-74

–xs 3-75

–xsafe=mem 3-75

–xsb 3-76

–xsbfast 3-76

–xspace 3-76

–xtarget= t 3-76

–xtime 3-77

–xtypemap= spec 3-77

–xunroll= n 3-78

–xvector [={ yes | no}] 3-78

–ztext 3-78

4. Fortran 95 Features and Differences 4-1

4.1 Language Features and Extensions 4-1

4.1.1 Continuation Line Limits 4-1

Contents xi

4.1.2 Fixed-Form Source Lines 4-1

4.1.3 Tab Form 4-1

4.1.4 Source Form Assumed 4-3

4.1.5 Known Limits 4-3

4.1.6 Boolean Type 4-4

4.1.7 Abbreviated Size Notation for Numeric Data Types 4-7

4.1.8 Size and Alignment of Data Types 4-7

4.1.9 Cray Pointers 4-9

4.1.10 Other Language Extensions 4-12

4.1.11 I/O Extensions 4-15

4.2 Directives 4-16

4.2.1 Form of Special f95 Directive Lines 4-17

4.2.2 FIXED and FREE Directives 4-17

4.2.3 Parallelization Directives 4-18

4.3 Module Files 4-18

4.3.1 Searching for Modules 4-20

4.3.2 The -use= list Option Flag 4-20

4.3.3 The fdumpmod Command 4-21

4.4 Intrinsics 4-21

4.5 Forward Compatibility 4-22

4.6 Mixing Languages 4-22

5. FORTRAN 77 Compatibility: Migrating to Fortran 95 5-1

5.1 Compatible f77 Features 5-2

5.2 Incompatibility Issues 5-5

5.3 Linking With f77 -Compiled Routines 5-7

5.3.1 Fortran 95 Intrinsics 5-8

5.4 Additional Notes About Migrating to the f95 Compiler 5-8

xii Fortran User’s Guide • May 2002

A. Runtime Error Messages A-1

A.1 Operating System Error Messages A-1

A.2 f95 Runtime I/O Error Messages A-2

B. Features Release History B-1

B.1 Fortran 95 New Features and Changes B-1

B.1.1 Forte Developer 7 Release: B-1

C. –xtarget Platform Expansions C-1

D. Fortran Directives Summary D-1

D.1 General Fortran Directives D-1

D.2 Special Fortran 95 Directives D-3

D.3 Sun Parallelization Directives D-3

D.4 Cray Parallelization Directives D-5

D.5 Fortran 95 OpenMP Directives D-6

Index Index-1

xiii

Tables

TABLE 1-1 READMEs of Interest 1-5

TABLE 2-1 Filename Suffixes Recognized by the Fortran 95 Compiler 2-4

TABLE 2-2 Summary of General Fortran Directives 2-9

TABLE 3-1 Options Syntax 3-2

TABLE 3-2 Typographic Notations for Options 3-2

TABLE 3-3 Compiler Options Grouped by Functionality 3-3

TABLE 3-4 Commonly Used Options 3-8

TABLE 3-5 Macro Option Flags 3-8

TABLE 3-6 Backward Compatibility Options 3-9

TABLE 3-7 Obsolete f95 Options 3-10

TABLE 3-8 Subnormal REAL and DOUBLE 3-24

TABLE 3-9 –Xlist Suboptions 3-49

TABLE 3-10 -xalias Option Keywords 3-50

TABLE 3-11 –xarch ISA Keywords 3-52

TABLE 3-12 Most General -xarch Options on SPARC Platforms 3-52

TABLE 3-13 -xarch Values for SPARC Platforms 3-53

TABLE 3-14 –xcache Values 3-56

TABLE 3-15 Valid –xchip Values 3-58

TABLE 4-1 F95 Source Form Command-line Options 4-3

TABLE 4-2 Size Notation for Numeric Data Types 4-7

xiv Fortran User’s Guide • May 2002

TABLE 4-3 Default Data Sizes and Alignments (in Bytes) 4-8

TABLE 4-4 Nonstandard Intrinsics 4-21

TABLE A-1 f95 Runtime I/O Messages A-2

TABLE C-1 -xtarget Expansions C-1

TABLE D-1 Summary of General Fortran Directives D-1

TABLE D-2 Special Fortran 95 Directives D-3

TABLE D-3 Sun-Style Parallelization Directives Summary D-3

TABLE D-4 Cray Parallelization Directives Summary D-5

xv

Before You Begin

The Fortran User’s Guide describes the compile-time environment and command-line

options for the Forte™ Developer Fortran 95 compiler, f95 .

This guide is intended for scientists, engineers, and programmers who have a

working knowledge of the Fortran language and wish to learn how to use the

Fortran 95 compiler effectively. Familiarity with the Solaris operating environment

or UNIX® in general is also assumed.

Discussion of Fortran programming issues on Solaris™ operating environments,

including input/output, application development, library creation and use, program

analysis, porting, optimization, and parallelization can be found in the companion

Forte Developer Fortran Programming Guide.

Typographic Conventions

The following are the typographic conventions used in the text and code examples

in this manual:

xvi Fortran User’s Guide • May 2002

■ The symbol ∆ stands for a blank space where a blank is significant:

■ The FORTRAN 77 standard used an older convention, spelling the name

“FORTRAN” capitalized. The Forte Developer Fortran compiler documentation

uses both “FORTRAN” and “Fortran”. The current convention is to use lower

case: “Fortran 95”

■ References to online man pages appear with the topic name and section number.

For example, a reference to the library routine GETENVwill appear as getenv (3F),

implying that the man command to access this man page would be:

man -s 3F getenv .

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.

∆∆36.001

TABLE P-2 Code and Command-Line Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

Before You Begin xvii

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-2 Code and Command-Line Conventions (Continued)

Code
Symbol Meaning Notation Code Example

xviii Fortran User’s Guide • May 2002

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

% echo $PATH

Before You Begin xix

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

% man dbx

xx Fortran User’s Guide • May 2002

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt

Before You Begin xxi

Related Forte Developer Documentation

The following table describes related documentation that is available at

file:/opt/SUNWspro/docs/index.html . If your product software is not

installed in the /opt directory, ask your system administrator for the equivalent

path on your system.

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on

Solaris environments; input/output, libraries,

performance, debugging, and parallel

processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

OpenMP API User’s Guide Summary of the OpenMP multiprocessing API,

with details on the Forte Developer

implementation.

Numerical Computation Guide Describes issues regarding the numerical

accuracy of floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.

xxii Fortran User’s Guide • May 2002

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

1-1

CHAPTER 1

Introduction

The Forte™ Developer Fortran 95 compiler, f95 , described here and in the

companion Fortran Programming Guide, is available under the Solaris operating

environment on SPARC and UltraSPARC™ platforms. The compiler conforms to

published Fortran language standards, and provides many extended features,

including multiprocessor parallelization, sophisticated optimized code compilation,

and mixed C/Fortran language support.

The f95 compiler also provides a Fortran 77 compatibility mode that accepts most

legacy Fortran 77 source codes. Forte Developer no longer includes a separate

Fortran 77 compiler. See Chapter 5 for information on FORTRAN 77 compatibility

and migration issues.

1.1 Standards Conformance
■ f95 was designed to be compatible with the ANSI X3.198-1992, ISO/IEC

1539:1991, and ISO/IEC 1539:1997 standards documents.

■ Floating-point arithmetic is based on IEEE standard 754-1985, and international

standard IEC 60559:1989.

■ f95 provides support for the optimization-exploiting features of SPARC V8, and

SPARC V9, including the UltraSPARC implementation. These features are defined

in the SPARC Architecture Manuals, Version 8 (ISBN 0-13-825001-4), and Version

9 (ISBN 0-13-099227-5), published by Prentice-Hall for SPARC International.

■ In this document, “Standard” means conforming to the versions of the standards

listed above. “Non-standard” or “Extension” refers to features that go beyond

these versions of these standards.

1-2 Fortran User’s Guide • May 2002

The responsible standards bodies may revise these standards from time to time. The

versions of the applicable standards to which these compilers conform may be

revised or replaced, resulting in features in future releases of the Sun Fortran

compilers that create incompatibilities with earlier releases.

1.2 Features of the Fortran 95 Compiler
The Forte Developer Fortran 95 compiler provides the following features and

extensions:

■ Global program checking across routines for consistency of arguments, commons,

parameters, and the like.

■ Optimized automatic and explicit loop parallelization for multiprocessor systems.

■ VAX/VMS Fortran extensions, including:

■ Structures, records, unions, maps

■ Recursion

■ OpenMP parallelization directives.

■ Cray-style parallelization directives, including TASKCOMMON.

■ Global, peephole, and potential parallelization optimizations produce high

performance applications. Benchmarks show that optimized applications can run

significantly faster when compared to unoptimized code.

■ Common calling conventions on Solaris systems permit routines written in C or

C++ to be combined with Fortran programs.

■ Support for 64-bit enabled Solaris environments on UltraSPARC platforms.

■ Call-by-value using %VAL.

■ Compatibility between Fortran 77 and Fortran 95 programs and object binaries.

■ Interval Arithmetic programming.

■ Some “Fortran 2000” features, including Stream I/O.

See Appendix B for details on new and extended features added to the compiler

with each software release.

Chapter 1 Introduction 1-3

1.3 Other Fortran Utilities
The following utilities provide assistance in the development of software programs

in Fortran:

■ Forte Developer Performance Analyzer — In depth performance analysis tool for

single threaded and multi-threaded applications. See analyzer (1).

■ asa — This Solaris utility is a Fortran output filter for printing files that have

Fortran carriage-control characters in column one. Use asa to transform files

formatted with Fortran carriage-control conventions into files formatted

according to UNIX line-printer conventions. See asa (1).

■ fdumpmod — A utility to display the names of modules contained in a file or

archive. See fdumpmod(1).

■ fpp — A Fortran source code preprocessor. See fpp (1).

■ fsplit — This utility splits one Fortran file of several routines into several files,

each with one routine per file. Use fsplit on FORTRAN 77 or Fortran 95 source

files. See fsplit (1)

1.4 Debugging Utilities
The following debugging utilities are available:

■ -Xlist — A compiler option to check across routines for consistency of

arguments, COMMON blocks, and so on.

■ Forte Developer dbx —Provides a robust and feature-rich runtime and static

debugger, and includes a performance data collector.

1.5 Sun Performance Library
The Sun Performance Library™ is a library of optimized subroutines and functions

for computational linear algebra and Fourier transforms. It is based on the standard

libraries LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK

generally available through Netlib (www.netlib.org).

Each subprogram in the Sun Performance Library performs the same operation and

has the same interface as the standard library versions, but is generally much faster

and accurate and can be used in a multiprocessing environment.

1-4 Fortran User’s Guide • May 2002

See the performance_library README file, and the Sun Performance Library
User’s Guide for details. (Man pages for the performance library routines are in

section 3P.)

1.6 Interval Arithmetic
The Fortran 95 compiler provides the compiler flags -xia and -xinterval to

enable new language extensions and generate the appropriate code to implement

interval arithmetic computations.

See the Fortran 95 Interval Arithmetic Programming Reference for details.

1.7 Man Pages
Online manual (man) pages provide immediate documentation about a command,

function, subroutine, or collection of such things. See the Preface for the proper

setting of the MANPATHenvironment variable for accessing Forte Developer man

pages.)

You can display a man page by running the command:

Throughout the Fortran documentation, man page references appear with the topic

name and man section number: f95 (1) is accessed with man f95 . Other sections,

denoted by ieee_flags (3M) for example, are accessed using the -s option on the

man command:

The Fortran library routines are documented in the man page section 3F.

demo% man topic

demo% man -s 3M ieee_flags

Chapter 1 Introduction 1-5

The following lists man pages of interest to Fortran users:

1.8 README Files
The READMEsdirectory contains files that describe new features, software

incompatibilities, bugs, and information that was discovered after the manuals were

printed. The location of this directory depends on where your software was

installed. The path is: /opt/SUNWspro/READMEs/ .

f95 (1) The Fortran 95 command-line options

analyzer (1) Forte Developer Performance Analyzer

asa (1) Fortran carriage-control print output post-processor

dbx (1) Command-line interactive debugger

fpp (1) Fortran source code pre-processor

cpp (1) C source code pre-processor

fdumpmod(1) Display contents of a MODULE (.mod) file.

fsplit (1) Pre-processor splits Fortran source routines into single files

ieee_flags (3M) Examine, set, or clear floating-point exception bits

ieee_handler (3M) Handle floating-point exceptions

matherr (3M) Math library error handling routine

ild (1) Incremental link editor for object files

ld (1) Link editor for object files

TABLE 1-1 READMEs of Interest

README File Describes...

fortran_95 new and changed features, known limitations, documentation

errata for this release of the Fortran 95 compiler, f95 .

fpp_readme overview of fpp features and capabilities

interval_arithmetic overview of the interval arithmetic features in f95

math_libraries optimized and specialized math libraries available.

1-6 Fortran User’s Guide • May 2002

The README files for each compiler is easily viewed by the -xhelp=readme
command-line option. For example, the command:

will display the fortran_95 README file directly.

1.9 Command-Line Help
You can view very brief descriptions of the f95 command line options by invoking

the compiler’s -help option as shown below:

profiling_tools using the performance profiling tools, prof , gprof , and

tcov .

runtime_libraries libraries and executables that can be redistributed under the

terms of the End User License.

performance_library overview of the Sun Performance Library

% f95 -xhelp=readme

%f95 -help=flags
Items within [] are optional. Items within < > are variable
parameters.
Bar | indicates choice of literal values.
-someoption[={yes|no}] implies -someoption is equivalent to
-someoption=yes

-a Collect data for tcov basic block profiling
-aligncommon[=<a>] Align common block elements to the specified

boundary requirement; <a>={1|2|4|8|16}
-ansi Report non-ANSI extensions.
-autopar Enable automatic loop parallelization
-Bdynamic Allow dynamic linking
-Bstatic Require static linking
-C Enable runtime subscript range checking
-c Compile only; produce .o files but suppress

 linking
...etc.

TABLE 1-1 READMEs of Interest (Continued)

README File Describes...

2-1

CHAPTER 2

Using Forte Developer Fortran 95

This chapter describes how to use the Fortran 95 compiler.

The principal use of any compiler is to transform a program written in a procedural

language like Fortran into a data file that is executable by the target computer

hardware. As part of its job, the compiler may also automatically invoke a system

linker to generate the executable file.

The Fortran 95 compiler can also be used to:

■ Generate a parallelized executable file for multiple processors (-parallel).

■ Analyze program consistency across source files and subroutines and generate a

report (-Xlist).

■ Transform source files into:

■ Relocatable binary (.o) files, to be linked later into an executable file or static

library (.a) file.

■ A dynamic shared library (.so) file (-G).

■ Link files into an executable file.

■ Compile an executable file with runtime debugging enabled (-g).

■ Compile with runtime statement or procedure level profiling (-pg).

■ Check source code for ANSI standards conformance (-ansi).

2.1 A Quick Start
This section provides a quick overview of how to use the Fortran 95 compiler to

compile and run Fortran programs. A full reference to command-line options

appears in the next chapter.

2-2 Fortran User’s Guide • May 2002

The very basic steps to running a Fortran application involve using an editor to

create a Fortran source file with a .f , .for , .f90 , .f95 , .F , .F90 , or .F95 filename

suffix; invoking the compiler to produce an executable; and finally, launching the

program into execution by typing the name of the file:

Example: This program displays a message on the screen:

In this example, f95 compiles source file greetings.f and links the executable

program onto the file, a.out , by default. To launch the program, the name of the

executable file, a.out , is typed at the command prompt.

Traditionally, UNIX compilers write executable output to the default file called

a.out . It can be awkward to have each compilation write to the same file. Moreover,

if such a file already exists, it will be overwritten by the next run of the compiler.

Instead, use the -o compiler option to explicitly specify the name of the executable

output file:

In the preceding example, the -o option tells the compiler to write the executable

code to the file greetings . (By convention, executable files usually are given the

same name as the main source file, but without an extension.)

Alternatively, the default a.out file could be renamed via the mv command after

each compilation. Either way, run the program by typing the name of the executable

file at a shell prompt.

The next sections of this chapter discuss the conventions used by the f95
commands, compiler source line directives, and other issues concerning the use of

these compiler. The next chapter describes the command-line syntax and all the

options in detail.

demo% cat greetings.f
 PROGRAM GREETINGS
 PRINT *, 'Real programmers write Fortran!'
 END

demo% f95 greetings.f
demo% a.out
 Real programmers write Fortran!
demo%

demo% f95 –o greetings greetings.f
demo% greetings

Real programmers write Fortran!
demo%

Chapter 2 Using Forte Developer Fortran 95 2-3

2.2 Invoking the Compiler
The syntax of a simple compiler command invoked at a shell prompt is:

f95 [options] files...

Here files… is one or more Fortran source file names ending in .f , .F , .f90 , .f95 ,

.F90 , .F95 , or .for ; options is one or more of the compiler option flags. (Files with

names ending in a .f90 or .f95 extension are “free-format” Fortran 95 source files

recognized only by the f95 compiler.)

In the example below, f95 is used to compile two source files to produce an

executable file named growth with runtime debugging enabled:

Note – You can invoke the Fortran 95 compiler with either the f95 or f90
command.

2.2.1 Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files,

growth.o and fft.o , and then invokes the system linker to create the executable

program file growth .

After compilation, the object files, growth.o and fft.o , will remain. This

convention permits easy relinking and recompilation of files.

If the compilation fails, you will receive a message for each error. No .o files are

generated for those source files with errors, and no executable program file is

written.

demo% f95 -g -o growth growth.f fft.f95

2-4 Fortran User’s Guide • May 2002

2.2.2 Command-Line File Name Conventions

The suffix extension attached to file names appearing on the command-line

determine how the compiler will process the file. File names with a suffix extension

other than one of those listed below, or without an extension, are passed to the

linker.

Fortran 95 free-format is described in Chapter 4.

TABLE 2-1 Filename Suffixes Recognized by the Fortran 95 Compiler

Suffix Language Action

.f Fortran 77 or

Fortran 95

fixed-format

Compile Fortran source files, put object files in current

directory; default name of object file is that of the source but

with .o suffix.

.f95

.f90
Fortran 95

free-format

Same action as .f

.for Fortran 77 or

Fortran 95

Same action as .f .

.F Fortran 77 or

Fortran 95

fixed-format

Apply the Fortran (or C) preprocessor to the Fortran 77 source

file before compilation.

.F95

.F90
Fortran 95

free-format

Apply the Fortran (or C) preprocessor to the Fortran 95

free-format source file before Fortran compiles it.

.s Assembler Assemble source files with the assembler.

.S Assembler Apply the C preprocessor to the assembler source file before

assembling it.

.il Inline

expansion

Process template files for inline expansion. The compiler will

use templates to expand inline calls to selected routines.

(Template files are special assembler files; see the inline (1)

man page.)

.o Object files Pass object files through to the linker.

.a ,.s .o,

.so. n
Libraries Pass names of libraries to the linker. .a files are static libraries,

.so and .so. n files are dynamic libraries.

Chapter 2 Using Forte Developer Fortran 95 2-5

2.2.3 Source Files

The Fortran compiler will accept multiple source files on the command line. A single

source file, also called a compilation unit, may contain any number of procedures

(main program, subroutine, function, block data, module, and so on). Applications

may be configured with one source code procedure per file, or by gathering

procedures that work together into single files. The Fortran Programming Guide
describes the advantages and disadvantages of these configurations.

2.2.4 Source File Preprocessors

f95 supports two source file preprocessors, fpp and cpp . Either can be invoked by

the compiler to expand source code “macros” and symbolic definitions prior to

compilation. The compiler will use fpp by default; the -xpp=cpp option changes

the default from fpp to cpp . (See also the discussion of the -D name option).

fpp is a Fortran-specific source preprocessor. See the fpp (1) man page and the fpp
README for details. It is invoked by default on files with a .F , .F90 , or .F95
extension.

The source code for fpp is available from the Netlib web site at

http://www.netlib.org/fortran/

See cpp (1) for information on the standard Unix C language preprocessor. Use of

fpp over cpp is recommended on Fortran source files.

2.2.5 Separate Compiling and Linking

You can compile and link in separate steps. The -c option compiles source files and

generates .o object files, but does not create an executable. Without the -c option

the compiler will invoke the linker. By splitting the compile and link steps in this

manner, a complete recompilation is not needed just to fix one file, as shown in the

following example:

Compile one file and link with others in separate steps:

Be sure that the link step lists all the object files needed to make the complete

program. If any object files are missing from this step, the link will fail with

undefined external reference errors (missing routines).

demo% f95 -c file1.f (Make new object file)
demo% f95 -o prgrm file1.o file2.o file3.o (Make executable file)

2-6 Fortran User’s Guide • May 2002

2.2.6 Consistent Compiling and Linking

Ensuring a consistent choice of compiling and linking options is critical whenever

compilation and linking are done in separate steps. Compiling any part of a program

with some options requires linking with the same options. Also, a number of options

require that all source files be compiled with that option, including the link step.

The option descriptions in Chapter 3 identify such options.

Example: Compiling sbr.f with –fast , compiling a C routine, and then linking in

a separate step:

2.2.7 Unrecognized Command-Line Arguments

Any arguments on the command-line that the compiler does not recognize are

interpreted as being possibly linker options, object program file names, or library

names.

The basic distinctions are:

■ Unrecognized options (with a -) generate warnings.

■ Unrecognized non-options (no -) generate no warnings. However, they are passed

to the linker and if the linker does not recognize them, they generate linker error

messages.

For example:

Note that in the first example, -bit is not recognized by f95 and the option is

passed on to the linker (ld), who tries to interpret it. Because single letter ld options

may be strung together, the linker sees -bit as -b -i -t , which are all legitimate

ld options! This may (or may not) be what the user expects, or intended.

demo% f95 -c -fast sbr.f
demo% cc -c -fast simm.c
demo% f95 -fast sbr.o simm.o link step; passes -fast to the linker

demo% f95 -bit move.f <- -bit is not a recognized f95 option
f95: Warning: Option -bit passed to ld, if ld is invoked, ignored
otherwise
demo% f95 fast move.f <- The user meant to type -fast
ld: fatal: file fast: cannot open file; errno=2
ld: fatal: File processing errors. No output written to a.out

Chapter 2 Using Forte Developer Fortran 95 2-7

In the second example, the user intended to type the f95 option -fast but

neglected the leading dash. The compiler again passes the argument to the linker

which, in turn, interprets it as a file name.

These examples indicate that extreme care should be observed when composing

compiler command lines!

2.2.8 Fortran 95 Modules

f95 automatically creates module information files for each MODULEdeclaration

encountered in the source files, and searches for modules referenced by a USE
statement. For each module encountered (MODULEmodule_name), the compiler

generates a corresponding file, module_name.mod , in the current directory. For

example, f95 generates the module information file list.mod for the MODULE list
unit found on file mysrc.f95 .

See the -Mpath and -moddir dirlist option flags for information on how to set the

defaults paths for writing and searching for module information files.

See also the -use compiler option for implicitly invoking MODULEdeclarations in all

compilation units.

Use the fdumpmod(1) command to display information about the contents of a .mod
module information file.

For detailed information, see “Module Files” on page 18.

2-8 Fortran User’s Guide • May 2002

2.3 Directives
Use a source code directive, a form of Fortran comment, to pass specific information

to the compiler regarding special optimization or parallelization choices. Compiler

directives are also sometimes called pragmas. The compiler recognize a set of general

directives and parallelization directives. Fortran 95 also processes OpenMP shared

memory multiprocessing directives.

Directives unique to f95 are described in Section 4.2, “Directives” on page 4-16. A

complete summary of all the directives recognized by f95 appears in Appendix D.

Note – Directives are not part of the Fortran standard.

2.3.1 General Directives

The various forms of a general Fortran 95 directive are:

The variable keyword identifies the specific directive. Additional arguments or

suboptions may also be allowed. (Some directives require the additional keyword

SUNor SPARC, as shown above.)

A general directive has the following syntax:

■ In column one, any of the comment-indicator characters c , C, ! , or *

■ For f95 free-format, ! is the only comment-indicator recognized (!$PRAGMA). The

examples in this chapter assume fixed-format.

■ The next seven characters are $PRAGMA, no blanks, in either uppercase or

lowercase.

■ Directives using the ! comment-indicator character may appear in any position

on the line for free-format source programs.

Observe the following restrictions:

■ After the first eight characters, blanks are ignored, and uppercase and lowercase

are equivalent, as in Fortran text.

C$PRAGMAkeyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SUNkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

C$PRAGMA SPARCkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

Chapter 2 Using Forte Developer Fortran 95 2-9

■ Because it is a comment, a directive cannot be continued, but you can have many

C$PRAGMAlines, one after the other, as needed.

■ If a comment satisfies the above syntax, it is expected to contain one or more

directives recognized by the compiler; if it does not, a warning is issued.

■ The C preprocessor, cpp , will expand macro symbol definitions within a comment

or directive line; the Fortran preprocessor, fpp , will not expand macros in

comment lines. fpp will recognize legitimate f95 directives and allow limited

substitution outside directive keywords. However, be careful with directives

requiring the keyword SUN. cpp will replace lower-case sun with a predefined

value. Also, if you define a cpp macro SUN, it might interfere with the SUN
directive keyword. A general rule would be to spell those pragmas in mixed case

if the source will be processed by cpp or fpp , as in:

C$PRAGMA Sun UNROLL=3

The Fortran compiler recognize the following general directives:

TABLE 2-2 Summary of General Fortran Directives

C Directive C$PRAGMA C(list)
Declares a list of names of external functions as C language

routines.

IGNORE_TKRDirective C$PRAGMA IGNORE_TKR{name {, name} ...}

The compiler ignores the type, kind, and rank of the specified

dummy argument names appearing in a generic procedure

interface when resolving a specific call.

UNROLLDirective C$PRAGMA SUN UNROLL=n
Advises the compiler that the following loop can be unrolled to a

length n.

WEAKDirective C$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPTDirective C$PRAGMA SUN OPT=n
Set optimization level for a subprogram to n.

2-10 Fortran User’s Guide • May 2002

2.3.1.1 The C Directive

The C() directive specifies that its arguments are external functions. It is equivalent

to an EXTERNALdeclaration except that unlike ordinary external names, the Fortran

compiler will not append an underscore to these argument names. See the C-Fortran

Interface chapter in the Fortran Programming Guide for more details.

The C() directive for a particular function should appear before the first reference to

that function in each subprogram that contains such a reference.

Example - compiling ABCand XYZ for C:

2.3.1.2 The IGNORE_TKRDirective

This directive causes the compiler to ignore the type, kind, and rank of the specified

dummy argument names appearing in a generic procedure interface when resolving

a specific call.

PIPELOOPDirective C$PRAGMA SUN PIPELOOP=n
Assert dependency in the following loop exists between

iterations n apart.

NOMEMDEPDirective C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.

PREFETCHDirectives C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)
Request compiler generate prefetch instructions for references to

name. (Requires -xprefetch option.)

EXTERNAL ABC, XYZ
C$PRAGMA C(ABC, XYZ)

TABLE 2-2 Summary of General Fortran Directives (Continued)

Chapter 2 Using Forte Developer Fortran 95 2-11

For example, in the procedure interface below, the directive specifies that SRCcan be

any data type, but LEN can be either KIND=4 or KIND=8.

The call to BLCKXwill call BLCK_32 when compiled normally, and BLCK_64 when

compiled with -xtypemap=integer:64 . The actual type of S does not determine

which routine to call. This greatly simplifies writing generic interfaces for wrappers

that call specific library routines based on argument type, kind, or rank.

Note that dummy arguments for assumed-shape arrays, Fortran pointers, or

allocatable arrays cannot be specified on the directive. If no names are specified, the

directive applies to all dummy arguments to the procedure, except dummy

arguments that are assumed-shape arrays, Fortran pointers, or allocatable arrays.

2.3.1.3 The UNROLLDirective

The UNROLLdirective requires that you specify SUNafter C$PRAGMA.

The C$PRAGMA SUN UNROLL=n directive instructs the compiler to unroll the

following loop n times during its optimization pass. (The compiler will unroll a loop

only when its analysis regards such unrolling as appropriate.)

n is a positive integer. The choices are:

The interface block defines two specific procedures for a generic procedure name:

INTERFACE BLCKX

SUBROUTINE BLCK_32(LEN,SRC)
REAL SRC(1)

!$PRAGMA IGNORE_TKR SRC
INTEGER (KIND=4) LEN

END SUBROUTINE

SUBROUTINE BLCK_64(LEN,SRC)
REAL SRC(1)

!$PRAGMA IGNORE_TKR SRC
INTEGER (KIND=8) LEN

END SUBROUTINE

END INTERFACE

The subroutine call:

INTEGER L
REAL S(100)
CALL BLCKX(L,S)

2-12 Fortran User’s Guide • May 2002

■ If n=1, the optimizer may not unroll any loops.

■ If n>1, the optimizer may unroll loops n times.

If any loops are actually unrolled, the executable file becomes larger. For further

information, see the Fortran Programming Guide chapter on performance and

optimization.

Example - unrolling loops two times:

2.3.1.4 The WEAKDirective

The WEAKdirective defines a symbol to have less precedence than an earlier

definition of the same symbol. This pragma is used mainly in sources files for

building libraries. The linker does not produce an error message if it is unable to

resolve a weak symbol.

WEAK(name1) defines name1 to be a weak symbol. The linker does not produce an

error message if it does not find a definition for name1.

WEAK(name1=name2) defines name1 to be a weak symbol and an alias for name2.

If your program calls but does not define name1, the linker uses the definition from

the library. However, if your program defines its own version of name1, then the

program’s definition is used and the weak global definition of name1 in the library is

not used. If the program directly calls name2, the definition from library is used; a

duplicate definition of name2 causes an error. See the Solaris Linker and Libraries
Guide for more information.

C$PRAGMA SUN UNROLL=2

C$PRAGMA WEAK (name1 [= name2])

Chapter 2 Using Forte Developer Fortran 95 2-13

2.3.1.5 The OPTDirective

The OPTdirective requires that you specify SUNafter C$PRAGMA.

The OPTdirective sets the optimization level for a subprogram, overriding the level

specified on the compilation command line. The directive must appear immediately

before the target subprogram, and only applies to that subprogram. For example:

When the above is compiled with an f95 command that specifies -O4 , the directive

will override this level and compile the subroutine at -O2 . Unless there is another

directive following this routine, the next subprogram will be compiled at -O4 .

The routine must also be compiled with the -xmaxopt [=n] option for the directive

to be recognized. This compiler option specifies a maximum optimization value for

PRAGMA OPTdirectives: if a PRAGMA OPTspecifies an optimization level greater

than the -xmaxopt level, the -xmaxopt level is used.

2.3.1.6 The NOMEMDEPDirective

The NOMEMDEPdirective requires that you specify SUNafter C$PRAGMA.

This directive must appear immediately before a DO loop. It asserts to the optimizer

that there are no memory-based dependencies within an iteration of the loop to

inhibit parallelization. Requires -parallel or -explicitpar options.

2.3.1.7 The PIPELOOP=n Directive

The PIPELOOP=n directive requires that you specify SUNafter C$PRAGMA.

This directive must appear immediately before a DO loop. n is a positive integer

constant, or zero, and asserts to the optimizer a dependence between loop iterations.

A value of zero indicates that the loop has no inter-iteration (loop-carried)

C$PRAGMA SUN OPT=2
SUBROUTINE smart(a,b,c,d,e)
...etc

2-14 Fortran User’s Guide • May 2002

dependencies and can be freely pipelined by the optimizer. A positive n value

implies that the I-th iteration of the loop has a dependency on the (I-n)-th iteration,

and can be pipelined at best for only n iterations at a time.

For more information on optimization, see the Fortran Programming Guide.

2.3.1.8 The PREFETCHDirectives

The -xprefetch option flag, “–xprefetch[=a[,a]]” on page 70, enables a set of

PREFETCHdirectives that advise the compiler to generate prefetch instructions for

the specified data element. Prefetch instructions are only available on UltraSPARC

platforms.

See also the C User’s Guide, or the SPARC Architecture Manual, Version 9 for further

information about prefetch instructions.

2.3.2 Parallelization Directives

Parallelization directives explicitly request the compiler to attempt to parallelize the

DOloop or the region of code that follows the directive. The syntax differs from

general directives. Parallelization directives are only recognized when compilation

options -openmp , -parallel , or -explicitpar are used. Details regarding

Fortran parallelization can be found in the Forte Developer OpenMP API User’s
Guide and the Fortran Programming Guide.

The Fortran compiler supports the OpenMP shared memory parallelization model,

as well as legacy Sun and Cray directives.

C We know that the value of K is such that there can be no
C cross-iteration dependencies (E.g. K>N)
C$PRAGMA SUN PIPELOOP=0

DO I=1,N
A(I)=A(I+K) + D(I)

 B(I)=B(I) + A(I)
 END DO

C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)

Chapter 2 Using Forte Developer Fortran 95 2-15

2.3.2.1 OpenMP Parallelization Directives

The Fortran 95 compiler recognizes the OpenMP Fortran shared memory

multiprocessing API as the preferred parallel programming model. The API is

specified by the OpenMP Architecture Review Board (http://www.openmp.org).

You must compile with the command-line option -openmp , to enable OpenMP

directives. (-openmp is a macro flag that invokes the compiler options required by

OpenMP; see “-openmp” on page 38.)

OpenMP directives can be used in conjunction with legacy Sun or Cray style

parallelization directives, as long as these different directives are not nested within

each other. To enable OpenMP with Sun or Cray directives, use -mp=openmp,sun or

-mp=openmp,cray (no spaces), respectively. (See

“–mp={%none|sun|cray|openmp}” on page 34)

For more information about the OpenMP directives accepted by f95 , see the Forte

Developer OpenMP API User’s Guide.

2.3.2.2 Legacy Sun/Cray Parallelization Directives

Sun style parallelization directives are the default for -parallel and

-explicitpar . Sun directives have the directive sentinel $PAR.

Cray style parallelization directives, enabled by the -mp=cray compiler option,

have the sentinel MIC$. Interpretations of similar directives differ between Sun and

Cray styles. See the chapter on parallelization in the Fortran Programming Guide for

details. See also the OpenMP API User’s Guide for guidelines on converting legacy

Sun/Cray parallelization directives to OpenMP directives.

Sun/Cray parallelization directives have the following syntax:

■ The first character must be in column one.

■ The first character can be any one of c , C, * , or ! .

■ The next four characters may be either $PAR (Sun style), or MIC$ (Cray style),

without blanks, and in either upper or lower case.

■ Next, the directive keyword and qualifiers, separated by blanks. The explicit

parallelization directive keywords are:

TASKCOMMON, DOALL, DOSERIAL, and DOSERIAL*

Each parallelization directive has its own set of optional qualifiers that follow the

keyword.

2-16 Fortran User’s Guide • May 2002

Example: Specifying a loop with a shared variable:

2.4 Library Interfaces and system.inc
The Fortran 95 compiler provides an include file, system.inc , that defines the

interfaces for most non-intrinsic library routines. Declare this include file to insure

that functions you call and their arguments are properly typed, especially when

default data types are changed with -xtypemap .

For example, the following may produce an arithmetic exception because function

getpid() is not explicitly typed:

The getpid() routine returns an integer value but the compiler assumes it returns

a real value if no explicit type is declared for the function. This value is further

converted to integer, most likely producing a floating-point error.

To correct this you should explicitly type getuid() and functions like it that you

call:

Problems like these can be diagnosed with the -Xlist (global program checking)

option. The Fortran 95 include file ‘system.inc’ provides explicit interface

definitions for these routines.

C$PAR DOALL SHARED(yvalue) Sun style
CMIC$ DOALL SHARED(yvalue) Cray style

integer(4) mypid
mypid = getpid()
print *, mypid

integer(4) mypid, getpid
mypid = getpid()
print *, mypid

include 'system.inc'
integer(4) mypid
mypid = getpid()
print *, mypid

Chapter 2 Using Forte Developer Fortran 95 2-17

Including system.inc in program units calling routines in the Fortran library will

automatically define the interfaces for you, and help the compiler diagnose type

mismatches. (See the Fortran Library Reference for more information.)

2.5 Compiler Usage Tips
The next sections suggest a number of ways to use the Fortran 95 compiler

efficiently. A complete compiler options reference follows in the next chapter.

2.5.1 Determining Hardware Platform

Some compiler flags allow the user to tune code generation to a specific set of

hardware platform options. The utility command fpversion displays the hardware

platform specifications for the native processor:

The values printed depend on the load on the system at the moment fpversion is

called.

See fpversion (1) and the Numerical Computation Guide for details.

2.5.2 Using Environment Variables

You can specify options by setting the FFLAGSor OPTIONSvariables.

Either FFLAGSor OPTIONScan be used explicitly in the command line. When you

are using the implicit compilation rules of make, FFLAGSis used automatically by

the make program.

demo% fpversion
A SPARC-based CPU is available.
 Kernel says CPU’s clock rate is 750.0 MHz.
 Kernel says main memory’s clock rate is 150.0 MHz.

 Sun-4 floating-point controller version 0 found.
 An UltraSPARC chip is available.

 Use "-xtarget=ultra3" code-generation option.

 Hostid = hardware_host_id.

2-18 Fortran User’s Guide • May 2002

Example: Set FFLAGS: (C Shell)

Example: Use FFLAGSexplicitly:

When using make, if the FFLAGSvariable is set as above and the makefile’s

compilation rules are implicit, that is, there is no explicit compiler command line, then

invoking make will result in a compilation equivalent to:

f95 -fast -Xlist files…

make is a very powerful program development tool that can easily be used with all

Sun compilers. See the make(1) man page and the Program Development chapter in

the Fortran Programming Guide.

Note – Default implicit rules assumed by make may not recognize files with

extensions .f95 and .mod (Fortran 95 Module files). See the Fortran Programming
Guide and the Fortran 95 readme file for details.

2.5.3 Memory Size

A compilation may need to use a lot of memory. This will depend on the

optimization level chosen and the size and complexity of the files being compiled.

On SPARC platforms, if the optimizer runs out of memory, it tries to recover by

retrying the current procedure at a lower level of optimization and resumes

subsequent routines at the original level specified in the -On option on the command

line.

A processor running the compiler should have at least 64 megabytes of memory; 256

megabytes are recommended. Enough swap space should also be allocated. 200

megabytes is the minimum; 300 megabytes is recommended.

Memory usage depends on the size of each procedure, the level of optimization, the

limits set for virtual memory, the size of the disk swap file, and various other

parameters.

Compiling a single source file containing many routines could cause the compiler to

run out of memory or swap space.

demo% setenv FFLAGS '-fast -Xlist'

demo% f95 $FFLAGS any.f

Chapter 2 Using Forte Developer Fortran 95 2-19

If the compiler runs out of memory, try reducing the level of optimization, or split

multiple-routine source files into files with one routine per file, using fsplit (1).

2.5.3.1 Swap Space Limits

The SunOS™ operating system command, swap -s , displays available swap space.

See swap(1M).

Example: Use the swap command:

To determine the actual real memory:

2.5.3.2 Increasing Swap Space

Use mkfile (1M) and swap(1M) to increase the size of the swap space on a

workstation. You must become superuser to do this. mkfile creates a file of a

specific size, and swap -a adds the file to the system swap space:

2.5.3.3 Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at

optimization level -O3 or higher may require additional memory that could degrade

compile-time performance. You can control this by limiting the amount of virtual

memory available to a single process.

In a sh shell, use the ulimit command. See sh (1).

demo% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k available

demo% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)
avail mem = 602476544

demo# mkfile -v 90m /home/swapfile
/home/swapfile 94317840 bytes
demo# /usr/sbin/swap -a /home/swapfile

2-20 Fortran User’s Guide • May 2002

Example: Limit virtual memory to 16 Mbytes:

In a csh shell, use the limit command. See csh (1).

Example: Limit virtual memory to 16 Mbytes:

Each of these command lines causes the optimizer to try to recover at 16 Mbytes of

data space.

This limit cannot be greater than the system’s total available swap space and, in

practice, must be small enough to permit normal use of the system while a large

compilation is in progress. Be sure that no compilation consumes more than half the

space.

Example: With 32 Mbytes of swap space, use the following commands:

In a sh shell:

In a csh shell:

The best setting depends on the degree of optimization requested and the amount of

real and virtual memory available.

In 64-bit Solaris environments, the soft limit for the size of an application data

segment is 2 Gbytes. If your application needs to allocate more space, use the shell’s

limit or ulimit command to remove the limit.

For csh use:

demo$ ulimit -d 16000

demo% limit datasize 16M

demo$ ulimit -d 1600

demo% limit datasize 16M

demo% limit datasize unlimited

Chapter 2 Using Forte Developer Fortran 95 2-21

For sh or ksh , use:

See the Solaris 64-bit Developer’s Guide for more information.

demo$ ulimit -d unlimited

2-22 Fortran User’s Guide • May 2002

3-1

CHAPTER 3

Fortran Compiler Options

This chapter details the command–line options for the f95 compiler.

■ A description of the syntax used for compiler option flags starts at Section 3.1,

“Command Syntax” on page 3-1.

■ Summaries of options arranged by functionality starts at Section 3.3, “Options

Summary” on page 3-3.

■ The complete reference detailing each compiler option flag starts at Section 3.4,

“Options Reference” on page 3-11.

3.1 Command Syntax
The general syntax of the compiler command line is:

Items in square brackets indicate optional parameters. The brackets are not part of

the command. The options are a list of option keywords prefixed by dash (–). Some

keyword options take the next item in the list as an argument. The list_of_files is a list

of source, object, or library file names separated by blanks. Also, there are some

options that must appear after the list of source files, and these could include

additional lists of files (for example, -B , -l , and -L).

f95 [options] list_of_files additional_options

3-2 Fortran User’s Guide • May 2002

3.2 Options Syntax
Typical compiler option formats are:

The following typographical conventions are used when describing the individual

options:

Brackets, pipe, and ellipsis are meta characters used in the descriptions of the options

and are not part of the options themselves.

Some general guidelines for options are:

■ –l x is the option to link with library lib x.a . It is always safer to put –l x after

the list of file names to insure the order libraries are searched.

■ In general, processing of the compiler options is from left to right, allowing

selective overriding of macro options (options that include other options).

■ The above rule does not apply to linker options.

TABLE 3-1 Options Syntax

Syntax Format Example

–flag –g

–flagvalue –Dnostep

–flag=value –xunroll=4

–flag value –o outfile

TABLE 3-2 Typographic Notations for Options

Notation Meaning Example: Text/Instance

[] Square brackets contain arguments that are

optional.

–O[n]

–O4, –O

{ } Curly brackets (braces) contain a set of choices

for a required option.

–d{y|n}

–dy

| The “pipe” or “bar” symbol separates

arguments, only one of which may be chosen.

–B{dynamic|static}

–Bstatic

: The colon, like the comma, is sometimes used

to separate arguments.

–Rdir[: dir]
–R/local/libs:/U/a

… The ellipsis indicates omission in a series. –xinline= f1[,…fn]

–xinline=alpha,dos

Chapter 3 Fortran Compiler Options 3-3

■ However, some options, –I , –L , and –R for example, accumulate values rather

than override previous values when repeated on the same command line.

Source files, object files, and libraries are compiled and linked in the order in which

they appear on the command line.

3.3 Options Summary
In this section, the compiler options are grouped by function to provide an easy

reference. The details will be found on the pages in the following sections, as

indicated.

The following table summarizes the f95 compiler options by functionality. The table

does not include obsolete and legacy option flags. Some flags serve more than one

purpose and appear more than once.

TABLE 3-3 Compiler Options Grouped by Functionality

Function Option Flag

Compilation Mode:

Compile only; do not produce an executable file -c

Show commands built by the driver but do not compile -dryrun

Support Fortran 77 extensions and compatibility -f77

Specify path for writing compiled .mod Module files -moddir= path

Specify name of object, library, or executable file to write -o filename

Compile and generate only assembly code -S

Strip symbol table from executable -s

Suppress compiler messages, except error messages -silent

Define path to directory for temporary files -temp= path

Show elapsed time for each compilation phase -time

Show version number of compiler and its phases -V

Verbose messages -v

Specify non-standard aliasing situations -xalias= list

3-4 Fortran User’s Guide • May 2002

Compiled Code:

Add/suppress trailing underscores on external names -ext_names= x

Inline specified user functions -inline= list

Compile position independent code -KPIC/-kpic

Inline certain math library routines -libmil

STOP returns integer status value to shell -stop_status[= yn]

Specify code address space -xcode= x

Enable UltraSPARC prefetch instructions -xprefetch[= x]

Specify use of optional registers -xregs= x

Specify default data mappings -xtypemap= x

Data Alignment:

Specify alignment of data in COMMON blocks -aligncommon[= n]

Force COMMON block data alignment to allow double

word fetch/store

-dalign

Force alignment of all data on 8-byte boundaries -dbl_align_all

Align COMMON block data on 8-byte boundaries -f

Specify memory alignment and behavior -xmemalign[= ab]

Debugging:

Enable runtime subscript range checking -C

Compile for debugging with dbx -g

Compile for browsing with Forte Developer source

browser

-sb, -sbfast

Flag use of undeclared variables -u

Check for stack overflow at runtime -xcheck=stkovf

Compile for Forte Developer Performance Analyzer -xF

Generate cross-reference listings -Xlist x

Enable debugging without object files -xs

Diagnostics:

Flag use of non-standard extensions -ansi

Suppress specific error messages -erroff= list

Display error tag names with error messages -errtags

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

Chapter 3 Fortran Compiler Options 3-5

Show summary of compiler options -flags, -help

Show version number of the compiler and its phases -V

Verbose messages -v

Verbose parallelization messages -vpara

Show/suppress warning messages -w n

Check for certain runtime error conditions -xcheck= list

Enable runtime task common check -xcommonchk

Display compiler README file -xhelp=readme

Licensing:

Show license server information -xlicinfo

Linking and Libraries:

Allow/require dynamic/static libraries -B x

Allow only dynamic/static library linking -dy, -dn

Build a dynamic (shared object) library -G

Assign name to dynamic library -h name

Add directory to library search path -L path

Link with library lib name.a or lib name.so -l name

Build runtime library search path into executable -R path

Disable use of incremental linker, ild -xildoff

Link with optimized math library -xlibmopt

Link with Sun Performance Library -xlic_lib=sunperf

Link editor option -z x

Generate pure libraries with no relocations -ztext

Numerics and Floating-Point:

Use non-standard floating-point preferences -fnonstd

Select SPARC non-standard floating point -fns

Enable runtime floating-point overflow during input -fpover

Select IEEE floating-point rounding mode -fpround= r

Select floating-point optimization level -fsimple= n

Select floating-point trapping mode -ftrap= t

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

3-6 Fortran User’s Guide • May 2002

Specify rounding method for formatted input/output -iorounding= mode

Promote single precision constants to double precision -r8const

Enable interval arithmetic and set the appropriate

floating-point environment (includes -xinterval)

-xia[= e]

Enable interval arithmetic extensions -xinterval[= e]

Optimization and Performance:

Analyze loops for data dependencies -depend

Optimize using a selection of options -fast

Specify optimization level -On

Pad data layout for efficient use of cache -pad[= p]

Allocate local variables on the memory stack -stackvar

Enable loop unrolling -unroll[= m]

Enable optimization across source files -xcrossfile[= n]

Invoke interprocedural optimizations pass -xipo[= n]

Set highest optimization level for #pragma OPT -xmaxopt[= n]

Enable/adjust compiler generated prefetch instructions -xprefetch= list

Control automatic generation of prefetch instructions -xprefetch_level= n

Enable generation or use of performance profiling data -xprofile= p

Assert that no memory-based traps will occur -xsafe=mem

Do no optimizations that increase code size -xspace

Generate calls to vector library functions automatically -xvector[= yn]

Parallelization:

Enable automatic parallelization of DO loops -autopar

Enable parallelization of loops explicitly marked with

directives

-explicitpar

Show loop parallelization information -loopinfo

Specify which style of directives to accept: Sun, Cray,

OpenMP

-mp=v

Compile for hand-coded multithreaded programming -mt

Accept OpenMP API directives and set appropriate

environment (macro)

-openmp

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

Chapter 3 Fortran Compiler Options 3-7

Parallelize loops with -autopar -explicitpar -depend
combination

-parallel

Recognize reduction operations in loops with automatic

parallelization

-reduction

Verbose parallelization messages -vpara

Source Code:

Define preprocessor symbol -D name[= val]

Undefine preprocessor symbol -U name

Accept extended (132 character) source lines -e

Apply preprocessor to .F and/or .F90 and .F95 files but

do not compile

-F

Accept fixed-format input (f95) -fixed

Preprocess all source files with the fpp preprocessor -fpp

Accept free-format input (f95) -free

Add directory to include file search path -I path

Add directory to module search path -Mpath

Recognize upper and lower case as distinct -U

Tread hollerith as character in actual arguments -xhasc={yes|no}

Select preprocessor, cpp or fpp , to use -xpp[={fpp|cpp}]

Allow recursive subprogram calls -xrecursive

Target Platform:

Optimize for the host system -native

Specify target platform instruction set for the optimizer -xarch= a

Specify target cache properties for optimizer -xcache= a

Specify target processor for the optimizer -xchip= a

Specify target platform for the optimizer -xtarget= a

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

3-8 Fortran User’s Guide • May 2002

3.3.1 Commonly Used Options

The compiler has many features that are selectable by optional command–line

parameters. The short list below of commonly used options is a good place to start.

3.3.2 Macro Flags

Some option flags are macros that expand into a specific set of other flags. These are

provided as a convenient way to specify a number of options that are usually

expressed together to select a certain feature.

TABLE 3-4 Commonly Used Options

Action Option

Debug—global program checking across routines for consistency of

arguments, commons, and so on.

–Xlist

Debug—produce additional symbol table information to enable the

dbx and Forte Developer debugging.

–g

Performance—invoke the optimizer to produce faster running

programs.

–O[n]

Performance—Produce efficient compilation and run times for the

native platform, using a set of predetermined options.

–fast

Dynamic (–Bdynamic) or static (–Bstatic) library binding. –Bx

Compile only—Suppress linking; make a .o file for each source file. –c

Output file—Name the executable output file nm instead of a.out . –o nm

Source code—Compile fixed format Fortran source code. -fixed

TABLE 3-5 Macro Option Flags

Option Flag Expansion

-dalign -xmemalign=8s -aligncommon=16

-f -aligncommon=16

-fast -xO5 -libmil -fsimple=2 -dalign -xlibmopt -depend
-fns -ftrap=common -pad=local -xvector=yes
-xprefetch=yes

-fnonstd -fns -ftrap=common

-openmp -mp=openmp -explicitpar -stackvar -D_OPENMP=2000011

-parallel -autopar -explicitpar -depend

Chapter 3 Fortran Compiler Options 3-9

Settings that follow the macro flag on the command line override the expansion of

the macro. For example, to use -fast but with an optimization level of -O3 , the

-O3 must come after -fast on the command line.

3.3.3 Backward Compatibility and Legacy Options

The following options are provided for backward compatibility with earlier compiler

releases, and certain Fortran legacy capabilities.

Use of these option flags is not recommended for producing portable Fortran 95

programs.

-xia=widestneed -xinterval=widestneed -ftrap=%none -fns=no
-fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

-xtarget -xarch -xcache -xchip (See Appendix C)

TABLE 3-6 Backward Compatibility Options

Action Option

Allow assignment to constant arguments. –copyargs

Treat hollerith constant as character or typeless in call

argument lists.

-xhasc[={yes|no}]

Support Fortran 77 extensions and conventions -f77

Nonstandard arithmetic—allow nonstandard arithmetic. –fnonstd

Optimize performance for the host system. –native

DOloops—use one trip DOloops. –onetrip

Allow legacy aliasing situations -xalias= keywords

TABLE 3-5 Macro Option Flags (Continued)

Option Flag Expansion

3-10 Fortran User’s Guide • May 2002

3.3.4 Obsolete Option Flags

The following options are considered obsolete and should not be used. They might

be removed from later releases of the compiler.

TABLE 3-7 Obsolete f95 Options

Option Flag Equivalent

-a -xprofile=tcov

-cg89 -xtarget=ss2

-cg92 -xtarget=ss1000

-noqueue License queueing. No longer needed.

-p Profiling. Use -pg or the Forte Developer Performance Analyzer

-pic -xcode=pic13

-PIC -xcode=pic32

Chapter 3 Fortran Compiler Options 3-11

3.4 Options Reference
This section shows all the f95 compiler command–line option flags, including

various risks, restrictions, caveats, interactions, examples, and other details.

This options reference details each option flag.

–a

Profile by basic block using tcov , old style. (Obsolete)

This is the old style of basic block profiling for tcov . See –xprofile=tcov for

information on the new style of profiling and the tcov (1) man page for more details.

Also see the Forte Developer manual, Program Performance Analysis Tools.

-aligncommon [=n]

Specify the alignment of data in common blocks and numeric sequence types.

n may be 1, 2, 4, 8, or 16, and indicates the maximum alignment (in bytes) for data

elements within common blocks and numeric sequence types.

For example, -aligncommon=4 would align data elements with natural alignments

of 4 bytes or more on 4-byte boundaries.

This option does not affect data with natural alignment smaller than the specified

size.

Without -aligncommon , the compiler aligns elements in common blocks and

numeric sequence types on (at most) 4-byte boundaries.

Specifying -aligncommon without a value defaults to 1: all common block and

numeric sequence type elements align on byte boundaries (no padding between

elements).

-aligncommon=16 reverts to -aligncommon=8 on platforms that are not 64-bit

enabled (platforms other than v9 , v9a , or v9b).

–ansi

Identify many nonstandard extensions.

Warning messages are issued for any uses of non–standard Fortran 95 extensions in

the source code.

3-12 Fortran User’s Guide • May 2002

-autopar

Enable automatic loop parallelization.

Finds and parallelizes appropriate loops for running in parallel on multiple

processors. Analyzes loops for inter–iteration data dependencies and loop

restructuring. If the optimization level is not specified –O3 or higher, it will

automatically be raised to –O3.

Also specify the –stackvar option when using any of the parallelization options,

including –autopar .

Avoid -autopar if the program already contains explicit calls to the libthread
threads library. See note in “–mt” on page 34.

The -autopar option is not appropriate on a single–processor system, and the

compiled code will generally run slower.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

If you use –autopar and compile and link in one step, the multithreading library

and the thread–safe Fortran runtime library will automatically be linked. If you use

-autopar and compile and link in separate steps, then you must also link with

-autopar to insure linking the appropriate libraries.

The -reduction option may also be useful with –autopar . Other parallelization

options are –parallel and –explicitpar .

Refer to the Fortran Programming Guide for more information on parallelization.

–B{ static | dynamic }

Prefer dynamic or require static library linking.

No space is allowed between –B and dynamic or static . The default, without –B
specified, is –Bdynamic .

■ –Bdynamic : Prefer dynamic linking (try for shared libraries).

■ –Bstatic : Require static linking (no shared libraries).

Also note:

■ If you specify static , but the linker finds only a dynamic library, then the

library is not linked with a warning that the “library was not found.”

■ If you specify dynamic , but the linker finds only a static version, then that library

is linked, with no warning.

Chapter 3 Fortran Compiler Options 3-13

You can toggle –Bstatic and –Bdynamic on the command line. That is, you can

link some libraries statically and some dynamically by specifying -Bstatic and

-Bdynamic any number of times on the command line, as follows:

These are loader and linker options. Compiling and linking in separate steps with

-B x on the compile command will require it in the link step as well.

You cannot specify both -Bdynamic and -dn on the command line because -dn
disables linking of dynamic libraries.

In a 64-bit Solaris environment, many system libraries are available only as shared

dynamic libraries. These include libm.so and libc.so (libm.a and libc.a are

not provided). This means that –Bstatic and –dn may cause linking errors in

64-bit Solaris environments. Applications must link with the dynamic libraries in

these cases.

See the Fortran Programming Guide for more information on static and dynamic

libraries.

–C

Check array references for out of range subscripts and conformance at runtime.

Subscripting arrays beyond their declared sizes may result in unexpected results,

including segmentation faults. The –C option checks for possible array subscript

violations in the source code and during execution. -C also adds runtime checks for

array conformance in array syntax expressions

Specifying –C may make the executable file larger.

If the –C option is used, array subscript violations are treated as an error. If an array

subscript range violation is detected in the source code during compilation, it is

treated as a compilation error.

If an array subscript violation can only be determined at runtime, the compiler

generates range–checking code into the executable program. This may cause an

increase in execution time. As a result, it is appropriate to enable full array subscript

checking while developing and debugging a program, then recompiling the final

production executable without subscript checking.

–c

Compile only; produce object .o files, but suppress linking.

Compile a .o file for each source file. If only a single source file is being compiled,

the –o option can be used to specify the name of the .o file written.

f95 prog.f -Bdynamic -lwells -Bstatic -lsurface

3-14 Fortran User’s Guide • May 2002

–cg89

Compile for generic SPARC architecture. (Obsolete)

This option is a macro for: –xarch=v7 –xchip=old –xcache=64/32/1 which is

equivalent to –xtarget=ss2 .

–cg92

Compile for SPARC V8 architecture. (Obsolete)

This option is a macro for:

–xarch=v8 –xchip=super –xcache=16/32/4:1024/32/1 which is equivalent to

–xtarget=ss1000 .

–copyargs

Allow assignment to constant arguments.

Allow a subprogram to change a dummy argument that is a constant. This option is

provided only to allow legacy code to compile and execute without a runtime error.

■ Without –copyargs , if you pass a constant argument to a subroutine, and then

within the subroutine try to change that constant, the run aborts.

■ With –copyargs , if you pass a constant argument to a subroutine, and then

within the subroutine change that constant, the run does not necessarily abort.

Code that aborts unless compiled with –copyargs is, of course, not Fortran

standard compliant. Also, such code is often unpredictable.

–Dname[=def]

Define symbol name for the preprocessor.

This option only applies to .F , .F90 , and .F95 source files.

–Dname=def Define name to have value def

–Dname Define name to be 1

On the command line, this option will define name as if:

#define name[= def]

had appears in the source file. If no =def specified, the name name is defined as the

value 1. The macro symbol name is passed on to the preprocessor fpp (or cpp — see

the –xpp option) for expansion.

Chapter 3 Fortran Compiler Options 3-15

The predefined macro symbols have two leading underscores. The Fortran syntax

may not support the actual values of these macros—they should appear only in fpp
or cpp preprocessor directives.

■ The product version is predefined (in hex) in __SUNPRO_F90, and

__SUNPRO_F95.
For example __SUNPRO_F95is 0x700 for the Forte Developer 7 release.

■ The following macros are predefined on appropriate systems:

__sparc , __unix , __sun , __SVR4,

__SunOS_5_6, __SunOS_5_7, __SunOS_5_8

For instance, the value __sparc is defined on SPARC systems. You can use

these values in such preprocessor conditionals as the following:

#ifdef __sparc

■ The following are predefined with no underscores, but they may be deleted in a

future release: sparc , unix , sun

■ On SPARC V9 systems, the __sparcv9 macro is also defined.

f95 uses the fpp (1) preprocessor by default. Like the C preprocessor cpp (1), fpp
expands source code macros and enables conditional compilation of code. Unlike

cpp , fpp understands Fortran syntax, and is preferred as a Fortran preprocessor.

Use the –xpp=cpp flag to force the compiler to specifically use cpp rather than fpp .

–dalign

Align COMMON blocks and numerical sequence types, and generate faster

multi-word load/stores.

This flag changes the data layout in COMMON blocks, numeric sequence types, and

EQUIVALENCE classes, and enables the compiler to generate faster multi-word

load/stores for that data.

The data layout effect is that of the -f flag: double- and quad-precision data in

COMMON blocks and EQUIVALENCE classes are laid out in memory along their

“natural” alignment, which is on 8-byte boundaries (or on 16-byte boundaries for

quad-precision when compiling for 64-bit environments with -xarch=v9 or v9a).

The default alignment of data in COMMON blocks is on 4-byte boundaries. The

compiler is also allowed to assume natural alignment and generate faster

multi-word load/stores to reference the data.

Note – -dalign may result in nonstandard alignment of data, which could cause

problems with variables in EQUIVALENCEor COMMONand may render the program

non-portable if –dalign is required.

-dalign is a macro equivalent to: -xmemalign=8s -aligncommon=16 . See

-aligncommon , page 11, and -xmemalign , page 68.

3-16 Fortran User’s Guide • May 2002

If you compile one subprogram with –dalign , compile all subprograms of the

program with –dalign . This option is included in the –fast option.

Note that because -dalign invokes -aligncommon , numeric sequence types are

also affected by this option.

–dbl_align_all= { yes | no}

Force alignment of data on 8–byte boundaries

The value is either yes or no . If yes , all variables will be aligned on 8–byte

boundaries. Default is –dbl_align_all=no .

When compiling for 64-bit environments with -xarch=v9 or v9a , this flag will align

quad-precision data on 16-byte boundaries.

This flag does not alter the layout of data in COMMON blocks or user-defined

structures.

Use with –dalign to enable added efficiency with multi-word load/stores.

If used, all routines must be compiled with this flag.

–depend

Analyze loops for data dependencies and do loop restructuring.

This option will raise the optimization level to O3 if no optimization level is

specified, or if it is specified less than O3. –depend is also included with –fast ,

-autopar and -parallel . (See the Fortran Programming Guide.)

-dn

Disallow dynamic libraries. See “–d{y|n}” on page 16.

–dryrun

Show commands built by the f95 command-line driver, but do not compile.

Useful when debugging, this option displays the commands and suboptions the

compiler will invoke to perform the compilation.

–d{ y | n}

Allow or disallow dynamic libraries for the entire executable.

■ –dy : Yes, allow dynamic/shared libraries.

■ –dn : No, do not allow dynamic/shared libraries.

Chapter 3 Fortran Compiler Options 3-17

The default, if not specified, is –dy .

Unlike –Bx, this option applies to the whole executable and need appear only once on

the command line.

–dy|–dn are loader and linker options. If you compile and link in separate steps

with these options, then you need the same option in the link step.

In a 64-bit Solaris environment, many system libraries are not available only as

shared dynamic libraries. These include libm.so and libc.so (libm.a and

libc.a are not provided). This means that –dn and –Bstatic may cause linking

errors in 64-bit Solaris environments. Applications must link with the dynamic

libraries in these cases.

–e

Accept extended length input source line.

Extended source lines can be up to 132 characters long. The compiler pads on the

right with trailing blanks to column 132. If you use continuation lines while

compiling with –e , then do not split character constants across lines, otherwise,

unnecessary blanks may be inserted in the constants.

–erroff= taglist

Suppress warning messages listed by tag name.

Suppress the display of warning messages specified in the comma–separated list of

tag names taglist. If taglist consists of %none, no warnings are suppressed. If taglist
consists of %all , all warnings are suppressed (this is equivalent to the –w option.)

Example:

f95 -erroff=WDECL_LOCAL_NOTUSED ink.f

Use the –errtags option to see the tag names associated with warning messages.

–errtags [={ yes | no}]

Display the message tag with each warning message.

3-18 Fortran User’s Guide • May 2002

With-errtags=yes , the compiler’s internal error tag name will appear along with

warning messages. The default is not to display the tag (-errtags=no).

-errtags alone stands for -errtags=yes .

–explicitpar

Parallelize loops or regions explicitly marked by Sun, Cray, and/or OpenMP

directives.

The compiler will generate parallel code even if there are data dependencies in the

DO loop that would cause the loop to generate incorrect results when run in parallel.

With explicit parallelization, it is the user’s responsibility to correctly analyze loops

for data dependency problems before marking them with parallelization directives.

Parallelization is appropriate only on multiprocessor systems.

This option enables Sun, Cray, and/or OpenMP explicit parallelization directives.

DO loops immediately preceded by parallelization directives will have threaded

code generated for them.

(Use the -openmp flag, which is a macro flag that includes -explicitpar , to enable

OpenMP explicit parallelization directives.See “-openmp” on page 38)

Note – -explicitpar should not be used to compile programs that already do

their own multithreading with calls to the libthread library.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

If you use –explicitpar and compile and link in one step, then linking

automatically includes the multithreading library and the thread–safe Fortran

runtime library. If you use –explicitpar and compile and link in separate steps,

then you must also link with –explicitpar .

To improve performance, also specify the –stackvar option when using any of the

parallelization options, including –explicitpar .

demo% f95 –errtags ink.f
ink.f:
 MAIN:
"ink.f", line 11: Warning: local variable "i" never used
(WDECL_LOCAL_NOTUSED) <– The warning message’s tag name

Chapter 3 Fortran Compiler Options 3-19

Use the -mp option (“–mp={%none|sun|cray|openmp}” on page 34) to select the

style of parallelization directives enabled: Sun, Cray, or OpenMP.

If the optimization level is not –O3 or higher, it is raised to –O3 automatically.

For details, see the “Parallelization” chapter in the Fortran Programming Guide.

–ext_names= e

Create external names with or without trailing underscores.

e must be either plain or underscores . The default is underscores .

–ext_names=plain : Do not add trailing underscore.

–ext_names=underscores : Add trailing underscore.

An external name is a name of a subroutine, function, block data subprogram, or

labeled common. This option affects both the name of the routine’s entry point and

the name used in calls to it. Use this flag to allow Fortran 95 routines to call (and be

called by) other programming language routines.

–F

Invoke the source file preprocessor, but do not compile.

Apply the fpp preprocessor to .F files (and .f95 files with f95) and write the

processed result on a file with the same name but with suffix changed to .f (or

.f95) , but do not compile.

Example:

f95 –F source.F

writes the processed source file to source.f

fpp is the default preprocessor for Fortran. The C preprocessor, cpp , can be selected

instead by specifying –xpp=cpp .

–f

Align double- and quad-precision data in COMMON blocks.

-f is a legacy option flag equivalent to -aligncommon=16 . Use of -aligncommon is

preferred.

3-20 Fortran User’s Guide • May 2002

The default alignment of data in COMMON blocks is on 4-byte boundaries. -f
changes the data layout of double- and quad-precision data in COMMON blocks

and EQUIVALENCE classes to be placed in memory along their “natural”

alignment, which is on 8-byte boundaries (or on 16-byte boundaries for

quad-precision when compiling for 64-bit environments with -xarch=v9 or v9a).

Note – -f may result in nonstandard alignment of data, which could cause

problems with variables in EQUIVALENCEor COMMONand may render the program

non-portable if –f is required.

Compiling any part of a program with -f requires compiling all subprograms of that

program with -f .

By itself, this option does not enable the compiler to generate faster multi-word

fetch/store instructions on double and quad precision data. The –dalign option

does this and invokes –f as well. Use of –dalign is preferred over the older –f . See

“–dalign” on page 15. Because –dalign is part of the –fast option, so is –f .

-f77 [=list]

Select Fortran 77 compatibility mode.

This option flag enables porting legacy Fortran 77 source programs, including those

with language extensions accepted by the f77 compiler, to the f95 Fortran 95

compiler.

list is a comma-separated list selected from the following possible keywords:

keyword meaning

%all Enable all the Fortran 77 compatibility features.

%none Disable all the Fortran 77 compatibility features.

backslash Accept backslash as an escape sequence in character strings.

input Allow input formats accepted by f77 .

intrinsics Limit recognition of intrinsics to only Fortran 77 intrinsics.

logical Accept Fortran 77 usage of logical variables, such as:

- assigning integer values to logical variables

- allowing arithmetic expressions in logical conditional statements,

with .NE.0 representing .TRUE.
- allowing relational operators .EQ. and .NE. with logical operands

misc Allow miscellaneous f77 Fortran 77 extensions.

Chapter 3 Fortran Compiler Options 3-21

All keywords can be prefixed by no% to disable the feature, as in:

-f77=%all,no%backslash

The default, when -f77 is not specified, is -f77=%none . Using -f77 without a list

is equivalent to specifying -f77=%all .

See Chapter 5 for complete information on f77 compatibility and Fortran 77 to

Fortran 95 migration.

–fast

Select options that optimize execution performance.

Note – This option is defined as a particular selection of other options that is subject

to change from one release to another, and between compilers. Also, some of the

options selected by –fast might not be available on all platforms. Compile with the

-v (verbose) flag to see the expansion of -fast .

-fast provides high performance for certain benchmark applications. However, the

particular choice of options may or may not be appropriate for your application. Use

-fast as a good starting point for compiling your application for best performance.

But additional tuning may still be required. If your program behaves improperly

when compiled with -fast , look closely at the individual options that make up

-fast and invoke only those appropriate to your program that preserve correct

behavior.

Note also that a program compiled with -fast may show good performance and

accurate results with some data sets, but not with others. Avoid compiling with

-fast those programs that depend on particular properties of floating-point

arithmetic.

Because some of the options selected by -fast have linking implications, if you

compile and link in separate steps be sure to link with -fast also.

–fast selects the following options:

■ –dalign
■ –depend

output Generate f77 -style formatted output, including list-directed and

NAMELISToutput.

subscript Allow non-integer expressions as array subscripts.

tab Enable f77 -style TAB-formatting, including unlimited source line

length. No blank padding will be added to source lines shorter than

72 characters.

keyword meaning

3-22 Fortran User’s Guide • May 2002

■ –fns
■ –fsimple=2
■ -ftrap=common
■ –libmil
■ –xtarget=native
■ –O5
■ –xlibmopt
■ -pad=local
■ -xvector=yes
■ -xprefetch=yes
■ -xprefetch_level=2

Details about the options selected by –fast :

■ The -xtarget=native hardware target.

If the program is intended to run on a different target than the compilation

machine, follow the –fast with a code–generator option. For example:

f95 –fast -xtarget=ultra ...

■ The –O5 optimization level option.

■ The –depend option analyzes loops for data dependencies and possible

restructuring.

■ The –libmil option for system–supplied inline expansion templates.

For C functions that depend on exception handling, follow -fast by -nolibmil
(as in -fast –nolibmil) . With –libmil , exceptions cannot be detected with

errno or matherr (3m).

■ The -fsimple=2 option for aggressive floating–point optimizations.

–fsimple=2 is unsuitable if strict IEEE 754 standards compliance is required. See

“–fsimple[=n]” on page 26.

■ The –dalign option to generate double loads and stores for double and quad

data in common blocks. Using this option can generate nonstandard Fortran data

alignment in common blocks.

■ The –xlibmopt option selects optimized math library routines.

■ -pad=local inserts padding between local variables, where appropriate, to

improve cache usage.

■ -xvector=yes transforms certain math library calls within DO loops to single

calls to a vectorized library equivalent routine with vector arguments.

■ –fns selects non-standard SPARC floating-point arithmetic exception handling

and gradual underflow. See “–fns[={no|yes}]” on page 24.

■ Trapping on common floating-point exceptions, -ftrap=common , is the enabled

with Fortran 95.

■ -xprefetch=yes enables the compiler to generate hardware prefetch

instructions where appropriate.

■ -xprefetch_level=2 sets the default level for insertion of prefetch instructions.

Chapter 3 Fortran Compiler Options 3-23

It is possible to add or subtract from this list by following the –fast option with

other options, as in:

f95 –fast –fsimple=1 –xnolibmopt ...

which overrides the –fsimple=2 option and disables the –xlibmopt selected by

-fast .

Because -fast invokes -dalign , -fns , -fsimple=2 , programs compiled with

-fast can result in nonstandard floating-point arithmetic, nonstandard alignment

of data, and nonstandard ordering of expression evaluation. These selections might

not be appropriate for most programs.

Note that the set of options selected by the -fast flag can change with each

compiler release.

–fixed

Specify fixed–format Fortran 95 source input files.

All source files on the command–line will be interpreted as fixed format regardless

of filename extension. Normally, f95 interprets only .f files as fixed format, .f95
as free format.

–flags

Synonym for –help .

–fnonstd

Initialize floating–point hardware to non–standard preferences.

This option is a macro for the combination of the following option flags:

–fns –ftrap=common

Specifying –fnonstd is approximately equivalent to the following two calls at the

beginning of a Fortran main program.

The nonstandard_arithmetic() routine replaces the obsolete

abrupt_underflow() routine of earlier releases.

To be effective, the main program must be compiled with this option.

Using this option initializes the floating-point hardware to:

i=ieee_handler("set", "common", SIGFPE_ABORT)
call nonstandard_arithmetic()

3-24 Fortran User’s Guide • May 2002

■ Abort (trap) on floating-point exceptions.

■ Flush underflow results to zero if it will improve speed, rather than produce a

subnormal number as the IEEE standard requires.

See –fns for more information about gradual underflow and subnormal numbers.

The –fnonstd option allows hardware traps to be enabled for floating–point

overflow, division by zero, and invalid operation exceptions. These are converted

into SIGFPE signals, and if the program has no SIGFPE handler, it terminates with a

dump of memory.

For more information, see the ieee_handler (3m) and ieee_functions (3m) man

pages, the Numerical Computation Guide, and the Fortran Programming Guide.

–fns [={ no | yes }]

Select SPARC nonstandard floating–point mode.

The default is the SPARC standard floating–point mode (–fns=no). (See the

“Floating–Point Arithmetic” chapter of the Fortran Programming Guide.)

Optional use of =yes or =no provides a way of toggling the –fns flag following

some other macro flag that includes it, such as –fast . –fns is the same as

-fns=yes .

This option flag enables nonstandard floating-point mode when the program begins

execution. On some SPARC systems, specifying nonstandard floating-point mode

disables “gradual underflow”, causing tiny results to be flushed to zero rather than

producing subnormal numbers. It also causes subnormal operands to be silently

replaced by zero. On those SPARC systems that do not support gradual underflow

and subnormal numbers in hardware, use of this option can significantly improve

the performance of some programs.

Where x does not cause total underflow, x is a subnormal number if and only if |x| is

in one of the ranges indicated:

See the Numerical Computation Guide for details on subnormal numbers, and the

Fortran Programming Guide chapter “Floating–Point Arithmetic” for more

information about this and similar options. (Some arithmeticians use the term

denormalized number for subnormal number.)

TABLE 3-8 Subnormal REAL and DOUBLE

Data Type Range

REAL 0.0 < |x| < 1.17549435e–38

DOUBLE PRECISION 0.0 < |x| < 2.22507385072014e–308

Chapter 3 Fortran Compiler Options 3-25

The standard initialization of floating–point preferences is the default:

■ IEEE 754 floating–point arithmetic is nonstop (do not abort on exception).

■ Underflows are gradual.

To be effective, the main program must be compiled with this option.

–fpover [={ yes | no}]

Detect floating-point overflow in formatted input.

With –fpover=yes specified, the I/O library will detect runtime floating-point

overflows in formatted input and return an error condition (1031). The default is no

such overflow detection (–fpover=no). –fpover is equivalent to –fpover=yes .

-fpp

Force preprocessing of input with fpp .

Pass all the input source files listed on the f95 command line through the fpp
preprocessor, regardless of file extension. (Normally, only files with .F , .F90 , or

.F95 extension are automatically preprocessed by fpp .) See also “–xpp={fpp|cpp}”

on page 69.

–free

Specify free–format source input files.

All source files on the command–line will be interpreted as f95 free format

regardless of filename extension. Normally, f95 interprets .f files as fixed format,

.f95 as free format.

–fround= r

Set the IEEE rounding mode in effect at startup.

r must be one of: nearest , tozero , negative , positive .

The default is –fround=nearest .

To be effective, compile the main program with this option.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions.

■ Is established at runtime during the program initialization.

When r is tozero , negative , or positive , the option sets the rounding direction

to round-to-zero, round-to-negative-infinity, or round-to-positive-infinity, respectively,

when the program begins execution. When –fround is not specified,

3-26 Fortran User’s Guide • May 2002

-fround=nearest is used as the default and the rounding direction is

round-to-nearest. The meanings are the same as those for the ieee_flags function.

(See the “Floating–Point Arithmetic” chapter of the Fortran Programming Guide.)

–fsimple [=n]

Select floating–point optimization preferences.

Allow the optimizer to make simplifying assumptions concerning floating–point

arithmetic. (See the “Floating–Point Arithmetic” chapter of the Fortran Programming
Guide.)

For consistent results, compile all units of a program with the same –fsimple
option.

If n is present, it must be 0, 1, or 2. The defaults are:

■ Without the –fsimple flag, the compiler defaults to –fsimple=0
■ With –fsimple alone, the compiler defaults to –fsimple=1

The different floating–point simplification levels are:

–fsimple=0

Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

–fsimple=1

Allow conservative simplifications. The resulting code does not strictly

conform to IEEE 754, but numeric results of most programs are unchanged.

With –fsimple=1 , the optimizer can assume the following:

■ IEEE 754 default rounding/trapping modes do not change after process

initialization.

■ Computations producing no visible result other than potential floating point

exceptions may be deleted.

■ Computations with Infinity or NaNs (“Not a Number”) as operands need not

propagate NaNs to their results; e.g., x*0 may be replaced by 0.

■ Computations do not depend on sign of zero.

With –fsimple=1 , the optimizer is not allowed to optimize completely

without regard to roundoff or exceptions. In particular, a floating–point

computation cannot be replaced by one that produces different results with

rounding modes held constant at run time.

–fsimple=2

Permit aggressive floating point optimizations. This can cause some programs

to produce different numeric results due to changes in the way expressions are

evaluated. In particular, the Fortran standard rule requiring compilers to honor

Chapter 3 Fortran Compiler Options 3-27

explicit parentheses around subexpressions to control expression evaluation

order may be broken with -fsimple=2 . This could result in numerical

rounding differences with programs that depend on this rule.

For example, with -fsimple=2 , the compiler may evaluate C-(A-B) as

(C-A)+B , breaking the standard’s rule about explicit parentheses, if the

resulting code is better optimized. The compiler might also replace repeated

computations of x/y with x*z, where z=1/y is computed once and saved in a

temporary, to eliminate the costly divide operations.

Programs that depend on particular properties of floating-point arithmetic

should not be compiled with -fsimple=2 .

Even with –fsimple=2 , the optimizer still is not permitted to introduce a

floating point exception in a program that otherwise produces none.

–fast sets -fsimple=2.

–ftrap= t

Set floating–point trapping mode in effect at startup.

t is a comma–separated list that consists of one or more of the following:

%all , %none, common, [no%]invalid , [no%]overflow , [no%]underflow ,

[no%]division , [no%]inexact .

-ftrap=common is a macro for

-ftrap=invalid,overflow,underflow,division .

The f95 default is -ftrap=common .

This option sets the IEEE 754 trapping modes that are established at program

initialization. Processing is left–to–right. The common exceptions, by definition, are

invalid, division by zero, and overflow. For example: –ftrap=overflow .

Example: –ftrap=%all,no%inexact means set all traps, except inexact .

The meanings for –ftrap= t are the same as for ieee_flags() , except that:

■ %all turns on all the trapping modes, and will cause trapping of spurious and

expected exceptions. Use commoninstead.

■ %none turns off all trapping modes.

■ A no%prefix turns off that specific trapping mode.

To be effective, compile the main program with this option.

For further information, see the “Floating–Point Arithmetic” chapter in the Fortran
Programming Guide.

3-28 Fortran User’s Guide • May 2002

–G

Build a dynamic shared library instead of an executable file.

Direct the linker to build a shared dynamic library. Without –G, the linker builds an

executable file. With –G, it builds a dynamic library. Use –o with –G to specify the

name of the file to be written. See the Fortran Programming Guide chapter “Libraries”

for details.

–g

Compile for debugging and performance analysis.

Produce additional symbol table information for debugging with dbx (1) or the Forte

Developer debugging utility and for performance analysis with the Forte Developer

Performance Analyzer.

Although some debugging is possible without specifying –g , the full capabilities of

dbx and debugger are only available to those compilation units compiled with –g .

Some capabilities of other options specified along with –g may be limited. See the

dbx documentation for details.

The –g option makes –xildon the default incremental linker option when .o object

files appear on the command line (see page 64). That is, with –g , the compiler

default behavior is to automatically invoke ild in place of ld , unless the -G option

is present, or any source file is named on the command line.

To use the full capabilities of the Forte Developer 6 Performance Analyzer, compile

with -g . While some performance analysis features do not require -g , you must

compile with -g to view annotated source, some function level information, and

compiler commentary messages. (See the analyzer (1) man page and the Forte

Developer manual Program Performance Analysis Tools.)

The commentary messages generated with -g describe the optimizations and

transformations the compiler made while compiling your program. The messages,

interleaved with the source code, can be displayed by the er_src (1) command.

Note that commentary messages only appear if the compiler actually performed any

optimizations. You are more likely to see commentary messages when you request

high optimization levels, such as with -xO4 , or -fast .

–hname

Specify the name of the generated dynamic shared library.

This option is passed on to the linker. For details, see the Solaris Linker and Libraries
Guide, and the Fortran Programming Guide chapter “Libraries.”

Chapter 3 Fortran Compiler Options 3-29

The –hname option records the name name to the shared dynamic library being

created as the internal name of the library. A space between –h and name is optional

(except if the library name is elp , for which the space will be needed). In general,

name must be the same as what follows the -o . Use of this option is meaningless

without also specifying –G.

Without the –hname option, no internal name is recorded in the library file.

If the library has an internal name, whenever an executable program referencing the

library is run the runtime linker will search for a library with the same internal name

in any path the linker is searching. With an internal name specified, searching for the

library at runtime linking is more flexible. This option can also be used to specify

versions of shared libraries.

If there is no internal name of a shared library, then the linker uses a specific path for

the shared library file instead.

–help

Display a summary list of compiler options.

See also “–xhelp=h” on page 63.

–I path

Add path to the INCLUDE file search path.

Insert the directory path path at the start of the INCLUDEfile search path. No space is

allowed between –I and path. Invalid directories are ignored with no warning

message.

The include file search path is the list of directories searched for INCLUDE files—file

names appearing on preprocessor #include directives, or Fortran INCLUDE
statements.

Example: Search for INCLUDE files in /usr/app/include :

Multiple –I path options may appear on the command line. Each adds to the top of

the search path list (first path searched).

The search order for relative paths on INCLUDEor #include is:

1. The directory that contains the source file

2. The directories that are named in the –I options

demo% f95 –I/usr/app/include growth.F

3-30 Fortran User’s Guide • May 2002

3. The directories in the compiler’s internal default list

4. /usr/include/

–inline= [%auto][[,][no%] f1,…[no%] fn]

Enable or disable inlining of specified routines.

Request the optimizer to inline the user–written routines named in the f1,…,fn list.

Prefixing a routine name with no%disables inlining of that routine.

Inlining is an optimization technique whereby the compiler effectively replaces a

subprogram reference such as a CALL or function call with the actual subprogram

code itself. Inlining often provides the optimizer more opportunities to produce

efficient code.

The lists are a comma–separated list of functions and subroutines. To inhibit inlining

of a function, prefix its name with no%.

Example: Inline the routines xbar, zbar, vpoint :

Following are the restrictions; no warnings are issued:

■ Optimization must be –O3 or greater.

■ The source for the routine must be in the file being compiled, unless -xipo or

–xcrossfile are also specified.

■ The compiler determines if actual inlining is profitable and safe.

The appearance of -inline with -O4 disables the automatic inlining that the

compiler would normally perform, unless %auto is also specified. With -O4 , the

compilers normally try to inline all appropriate user–written subroutines and

functions. Adding –inline with –O4 may degrade performance by restricting the

optimizer’s inlining to only those routines in the list. In this case, use the %auto
suboption to enable automatic inlining at -O4 and -O5 .

In the example above, the user has enabled -O4 ’s automatic inlining while disabling

any possible inlining of the routine zpoint() that the compiler might attempt.

-iorounding= mode

Set floating-point rounding mode for formatted input/output.

demo% f95 –O3 –inline=xbar,zbar,vpoint *.f

demo% f95 -O4 -inline=%auto,no%zpoint *.f

Chapter 3 Fortran Compiler Options 3-31

Sets the ROUND=specifier globally for all formatted input/output operations.

Allowed values for mode are compatible and processor-defined .

With -iorounding=compatible , the value resulting from data conversion is the

one closer to the two nearest representations, or the value away from zero if the

value is halfway between them.

With -iorounding=processor-defined , the rounding mode is the processor’s

default mode. This is the default when -iorounding is not specified.

–Kpic

Obsolete synonym for –xcode=pic13 .

–KPIC

Obsolete synonym for –xcode=pic32 .

–Lpath

Add path to list of directory paths to search for libraries.

Adds path to the front of the list of object–library search directories. A space between

–L and path is optional. This option is passed to the linker. See also “–lx” on page 31.

While building the executable file, ld (1) searches path for archive libraries (.a files)

and shared libraries (.so files). ld searches path before searching the default

directories. (See the Fortran Programming Guide chapter “Libraries” for information

on library search order.) For the relative order between LD_LIBRARY_PATHand

–Lpath, see ld (1).

Note – Specifying /usr/lib or /usr/ccs/lib with –Lpath may prevent linking

the unbundled libm . These directories are searched by default.

Example: Use -L path to specify library search directories:

–l x

Add library lib x.a to linker’s list of search libraries.

demo% f95 -L./dir1 -L./dir2 any.f

3-32 Fortran User’s Guide • May 2002

Pass –l x to the linker to specify additional libraries for ld to search for unresolved

references. ld links with object library lib x. If shared library lib x.so is available

(and –Bstatic or –dn are not specified), ld uses it, otherwise, ld uses static library

lib x.a . If it uses a shared library, the name is built in to a.out . No space is allowed

between –l and x character strings.

Example: Link with the library libVZY :

Use -l x again to link with more libraries.

Example: Link with the libraries liby and libz :

See also the “Libraries” chapter in the Fortran Programming Guide for information on

library search paths and search order.

–libmil

Inline selected libm library routines for optimization.

There are inline templates for some of the libm library routines. This option selects

those inline templates that produce the fastest executable for the floating–point

options and platform currently being used.

For more information, see the man pages libm_single (3F) and libm_double (3F)

–loopinfo

Show loop parallelization results.

Show which loops were and were not parallelized with the –parallel , –autopar ,

or –explicitpar options. (Option –loopinfo must appear with one of these

parallelization options.)

demo% f95 any.f –lVZY

demo% f95 any.f –ly –lz

Chapter 3 Fortran Compiler Options 3-33

–loopinfo displays a list of messages on standard error:

–Mpath

Add path to directory paths searched for Fortran 95 modules. No space appears

between the –Mand path.

path may specify the path to a directory, a .mod precompiled module file, or .a
archive file of precompiled module files. The compiler determines the type of the file

by examining its contents.

.a archive files must be explicitly specified on a -M option flag to be searched for

modules.

Only .mod files with the same names as the MODULEnames appearing on USE
statements will be searched.

If not specified, the compiler searches the current directory for module files.

See “Module Files” on page 18 for more information about modules in Fortran 95.

-moddir= path

Specify where the compiler will write compiled .mod MODULE files.

The compiler will write the .mod MODULE information files it compiles in the

directory specified by path. The directory path can also be specified with the MODDIR
environment variable. If both are specified, this option flag takes precedence.

The compiler uses the current directory as the default for writing .mod files.

See “Module Files” on page 18 for more information about modules in Fortran 95.

demo% f95 –o shalow –fast –parallel –loopinfo shalow.f
...
"shalow.f", line 325: not parallelized, not profitable (inlined loop)
"shalow.f", line 172: PARALLELIZED, and serial version generated
"shalow.f", line 173: not parallelized, not profitable
"shalow.f", line 181: PARALLELIZED, fused
"shalow.f", line 182: not parallelized, not profitable
"shalow.f", line 193: not parallelized, not profitable
"shalow.f", line 199: PARALLELIZED, and serial version generated
"shalow.f", line 200: not parallelized, not profitable
"shalow.f", line 226: PARALLELIZED, and serial version generated
"shalow.f", line 227: not parallelized, not profitable
...etc

3-34 Fortran User’s Guide • May 2002

–mp={%none | sun | cray | openmp}

Select the style for parallelization directives.

The default without specifying –mp is %none.

You can combine OpenMP directives with Sun or Cray directives in the same

compilation unit. But both Sun and Cray directives cannot both be active in the same

compilation unit. For example:

-mp=sun,openmp and

-mp=cray,openmp are permitted, but -mp=sun,cray is not.

You must also specify -explicitpar (or -parallel) to enable parallelization. For

correctness, also specify -stackvar :

-explicitpar -stackvar -mp=openmp

When compiling for OpenMP, use the -openmp flag, which includes -mp=openmp
along with other flags required by OpenMP. See “-openmp” on page 38.

A summary of the Sun and Cray parallelization directives appears in Appendix D in

this manual. See the Fortran Programming Guide for details. See the OpenMP API
User’s Guide for a discussion of OpenMP directives.

–mt

Require linking to thread–safe libraries.

If you do your own low–level thread management (for example, by calling the

libthread library), compiling with –mt prevents conflicts.

Use –mt if you mix Fortran with multithreaded C code that calls the libthread
library. See also the Solaris Multithreaded Programming Guide.

–mt is implied automatically when using the -autopar , -explicitpar , or

-parallel options.

Note the following:

■ A function subprogram that does I/O should not itself be referenced as part of an

I/O statement. Such recursive I/O may cause the program to deadlock with –mt .

-mp=sun Accept Sun–style directives: C$PARor !$PAR prefix.

-mp=cray Accept Cray–style directives: CMIC$ or !MIC$ prefix.

-mp=openmp Accept OpenMP Fortran directives (Available with f95 only).

-mp=%none Ignore all parallelization directives.

Chapter 3 Fortran Compiler Options 3-35

■ In general, do not compile your own multithreaded code with -autopar ,

-explicitpar , or -parallel . The compiler-generated calls to the threads

library and the program’s own calls may conflict, causing unexpected results.

■ On a single–processor system, performance may be degraded with the –mt
option.

–native

Optimize performance for the host system. (Obsolete)

This option is a synonym for –xtarget=native . The –fast option sets

-xtarget=native .

–noautopar

Disables automatic parallelization invoked by –autopar earlier on the command

line.

–nodepend

Cancel any –depend appearing earlier on the command line.

–noexplicitpar

Disables explicit parallelization invoked by –explicitpar earlier on the command

line.

–nolib

Disable linking with system libraries.

Do not automatically link with any system or language library; that is do not pass

any default –l x options on to ld . The normal behavior is to link system libraries

into the executables automatically, without the user specifying them on the

command line.

The –nolib option makes it easier to link one of these libraries statically. The system

and language libraries are required for final execution. It is your responsibility to

link them in manually. This option provides you with complete control.

Link libm statically and libc dynamically with f95 :

The order for the –l x options is important. Follow the order shown in the examples.

demo% f95 –nolib any.f95 –Bstatic –lm –Bdynamic –lc

3-36 Fortran User’s Guide • May 2002

–nolibmil

Cancel –libmil on command line.

Use this option after the -fast option to disable inlining of libm math routines:

–noreduction

Disable –reduction on command line.

This option disables –reduction .

–norunpath

Do not build a runtime shared library search path into the executable.

The compiler normally builds into an executable a path that tells the runtime linker

where to find the shared libraries it will need. The path is installation dependent.

The -norunpath option prevents that path from being built in to the executable.

This option is helpful when libraries have been installed in some nonstandard

location, and you do not wish to make the loader search down those paths when the

executable is run at another site. Compare with –Rpaths.

See the Fortran Programming Guide chapter on “Libraries” for more information.

–O[n]

Specify optimization level.

n can be 1, 2, 3, 4, or 5. No space is allowed between –O and n.

If -O[n] is not specified, only a very basic level of optimization limited to local

common subexpression elimination and dead code analysis is performed. A

program’s performance may be significantly improved when compiled with an

optimization level than without optimization. Use of –O (which sets –O3) or

–fast (which sets –O5) is recommended for most programs.

Each –On level includes the optimizations performed at the levels below it.

Generally, the higher the level of optimization a program is compiled with, the

better runtime performance obtained. However, higher optimization levels may

result in increased compilation time and larger executable files.

Debugging with –g does not suppress –On, but –On limits –g in certain ways; see the

dbx documentation.

demo% f95 –fast –nolibmil …

Chapter 3 Fortran Compiler Options 3-37

The -O3 and -O4 options reduce the utility of debugging such that you cannot

display variables from dbx , but you can still use the dbx where command to get a

symbolic traceback.

If the optimizer runs out of memory, it attempts to proceed over again at a lower

level of optimization, resuming compilation of subsequent routines at the original

level.

For details on optimization, see the Fortran Programming Guide chapters

“Performance Profiling” and “Performance and Optimization.”

–O

This is equivalent to –O3.

–O1

Provides a minimum of statement–level optimizations.

Use if higher levels result in excessive compilation time, or exceed available swap

space.

–O2

Enables basic block level optimizations.

This level usually gives the smallest code size. (See also –xspace .)

–O3 is preferred over –O2 unless –O3 results in unreasonably long compilation time,

exceeds swap space, or generates excessively large executable files.

–O3

Adds loop unrolling and global optimizations at the function level.

Usually –O3 generates larger executable files.

–O4

Adds automatic inlining of routines contained in the same file.

Usually –O4 generates larger executable files due to inlining.

The –g option suppresses the –O4 automatic inlining described above.

–xcrossfile increases the scope of inlining with –O4.

3-38 Fortran User’s Guide • May 2002

–O5

Attempt aggressive optimizations.

Suitable only for that small fraction of a program that uses the largest fraction of

compute time. –O5’s optimization algorithms take more compilation time, and may

also degrade performance when applied to too large a fraction of the source

program.

Optimization at this level is more likely to improve performance if done with profile

feedback. See –xprofile= p.

–o name

Specify the name of the executable file to be written.

There must be a blank between –o and name. Without this option, the default is to

write the executable file to a.out . When used with –c , –o specifies the target .o
object file; with –G it specifies the target .so library file.

–onetrip

Enable one trip DOloops.

Compile DOloops so that they are executed at least once. DOloops in standard

Fortran are not performed at all if the upper limit is smaller than the lower limit,

unlike some legacy implementations of Fortran.

-openmp

Enable explicit parallelization with Fortran 95 OpenMP Version 2.0 directives.

This option is a macro that combines these options:

-mp=openmp -explicitpar -stackvar -D_OPENMP=200011

OpenMP directives are summarized in the Forte Developer OpenMP API User’s
Guide.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

OpenMP requires the definition of the preprocessor symbol _OPENMPto have the

decimal value YYYYMM where YYYY and MM are the year and month designations

of the version of the OpenMP Fortran API that the implementation supports.

Chapter 3 Fortran Compiler Options 3-39

–PIC

Compile position–independent code with 32-bit addresses. (Obsolete)

–PIC is equivalent to –xcode=pic32 . See “–xcode=addr” on page 58 for more

information about position-independent code.

–p

Compile for profiling with the prof profiler. (Obsolete)

Prepare object files for profiling, see prof (1). If you compile and link in separate

steps, and also compile with the -p option, then be sure to link with the -p option.

–p with prof is provided mostly for compatibility with older systems. –pg profiling

with gprof is possibly a better alternative. See the Fortran Programming Guide
chapter on Performance Profiling for details.

–pad [=p]

Insert padding for efficient use of cache.

This option inserts padding between arrays or character variables, if they are static

local and not initialized, or if they are in common blocks. The extra padding

positions the data to make better use of cache. In either case, the arrays or character

variables can not be equivalenced.

p, if present, must be either or both of:

Defaults for –pad :

■ Without the –pad[= p] option, the compiler does no padding.

■ With –pad , but without the =p, the compiler does both local and common

padding.

The following are equivalent:

■ f95 –pad any.f
■ f95 –pad=local,common any.f
■ f95 –pad=common,local any.f

The –pad[= p] option applies to items that satisfy the following criteria:

■ The items are arrays or character variables

■ The items are static local or in common blocks

local Add padding between adjacent local variables

common Add padding between variables in common blocks

3-40 Fortran User’s Guide • May 2002

For a definition of local or static variables, see “–stackvar” on page 44.

Restrictions on –pad=common:

■ Neither the arrays nor the character strings are equivalenced

■ If –pad=common is specified for compiling a file that references a common block,

it must be specified when compiling all files that reference that common block.

The option changes the spacing of variables within the common block. If one

program unit is compiled with the option and another is not, references to what

should be the same location within the common block might reference different

locations.

■ If –pad=common is specified, the declarations of common block variables in

different program units must be the same except for the names of the

variables.The amount of padding inserted between variables in a common block

depends on the declarations of those variables. If the variables differ in size or

rank in different program units, even within the same file, the locations of the

variables might not be the same.

■ If –pad=common is specified, EQUIVALENCEdeclarations involving common

block variables are flagged with a warning message and the block is not padded.

■ Avoid overindexing arrays in common blocks with -pad=common specified. The

altered positioning of adjacent data in a padded common block will cause

overindexing to fail in unpredictable ways.

–parallel

Parallelize with: –autopar, –explicitpar, –depend

Parallelize loops chosen automatically by the compiler as well as explicitly specified

by user supplied directives. Optimization level is automatically raised to –O3 if it is

lower.

To improve performance, also specify the –stackvar option when using any of the

parallelization options, including –autopar .

Use “–mp={%none|sun|cray|openmp}” on page 34, to select Sun, Cray, or f95
OpenMP style parallelization directives. (Note: For OpenMP parallelization use

-openmp , not -parallel .)

Avoid -parallel if you do your own thread management. See “–mt” on page 34.

Parallelization options like –parallel are intended to produce executable

programs to be run on multiprocessor systems. On a single–processor system,

parallelization generally degrades performance.

Chapter 3 Fortran Compiler Options 3-41

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

If you use –parallel and compile and link in one step, then linking automatically

includes the multithreading library and the thread–safe Fortran runtime library. If

you use –parallel and compile and link in separate steps, then you must also link
with –parallel .

See the Fortran Programming Guide chapter “Parallelization” for further information.

–pg

Compile for profiling with the gprof profiler.

Compile self–profiling code in the manner of –p , but invoke a runtime recording

mechanism that keeps more extensive statistics and produces a gmon.out file when

the program terminates normally. Generate an execution profile by running gprof .

See the gprof (1) man page and the Fortran Programming Guide for details.

Library options must be after the .f and .o files (–pg libraries are static).

If you compile and link in separate steps, and you compile with -pg , then be sure to

link with -pg .

–pic

Compile position–independent code for shared library. (Obsolete)

–pic is equivalent to –xcode=pic13 . See “–xcode=addr” on page 58 for more

information on position-indepented code.

–Qoption pr ls

Pass the suboption list ls to the compilation phase pr.

There must be blanks separating Qoption , pr, and ls. The Q can be uppercase or

lowercase. The list is a comma–delimited list of suboptions, with no blanks within

the list. Each suboption must be appropriate for that program phase, and can begin

with a minus sign.

This option is provided primarily for debugging the internals of the compiler by

support staff. Use the LD_OPTIONSenvironment variable to pass options to the

linker. See the chapter on linking and libraries in the Fortran Programming Guide.

3-42 Fortran User’s Guide • May 2002

–qp

Synonym for –p .

–R ls

Build dynamic library search paths into the executable file.

With this option, the linker, ld (1), stores a list of dynamic library search paths into

the executable file.

ls is a colon–separated list of directories for library search paths. The blank between

–R and ls is optional.

Multiple instances of this option are concatenated together, with each list separated

by a colon.

The list is used at runtime by the runtime linker, ld.so . At runtime, dynamic

libraries in the listed paths are scanned to satisfy any unresolved references.

Use this option to let users run shippable executables without a special path option

to find needed dynamic libraries.

Building an executable file using –Rpaths adds directory paths to a default path,

/opt/SUNWspro/lib , that is always searched last.

For more information, see the “Libraries” chapter in the Fortran Programming Guide,

and the Solaris Linker and Libraries Guide.

-r8const

Promote single-precision constants to REAL*8 constants.

All single-precision REALconstants are promoted to REAL*8. Double-precision

(REAL*8) constants are not changed. This option only applies to constants. To

promote both constants and variables, see “–xtypemap=spec” on page 77.

Use this option flag carefully. It could cause interface problems when a subroutine or

function expecting a REAL*4 argument is called with a REAL*4 constant that gets

promoted to REAL*8. It could also cause problems with programs reading

unformatted data files written by an unformatted write with REAL*4 constants on

the I/O list.

–reduction

Recognize reduction operations in loops.

Analyze loops for reduction operations during automatic parallelization. There is

potential for roundoff error with the reduction.

Chapter 3 Fortran Compiler Options 3-43

A reduction operation accumulates the elements of an array into a single scalar value.

For example, summing the elements of a vector is a typical reduction operation.

Although these operations violate the criteria for parallelizability, the compiler can

recognize them and parallelize them as special cases when –reduction is specified.

See the Fortran Programming Guide chapter “Parallelization” for information on

reduction operations recognized by the compilers.

This option is usable only with the automatic parallelization options –autopar or

-parallel . It is ignored otherwise. Explicitly parallelized loops are not analyzed

for reduction operations.

Example: Automatically parallelize with reduction:

–S

Compile and only generate assembly code.

Compile the named programs and leave the assembly–language output on

corresponding files suffixed with .s . No .o file is created.

–s

Strip the symbol table out of the executable file.

This option makes the executable file smaller and more difficult to reverse engineer.

However, this option inhibits debugging with dbx or other tools, and overrides –g .

–sb

Produce table information for the Forte Developer source code browser.

See Using Forte Developer for more information.

Note – -sb cannot be used on source files the compiler automatically passes

through the fpp or cpp preprocessors (that is, files with .F , .F90 , or .F95
extensions), or used with the -F option.

–sbfast

Produce only source code browser tables.

Produce only table information for the Forte Developer source code browser. Do not

assemble, link, or make object files.

demo% f95 -parallel -reduction any.f

3-44 Fortran User’s Guide • May 2002

Note – -sbfast cannot be used on source files the compiler automatically passes

through the fpp or cpp preprocessors (that is, files with .F , .F90 , or .F95
extensions), or used with the -F option.

–silent

Suppress compiler messages.

Normally, the f95 compiler does not issue messages, other than error diagnostics,

during compilation. This option flag is provided for compatibility with the legacy

f77 compiler, and its use is redundant except with the -f77 compatibility flag.

–stackvar

Allocate local variables on the stack whenever possible.

This option makes writing recursive and re-entrant code easier and provides the

optimizer more freedom when parallelizing loops.

Use of –stackvar is recommended with any of the parallelization options.

Local variables are variables that are not dummy arguments, COMMONvariables,

variables inherited from an outer scope, or module variables made accessible by a

USEstatement.

With -stackvar in effect, local variables are allocated on the stack unless they have

the attributes SAVEor STATIC. Note that explicitly initialized variables are

implicitly declared with the SAVEattribute. A structure variable that is not explicitly

initialized but some of whose components are initialized is, by default, not implicitly

declared SAVE. Also, variables equivalenced with variables that have the SAVEor

STATIC attribute are implicitly SAVEor STATIC.

A statically allocated variable is implicitly initialized to zero unless the program

explicitly specifies an initial value for it. Variables allocated on the stack are not

implicitly initialized except that components of structure variables can be initialized

by default.

Putting large arrays onto the stack with –stackvar can overflow the stack causing

segmentation faults. Increasing the stack size may be required.

The initial thread executing the program has a main stack, while each helper thread

of a multithreaded program has its own thread stack.

The default stack size is about 8 Megabytes for the main stack and 4 Megabytes

(8 Megabytes on SPARC V9 platforms) for each thread stack. The limit command

(with no parameters) shows the current main stack size. If you get a segmentation

fault using –stackvar , try increasing the main and thread stack sizes.

Chapter 3 Fortran Compiler Options 3-45

Example: Show the current main stack size:

Example: Set the main stack size to 64 Megabytes:

Example: Set each thread stack size to 8 Megabytes:

For further information of the use of –stackvar with parallelization, see the

“Parallelization” chapter in the Fortran Programming Guide. See csh (1) for details on

the limit command.

–stop_status= yn

Permit STOPstatement to return an integer status value.

yn is either yes or no . The default is no .

With –stop_status=yes , a STOPstatement may contain an integer constant. That

value will be passed to the environment as the program terminates:

STOP 123

The value must be in the range 0 to 255. Larger values are truncated and a run–time

message issued. Note that

STOP‘stop string’

is still accepted and returns a status value of 0 to the environment, although a

compiler warning message will be issued.

The environment status variable is $status for the C shell csh , and $? for the

Bourne and Korn shells, sh and ksh .

demo% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes <–––
coredumpsize unlimited
descriptors 64
memorysize unlimited
demo%

demo% limit stacksize 65536

demo% setenv STACKSIZE 8192

3-46 Fortran User’s Guide • May 2002

–temp= dir

Define directory for temporary files.

Set directory for temporary files used by the compiler to be dir. No space is allowed

within this option string. Without this option, the files are placed in the /tmp
directory.

–time

Time each compilation phase.

The time spent and resources used in each compiler pass is displayed.

–U

Recognize upper and lower case in source files.

Do not treat uppercase letters as equivalent to lowercase. The default is to treat

uppercase as lowercase except within character–string constants. With this option,

the compiler treats Delta , DELTA, and delta as different symbols.

Portability and mixing Fortran with other languages may require use of –U. See the

Fortran Programming Guide chapter on porting programs to Fortran 95.

-U name

Undefine preprocessor macro name.

This option applies only to .F and .F95 source files that invoke the fpp or cpp
pre-processor. It removes any initial definition of the preprocessor macro name
created by -D name on the same command line, including those implicitly placed

there by the command-line driver, regardless of the order the options appear. It has

no effect on any macro definitions in source files. Multiple -U name flags can appear

on the command line. There must be no space between -U and the macro name.

–u

Report undeclared variables.

Make the default type for all variables be undeclared rather than using Fortran

implicit typing. This option warns of undeclared variables, and does not override

any IMPLICIT statements or explicit type statements.

–unroll= n

Enable unrolling of DO loops where possible.

Chapter 3 Fortran Compiler Options 3-47

n is a positive integer. The choices are:

■ n=1 inhibits all loop unrolling.

■ n>1 suggests to the optimizer that it attempt to unroll loops n times.

Loop unrolling generally improves performance, but will increase the size of the

executable file. For more information on this and other compiler optimizations, see

the “Performance and Optimization” chapter in the Fortran Programming Guide. See

also “The UNROLL Directive” on page 11.

-use= list

Specify implicit USEmodules.

list is a comma-separated list of module names or module file names.

Compiling with -use= module_name has the effect of adding a USEmodule_name
statement to each subprogram or module being compiled. Compiling with

-use= module_file_name has the effect of adding a USEmodule_name for each of the

modules contained in the specified file.

See “Module Files” on page 18 for more information about modules in Fortran 95.

–V

Show name and version of each compiler pass.

This option prints the name and version of each pass as the compiler executes.

This information may be helpful when discussing problems with Sun service

engineers.

–v

Verbose mode – show details of each compiler pass.

Like –V, shows the name of each pass as the compiler executes, and details the

options, macro flag expansions, and environment variables used by the driver.

–vpara

Show verbose parallelization messages.

As the compiler analyzes loops explicitly marked for parallelization with directives,

it issues warning messages about certain data dependencies it detects; but the loop

will still be parallelized.

3-48 Fortran User’s Guide • May 2002

Example: Verbose parallelization warnings:

–w[n]

Show or suppress warning messages.

This option shows or suppresses most warning messages. However, if one option

overrides all or part of an option earlier on the command line, you do get a warning.

n may be 0, 1, 2 ,3, or 4.

-w0 shows just error messages. This is equivalent to -w
-w1 shows errors and warnings. This is the default without -w.

-w2 shows errors, warnings, and cautions.

-w3 shows errors, warnings, cautions, and notes.

-w4 shows errors, warnings, cautions, notes, and comments.

Example: –w still allows some warnings to get through:

–Xlist [x]

Produce listings and do global program checking (GPC).

Use this option to find potential programming bugs. It invokes an extra compiler

pass to check for consistency in subprogram call arguments, common blocks, and

parameters, across the global program. The option also generates a line–numbered

listing of the source code, including a cross reference table. The error messages

issued by the –Xlist options are advisory warnings and do not prevent the

program from being compiled and linked.

Note – Be sure to correct all syntax errors in the source code before compiling with

-Xlist . Unpredictable reports may result when run on a source code with syntax

errors.

demo% f95 -explicitpar -vpara any.f
any.f:
 MAIN any:
"any.f", line 11: Warning: the loop may have parallelization
inhibiting reference

demo% f95 -w -parallel any.f
f95: Warning: Optimizer level changed from 0 to 3 to support
parallelized code
demo%

Chapter 3 Fortran Compiler Options 3-49

Example: Check across routines for consistency:

The above example writes the following to the output file fil.lst :

■ A line–numbered source listing (default)

■ Error messages (embedded in the listing) for inconsistencies across routines

■ A cross reference table of the identifiers (default)

By default, the listings are written to the file name.lst , where name is taken from

the first listed source file on the command line.

A number of sub–options provide further flexibility in the selection of actions. These

are specified by suffixes to the main –Xlist option, as shown in the following table

See the Fortran Programming Guide chapter “Program Analysis and Debugging” for

details.

 demo% f95 -Xlist fil.f

TABLE 3-9 –Xlist Suboptions

Option Feature

–Xlist Show errors, listing, and cross reference table

–Xlistc Show call graphs and errors

–XlistE Show errors

–Xlisterr [nnn] Suppress error nnn messages

–Xlistf Show errors, listing, and cross references, but no object files

–Xlisth Terminate compilation if errors detected

–XlistI Analyze #include and INCLUDE files as well as source files

–XlistL Show listing and errors only

–Xlistl n Set page length to n lines

-XlistMP Check OpenMP directives

–Xlisto name Rename report file to name.lst

–Xlists Suppress unreferenced names from the cross–reference table

–Xlistv n Set checking level to n (1,2,3, or 4) – default is 2

–Xlistw [nnn] Set width of output line to nnn columns – default is 79

–Xlistwar [nnn] Suppress warning nnn messages

–XlistX Show cross–reference table and errors

3-50 Fortran User’s Guide • May 2002

–xa

Synonym for –a .

-xalias [=type_list]

Specify degree of aliasing to be assumed by the compiler.

Some non-standard programming techniques can introduce situations that interfere

with the compiler’s optimization strategies. The use of overindexing, pointers, and

passing global or non-unique variables as subprogram arguments, can introduce

ambiguous aliasing situations that could result code that does not work as expected.

Use the -xalias flag to inform the compiler about the degree to which the program

deviates from the aliasing requirements of the Fortran standard.

The flag may appear with or without a list. The keywords on the list are

comma-separated, and each keyword indicates an aliasing situation present in the

program.

Each keyword may be prefixed by no% to indicate an aliasing type that is not

present.

The aliasing keywords are:

TABLE 3-10 -xalias Option Keywords

keyword meaning

dummy Dummy (formal) subprogram parameters can alias each other and

global variables.

no%dummy (Default). Usage of dummy parameters follows the Fortran standard

and do not alias each other or global variables.

craypointer (Default) The program uses Cray pointers that can point anywhere.

no%craypointer Cray pointers always point at distinct areas of memory, or are not

used

actual The compiler treats actual subprogram arguments as if they were

global variables. Passing an argument to a subprogram might result

in aliasing through Cray pointers.

no%actual (Default) Passing an argument does not result in further aliasing.

Chapter 3 Fortran Compiler Options 3-51

Specifying -xalias without a list gives the best performance for most programs

that do not violate Fortran aliasing rules, and corresponds to:

no%dummy,no%craypointer,no%actual,no%overindex,no%ftnpointer

To be effective, -xalias should be used when compiling with optimization levels

-xO3 and higher.

The compiler default, with no -xalias flag specified, assumes that the program

conforms to the Fortran 95 standard except for Cray pointers:

no%dummy,craypointer,no%actual,no%overindex,no%ftnpointer

Examples of various aliasing situations and how to specify them with -xalias are

given in the Porting chapter of the Fortran Programming Guide.

–xarch= isa

Specify instruction set architecture (ISA).

overindex • A reference to an element in a COMMON block might refer to any

element in a COMMON block or equivalence group.

• Passing any element of a COMMON block or equivalence group

as an actual argument to a subprogram gives access to any

element of that COMMON block or equivalence group to the

called subprogram.

• Variables of a sequence derived type are treated as if they were

COMMON blocks, and elements of such a variable might alias

other elements of that variable.

• Individual array bounds may be violated, but except as noted

above, the referenced array element is assumed to stay within the

array.

Array syntax, WHERE, and FORALLstatements are not considered

for overindexing. If overindexing occurs in these constructs, they

should be rewritten as DOloops.

no%overindex (Default) Array bounds are not violated. Array references do not

reference other variables.

ftnpointer Calls to external functions might cause Fortran pointers to point at

target variables of any type, kind, or rank.

no%ftnpointer (Default) Fortran pointers follow the rules of the standard.

TABLE 3-10 -xalias Option Keywords (Continued)

keyword meaning

3-52 Fortran User’s Guide • May 2002

Architectures that are accepted by -xarch keyword isa are shown in TABLE 3-11:

Note that although -xarch can be used alone, it is part of the expansion of the

–xtarget option and may be used to override the –xarch value that is set by a

specific –xtarget option. For example:

% f95 -xtarget=ultra2 -xarch=v8plusb ...

overrides the -xarch=v8 set by -xtarget=ultra2

This option limits the code generated by the compiler to the instructions of the

specified instruction set architecture by allowing only the specified set of

instructions. This option does not guarantee use of any target–specific instructions.

If this option is used with optimization, the appropriate choice can provide good

performance of the executable on the specified architecture. An inappropriate choice

results in a binary program that is not executable on the intended target platform.

TABLE 3-12 summarizes the most general -xarch options:

Also note the following:

■ SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and

can execute together, but only on a SPARC V8plusa compatible platform.

TABLE 3-11 –xarch ISA Keywords

Platform Valid -xarch Keywords

SPARC generic , generic64 , native , native64 , v7 , v8a , v8 , v8plus ,

v8plusa , v8plusb , v9 , v9a , v9b

TABLE 3-12 Most General -xarch Options on SPARC Platforms

-xarch= Performance

generic • runs adequately on all platforms

v8plusa • runs optimally on UltraSPARC-II processors in 32-bit mode

• no execution on other platforms

v8plusb • runs optimally on UltraSPARC-III processors in 32-bit mode

• no execution on other platforms

v9a • runs optimally on UltraSPARC-II processors in 64-bit mode

• no execution on other platforms

v9b • runs optimally on UltraSPARC-III processors in 64-bit mode

• no execution on other platforms

Chapter 3 Fortran Compiler Options 3-53

■ Object binary files (.o) compiled with v8plus , v8plusa , and v8plusb can be

linked and can execute together, but only on a SPARC V8plusb compatible

platform.

■ -xarch values v9 , v9a , and v9b are only available on UltraSPARC 64–bit Solaris

environments.

■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute

together, but will run only on a SPARC V9a compatible platform.

■ Object binary files (.o) compiled with v9 , v9a , and v9b can be linked and can

execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on

earlier architectures. Also, although quad-precision (REAL*16 and long double)

floating-point instructions are available in many of these instruction set

architectures, the compiler does not use these instructions in the code it generates.

TABLE 3-13 gives details for each of the -xarch keywords on SPARC platforms.

TABLE 3-13 -xarch Values for SPARC Platforms

-xarch= Meaning

generic Compile for good performance on most 32-bit systems.
This is the default. This option uses the best instruction set for good

performance on most processors without major performance degradation on

any of them. With each new release, the definition of “best” instruction set

may be adjusted, if appropriate, and is currently v7 .

generic64 Compile for good performance on most 64-bit enabled systems.
This option uses the best instruction set for good performance on most

64-bit enabled processors without major performance degradation on any of

them. With each new release, the definition of “best” instruction set may be

adjusted, if appropriate, and is currently interpreted as v9 .

native Compile for good performance on this system.
This is the default for the -fast option. The compiler chooses the

appropriate setting for the current system processor it is running on.

native64 Compile for good performance in 64-bit mode on this system.
Like native , compiler chooses the appropriate setting for 64-bit mode on

the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on

the V8 ISA, but without integer mul and div instructions, and the fsmuld
instruction.

Examples: SPARCstation 1, SPARCstation 2

3-54 Fortran User’s Guide • May 2002

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the fsmuld instruction.

This option enables the compiler to generate code for good performance on

the V8a ISA.

Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8

architecture.

Example: SPARCstation 10

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
By definition, V8plus means the V9 ISA, but limited to the 32–bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

• This option enables the compiler to generate code for good performance

on the V8plus ISA.

• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or

V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

• This option enables the compiler to generate code for good performance

on the UltraSPARC architecture, but limited to the 32–bit subset defined

by the V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or

V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC-III extensions.
Enables the compiler to generate object code for the UltraSPARC

architecture, plus the Visual Instruction Set (VIS) version 2.0, and with

UltraSPARC-III extensions.

• The resulting object code is in SPARC-V8+ ELF32 format and executes

only in a Solaris UltraSPARC-III environment.

• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC-III architecture.

TABLE 3-13 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning

Chapter 3 Fortran Compiler Options 3-55

–xautopar

Synonym for –autopar .

–xcache= c

Define cache properties for the optimizer.

c must be one of the following:

■ generic

v9 Compile for the SPARC–V9 ISA.
Enables the compiler to generate code for good performance on the V9

SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris

environment.

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate

code for good performance on the V9 SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris

operating environment.

v9b Compile for the SPARC-V9 ISA with UltraSPARC-III extensions.
Adds UltraSPARC-III extensions and VIS version 2.0 to the V9a version of

the SPARC-V9 ISA. Compiling with this option uses the best instruction set

for good performance in a Solaris UltraSPARC-III environment.

• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC-III processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris

operating environment.

TABLE 3-13 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning

3-56 Fortran User’s Guide • May 2002

■ s1/ l1/ a1
■ s1/ l1/ a1: s2/ l2/ a2
■ s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/ li/ ai are defined as follows:

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

This option specifies the cache properties that the optimizer can use. It does not

guarantee that any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the

–xtarget option; it is provided to allow overriding an –xcache value implied by a

specific –xtarget option.

Example: –xcache=16/32/4:1024/32/1 specifies the following:

A Level 1 cache has: 16K bytes, 32 byte line size, 4–way associativity.

A Level 2 cache has: 1024K bytes, 32 byte line size, direct mapping associativity.

–xcg89

Synonym for –cg89 .

–xcg92

Synonym for –cg92 .

TABLE 3-14 –xcache Values

Value Meaning

generic Define the cache properties for good performance on

most SPARC processors without any major performance

degradation. This is the default.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties

Chapter 3 Fortran Compiler Options 3-57

-xcheck= v

Generate special runtime checks.

v must be one of the following:

Stack overflow is the only runtime check implemented with this flag in this release

of the compiler. Stack overflows, especially in multithreaded applications with large

arrays allocated on the stack, can cause silent data corruption in neighboring thread

stacks. Compile all routines with -xcheck=stkovf if stack overflow is suspected.

But note that compiling with this flag does not guarantee that all stack overflow

situations will be detected since they could occur in routines not compiled with this

flag.

–xchip= c

Specify target processor for the optimizer.

This option specifies timing properties by specifying the target processor.

Although this option can be used alone, it is part of the expansion of the

–xtarget option; it is provided to allow overriding a –xchip value implied by the

a specific –xtarget option.

Some effects of –xchip= c are:

■ Instruction scheduling

■ The way branches are compiled

■ Choice between semantically equivalent alternatives

v Feature

stkovf Turn on runtime checking for stack overflow on subprogram entry.

If a stack overflow is detected, a SIGSEGVsegment fault will be

raised.

no%stkovf Disable runtime checking for stack overflow.

%all Turn on all these runtime checking features.

%none Disable all these runtime checking features.

3-58 Fortran User’s Guide • May 2002

The following table lists the valid –xchip values:

–xcode= addr

Specify code address space on SPARC platforms.

The values for addr are:

TABLE 3-15 Valid –xchip Values

Value Optimize for:

generic most SPARC processors.

native this 32-bit host platform.

old pre–SuperSPARC processors.

super the SuperSPARC processor.

super2 the SuperSPARC II processor.

micro the MicroSPARC processor.

micro2 the MicroSPARC II processor.

hyper the HyperSPARC processor.

hyper2 the HyperSPARC II processor.

powerup the Weitek PowerUp processor.

ultra the UltraSPARC processor.

ultra2 the UltraSPARC II processor.

ultra2e the UltraSPARC IIe processor.

ultra2i the UltraSPARC IIi processor.

ultra3 the UltraSPARC III processor.

ultra3cu the UltraSPARC IIIcu processor.

addr Feature

abs32 Generate 32-bit absolute addresses. Code+data+bss size is limited to

2**32 bytes. This is the default on 32-bit platforms:

-xarch=generic, v7, v8, v8a, v8plus, v8plusa

abs44 Generate 44-bit absolute addresses. Code+data+bss size is limited to

2**44 bytes. Available only on 64-bit platforms: -xarch=v9, v9a

Chapter 3 Fortran Compiler Options 3-59

The defaults (not specifying -xcode= addr explicitly) are:

–xcode=abs32 on SPARC V8 and V7 platforms.

–xcode=abs64 on SPARC and UltraSPARC V9 (–xarch=v9 or v9a)

Position-Independent Code:

Use -xcode=pic13 or -xcode=pic32 when creating dynamic shared libraries to

improve runtime performance.

While the code within a dynamic executable is usually tied to a fixed address in

memory, position-independent code can be loaded anywhere in the address space of

the process.

When you use position-independent code, relocatable references are generated as an

indirect reference through a global offset table. Frequently accessed items in a

shared object will benefit from compiling with -xcode=pic13 or -xcode=pic32
by not requiring the large number of relocations imposed by code that is not

position-independent.

The size of the global offset table is limited to 8Kb.

There are two nominal performance costs with -xcode={pic13|pic32} :

■ A routine compiled with either -xcode=pic13 or -xcode=pic32 executes a few

extra instructions upon entry to set a register to point at the global offset table

used for accessing a shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory

reference through the global offset table. If the compile is done with pic32 , there

are two additional instructions per global and static memory reference.

When considering the above costs, remember that the use of -xcode=pic13 or

-xcode=pic32 can significantly reduce system memory requirements, due to the

effect of library code sharing. Every page of code in a shared library compiled

-xcode=pic13 or -xcode=pic32 can be shared by every process that uses the

library. If a page of code in a shared library contains even a single non-pic (that is,

absolute) memory reference, the page becomes nonsharable, and a copy of the page

must be created each time a program using the library is executed.

abs64 Generate 64-bit absolute addresses. Available only on 64-bit

platforms: -xarch=v9, v9a

pic13 Generate position-independent code (small model). Equivalent to

-pic . Permits references to at most 2**11 unique external symbols

on 32-bit platforms, 2**10 on 64-bit platforms.

pic32 Generate position-independent code (large model). Equivalent to

-PIC . Permits references to at most 2**30 unique external symbols

on 32-bit platforms, 2**29 on 64-bit platforms.

3-60 Fortran User’s Guide • May 2002

The easiest way to tell whether or not a .o file has been compiled with

-xcode=pic13 or -xcode=pic32 is with the nmcommand:

nm file.o | grep _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code will contain an unresolved external

reference to _GLOBAL_OFFSET_TABLE_as marked by the letter U.

To determine whether to use -xcode=pic13 or -xcode=pic32 use nm to identify

the number of distinct global and static variables used or defined in the library. If the

size of _GLOBAL_OFFSET_TABLE_is under 8,192 bytes, you can use pic13 .

Otherwise, you must use pic32 .

Compiling with the -xcode=pic13 or pic32 (or -pic or -PIC) options is

recommended when building dynamic libraries. See the Solaris Linker and Libraries

Guide.

–xcommonchk [={ no | yes }]

Enable runtime checking of common block inconsistencies.

This option provides a debug check for common block inconsistencies in programs

using TASK COMMONand parallelization. (See the discussion of the TASK COMMON
directive in the “Parallelization” chapter in the Fortran Programming Guide.)

The default is –xcommonchk=no ; runtime checking for common block

inconsistencies is disabled because it will degrade performance. Use -xcommon=yes
only during program development and debugging, and not for production-quality

programs.

Compiling with –xcommonchk=yes enables runtime checking. If a common block

declared in one source program unit as a regular common block appears somewhere

else on a TASK COMMONdirective, the program will stop with an error message

indicating the first such inconsistency.

Chapter 3 Fortran Compiler Options 3-61

Example: Missing TASKCOMMONdirective in tc.f

–xcrossfile [=n]

Enable optimization and inlining across source files.

If specified, n may be 0, or 1.

Normally, the scope of the compiler’s analysis is limited to each separate file on the

command line. For example, –O4’s automatic inlining is limited to subprograms

defined and referenced within the same source file.

With –xcrossfile , the compiler analyzes all the files named on the command line

as if they had been concatenated into a single source file.

–xcrossfile is only effective when used with –O4 or –O5.

Cross–file inlining creates a possible source file interdependence that would not

normally be there. If any file in a set of files compiled together with

–xcrossfile is changed, then all files must be recompiled to insure that the new

code is properly inlined. See “–inline=[%auto][[,][no%]f1,…[no%]fn]” on page 30.

demo% cat tc.f
 common /x/y(1000)
 do 1 i=1,1000
 1 y(i) = 1.
 call z(57.)
 end
demo% cat tz.f
 subroutine z(c)
 common /x/h(1000)
C$PAR TASKCOMMON X
C$PAR DOALL
 do 1 i=1,1000
1 h(i) = c* h(i)
 return
 end
demo% f95 -c -O4 -parallel -xcommonchk tc.f
demo% f95 -c -O4 -parallel -xcommonchk tz.f
demo% f95 -o tc -O4 -parallel -xcommonchk tc.o tz.o
demo% tc
ERROR(libmtsk): inconsistent declaration of
threadprivate/taskcommon

x_: not declared as threadprivate/taskcommon at line 1 of tc.f
demo%

3-62 Fortran User’s Guide • May 2002

The default, without –xcrossfile on the command line, is -xcrossfile=0 , and

no cross-file optimizations are performed. To enable cross-file optimizations, specify

–xcrossfile (equivalent to –xcrossfile=1).

–xdepend

Synonym for –depend .

–xexplicitpar

Synonym for –explicitpar .

–xF

Allow function–level reordering by the Forte Developer Performance Analyzer.

Allow the reordering of functions (subprograms) in the core image using the

compiler, the performance analyzer and the linker. If you compile with the -xF
option, then run the analyzer, you can generate a map file that optimizes the

ordering of the functions in memory depending on how they are used together. A

subsequent link to build the executable file can be directed to use that map by using

the linker -Mmapfile option. It places each function from the executable file into a

separate section.

Reordering the subprograms in memory is useful only when the application text

page fault time is consuming a large percentage of the application time. Otherwise,

reordering may not improve the overall performance of the application. See the

Forte Developer Program Performance Analysis Tools manual for further information

on the analyzer.

-xhasc [={ yes | no}]

Treat Hollerith constant as a character string in an actual argument list.

With -xhasc=yes , the compiler treats Hollerith constants as character strings when

they appear as an actual argument on a subroutine or function call. This is the

default, and complies with the Fortran standard. (The actual call list generated by

the compiler contains hidden string lengths for each character string.)

With -xhasc=no , Hollerith constants are treated as typeless values in subprogram

calls, and only their addresses are put on the actual argument list. (No string length

is generated on the actual call list passed to the subprogram.)

Compile routines with -xhasc=no if they call a subprogram with a Hollerith

constant and the called subprogram expects that argument as INTEGER(or anything

other than CHARACTER).

Chapter 3 Fortran Compiler Options 3-63

Example:

Passing 4habcd to z is handled correctly by compiling with -xhasc=no .

This flag is provided to aid porting legacy Fortran 77 programs.

–xhelp= h

Show summary help information on options or READMEfile.

The h is either readme or flags .

-xhelp=readme Show the online READMEfile for this release of the compiler.

-xhelp=flags Show the compiler flags (options), and is same as -help .

-xia [=v]

Enable interval arithmetic extensions and set a suitable floating-point environment.

v can be one of either widestneed or strict . The default if not specified is

widestneed .

Fortran 95 extensions for interval arithmetic calculations are detailed in the Interval
Arithmetic Programming Reference. See also “-xinterval[=v]” on page 64.

The -xia flag is a macro that expands as follows:

demo% cat hasc.f
 call z(4habcd, ’abcdefg’)

end
 subroutine z(i, s)
 integer i
 character *(*) s
 print *, "string length = ", len(s)
 return
 end
demo% f95 -o has0 hasc.f
demo% has0
 string length = 4 <-- should be 7
demo% f95 -o has1 -xhasc=no hasc.f
demo% has1
 string length = 7 <-- now correct length for s

-xia or
-xia=widestneed

-xinterval=widestneed -ftrap=%none -fns=no -fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

3-64 Fortran User’s Guide • May 2002

–xild { off | on}

Enable/disable the Incremental Linker.

-xildoff disables the use of the incremental linker, ild . The standard linker, ld , is

used instead. -xildon enables use of ild instead of ld .

-xildoff is the default if you do not use the –g option. It is also the default if you

use –G or name any source file on the command line.

-xildon is the default if you use –g and do not use –G, and no source files appear

on the command line (just object files and/or libraries).

See the section on ild in the C User’s Guide.

–xinline= list

Synonym for –inline .

-xinterval [=v]

Enable interval arithmetic extensions.

v can be one of either no , widestneed or strict . The default if not specified is

widestneed .

Fortran 95 extensions for interval arithmetic calculations are detailed in the

Fortran 95 Interval Arithmetic Programming Reference. See also “-xia[=v]” on page 63.

-xipo [={ 0| 1|2 }]

Perform interprocedural optimizations.

Performs whole-program optimizations by invoking an interprocedural analysis

pass. Unlike -xcrossfile , -xipo will perform optimizations across all object files

in the link step, and is not limited to just the source files on the compile command.

no Interval arithmetic extensions not enabled.

widestneed Promotes all non-interval variables and literals in any mixed-mode

expression to the widest interval data type in the expression.

strict Prohibits mixed-type or mixed-length interval expressions. All interval type

and length conversions must be explicit.

Chapter 3 Fortran Compiler Options 3-65

-xipo is particularly useful when compiling and linking large multi-file

applications. Object files compiled with this flag have analysis information compiled

within them that enables interprocedural analysis across source and pre-compiled

program files. However, analysis and optimization is limited to the object files

compiled with -xipo , and does not extend to object files on libraries.

-xipo=0 disables, and -xipo=1 enables, interprocedural analysis. -xipo=2 adds

interprocedural aliasing analysis and memory allocation and layout optimizations to

improve cache performance. The default is -xipo=0 , and if -xipo is specified

without a value, -xipo=1 is used.

When compiling and linking are performed in separate steps, -xipo must be

specified in both steps to be effective.

Example using -xipo in a single compile/link step:

The optimizer performs crossfile inlining across all three source files. This is done in

the final link step, so the compilation of the source files need not all take place in a

single compilation and could be over a number of separate compilations, each

specifying -xipo .

Example using -xipo in separate compile/link steps:

The object files created in the compile steps have additional analysis information

compiled within them to permit crossfile optimizations to take place at the link step.

A restriction is that libraries, even if compiled with -xipo do not participate in

crossfile interprocedural analysis, as shown in this example:

Here interprocedural optimizations will be performed between one.f , two.f and

three.f , and between main.f and four.f , but not between main.f or four.f
and the routines on mylib.a . (The first compilation may generate warnings about

undefined symbols, but the interprocedural optimizations will be performed because

it is a compile and link step.)

demo% f95 -xipo -xO4 -o prog part1.f part2.f part3.f

demo% f95 -xipo -xO4 -c part1.f part2.f
demo% f95 -xipo -xO4 -c part3.f
demo% f95 -xipo -xO4 -o prog part1.o part2.o part3.o

demo% f95 -xipo -xO4 one.f two.f three.f
demo% ar -r mylib.a one.o two.o three.o
...
demo% f95 -xipo -xO4 -o myprog main.f four.f mylib.a

3-66 Fortran User’s Guide • May 2002

Other important information about -xipo :

■ requires at least optimization level -xO4

■ conflicts with -xcrossfile ; if used together will result in a compilation error

■ objects compiled without -xipo can be linked freely with objects compiled with

-xipo .

■ The -xipo option generates significantly larger object files due to the additional

information needed to perform optimizations across files. However, this

additional information does not become part of the final executable binary file.

Any increase in the size of the executable program will be due to the additional

optimizations performed

■ In this release, crossfile subprogram inlining is the only interprocedural

optimization performed by -xipo .

-xknown_lib= library

Recognize calls to a known library.

When specified, the compiler treats references to certain known libraries as

intrinsics, ignoring any user-supplied versions. This enables the compiler to perform

optimizations over calls to library routines based on its special knowledge of that

library.

The known libraries are limited currently to blas and intrinsics :

-xlang=f77

Prepare for linking with runtime libraries compiled with earlier versions of f77 .

f95 -xlang=f77 implies linking with the f77compat library, and is a shorthand

way for linking Fortran 95 object files with older Fortran 77 object files. Compiling

with this flag insures the proper runtime environment.

-xknown_lib= Feature

blas The compiler recognizes calls to the following BLAS library routines

and is free to optimize appropriately for the Sun Performance

Library implementation:

SDOT DDOT CDOTC ZDOTC CDOTU ZDOTU SAXPY DAXPY

ZAXPY SCOPY DCOPY CCOPY ZCOPY DSCAL CSCAL ZXCAL

The compiler will ignore user-supplied versions of these library

routines and link to the BLAS routines in the Sun Performance

Library.

intrinsics The compiler ignores any explicit EXTERNAL declarations for

Fortran 95 intrinsics, thereby ignoring any user-supplied intrinsic

routines.

Chapter 3 Fortran Compiler Options 3-67

Use f95 -xlang=f77 when linking f95 and f77 compiled objects together into a

single executable.

–xlibmil

Synonym for –libmil .

–xlibmopt

Use library of optimized math routines.

Use selected math routines optimized for speed. This option usually generates faster

code. It may produce slightly different results; if so, they usually differ in the last bit.

The order on the command line for this library option is not significant.

–xlic_lib=sunperf

Link with the Sun Performance Library.

For example:

As with –l , this option should appear on the command line after all source and

object file names.

This option must be used to link with the Sun Performance Library. (See the Sun
Performance Library User’s Guide.)

–xlicinfo

Show license information.

Use this option to return serial number entitlement information about the installed

Forte Developer software.

–xloopinfo

Synonym for –loopinfo .

–xmaxopt [=n]

Enable optimization pragma and set maximum optimization level.

n has the value 1 through 5 and corresponds to the optimization levels of –O1
through –O5. If not specified, the compiler uses 5.

f95 –o pgx –fast pgx.f –xlic_lib=sunperf

3-68 Fortran User’s Guide • May 2002

This option enables the C$PRAGMA SUN OPT=n directive when it appears in the source

input. Without this option, the compiler treats these lines as comments. See “The

OPT Directive” on page 13.

If this pragma appears with an optimization level greater than the maximum level

on the –xmaxopt flag, the compiler uses the level set by –xmaxopt .

-xmemalign [=<a>]

Specify maximum assumed memory alignment and behavior of misaligned data

accesses.

For memory accesses where the alignment is determinable at compile time, the

compiler will generate the appropriate load/store instruction sequence for that data

alignment.

For memory accesses where the alignment cannot be determined at compile time,

the compiler must assume an alignment to generate the needed load/store sequence.

The -xmemalign flag allows the user to specify the maximum memory alignment of

data to be assumed by the compiler for those indeterminate situations. It also

specifies the error behavior at runtime when a misaligned memory access does take

place.

The value specified consists of two parts: a numeric alignment value, <a>, and an

alphabetic behavior flag, .

Allowed values for alignment, <a>, are:

1 Assume at most 1-byte alignment.

2 Assume at most 2-byte alignment.

4 Assume at most 4-byte alignment.

8 Assume at most 8-byte alignment.

16 Assume at most 16-byte alignment.

Allowed values for error behavior on accessing misaligned data, , are:

i Interpret access and continue execution

s Raise signal SIGBUS

f Raise signal SIGBUS only for alignments less or equal to 4

The defaults without -xmemalign specified are:

■ 4s for -xarch=generic,v7,v8,v8a,v8plus,v8plusa
■ 8s for -xarch=v9,v9a for C and C++

■ 8f for -xarch=v9,v9a for Fortran

The default for -xmemalign appearing without a value is 1i for all platforms.

The -dalign option is a macro:

-dalign is a macro for: -xmemalign=8s -aligncommon=16

Chapter 3 Fortran Compiler Options 3-69

–xnolib

Synonym for –nolib .

–xnolibmil

Synonym for –nolibmil .

–xnolibmopt

Do not use fast math library.

Use with –fast to override linking the optimized math library:

f95 –fast –xnolibmopt …

–xOn

Synonym for –On.

-xopenmp

Synonym for -openmp .

–xpad

Synonym for –pad .

–xparallel

Synonym for –parallel .

–xpg

Synonym for –pg .

–xpp= { fpp | cpp }

Select source file preprocessor.

The default is –xpp=fpp .

The compilers use fpp (1) to preprocess .F or .f95 source files. This preprocessor is

appropriate for Fortran. Previous versions used the standard C preprocessor cpp . To

select cpp , specify –xpp=cpp .

3-70 Fortran User’s Guide • May 2002

–xprefetch [=a[,a]]

Enable prefetch instructions on those architectures that support prefetch, such as

UltraSPARC II or UltraSPARC III (-xarch=v8plus , v8plusa , v9plusb , v9 , v9a , or

v9b)

See page 14 for a description of the Fortran PREFETCHdirectives.

a must be one of the following:

With -xprefetch , -xprefetch=auto , and -xprefetch=yes , the compiler is free

to insert prefetch instructions into the code it generates. This may result in a

performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you

might find it advantageous to use -xprefetch =latx: factor. This option instructs

the code generator to adjust the default latency time between a prefetch and its

associated load or store by the specified factor.

The prefetch latency is the hardware delay between the execution of a prefetch

instruction and the time the data being prefetched is available in the cache. The

compiler assumes a prefetch latency value when determining how far apart to place

a prefetch instruction and the load or store instruction that uses the prefetched data.

Note – The assumed latency between a prefetch and a load may not be the same as

the assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide

range of machines and applications. This tuning may not always be optimal. For

memory-intensive applications, especially applications intended to run on large

a is Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

latx: factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store

latencies by the specified factor. The factor must be a positive

floating-point or integer number.

yes -xprefetch=yes is the same as -xprefetch=auto,explicit

no -xprefetch=no is the same as -xprefetch=no%auto,no%explicit

Chapter 3 Fortran Compiler Options 3-71

multiprocessors, you may be able to obtain better performance by increasing the

prefetch latency values. To increase the values, use a factor that is greater than 1. A

value between .5 and 2.0 will most likely provide the maximum performance.

For applications with datasets that reside entirely within the external cache, you may

be able to obtain better performance by decreasing the prefetch latency values. To

decrease the values, use a factor that is less than 1.

To use the -xprefetch=latx: factor option, start with a factor value near 1.0 and

run performance tests against the application. Then increase or decrease the factor,

as appropriate, and run the performance tests again. Continue adjusting the factor

and running the performance tests until you achieve optimum performance. When

you increase or decrease the factor in small steps, you will see no performance

difference for a few steps, then a sudden difference, then it will level off again.

Defaults:

If -xprefetch is not specified, -xprefetch=no%auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

The default of no%auto is assumed unless explicitly overridden with the use of

-xprefetch without any arguments or with an argument of auto or yes . For

example, -xprefetch=explicit is the same as

-xprefetch=explicit,no%auto .

The default of explicit is assumed unless explicitly overridden with an argument

of no%explicit or an argument of no . For example, -xprefetch=auto is the

same as -xprefetch=auto,explicit .

If automatic prefetching is enabled, such as with -xprefetch or -xprefetch=yes ,

but a latency factor is not specified, then -xprefetch=latx:1.0 is assumed.

Interactions:

With -xprefetch=explicit , the compiler will recognize the directives:

$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
$PRAGMA SPARC_PREFETCH_READ_MANY (name)
$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

The -xchip setting effects the determination of the assumed latencies and therefore

the result of a latx: factor setting.

The latx: factor suboption is valid only when automatic prefetching is enabled. That

is, latx: factor is ignored unless it is used with yes or auto .

3-72 Fortran User’s Guide • May 2002

Warnings:

Explicit prefetching should only be used under special circumstances that are

supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across

a wide range of machines and applications, you should only use

-xprefetch=latx: factor when the performance tests indicate there is a clear

benefit. The assumed prefetch latencies may change from release to release.

Therefore, retesting the effect of the latency factor on performance whenever

switching to a different release is highly recommended.

-xprefetch_level= n

Control the automatic generation of prefetch instructions.

This option is only effective when compiling with:

■ -xprefetch=auto ,

■ with optimization level 3 or greater,

■ on a platform that supports prefetch (-xarch=v8plus , v8plusa , v8plusb , v9 ,

v9a , v9b , generic64 , native64).

n may be 1, 2, or 3.

The default for -xprefetch=auto without specifying -xprefetch_level is level

2.

Prefetch level 2 generates additional opportunities for prefetch instructions than

level 1. Prefetch level 3 generates additional prefetch instructions than level 2.

Prefetch levels 2 and 3 are only effective on UltraSPARC III platforms (v8plusb or

v9b)

–xprofile= p

Collect or optimize with runtime profiling data.

p must be one of collect [: name], use [: name], or tcov . Optimization level must be

-O2 or greater.

collect [: name]

Collect and save execution frequency data for later use by the optimizer with

-xprofile=use . The compiler generates code to measure statement execution

frequency.

The name is the name of the program that is being analyzed. This name is

optional. If name is not specified, a.out is assumed to be the name of the

executable.

Chapter 3 Fortran Compiler Options 3-73

At runtime a program compiled with –xprofile=collect: name will create

by default the subdirectory name.profile to hold the runtime feedback

information. The program writes its runtime profile data to the file feedback
in this subdirectory. If you run the program several times, the execution

frequency data accumulates in the feedback file; that is, output from prior

runs is not lost.

Note: This release of the compiler does not support compiling shared dynamic

libraries with -xprofile=collect .

You can set the environment variables SUN_PROFDATAand

SUN_PROFDATA_DIRto control the file and directory where a program

compiled with -xprofile=collect writes its runtime profile data. With

these variables set, the program compiled with -xprofile=collect writes

its profile data to $SUN_PROFDATA_DIR/$SUN_PROFDATA.

These environment variables similarly control the path and names of the

profile data files written by tcov , as described in the tcov (1) man page.

use [: nm]

Use execution frequency data to optimize strategically.

As with collect:nm , the nm is optional and may be used to specify the name

of the program.

The program is optimized by using the execution frequency data previously

generated and saved in the feedback files written by a previous execution of

the program compiled with –xprofile=collect .

The source files and other compiler options must be exactly the same as used

for the compilation that created the compiled program that generated the

feedback file. If compiled with –xprofile=collect: nm, the same program

name nm must appear in the optimizing compilation: –xprofile=use: nm.

tcov

Basic block coverage analysis using “new” style tcov .

Code instrumentation is similar to that of –a , but .d files are no longer

generated for each source file. Instead, a single file is generated, whose name is

based on the name of the final executable. For example, if stuff is the

executable file, then stuff.profile/tcovd is the data file.

When running tcov , you must pass it the –x option to make it use the new

style of data. If not, tcov uses the old .d files, if any, by default for data, and

produces unexpected output.

Unlike –a , the TCOVDIRenvironment variable has no effect at compile–time.

However, its value is used at program runtime to identify where to create the

profile subdirectory.

3-74 Fortran User’s Guide • May 2002

See the tcov (1) man page, the “Performance Profiling” chapter of the Fortran
Programming Guide, and the Program Performance Analysis Tools manual for more

details.

Note – The report produced by tcov can be unreliable if there is inlining of

subprograms due to -O4 or -inline . Coverage of calls to routines that have been

inlined is not recorded.

-xrecursive

Allow routines without RECURSIVEattribute call themselves recursively.

Normally, only subprograms defined with the RECURSIVEattribute can call

themselves recursively.

Compiling with -xrecursive enables subprograms to call themselves, even if they

are not defined with the RECURSIVEattribute. But, unlike subroutines defined

RECURSIVE, use of this flag does not cause local variables to be allocated on the

stack by default. For local variables to have separate values in each recursive

invocation of the subprogram, compile also with -stackvar to put local variables

on the stack.

Compiling with -xrecursive may cause performance degradations.

–xreduction

Synonym for –reduction .

–xregs= r

Specify register usage.

r is a comma–separated list that consists of one or more of the following:

[no%]appl , [no%]float .

Where the %is shown, it is a required character.

Example: –xregs=appl,no%float

■ appl : Allow using the application registers.

On SPARC systems, certain registers are described as application registers.

Using these registers can increase performance because fewer load and store

instructions are needed. However, such use can conflict with some old library

programs written in assembly code.

The set of application registers depends on the SPARC platform:

Chapter 3 Fortran Compiler Options 3-75

■ -xarch=v8 or v8a — registers %g2, %g3, and %g4
■ -xarch=v8 or v8a — registers %g2, %g3, and %g4
■ -xarch=v8plus or v8plusa — registers %g2, %g3, and %g4
■ -xarch=v9 or v9a — registers %g2and %g3

■ no%appl : Do not use the appl registers.

■ float : Allow using the floating–point registers as specified in the SPARC ABI.

You can use these registers even if the program contains no floating–point code.

■ no%float : Do not use the floating–point registers. With this option, a source

program cannot contain any floating–point code.

The default is: –xregs=appl,float .

–xs

Allow debugging by dbx without object (.o) files.

With –xs , if you move executables to another directory, then you can use dbx and

ignore the object (.o) files. Use this option when you cannot keep the .o files.

■ The compiler passes -s to the assembler and then the linker places all symbol

tables for dbx in the executable file.

■ This way of handling symbol tables is the older way. It is sometimes called no
auto–read

■ The linker links more slowly, and dbx initializes more slowly.

Without –xs , if you move the executables, you must move both the source files and

the object (.o) files, or set the path with either the dbx pathmap or use command.

■ This way of handling symbol tables is the newer and default way of loading

symbol tables. It is sometimes called auto–read.

■ The symbol tables are distributed in the .o files so that dbx loads the symbol

table information only if and when it is needed. Hence, the linker links faster, and

dbx initializes faster.

–xsafe=mem

Allow the compiler to assume that no memory protection violations occur.

Using this option allows the compiler to assume no memory–based traps occur. It

grants permission to use the speculative load instruction on the SPARC V9

platforms.

This option is effective only when used with optimization level -O5 one one of the

following architectures (-xarch): v8plus , v8plusa , v8plusb , v9 , v9a , or v9b

3-76 Fortran User’s Guide • May 2002

Caution – Because non-faulting loads do not cause a trap when a fault such as

address misalignment or segmentation violation occurs, you should use this option

only for programs in which such faults cannot occur. Because few programs incur

memory-based traps, you can safely use this option for most programs. Do not use

this option with programs that explicitly depend on memory-based traps to handle

exceptional conditions.

–xsb

Synonym for –sb .

–xsbfast

Synonym for –sbfast .

–xspace

Do no optimizations that increase the code size.

Example: Do not unroll or parallelize loops if it increases code size.

–xtarget= t

Specify the target platform for the instruction set and optimization.

t must be one of: native , native64 , generic , generic64 , platform–name.

The –xtarget option permits a quick and easy specification of the –xarch ,

-xchip , and –xcache combinations that occur on real platforms. The only meaning

of –xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler with an

accurate description of the target computer hardware. When program performance

is critical, the proper specification of the target hardware could be very important.

This is especially true when running on the newer SPARC processors. However, for

most programs and older SPARC processors, the performance gain is negligible and

a generic specification is sufficient.

native : Optimize performance for the host platform.

The compiler generates code optimized for the host platform. It determines the

available architecture, chip, and cache properties of the machine on which the

compiler is running.

native64 : Compile for native 64-bit environment.

Chapter 3 Fortran Compiler Options 3-77

Set the architecture, chip, and cache properties for the 64-bit environment on

the machine on which the compiler is running.

generic : Get the best performance for generic architecture, chip, and cache.

The compiler expands –xtarget=generic to:

–xarch=generic –xchip=generic –xcache=generic

This is the default value.

generic64 : Compile for generic 64-bit environment.

This expands to -xarch=v9 -xcache=generic -xchip=generic

platform–name: Get the best performance for the specified platform.

Appendix C gives a complete list of current SPARC platform names accepted

by the compilers. For example, -xtarget=ultra2i

–xtime

Synonym for –time .

–xtypemap= spec

Specify default data mappings.

This option provides a flexible way to specify the byte sizes for default data types.

This option applies to both default-size variables and constants.

The specification string spec may contain any or all of the following in a

comma-delimited list:

real: size
double: size
integer: size

The allowable combinations on each platform are:

■ real:32
■ real:64
■ double:64
■ double:128
■ integer:32
■ integer:64

For example:

■ –xtypemap=real:64,double:64,integer:64

maps both default REALand DOUBLEto 8 bytes.

3-78 Fortran User’s Guide • May 2002

This option applies to all variables declared with default specifications (without

explicit byte sizes), as in REAL XYZ(resulting in a 64-bit XYZ). Also, all

single-precision REALconstants are promoted to REAL*8.

Note that INTEGERand LOGICAL are treated the same, and COMPLEXis mapped as

two REALs. Also, DOUBLE COMPLEXwill be treated the way DOUBLEis mapped.

–xunroll= n

Synonym for –unroll= n.

–xvector [={ yes | no}]

Enable automatic calls to the SPARC vector library functions.

With –xvector=yes , the compiler is permitted to transform certain math library

calls within DO loops into single calls to the equivalent vectorized library routine

whenever possible. This could result in a performance improvement for loops with

large loop counts.

The compiler defaults to –xvector=no . Specifying –xvector by itself defaults to

-xvector=yes .

This option also triggers –depend . (Follow –xvector with –nodepend on the

command line to cancel the dependency analysis.)

The compiler will automatically notify the linker to include the libmvec and libc
libraries in the load step if –xvector appears. However, to compile and link in

separate steps requires specifying –xvector on the link step as well to correctly

select these necessary libraries.

–ztext

Generate only pure libraries with no relocations.

The general purpose of –ztext is to verify that a generated library is pure text;

instructions are all position–independent code. Therefore, it is generally used with

both –G and –pic .

With –ztext , if ld finds an incomplete relocation in the text segment, then it does

not build the library. If it finds one in the data segment, then it generally builds the

library anyway; the data segment is writable.

Without –ztext , ld builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where you

do not know if the object files were made with –pic .

Chapter 3 Fortran Compiler Options 3-79

Example: Make library from both source and object files:

An alternate use is to ask if the code is position–independent already: compile

without –pic , but ask if it is pure text.

Example: Ask if it is pure text already—even without –pic :

If you compile with –ztext and ld does not build the library, then you can

recompile without –ztext , and ld will build the library. The failure to build

with -ztext means that one or more components of the library cannot be

shared; however, maybe some of the other components can be shared. This

raises questions of performance that are best left to you, the programmer.

demo% f95 –G –pic –ztext –o MyLib –hMyLib a.f b.f x.o y.o

demo% f95 –G –ztext –o MyLib –hMyLib a.f b.f x.o y.o

3-80 Fortran User’s Guide • May 2002

4-1

CHAPTER 4

Fortran 95 Features and Differences

This appendix shows some of the major features differences between standard

Fortran 95 and Forte Developer Fortran 95.

4.1 Language Features and Extensions
Forte Developer Fortran 95 compiler provides the following source langauge

features and extensions to the Fortran 95 standard.

4.1.1 Continuation Line Limits

f95 allows 99 continuation lines (1 initial and 99 continuation lines). Standard

Fortran 95 allows 19 for fixed-form and 39 for free-form.

4.1.2 Fixed-Form Source Lines

In fixed-form source, lines can be longer than 72 characters, but everything beyond

column 73 is ignored. Standard Fortran 95 only allows 72-character lines.

4.1.3 Tab Form

The tab form of f95 fixed-format source text is defined as follows:

■ A tab in any of columns 1 through 6 makes the line as a tab form source line.

■ A comment indicator or a statement number may precede the tab.

4-2 Fortran User’s Guide • May 2002

■ If a tab is the first nonblank character, then:

■ If the character after the tab is anything other than a nonzero digit, then the

text following the tab is an initial line.

■ If there is a nonzero digit after the first tab, the line is a continuation line. The

text following the nonzero digit is the next part of the statement.

■ The f95 default maximum line length is 72 columns for fixed form and 132 for

free form. Use the -e compiler option (page 17) to extend the lines in fixed-format

source to 132 columns.

Example: The tab form source on the left is treated as shown on the right.

In the example above, “^I ” stands for the tab character, and the line starting

with “1” and “2” are continuation lines. The coding is shown to illustrate

various tab situations, and not to advocate any one style.

■ Tabs in f95 force the rest of the line to be padded out to column 72. This may

cause unexpected results if the tab appears within a character string that is

continued onto the next line:

!^IUses of tabs
^ICHARACTER *3 A = ’A’
^IINTEGER B = 2
^IREAL C = 3.0
^IWRITE(*,9) A, B, C
9^IFORMAT(1X, A3,
^I1 I3,
^I2 F9.1)
^IEND

! Uses of tabs
 CHARACTER *3 A = ’A’
 INTEGER B = 2
 REAL C = 3.0
 WRITE(*,9) A, B, C
9 FORMAT(1X, A3,
 1 I3,
 2 F9.1)
 END

Source file:
^Iprint *, "Tab on next line
^I1this continuation line starts with a tab."
^Iend

Running the code:
Tab on next line this
continuation
 line starts with a tab.

Chapter 4 Fortran 95 Features and Differences 4-3

4.1.4 Source Form Assumed

The source form assumed by f95 depends on options, directives, and suffixes.

Files with a .f or .F suffix are assumed to be in fixed format. Files with a .f90 ,

.f95 , .F90 , or .F95 suffix are assumed to be in free format.

If the -free or -fixed option is used, it overrides the file name suffix. If either a

!DIR$ FREE or !DIR$ FIXED directive is used, it overrides the option and file name

suffix.

4.1.4.1 Mixing Forms

Some mixing of source forms is allowed.

■ In the same f95 command, some source files can be fixed form, some free.

■ In the same file, free form can be mixed with fixed form by using !DIR$ FREE and

!DIR$ FIXED directives.

■ In the same program unit, tab form can be mixed with free or fixed form.

4.1.4.2 Case

Sun Fortran 95 is case insensitive by default. That means that a variable AbcDeF is

treated as if it were spelled abcdef . Compile with the -U option to have the

compiler treat upper and lower case as unique.

4.1.5 Known Limits

A single Fortran 95 program unit can define up to 65,535 derived types and

16,777,215 distinct constants.

TABLE 4-1 F95 Source Form Command-line Options

Option Action

-fixed Interpret all source files as Fortran fixed form

-free Interpret all source files as Fortran free form

4-4 Fortran User’s Guide • May 2002

4.1.6 Boolean Type

f95 supports constants and expressions of Boolean type. There are no Boolean

variables or arrays, and there is no Boolean type statement.

4.1.6.1 Miscellaneous Rules Governing Boolean Type

■ Masking—A bitwise logical expression has a Boolean result; each of its bits is the

result of one or more logical operations on the corresponding bits of the

operands.

■ For binary arithmetic operators, and for relational operators:

■ If one operand is Boolean, the operation is performed with no conversion.

■ If both operands are Boolean, the operation is performed as if they were

integers.

■ No user-specified function can generate a Boolean result, although some

(nonstandard) intrinsics can.

■ Boolean and logical types differ as follows:

■ Variables, arrays, and functions can be of logical type, but they cannot be

Boolean type.

■ There is a LOGICAL statement, but no BOOLEANstatement.

■ A logical variable, constant, or expression represents only two values, .TRUE.
or .FALSE. A Boolean variable, constant, or expression can represent any

binary value.

■ Logical entities are invalid in arithmetic, relational, or bitwise logical

expressions. Boolean entities are valid in all three.

4.1.6.2 Alternate Forms of Boolean Constants

f95 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the following

alternate forms (no binary). Variables cannot be declared Boolean. Standard Fortran

does not allow these forms.

Octal

ddddddB, where d is any octal digit

■ You can use the letter B or b.

■ There can be 1 to 11 octal digits (0 through 7).

■ 11 octal digits represent a full 32-bit word, with the leftmost digit allowed to be 0,

1, 2, or 3.

Chapter 4 Fortran 95 Features and Differences 4-5

■ Each octal digit specifies three bit values.

■ The last (right most) digit specifies the content of the right most three bit

positions (bits 29, 30, and 31).

■ If less than 11 digits are present, the value is right-justified—it represents the right

most bits of a word: bits n through 31. The other bits are 0.

■ Blanks are ignored.

Within an I/O format specification, the letter B indicates binary digits; elsewhere it

indicates octal digits.

Hexadecimal

X’ ddd’ or X" ddd" , where d is any hexadecimal digit

■ There can be 1 to 8 hexadecimal digits (0 through 9, A-F).

■ Any of the letters can be uppercase or lowercase (X, x , A-F, a-f).

■ The digits must be enclosed in either apostrophes or quotes.

■ Blanks are ignored.

■ The hexadecimal digits may be preceded by a + or - sign.

■ 8 hexadecimal digits represent a full 32-bit word and the binary equivalents

correspond to the contents of each bit position in the 32-bit word.

■ If less than 8 digits are present, the value is right-justified—it represents the right

most bits of a word: bits n through 31. The other bits are 0.

Hollerith

Accepted forms for Hollerith data are:

Above, “…” is a string of characters and n is the character count.

■ A Hollerith constant is type Boolean.

■ If any character constant is in a bitwise logical expression, the expression is

evaluated as Hollerith.

■ A Hollerith constant can have 1 to 4 characters.

nH… ’ …’H " …"H

nL… ’ …’L " …"L

nR… ’ …’R " …"R

4-6 Fortran User’s Guide • May 2002

Examples: Octal and hexadecimal constants.

Examples: Octal and hexadecimal in assignment statements.

Use of an octal or hexadecimal constant in an arithmetic expression can produce

undefined results and do not generate syntax errors.

4.1.6.3 Alternate Contexts of Boolean Constants

f95 allows BOZ constants in the places other than DATAstatements.

If these are assigned to a real variable, no type conversion occurs.

Standard Fortran allows these only in DATAstatements.

Boolean Constant Internal Octal for 32-bit Word

0B 00000000000

77740B 00000077740

X"ABE" 00000005276

X"-340" 37777776300

X'1 2 3' 00000000443

X'FFFFFFFFFFFFFFFF' 37777777777

i = 1357B

j = X"28FF"

k = X'-5A'

B’ bbb’ O’ ooo’ Z’ zzz’

B" bbb" O" ooo" Z" zzz"

Chapter 4 Fortran 95 Features and Differences 4-7

4.1.7 Abbreviated Size Notation for Numeric Data

Types

f95 allows the following nonstandard type declaration forms in declaration

statements, function statements, and IMPLICIT statements. The form in column one

is nonstandard Fortran 95, though in common use. The kind numbers in column two

can vary by vendor.

4.1.8 Size and Alignment of Data Types

Storage and alignment are always given in bytes. Values that can fit into a single

byte are byte-aligned.

The size and alignment of types depends on various compiler options and platforms,

and how variables are declared. The default maximum alignment in COMMON

blocks is to 4-byte boundaries.

TABLE 4-2 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

INTEGER*1 INTEGER(KIND=1) INTEGER(1) One-byte signed integers

INTEGER*2 INTEGER(KIND=2) INTEGER(2) Two-byte signed integers

INTEGER*4 INTEGER(KIND=4) INTEGER(4) Four-byte signed integers

LOGICAL*1 LOGICAL(KIND=1) LOGICAL(1) One-byte logicals

LOGICAL*2 LOGICAL(KIND=2) LOGICAL(2) Two-byte logicals

LOGICAL*4 LOGICAL(KIND=4) LOGICAL(4) Four-byte logicals

REAL*4 REAL(KIND=4) REAL(4) IEEE single-precision

four-byte floating-point

REAL*8 REAL(KIND=8) REAL(8) IEEE double-precision

eight-byte floating-point

REAL*16 REAL(KIND=16) REAL(16) IEEE quad-precision

sixteen-byte floating-point

COMPLEX*8 COMPLEX(KIND=4) COMPLEX(4) Single-precision complex

(four bytes each part)

COMPLEX*16 COMPLEX(KIND=8) COMPLEX(8) Double-precision complex

(eight bytes each part)

COMPLEX*32 COMPLEX(KIND=16) COMPLEX(16) Quad-precision complex

(sixteen bytes each part)

4-8 Fortran User’s Guide • May 2002

Default data alignment and storage allocation can be changed by compiling with

special options, such as -aligncommon , -f , -dalign , -dbl_align_all ,

-xmemalign ,, and -xtypemap . The default descriptions in this manual assume that

these options are not in force.

The following table summarizes the default size and alignment, ignoring other

aspects of types and options.

Note the following:

■ REAL*16 and COMPLEX*32: in 64-bit environments (compiling with -xarch=v9
or v9a) the default alignment is on 16-byte (rather than 8-byte) boundaries, as

indicated by 8/16 in the table.

■ Arrays and structures align according to their elements or fields. An array aligns

the same as the array element. A structure aligns the same as the field with the

widest alignment.

TABLE 4-3 Default Data Sizes and Alignments (in Bytes)

Fortran 95 Data Type Size
Default

Alignment
Alignment in

COMMON

BYTE X
CHARACTER X
CHARACTER*n X

1

1

n

1

1

1

1

1

1

COMPLEX X
COMPLEX*8 X
DOUBLE COMPLEX X
COMPLEX*16 X
COMPLEX*32 X

8

8

16

16

32

4

4

8

8

8/16

4

4

4

4

4

DOUBLE PRECISION X
REAL X
REAL*4 X
REAL*8 X
REAL*16 X

8

4

4

8

16

8

4

4

8

8/16

4

4

4

4

4

INTEGER X
INTEGER*2 X
INTEGER*4 X
INTEGER*8 X

4

2

4

8

4

2

4

8

4

2

4

4

LOGICAL X
LOGICAL*1 X
LOGICAL*2 X
LOGICAL*4 X
LOGICAL*8 X

4

1

2

4

8

4

1

2

4

8

4

1

2

4

4

Chapter 4 Fortran 95 Features and Differences 4-9

Options -f or -dalign force alignment of all 8, 16, or 32-byte data onto 8-byte

boundaries. Option -dbl_align_all causes all data to be aligned on 8-byte

boundaries. Programs that depend on the use of these options may not be portable.

4.1.9 Cray Pointers

A Cray pointer is a variable whose value is the address of another entity, called the

pointee.

f95 supports Cray pointers; Standard Fortran 95 does not.

4.1.9.1 Syntax

The Cray POINTERstatement has the following format:

Where pointer_name, pointee_name, and array_spec are as follows:

Example: Declare Cray pointers to two pointees.

The above example declares Cray pointer p and its pointee b, and Cray pointer q
and its pointee c .

POINTER (pointer_name, pointee_name [array_spec]), …

pointer_name Pointer to the corresponding pointee_name.

pointer_name contains the address of pointee_name.

Must be: a scalar variable name (but not a derived type)

Cannot be: a constant, a name of a structure, an array, or a

function

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or

non-constant bounds), or assumed-size.

POINTER (p, b), (q, c)

4-10 Fortran User’s Guide • May 2002

Example: Declare a Cray pointer to an array.

The above example declares Cray pointer ix and its pointee x ; and declares x to be

an array of dimensions n by m+1.

4.1.9.2 Purpose of Cray Pointers

You can use pointers to access user-managed storage by dynamically associating

variables to particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

4.1.9.3 Cray Pointers and Fortran 95 Pointers

Cray pointers are declared as follows:

POINTER (pointer_name, pointee_name [array_spec])

Fortran 95 pointers are declared as follows:

POINTER object_name

The two kinds of pointers cannot be mixed.

4.1.9.4 Features of Cray Pointers

■ Whenever the pointee is referenced, f95 uses the current value of the pointer as

the address of the pointee.

■ The Cray pointer type statement declares both the pointer and the pointee.

■ The Cray pointer is of type Cray pointer.

■ The value of a Cray pointer occupies one storage unit on 32-bit processors, and

two storage units on 64-bit SPARC V9 processors.

■ The Cray pointer can appear in a COMMONlist or as a dummy argument.

■ The Cray pointee has no address until the value of the Cray pointer is defined.

■ If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:

■ A separate type statement

■ A separate DIMENSIONstatement

■ The pointer statement itself

 POINTER (ix, x(n, 0:m))

Chapter 4 Fortran 95 Features and Differences 4-11

■ If the array declarator is in a subprogram, the dimensioning can refer to:

■ Variables in a common block, or

■ Variables that are dummy arguments

■ The size of each dimension is evaluated on entrance to the subprogram, not when

the pointee is referenced.

4.1.9.5 Restrictions on Cray Pointers

■ pointee_name must not be a variable typed CHARACTER*(*) .

■ If pointee_name is an array declarator, it must be explicit shape, (constant or

non-constant bounds), or assumed-size.

■ An array of Cray pointers is not allowed.

■ A Cray pointer cannot be:

■ Pointed to by another Cray pointer or by a Fortran pointer.

■ A component of a structure.

■ Declared to be any other data type.

■ A Cray pointer cannot appear in:

■ A PARAMETERstatement or in a type declaration statement that includes the

PARAMETERattribute.

■ A DATAstatement.

4.1.9.6 Restrictions on Cray Pointees

■ A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON, or

PARAMETERstatement.

■ A Cray pointee cannot be a dummy argument.

■ A Cray pointee cannot be a function value.

■ A Cray pointee cannot be a structure or a structure component.

■ A Cray pointee cannot be of a derived type.

4.1.9.7 Usage of Cray Pointers

Cray pointers can be assigned values as follows:

■ Set to an absolute address

Example: q = 0

■ Assigned to or from integer variables, plus or minus expressions

Example: p = q + 100

4-12 Fortran User’s Guide • May 2002

■ Cray pointers are not integers. You cannot assign them to a real variable.

■ The LOCfunction (nonstandard) can be used to define a Cray pointer.

Example: p = LOC(x)

Example: Use Cray pointers as described above.

Remarks about the above example:

■ word64 refers to the contents of absolute address 64

■ blk is an array that occupies the first 128 words of memory

■ a is an array of length 1000 located in blank common

■ b follows a and is of length n

■ c follows b

■ a, b, and c are associated with pool

■ word64 is the same as blk(17) because Cray pointers are byte address and the

integer elements of blk are each 4 bytes long

4.1.10 Other Language Extensions

4.1.10.1 Extended ALLOCATABLEAttribute

Recent decisions by the Fortran 95 standards organizations have extended the data

entities allowed for the ALLOCATABLEattribute. Previously this attribute was limited

to locally stored array variables. It is now allowed with:

■ array components of structures

■ dummy arrays

■ array function results

SUBROUTINE sub (n)
COMMON pool(100000)
INTEGER blk(128), word64
REAL a(1000), b(n), c(100000-n-1000)
POINTER (pblk, blk), (ia, a), (ib, b), &

(ic, c), (address, word64)
DATA address / 64 /
pblk = 0
ia = LOC(pool)
ib = ia + 4000
ic = ib + n
...

Chapter 4 Fortran 95 Features and Differences 4-13

Allocatable entities remain forbidden in all places where they may be

storage-associated: COMMONblocks and EQUIVALENCEstatements. Allocatable array

components may appear in SEQUENCEtypes, but objects of such types are then

prohibited from COMMONand EQUIVALENCE.

4.1.10.2 VALUEAttribute (Fortran 2000)

The f95 compiler recognizes the VALUEtype declaration attribute. This attribute has

been proposed for the Fortran 2000 standard.

Specifying a subprogram dummy input argument with this attribute indicates that

the actual argument is passed “by value”. The following example demonstrates the

use of the VALUEattribute with a C main program calling a Fortran 95 subprogram

with a literal value as an argument:

4.1.10.3 Stream I/O (Fortran 2000)

A new “stream” I/O scheme has been proposed as part of the Fortran 2000 draft

standard. Stream I/O access treats a data file as a continuous sequence of bytes,

addressable by a positive integer starting from 1. Declare a stream I/O file with the

ACCESS='STREAM'specifier on the OPENstatement. File positioning to a byte

address requires a POS=scalar_integer_expression specifier on a READor WRITE
statement. The INQUIRE statement accepts ACCESS='STREAM', a specifier

STREAM=scalar_character_variable, and POS=scalar_integer_variable.

4.1.10.4 Formatted I/O Features From Fortran 2000

Three new Fortran 2000 formatted I/O specifiers have been implemented in f95 .

They may appear on OPEN, READ, WRITE, PRINT, and INQUIRE statements:

C code:
#include <stdlib.h>
int main(int ac, char *av[])
{

to_fortran(2);
}

Fortran code:
subroutine to_fortran(i)
integer, value :: i
print *, i
end

4-14 Fortran User’s Guide • May 2002

■ DECIMAL=['POINT' |'COMMA']

Change the default decimal editing mode. The default uses a period to separate

the whole number and decimal parts of a floating-point number formatted with D,

E, EN, ES, F, and Gediting. 'COMMA' changes the default to use comma instead of

a period, to print, for example, 123,456 . The default is 'POINT' , which uses a

period, to print, for example, 123.456 .

■ ROUND=['PROCESSOR_DEFINED'| 'COMPATIBLE']

Set the default rounding mode for formatted I/O D, E, EN, ES, F, and G editing.

With 'COMPATIBLE' , the value resulting from data conversion is the one closer

to the two nearest represetnations, or the value away from zero if the value is

halfway between them. With 'PROCESSOR_DEFINED', the rounding mode is

dependent on the processor’s default mode, and is the compiler default if ROUND
is not specified.

As an example, WRITE(*,'(f11.4)') 0.11115 prints 0.1111 in default

mode, and 0.1112 in 'COMPATIBLE' mode.

■ IOMSG=character-variable

Returns an error message as a string in the specified character variable. This is the

same error message that would appear on standard output. Users should

allocated a character buffer large enough to hold the longest message.

(CHARACTER*256should be sufficient.)

When used in INQUIRE statements, these specifiers declare a character variable for

returning the current values.

New edit descriptors DP, DC, RP, and RCchange the defaults within a single FORMAT
statement to decimal point, decimal comma, processor-defined rounding, and

compatible rounding respectively. For example:

WRITE(*,'(I5,DC,F10.3)') N, W

prints a comma instead of a period in the F10.3 output item.

See also the -iorounding compiler command-line option for changing the

floating-point rounding modes on formatted I/O. (“-iorounding=mode” on page 30.)

4.1.10.5 STRUCTUREand UNION(VAX Fortran)

To aid the migration of programs from f77 , f95 accepts VAX Fortran STRUCTURE
and UNIONstatements, a precursor to the “derived types” in Fortran 95. For syntax

details see the FORTRAN 77 Language Reference manual.

The field declarations within a STRUCTUREcan be one of the following:

■ A substructure — either another STRUCTUREdeclaration, or a record that has

been previously defined.

Chapter 4 Fortran 95 Features and Differences 4-15

■ A UNIONdeclaration.

■ A TYPEdeclaration, which can include initial values.

■ A derived type having the SEQUENCEattribute. (This is particular to f95 only.)

As with f77 , a POINTERstatement cannot be used as a field declaration.

f95 also allows:

■ Either ‘. ’ or ‘%’ can be used as a structure field dereference symbol:

struct.field or struct%field .

■ Structures can appear in a formatted I/O statement.

■ Structures can be initialized in a PARAMETERstatement; the format is the same as

a derived type initialization.

■ Structures can appear as components in a derived type, but the derived type must

be declared with the SEQUENCEattribute.

4.1.11 I/O Extensions

Some I/O extensions that appeared in Forte Developer Fortran 77 are now part of

the Fortran 95 compiler:

■ NAMELIST Input Format:

The group name may be preceded by $ or & on input. The & is the only form

accepted by the Fortran 95 standard, and is what is written by NAMELIST

output.

Accepts $ as the symbol terminating input except if the last data item in the

group is CHARACTERdata, in which case the $ is treated as input data.

Allows NAMELIST input to start in the first column of a record.

■ OPEN(...,FORM='BINARY') treats the file as binary data without record marks:

Opening a file with FORM='BINARY' has roughly the same effect as

FORM='UNFORMATTED', except that no record lengths are embedded in the file.

Without this data, there is no way to tell where one record begins, or ends. Thus,

it is impossible to BACKSPACEa FORM='BINARY' file, because there is no way of

telling where to backspace to. A READon a 'BINARY' file will read as much data

as needed to fill the variables on the input list.

■ WRITEstatement: Data is written to the file in binary, with as many bytes

transferred as specified by the output list.

■ READstatement: Data is read into the variables on the input list, transferring as

many bytes as required by the list. Because there are no record marks on the

file, there will be no “end-of-record” error detection. The only errors detected

are “end-of-file” or abnormal system errors.

■ INQUIRE statement: INQUIRE on a file opened with FORM=”BINARY” returns:

4-16 Fortran User’s Guide • May 2002

FORM=”BINARY”
ACCESS=”SEQUENTIAL”
DIRECT=”NO”
FORMATTED=”NO”
UNFORMATTED=”YES”
RECL= AND NEXTREC=are undefined

■ BACKSPACEstatement: Not allowed—returns an error.

■ ENDFILE statement: Truncates file at current position, as usual.

■ REWINDstatement: Repositions file to beginning of data, as usual.

■ Recursive I/O possible on different units (this is because the f95 I/O library is

"MT-Warm").

■ RECL=2147483646 (231-2) is the default record length on sequential formatted,

list directed, and namelist output.

■ ENCODEand DECODEare recognized and implemented as described in the

FORTRAN 77 Language Reference Manual.

■ Non-advancing I/O is enabled with ADVANCE='NO', as in:

write(*,'(a)',ADVANCE='NO') 'n= '
read(*,*) n

4.2 Directives
A compiler directive directs the compiler to do some special action. Directives are

also called pragmas.

A compiler directive is inserted into the source program as one or more lines of text.

Each line looks like a comment, but has additional characters that identify it as more

than a comment for this compiler. For most other compilers, it is treated as a

comment, so there is some code portability.

Sun-style parallelization directives are the default with f95 -explicitpar . To

switch to Cray-style directives, use the -mp=cray compiler command-line flag.

Explicit parallelization with OpenMP directives requires compiling with -openmp .

A complete summary of Fortran directives appears in Appendix D.

Chapter 4 Fortran 95 Features and Differences 4-17

4.2.1 Form of Special f95 Directive Lines

f95 recognizes its own special directives in addition to those described in Chapter 2.

These have the following syntax:

4.2.1.1 Fixed-Form Source

■ Put CDIR$ or !DIR$ in columns 1 through 5.

■ Directives are listed in columns 7 and beyond.

■ Columns beyond 72 are ignored.

■ An initial directive line has a blank in column 6.

■ A continuation directive line has a nonblank in column 6.

4.2.1.2 Free-Form Source

■ Put !DIR$ followed by a space anywhere in the line.

The !DIR$ characters are the first nonblank characters in the line (actually,

non-whitespace).

■ Directives are listed after the space.

■ An initial directive line has a blank, tab, or newline in the position immediately

after the !DIR$.

■ A continuation directive line has a character other than a blank, tab, or newline in

the position immediately after the !DIR$.

Thus, !DIR$ in columns 1 through 5 works for both free-form source and fixed-form

source.

4.2.2 FIXED and FREEDirectives

These directives specify the source form of lines following the directive line.

4.2.2.1 Scope

They apply to the rest of the file in which they appear, or until the next FREEor

FIXED directive is encountered.

!DIR$ d1, d2, …

4-18 Fortran User’s Guide • May 2002

4.2.2.2 Uses

■ They allow you to switch source forms within a source file.

■ They allow you to switch source forms for an INCLUDE file. You insert the

directive at the start of the INCLUDE file. After the INCLUDE file has been

processed, the source form reverts back to the form being used prior to processing

the INCLUDE file.

4.2.2.3 Restrictions

The FREE/FIXED directives:

■ Each must appear alone on a compiler directive line (not continued).

■ Each can appear anywhere in your source code. Other directives must appear

within the program unit they affect.

Example: A FREEdirective.

4.2.3 Parallelization Directives

A parallelization directive is a special comment that directs the compiler to attempt to

parallelize the next DO loop. These are summarized in Appendix D and described in

the chapter on parallelization in the Fortran Programming Guide. f95 recognizes both

Sun and Cray style parallelization directives, as well as the OpenMP Fortran API

directives. OpenMP parallelization is described in the Forte Developer OpenMP API
User’s Guide.

4.3 Module Files
Compiling a file containing a Fortran 95 MODULEgenerates a module interface file

(.mod file) for every MODULEencountered in the source. The file name is derived

from the name of the MODULE; file xyz.mod (all lowercase) will be created for

MODULE xyz.

!DIR$ FREE
DO i = 1, n
a(i) = b(i) * c(i)
END DO

Chapter 4 Fortran 95 Features and Differences 4-19

Compilation also generates a .o module implementation object file for the source

file containing the MODULEstatements. Link with the module implementation object

file along with the all other object files to create an executable.

The compiler creates module interface files and implementation object files in the

directory specified by the -moddir= dir flag or the MODDIRevironment variable. If

not specified, the compiler writes .mod files in the current working directory.

The compiler looks in the current working directory for the interface files when

compiling USEmodulename statements. The -Mpath option allows you to give the

compiler an additional path to search. Module implementation object files must be

listed explicitly on the command line for the link step.

Typically, programmers define one MODULEper file and assign the same name to the

MODULEand the source file containing it. However, this is not a requirement.

In this example, all the files are compiled at once. The module source files appear

first before their use in the main program.

Compilation creates the files:

main
main.o
one.mod
mod_one.o
two.mod
mod_two.o

demo% cat mod_one.f90
MODULE one

...
END MODULE

demo% cat mod_two.f90
MODULE two

...
END MODULE

demo% cat main.f90
USE one
USE two

...
END

demo% f95 -o main mod_one.f90 mod_two.f90 main.f90

4-20 Fortran User’s Guide • May 2002

The next example compiles each unit separately and links them together.

When compiling main.f90 , the compiler searches the current directory for

one.mod and two.mod . These must be compiled before compiling any files that

reference the modules on USEstatements. The link step requires the module

implementation object files mod_one.o and mod_two.o appear along with all other

object files to create the executable.

4.3.1 Searching for Modules

With the release of the Forte Developer 7 Fortran 95 compiler, .mod files can be

stored into an archive (.a) file. An archive must be explicitly specified in a -Mpath
flag on the command line for it to be searched for modules. The compiler does not

search archive files by default.

Only .mod files with the same names that appear on USEstatements will be

searched. For example, the Fortran 95 statement USE mymodcauses the compiler to

search for the module file mymod.mod by default.

While searching, the compiler gives higher priority to the directory where the

module files are being written. This can be controlled by the -moddir= dir option

flag and the MODDIRenvironment variable. This implies that if only the -Mpath
option is specified, the current directory will be searched for modules first, before

the directories and files listed on the -M flag.

4.3.2 The -use= list Option Flag

The -use= list flag forces one or more implicit USEstatements into each subprogram

or module subprogram compiled with this flag. By using the flag, it is not necessary

to modify source programs when a module or module file is required for some

feature of a library or application.

Compiling with -use= module_name has the effect of adding a USEmodule_name to

each subprogram or module being compiled. Compiling with

-use= module_file_name has the effect of adding a USEmodule_name for each of the

modules contained in the module_file_name file.

demo% f95 -c mod_one.f90 mod_two.f90
demo% f95 -c main.f90
demo% f95 -o main main.o mod_one.o mod_two.o

Chapter 4 Fortran 95 Features and Differences 4-21

4.3.3 The fdumpmod Command

Use the fdumpmod(1) command to display information about the contents of a

module information file.

The dumpmodcommand will display information about modules in a single .mod
file, files formed by concatenating .mod files, and in .a archives of .mod files. The

display includes the name of the module, the target architecture, and a version

number. See the fdumpmod(1) man page for details.

4.4 Intrinsics
f95 supports some intrinsic procedures that are extensions beyond the standard.

demo% fdumpmod mods.mod
GROUP v8 version 0.16 mods.mod
X v8 version 0.16 mods.mod

TABLE 4-4 Nonstandard Intrinsics

Name Definition Function Type Argument Types Arguments Notes

COT Cotangent real real ([X=] x) P, E

DDIM Positive difference double precision double precision ([X=] x,[Y=] y) P, E

LEADZ Get the number of

leading 0 bits

integer Boolean, integer, real,

or pointer

([I=] i) NP, I

POPCNT Get the number of

set bits

integer Boolean, integer, real,

or pointer

([I=] i) NP, I

POPPAR Calculate bit

population parity

integer Boolean, integer, real,

or pointer

([X=] x) NP, I

Notes on the above table:

P The name can be passed as an argument.

NP The name cannot be passed as an argument.

E External code for the intrinsic is called at run time.

I f95 generates inline code for the intrinsic procedure.

4-22 Fortran User’s Guide • May 2002

See the Fortran Library Reference for a more complete discussion of intrinsics,

including those from Fortran 77 that are recognized by the Fortran 95 compiler.

4.5 Forward Compatibility
Future releases of f95 are intended to be source code compatible with this release.

Module information files generated by this release of f95 are not guaranteed to be

compatible with future releases.

4.6 Mixing Languages
On Solaris systems, routines written in C can be combined with Fortran programs,

since these languages have common calling conventions.See the C-Fortran Interface

chapter in the Fortran Programming Guide for details on how to interoperate between

C and Fortran routines.

5-1

CHAPTER 5

FORTRAN 77 Compatibility:
Migrating to Fortran 95

The Fortran 95 compiler, f95 , will compile most legacy FORTRAN 77 programs,

including programs utilizing non-standard extensions previously compiled by the

f77 compiler.

f95 will accept many of these FORTRAN 77 features directly. Others require

compiling in FORTRAN 77 compatibility mode (f95 -f77).

This chapter describes the FORTRAN 77 features accepted by f95 , and lists those

f77 features that are incompatible with f95 . For details on any of the non-standard

FORTRAN 77 extensions that were accepted by the f77 compiler, see earlier releases

of the FORTRAN 77 Language Reference manual on http://docs.sun.com .

See Chapter 4 for other extensions to the Fortran 95 language accepted by the f95
compiler.

f95 will compile standard-conforming FORTRAN 77 programs. To ensure continued

portability, programs utilizing non-standard FORTRAN 77 features should migrate

to standard-conforming Fortran 95. Compiling with the -ansi option will flag all

non-standard usages in your program.

5-2 Fortran User’s Guide • May 2002

5.1 Compatible f77 Features
f95 accepts the following non-standard features of the FORTRAN 77 compiler, f77,
either directly or when compiling in -f77 compatibility mode:

■ Source Format

■ Continuation lines can starting with ‘&’ in column 1. [-f77=misc]

■ The first line in an include file can be a continuation line. [-f77=misc]

■ Use f77 tab-format. [-f77=tab]

■ I/O:

■ You can open a file with ACCESS=’APPEND’in Fortran 95.

■ List-directed output uses formats similar to the f77 compiler. [-f77=output]

■ f95 allows BACKSPACEon a direct-access file, but not ENDFILE.

■ f95 allows implicit field-width specifications in format edit descriptors. For

example, FORMAT(I) is allowed.

■ f95 will recognize f77 escape sequences (for example, \n \t \’) in output

formats. [-f77=backslash .]

■ f95 recognizes FILEOPT= in OPENstatements.

■ f95 allows SCRATCHfiles to be opened or closed with STATUS=’KEEP’
[-f77] . When the program exits the scratch file is not deleted. SCRATCHfiles

can also be opened with FILE= name when compiling with -f77 .

■ Direct I/O is permitted on internal files. [-f77]

■ f95 recognizes FORTRAN 77 format edit descriptors A, $, and SU. [-f77]

■ FORM=’PRINT’ can appear on OPENstatements. [-f77]

■ f95 recognizes the legacy FORTRAN input/output statements ACCEPTand

TYPE.

■ Compile with -f77=output to write FORTRAN 77 style NAMELISToutput.

■ A READwith only ERR=specified (no IOSTAT= or END=branches) treats the

ERR=branch as an END=when an EOF is detected. [-f77]

■ VMS Fortran NAME=’filename’ is accepted on OPENstatements. [-f77]

■ f95 accepts an extra comma after READ() or WRITE() . [-f77]

■ END=branch can appear on direct access READwith REC=. [-f77=input]

■ Allow format edit descriptor Ew. d. e and treat it as Ew. d.E e. [-f77]

■ Character strings can be used in the FORMAT of an input statement.

[-f77=input]

■ IOSTAT= specifier can appear in ENCODE/DECODEstatements.

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-3

■ List-directed I/O is allowed with ENCODE/DECODEstatements.

■ Asterisk (*) can be used to stand in for STDIN and STDOUTwhen used as a

logical unit in an I/O statement.

■ Arrays can appear in the FMT=specifier. [-f77=misc]

■ PRINT statement accepts namelist group names. [-f77=output]

■ The compiler accepts redundant commas in FORMATstatements.

■ While performing NAMELIST input, entering a question mark (?) responds

with the name of the namelist group being read. [-f77=input]

■ Data Types, Declarations, and Usage:

■ In a program unit, the IMPLICIT statement may follow any other declarative

statement in the unit.

■ f95 accepts the IMPLICIT UNDEFINED statement.

■ f95 accepts the AUTOMATICstatement, a FORTRAN 77 extension.

■ f95 accepts the STATIC statement and treats it like a SAVEstatement.

■ f95 accepts VAX STRUCTURE, UNION, and MAPstatements.(See “STRUCTURE

and UNION (VAX Fortran)” on page 14)

■ LOGICAL and INTEGERvariables can be used interchangeably.

[-f77=logical]

■ INTEGERvariables can appear in conditional expressions, such as DO WHILE.
[-f77=logical]

■ Cray pointers can appear in calls to intrinsic functions.

■ f95 will accept data initializations using slashes on type declarations. For

example: REAL MHW/100.101/, ICOMX/32.223/

■ f95 allows assigning Cray character pointers to non-pointer variables and to

other Cray pointers that are not character pointers.

■ f95 allows the same Cray pointer to point to items of different type sizes (for

example, REAL*8 and INTEGER*4).

■ f95 accepts the BYTEdata type.

■ f95 allows non-integers to be used as array subscripts. [-f77=subscript]

■ f95 allows relational operators .EQ. and .NE. to be used with logical

operands. [-f77=logical]

■ f95 will accept the legacy f77 VIRTUAL statement, and treats it as a

DIMENSIONstatement.

■ Different data structures can be equivalenced in a manner that is compatible

with the f77 compiler. [-f77=misc]

■ Like the f77 compiler, f95 allows many intrinsics to appear in initialization

expressions on PARAMETERstatements.

5-4 Fortran User’s Guide • May 2002

■ f95 allows assignment of an integer value to CHARACTER*1variables.

[-f77=misc]

■ BOZ constants can be used as exponents. [-f77=misc]

■ An integer array of hollerith characters can be used as a format descriptor.

[-f77] .

■ When compiling with -f77=misc , f95 will automatically promote a REAL
constant to the appropriate kind (REAL*8 or REAL*16) in assignments, data,

and parameter statements, in the manner of the f77 compiler. [-f77=misc]

■ Equivalenced variables are allowed on an assigned GOTO. [-f77]

■ Compiling with -f77=misc allows * kind before dimension declarations (for

example, REAL X*8(21)). [-f77=misc]

■ A character substring may appear as an implied-DO target in a DATA
statement. [-f77=misc]

For example: DATA (a(i:i), i=1,n) /n*’+’/

■ Programs, Subroutines, Functions, Statements:

■ f95 does not require a PROGRAMstatement to have a name.

■ Functions can be called by a CALL statement as if they were subroutines.

[-f77]

■ Functions do not have to have their return value defined. [-f77]

■ An alternate return specifier (* label or &label) can appear in the actual

parameter list and in different positions. [-f77=misc]

■ %VALcan be used with an argument of type COMPLEX. [-f77=misc]

■ Tab-formatting can extend source lines beyond column 72. [-f77]

■ f95 tab-formatting will not pad character strings to column 72 if they extend

over a continuation line. [-f77]

■ A subroutine can call itself recursively without declaring itself with a

RECURSIVEkeyword. [-f77=misc]

■ Compiling with -f77=misc allows statement functions to be defined with

arguments typed other than INTEGERor REAL, and actual arguments will be

converted to the type defined by the statement function. [-f77=misc]

■ f95 treats a call to the function %LOC() as a call to LOC() . [-f77=misc]

■ Miscellaneous

■ The f95 normally does not issue progress messages to standard out. The f77
compiler did issue progress messages, displaying the names of the routines it

was compiling. This convention is retained when compiling with the -f77
compatibility flag.

■ Programs compiled by the f77 compiler did not trap on arithmetic exceptions,

and automatically called ieee_retrospective on exit to report on any

exceptions that may have occured during execution. Compiling with the -f77

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-5

flag mimics this behavior of the f77 compiler. By default, the f95 compiler

traps on the first arithmetic exception encountered and does not call

ieee_retrospective .

■ The f77 compiler treated a REAL*4 constant as if it had REAL*8 precision in

contexts where double precision was needed. When compiling with the -f77
flag, the f95 compiler allows a REAL*4 constant to have REAL*8 precision

when the constant is assigned to a REAL*8 variable. However, in arithmetic

operations involving a REAL*4 constant and a REAL*8 operand, f77 treated

the REAL*4 constant as if it were a REAL*8 constant. The f95 compiler does

not do this, causing a possible difference in precision.

A partial workaround for some applications is to compile with the -r8const
flag to convert all REAL*4 constants to REAL*8. Note that this is not quite the

f77 compiler’s behavior and could cause an interface problem if a REAL*4
constant is used as an actual argument to a subprogram expecting REAL*4. It

could also cause problems when reading back data written by programs that

do unformatted writes with literal constants on the I/O list.

For details on the syntax and semantics of non-standard language extensions, see the

FORTRAN 77 Language Reference on docs.sun.com .

5.2 Incompatibility Issues
The following lists known incompatibility issues that arise when compiling and

testing legacy f77 programs with this release of f95 . These are due to either missing

comparable features in f95 , or differences in behavior. These items are non-standard

extensions to Fortran 77 supported in f77 but not in f95 .

■ Source Format

■ f95 limits the number of continuation lines to 99.

■ I/O:

■ Variable format expressions are not available in f95 .

■ f95 does not allow ENDFILE on a direct-access file.

■ f95 does not recognize the ' n form for specifying a record number in direct

access I/O: READ (2 '13) X,Y,Z

■ f95 does not recognize the legacy f77 “R” format edit descriptor.

■ f95 does not allow the DISP= specifier in a CLOSEstatement.

■ Bit constants are not allowed on a WRITEstatement.

■ Fortran 95 NAMELISTdoes not allow arrays and character strings with variable

lengths.

5-6 Fortran User’s Guide • May 2002

■ Opening a direct access file with RECL=1cannot be used as a “stream” file. Use

FORMAT=’STREAM’instead.

■ Fortran 95 reports illegal I/O specifiers as errors. f77 gave only warnings.

■ Data Types, Declarations, and Usage:

■ f95 allows only 7 array subscripts; f77 allowed 20.

■ f95 does not allow non-constants in PARAMETERstatements.

■ Integer values cannot be used in the initializer of a CHARACTERtype

declaration.

■ Fortran 95 will not allow array elements in boundary expressions before the

array is declared. For example:

■ Programs, Subroutines, Functions, Statements:

■ The maximum length for names is 31 characters.

■ f95 does not handle debugging comments (comment lines with "D" in column

one). They are always treated as comments and there is no option -vax=debug
to turn them into live statements.

■ Command-line Options:

■ f95 does not recognize the following f77 compiler options:

-arg=local -dbl -oldstruct -i2 -i4 -r4 -r8 -vax

■ f77 Library Routines Not Supported by f95 :

■ The POSIX library.

■ The IOINIT() library routine.

■ The tape I/O routines topen, tclose, twrite, tread, trewin, tskipf,
tstate .

■ start_iostats and end_iostats library routines.

■ f77_init() function.

■ f95 does not allow the IEEE_RETROSPECTIVEsubroutine to be bypassed by

defining the user’s own routine with the same name.

subroutine s(i1,i2)
integer i1(i2(1):10)
dimension i2(10)
...ERROR: "I2" has been used as a function, therefore it
must not be declared with the explicit-shape DIMENSION
attribute.

end

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-7

5.3 Linking With f77 -Compiled Routines
■ To mix f77 and f95 object binaries, link with f95 compile with the -xlang=f77

option. Perform the link step with f95 even if the main program is an f77
program

■ Example: Compiling an f95 main program with an f77 object file.

■ The FORTRAN 77 library and intrinsics are available to f95 programs and are

listed in the Fortran Library Reference Manual.

Example: f95 main calls a routine from the FORTRAN 77 library.

See dtime (3F).

demo% cat m.f95
CHARACTER*74 :: c = ’This is a test.’
 CALL echo1(c)
END
demo% f95 -xlang=f77 m.f95 sub77.o
demo% a.out
 This is a test.
demo%

demo% cat tdtime.f95
 REAL e, dtime, t(2)
 e = dtime(t)
 DO i = 1, 100000

as = as + cos(sqrt(float(i)))
 END DO
 e = dtime(t)
 PRINT *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
 END
demo% f95 tdtime.f95
demo% a.out
elapsed: 0.14 , user: 0.14 , sys: 0.0E+0
demo%

5-8 Fortran User’s Guide • May 2002

5.3.1 Fortran 95 Intrinsics

The Fortran 95 standard supports intrinsic functions that FORTRAN 77 did not have.

The full set of Fortran 95 intrinsics, including non-standard intrinsics, appears in the

Fortran Library Reference manual.

If you use any of the intrinsic names listed in the Fortran Library Reference as a

function name in your program, you must add an EXTERNALstatement for f95 to

use your routine rather than the intrinsic one.

The Fortran Library Reference also lists all the intrinsics recognized by earlier releases

of the f77 compiler. The f95 compiler recognizes these names as intrinsics as well.

Compiling with -f77=intrinsics limits the compiler’s recognition of intrinsic

functions to just those that were known to the f77 compiler, ignoring the Fortran 95

intrinsics.

5.4 Additional Notes About Migrating to the
f95 Compiler
■ The floatingpoint.h header file replaces f77_floatingpoint.h , and

should be used in source programs as follows:

#include "floatingpoint.h"

■ Header file references of the form f77/ filename should be changed to remove the

f77/ directory path.

■ Some programs utilizing non-standard aliasing techniques (by overindexing

arrays, or by overlapping Cray or Fortran pointers) may benefit by compiling

with the appropriate -xalias flag. See “-xalias[=type_list]” on page 3-50. This is

discussed with examples in the chapter on porting “dusty deck” programs in the

Fortran Programming Guide.

A-1

APPENDIX A

Runtime Error Messages

This appendix describes the error messages generated by the Fortran 95 runtime I/O

library and operating system.

A.1 Operating System Error Messages
Operating system error messages include system call failures, C library errors, and

shell diagnostics. The system call error messages are found in intro (2). System calls

made through the Fortran library do not produce error messages directly. The

following system routine in the Fortran library calls C library routines which

produce an error message:

The following message is displayed:

integer system, status
status = system("cp afile bfile")
print*, "status = ", status
end

cp: cannot access afile
 status = 512

A-2 Fortran User’s Guide • May 2002

A.2 f95 Runtime I/O Error Messages
The f95 I/O library issues diagnostic messages when errors are detected at runtime.

Here is an example, compiled and run with Forte Developer Fortran 95:

Because the f95 message contains references to the originating source code filename

and line number, application developers should consider using the ERR=clause in

I/O statements to softly trap runtime I/O errors.

TABLE A-1 lists the runtime I/O messages issued by f95 .

demo% cat wf.f
 WRITE(6) 1
 END
demo% f95 -o wf wf.f
demo% wf

 ****** FORTRAN RUN-TIME SYSTEM ******
 Error 1003: unformatted I/O on formatted unit
 Location: the WRITE statement at line 1 of "wf.f"
 Unit: 6
 File: standard output
Abort

TABLE A-1 f95 Runtime I/O Messages

Error Message

1000 format error

1001 illegal unit number

1002 formatted I/O on unformatted unit

1003 unformatted I/O on formatted unit

1004 direct-access I/O on sequential-access unit

1005 sequential-access I/O on direct-access unit

1006 device does not support BACKSPACE

1007 off beginning of record

1008 can't stat file

1009 no * after repeat count

1010 record too long

Appendix A Runtime Error Messages A-3

1011 truncation failed

1012 incomprehensible list input

1013 out of free space

1014 unit not connected

1015 read unexpected character

1016 illegal logical input field

1017 'new' file exists

1018 can't find 'old' file

1019 unknown system error

1020 requires seek ability

1021 illegal argument

1022 negative repeat count

1023 illegal operation for channel or device

1024 reentrant I/O

1025 incompatible specifiers in open

1026 illegal input for namelist

1027 error in FILEOPT parameter

1028 writing not allowed

1029 reading not allowed

1030 integer overflow on input

1031 floating-point overflow on input

1032 floating-point underflow on input

1051 default input unit closed

1052 default output unit closed

1053 direct-access READ from unconnected unit

1054 direct-access WRITE to unconnected unit

1055 unassociated internal unit

1056 null reference to internal unit

1057 empty internal file

1058 list-directed I/O on unformatted unit

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

A-4 Fortran User’s Guide • May 2002

1059 namelist I/O on unformatted unit

1060 tried to write past end of internal file

1061 unassociated ADVANCE specifier

1062 ADVANCE specifier is not 'YES' or 'NO'

1063 EOR specifier present for advancing input

1064 SIZE specifier present for advancing input

1065 negative or zero record number

1066 record not in file

1067 corrupted format

1068 unassociated input variable

1069 more I/O-list items than data edit descriptors

1070 zero stride in subscript triplet

1071 zero step in implied DO-loop

1072 negative field width

1073 zero-width field

1074 character string edit descriptor reached on input

1075 Hollerith edit descriptor reached on input

1076 no digits found in digit string

1077 no digits found in exponent

1078 scale factor out of range

1079 digit equals or exceeds radix

1080 unexpected character in integer field

1081 unexpected character in real field

1082 unexpected character in logical field

1083 unexpected character in integer value

1084 unexpected character in real value

1085 unexpected character in complex value

1086 unexpected character in logical value

1087 unexpected character in character value

1088 unexpected character before NAMELIST group name

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

Appendix A Runtime Error Messages A-5

1089 NAMELIST group name does not match the name in the program

1090 unexpected character in NAMELIST item

1091 unmatched parenthesis in NAMELIST item name

1092 variable not in NAMELIST group

1093 too many subscripts in NAMELIST object name

1094 not enough subscripts in NAMELIST object name

1095 zero stride in NAMELIST object name

1096 empty section subscript in NAMELIST object name

1097 subscript out of bounds in NAMELIST object name

1098 empty substring in NAMELIST object name

1099 substring out of range in NAMELIST object name

1100 unexpected component name in NAMELIST object name

1111 unassociated ACCESS specifier

1112 unassociated ACTION specifier

1113 unassociated BINARY specifier

1114 unassociated BLANK specifier

1115 unassociated DELIM specifier

1116 unassociated DIRECT specifier

1117 unassociated FILE specifier

1118 unassociated FMT specifier

1119 unassociated FORM specifier

1120 unassociated FORMATTED specifier

1121 unassociated NAME specifier

1122 unassociated PAD specifier

1123 unassociated POSITION specifier

1124 unassociated READ specifier

1125 unassociated READWRITE specifier

1126 unassociated SEQUENTIAL specifier

1127 unassociated STATUS specifier

1128 unassociated UNFORMATTED specifier

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

A-6 Fortran User’s Guide • May 2002

1129 unassociated WRITE specifier

1130 zero length file name

1131 ACCESS specifier is not 'SEQUENTIAL' or 'DIRECT'

1132 ACTION specifier is not 'READ', 'WRITE' or 'READWRITE'

1133 BLANK specifier is not 'ZERO' or 'NULL'

1134 DELIM specifier is not 'APOSTROPHE', 'QUOTE', or 'NONE'

1135 unexpected FORM specifier

1136 PAD specifier is not 'YES' or 'NO'

1137 POSITION specifier is not 'APPEND', 'ASIS', or 'REWIND'

1138 RECL specifier is zero or negative

1139 no record length specified for direct-access file

1140 unexpected STATUS specifier

1141 status is specified and not 'OLD' for connected unit

1142 STATUS specifier is not 'KEEP' or 'DELETE'

1143 status 'KEEP' specified for a scratch file

1144 impossible status value

1145 a file name has been specified for a scratch file

1146 attempting to open a unit that is being read from or
written to

1147 attempting to close a unit that is being read from or
written to

1148 attempting to open a directory

1149 status is 'OLD' and the file is a dangling symbolic link

1150 status is 'NEW' and the file is a symbolic link

1151 no free scratch file names

1152 specifier ACCESS='STREAM' for default unit

1153 stream-access to default unit

1161 device does not support REWIND

1162 read permission required for BACKSPACE

1163 BACKSPACE on direct-access unit

1164 BACKSPACE on binary unit

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

Appendix A Runtime Error Messages A-7

1165 end-of-file seen while backspacing

1166 write permission required for ENDFILE

1167 ENDFILE on direct-access unit

1168 stream-access to sequential or direct-access unit

1169 stream-access to unconnected unit

1170 direct-access to stream-access unit

1171 incorrect value of POS specifier

1172 unassociated ASYNCHRONOUS specifier

1173 unassociated DECIMAL specifier

1174 unassociated IOMSG specifier

1175 unassociated ROUND specifier

1176 unassociated STREAM specifier

1177 ASYNCHRONOUS specifier is not 'YES' or 'NO'

1178 ROUND specifier is not 'UP', 'DOWN', 'ZERO', 'NEAREST',
'COMPATIBLE' or 'PROCESSOR-DEFINED'

1179 DECIMAL specifier is not 'POINT' or 'COMMA'

1180 RECL specifier is not allowed in OPEN statement for stream-
access unit

1181 attempting to allocate an allocated array

1182 deallocating an unassociated pointer

1183 deallocating an unallocated allocatable array

1184 deallocating an allocatable array through a pointer

1185 deallocating an object not allocated by an ALLOCATE
statement

1186 deallocating a part of an object

1187 deallocating a larger object than was allocated

1191 unallocated array passed to array intrinsic function

1192 illegal rank

1193 small source size

1194 zero array size

1195 negative elements in shape

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

A-8 Fortran User’s Guide • May 2002

1196 illegal kind

1197 nonconformable array

2001 invalid constant, structure, or component name

2002 handle not created

2003 character argument too short

2004 array argument too long or too short

2005 end of file, record, or directory stream

TABLE A-1 f95 Runtime I/O Messages (Continued)

Error Message

B-1

APPENDIX B

Features Release History

This Appendix lists the new and changed features in this release of Forte Developer

Fortran 95:

B.1 Fortran 95 New Features and Changes
This section lists the new features and behavior changes introduced with this release

of the f95 compiler.

B.1.1 Forte Developer 7 Release:
■ Fortran 77 Functionality Absorbed Into Fortran 95 Compiler

This release of the Forte Developer software replaces the f77 compiler with

added functionality in the f95 compiler. The f77 command is a script that calls

the f95 compiler:

See Chapter 5 for details on Fortran 77 compatibilities and incompatibilities.

■ Fortran 77 Compatibility Mode:

The new -f77 flag selects various compatibility features that enable the compiler

to accept many Fortran 77 constructs and conventions that are normally

incompatible with Fortran 95. See “-f77[=list]” on page 20, and Chapter 5.

the command:
f77 options files libraries

becomes a call to the f95 compiler::
f95 -f77=%all -ftrap=%none options files -lf77compat libraries

B-2 Fortran User’s Guide • May 2002

■ Compiling “Dusty Deck” Programs That Employ Non-Standard Aliasing:

The f95 compiler must assume that programs it compiles adhere to the Fortran

95 standard regarding aliasing of variables through subprogram calls, global

variables, pointers, and overindexing. Many “dusty deck” legacy programs

intentionally utilized aliasing techniques to get around shortcomings in early

versions of the Fortran language. Use the new -xalias flag to advise the

compiler about how far the program deviates from the standard and what kind of

aliasing syndromes it should expect. In some cases the compiler generates correct

code only when the proper -xalias suboption is specified. Programs that

conform strictly to the standard will find some performance improvement by

advising the compiler to be unconcerned about aliasing. See “-xalias[=type_list]”

on page 50, and the chapter on Porting in the Fortran Programming Guide.

■ Enhanced MODULE Features:

■ New flag -use= list forces one or more implicit USEstatements into each

subprogram. See “-use=list” on page 47.

■ New flag -moddir= path controls where the compiler writes compiled MODULE
subprograms (.mod files). See “-moddir=path” on page 33. A new environment

variable, MODDIR, also controls where .mod files are written.

■ The -Mpath flag will now accept directory paths, archive (.a) files, or module

(.mod) files to search for MODULEsubprograms. The compiler determines the

type of the file by examining its contents; the actual file name extension is

ignored. See “–Mpath” on page 33.

■ When searching for modules, the compiler now looks first in the directory

where module files are being written.

See “Module Files” on page 18 for details.

■ Enhanced Global Program Analysis With -Xlist:

This release of the f95 compiler adds a number of new checks to the global

program analysis provided by the -Xlist flag. The new -XlistMP suboption

opens a new domain of static program analysis, verification of OpenMP

parallelization directives. See “–Xlist[x]” on page 48, the Forte Developer OpenMP
API User’s Guide, and the chapter on Program Analysis and Debugging in the

Fortran Programming Guide for details.

■ Identifying Known Libraries With -xknown_lib=library:

A new option, -xknown_lib= library, directs the compiler to treat references to

certain known libraries as intrinsics, ignoring any user-supplied versions. This

enables the compiler to perform optimizations over library calls based on its

special knowledge of the library. In this release, the known library names are

limited to blas , for a subset of the BLAS routines in the Sun Performance Library,

and intrinsics , for ignoring explicit EXTERNALdeclarations for Fortran 95

standard intrinsics and any user-supplied versions of these routines. See

“-xknown_lib=library” on page 66.

Appendix B Features Release History B-3

■ Ignoring Dummy Argument Type in Interfaces:

A new directive, !$PRAGMA IGNORE_TKR{list_of_variables}, causes the compiler

to ignore the type, kind, and rank for the specified dummy argument names

appearing in a generic procedure interface when resolving a specific call. Using

this directive greatly simplifies writing generic interfaces for wrappers that call

specific library routines based on argument type, kind, and rank. See “The

IGNORE_TKR Directive” on page 10 for details.

■ Enhanced -C Runtime Array Checking:

In this f95 compiler release, runtime array subscript range checking with the -C
option has been enhanced to include array conformance checking. A runtime

error is produced when an array syntax statement is executed where the array

sections are not conformable. See “–C” on page 13.

■ Introducing Fortran 2000 Features:

Some new formatted I/O features proposed for the next Fortran standard have

been implemented in this release of f95 . These are the DECIMAL=, ROUND=, and

IOMSG=specifiers, and they may appear in OPEN, READ, WRITE, PRINT, and

INQUIRE statements. Also implemented are the DP, DC, RP, and RCedit

descriptors. See “Formatted I/O Features From Fortran 2000” on page 13 for

details.

■ Rounding in Formatted I/O:

A new option flag, -iorounding , sets the default rounding mode for formatted

I/O. The modes, processor-defined or compatible, correspond to the ROUND=
specifier implemented as part of the Fortran 2000 features. See

“-iorounding=mode” on page 30.

■ Obsolete Flags Removed:

The following flags have been removed from the f95 command line:

-db -db l

The following f77 compiler flags have not been implemented in the f95 compiler

and are also considered obsolete:

-arg=local -i2 -i4 -misalign -oldldo -r8 -vax
-xl -xvpara -xtypemap=integer:mixed

■ Checking for Stack Overflow:

Compiling with the new -xcheck=stkovf flag adds a runtime check for stack

overflow conditions on entry to subprograms. If a stack overflow is detected, a

SIGSEGVsegment fault is raised. Stack overflows in multithreaded applications

with large arrays allocated on the stack can cause silent data corruption in

neighboring thread stacks. Compile all routines with -xcheck=stkovf if stack

overflow is suspected. See “-xcheck=v” on page 57.

B-4 Fortran User’s Guide • May 2002

■ New Default Thread Stack Size:

With this release, the default slave thread stack size has been increased to 4

Megabytes on SPARC V8 platforms, and 8 Megabytes on SPARC V9 platforms.

See the discussion of stacks and stack sizes in the Parallelization chapter of the

Fortran Programming Guide for details.

■ Enhanced Interprocedural Optimizations:

With -xipo=1 the compiler does inlining across all source files. This release adds

-xipo=2 for enhanced interprocedural aliasing analysis and memory allocation

and layout optimizations to imporve cache performance. See “-xipo[={0|1|2}]”

on page 64.

■ Control Prefetch Instructions With -xprefetch_level=n:

Use the new flag -xprefetch_level= n to control the automatic insertion of

prefetch instructions with -xprefetch=auto . Use requires an optimization level

of -xO3 or greater and a target platform that supports prefetch (-xarch
platforms v8plus , v8plusa , v8plusb , v9 , v9a , v9b , generic64 , or native64).

See “-xprefetch_level=n” on page 72.

Feature histories for releases prior to Forte Developer 7 can be found in the

documentation sets for those earlier releases on the http://docs.sun.com web

site.

C-1

APPENDIX C

–xtarget Platform Expansions

This Appendix details the –xtarget option platform system names and their

expansions.

Each specific value for –xtarget expands into a specific set of values for the

-xarch , –xchip , and –xcache options, as shown in the following table. Run

fpversion (1) to determine the target definitions on any system.

For example:

–xtarget=sun4/15

means

–xarch=v8a –xchip=micro –xcache=2/16/1

TABLE C-1 -xtarget Expansions

-xtarget= -xarch -xchip -xcache

generic generic generic generic

generic64 v9 generic generic

cs6400 v8 super 16/32/4:2048/64/1

entr150 v8plusa ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1

C-2 Fortran User’s Guide • May 2002

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss20 v8 super 16/32/4:1024/32/1

TABLE C-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache

Appendix C –xtarget Platform Expansions C-3

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

TABLE C-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache

C-4 Fortran User’s Guide • May 2002

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

TABLE C-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache

Appendix C –xtarget Platform Expansions C-5

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1

ultra3cu v8plusa ultra3cu 64/32/4:8192/512/2

TABLE C-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache

C-6 Fortran User’s Guide • May 2002

D-1

APPENDIX D

Fortran Directives Summary

This appendix summarizes the directives recognized by f95 Fortran compiler:

■ General Fortran Directives

■ Sun Parallelization Directives

■ Cray Parallelization Directives

■ OpenMP Fortran 95 Directives, Library Routines, and Environment

D.1 General Fortran Directives
General directives accepted by f95 are described in Chapter 2.

TABLE D-1 Summary of General Fortran Directives

Format

C$PRAGMAkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

C$PRAGMA SUNkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

C$PRAGMA SPARCkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

Comment-indicator in column 1 may be c , C, ! , or *. (We use C in these examples. f95
free-format must use ! .)

C Directive C$PRAGMA C(list)

Declares a list of names of external functions as C language

routines.

IGNORE_TKRDirective C$PRAGMA IGNORE_TKR{name {, name} ...}

The compiler ignores the type, kind, and rank of the specified

dummy argument names appearing in a generic procedure

interface when resolving a specific call.

D-2 Fortran User’s Guide • May 2002

UNROLLDirective C$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a

length n.

WEAKDirective C$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPTDirective C$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

NOMEMDEPDirective C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.

(Requires -parallel or -explicitpar .)

PIPELOOPDirective C$PRAGMA SUN PIPELOOP=n

Assert dependency in loop between iterations n apart.

PREFETCHDirectives C$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
C$PRAGMA SPARC_PREFETCH_READ_MANY (name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

Request compiler generate prefetch instructions for references to

name. (Requires -xprefetch option.)

TABLE D-1 Summary of General Fortran Directives (Continued)

Appendix D Fortran Directives Summary D-3

D.2 Special Fortran 95 Directives
The following directives are only available with f95 . See page 17 for details.

D.3 Sun Parallelization Directives
Sun-style parallelization directives are the default (-mp=sun compiler option), and

are detailed in the chapter on parallelization in the Fortran Programming Guide.

TABLE D-2 Special Fortran 95 Directives

Format !DIR$ directive : initial line

!DIR$& ... : continuation line

With fixed-format source, C is also accepted as a directive-indicator:

CDIR$ directive... ; the line must start in column 1.

With free-format source, the line may be preceded by blanks.

FIXED/FREE
Directives

!DIR$ FREE
!DIR$ FIXED

These directives specify the source format of the lines following the

directive. They apply to the rest of the source file in which they

appear, up to the next FREEor FIXED directive.

TABLE D-3 Sun-Style Parallelization Directives Summary

Format C$PARdirective [optional_qualifiers] : initial line

C$PAR&[more_qualifiers] : continuation line

Fixed format, the directive-indicator may be C (as shown), c , * , or ! .

Separate multiple qualifiers with commas. Characters beyond

column 72 ignored unless -e compiler option specified.

TASKCOMMON
Directive

C$PAR TASKCOMMONblock_name

Declares variables in common block block_name as thread-private:

private to a thread, but global within the thread. Declaring a

common block TASKCOMMONrequires that this directive appear after

every common declaration of that block.

D-4 Fortran User’s Guide • May 2002

DOALLDirective C$PAR DOALL[qualifiers]

Parallelize DO loop that follows. Qualifiers are:

PRIVATE(list) declare names on list PRIVATE

SHARED(list) declare names on list SHARED

MAXCPUS(n) use no more than n threads

READONLY(list) listed variables not modified in loop

SAVELAST save last value of all private variables

STOREBACK(list) save last value of listed variables

REDUCTION(list) listed variables are reduction variables

SCHEDTYPE(type) use scheduling type: (default is STATIC)

STATIC
SELF(nchunk)

FACTORING[(m)]

GSS[(m)]

DOSERIALDirective C$PAR DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive C$PAR DOSERIAL*

Disables parallelization of the loop nest that follows.

TABLE D-3 Sun-Style Parallelization Directives Summary (Continued)

Appendix D Fortran Directives Summary D-5

D.4 Cray Parallelization Directives
Cray-style parallelization directives are detailed in the chapter on parallelization in

the Fortran Programming Guide. Requires -mp=cray compiler option.

TABLE D-4 Cray Parallelization Directives Summary

Format CMIC$ directive qualifiers : initial line

CMIC$& [more_qualifiers] : continuation line

Fixed format. Directive-indicator may be C (as shown here), c , * , or

! . With f95 free-format, leading blanks can appear before !MIC$.

DOALLDirective CMIC$ DOALL SHARED(list), PRIVATE(list) [, more_qualifiers]

Parallelize loop that follows. Qualifiers are:

Scoping qualifiers are required (unless list is empty)—all variables

in the loop must appear in a PRIVATE or SHAREDclause:

PRIVATE(list) declare names on list PRIVATE

SHARED(list) declare names on list SHARED

AUTOSCOPE automatically determine scope of variables

The following are optional:

MAXCPUS(n) use no more than n threads

SAVELAST save last value of all private variables

Only one scheduling qualifier may appear:

GUIDED equivalent to Sun-style GSS(64)
SINGLE equivalent to Sun-style SELF(1)
CHUNKSIZE(n) equivalent to Sun-style SELF(n)
NUMCHUNKS(m) equivalent to Sun-style SELF(n/m)

The default scheduling is Sun-style STATIC, for which there is no

Cray-style equivalent. Interpretations of these scheduling qualifiers

differ between Sun and Cray style. Check the Fortran Programming
Guide for details.

TASKCOMMON
Directive

CMIC$ TASKCOMMONblock_name

Declares variables in the named common block as thread-private—

private to a thread, but global within the thread. Declaring a

common block TASKCOMMONrequires that this directive appear

immediately after every common declaration of that block.

DOSERIALDirective CMIC$ DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive CMIC$ DOSERIAL*

Disables parallelization of the loop nest that follows.

D-6 Fortran User’s Guide • May 2002

D.5 Fortran 95 OpenMP Directives
The Sun Fortran 95 compiler supports the OpenMP 2.0 Fortran API. The -openmp
compiler flag enables these directives. (See page 38).

See the Forte Developer OpenMP API User’s Guide for complete details.

Index-1

Index

SYMBOLS
!DIR$ in directives, 4-17

#ifdef , 2-5

#include , 2-5

A
abrupt_underflow , 3-23

accessible documentation, xx

aliasing, 3-50

-xalias , 3-50

align

-dalign , 3-15

data in COMMON with -aligncommon , 3-11

See also data

alignment of data types, 4-7

ALLOCATABLE
extensions, 4-12

analyzer compile option, -xF , 3-62

application registers (SPARC), 3-74

arguments, agreement, -Xlist , 3-48

arithmetic, See floating-point

array bounds checking, 3-13

asa , Fortran print utility, 1-3

assembly code, 3-43

auto-read (dbx), 3-75

B
backward compatibility, options, 3-9

binary I/O, 4-15

binding, dynamic/shared libraries, 3-16

Boolean

constant, alternate forms, 4-4

type, constants, 4-4

browser, 3-43

C
C(..) directive, 2-10

cache

padding for, 3-39

specify hardware cache, 3-55

CALL
inlining subprogram calls with -inline , 3-30

case, preserve upper and lower case, 3-46

CDIR$ in directives, 4-17

code size, 3-76

command-line

help, 1-6

unrecognized options, 2-6

comments

as directives, 4-16

COMMON
alignment, 3-11

global consistency, -Xlist , 3-48

padding, 3-39

TASKCOMMON consistency checking, 3-60

compatibility

Fortran 77, 3-20, 5-1

forward, 4-22

with C, 4-22

compile and link, 2-3, 2-5

and -B , 3-13

build a dynamic shared library, 3-28

Index-2 Fortran User’s Guide • May 2002

compile only, 3-13

dynamic (shared) libraries, 3-17

compiler

command line, 2-3

driver, show commands with -dryrun , 3-16

options summary, 3-3

show version, 3-47

timing, 3-46

verbose messages, 3-47

compilers, accessing, xvii

constant arguments, -copyargs , 3-14

continuation lines, 3-17, 4-1

conventions

file name suffixes, 2-4

cpp , C preprocessor, 2-5, 3-15, 3-19

Cray

pointer, 4-9

pointer and Fortran 95 pointer, 4-10

cross reference table, -Xlist , 3-48

D
data

alignment with -dbl_align_all , 3-16

alignment with -f , 3-19

alignment with -xmemalign , 3-68

COMMON, alignment with

-aligncommon , 3-11

mappings with -xtypemap , 3-77

promote constants to REAL*8, 3-42

size and alignment, 4-7

data dependence

-depend , 3-16

dbx
compile with -g option, 3-28

faster initialization, 3-75

debug

disable auto-read for dbx , 3-75

debugging

check array subscripts with -C , 3-13

cross-reference table, 3-48

-g option, 3-28

global program checking with -Xlist , 3-48

show compiler commands with -dryrun , 3-16

utilities, 1-3

with optimization, 3-28

without object files, 3-75

-Xlist , 1-3

default

data sizes and alignment, 4-8

include file paths, 3-30

define symbol for cpp , -D name, 3-14

directives

FIXED, 4-17

Fortran 77, 2-8

FREE, 4-17

IGNORE_TKR, 2-10

loop unrolling, 2-11

OpenMP (Fortran 95), 2-15, D-6

optimization level, 2-13

parallelization, 2-14, 4-18

parallelization, Cray, Sun, or OpenMP, 3-34

special Fortran 95, 4-17

summary of all directives, D-1

weak linking, 2-12

directory

temporary files, 3-46

DOALL directive, 2-15

documentation index, xix

documentation, accessing, xix to xxi

DOSERIAL directive, 2-15

dynamic library

build, -G , 3-28

name a dynamic library, 3-28

E
environment

program terminations by STOP, 3-45

environment variables

usage, 2-17

error messages

f95, A-2

message tags, 3-18

suppress with -erroff , 3-17

exceptions, floating-point, 3-26

trapping, 3-27

executable file

built-in path to dynamic libraries, 3-42

name, 3-38

strip symbol table from, 3-43

explicit

typing, 3-46

explicit parallelization directives, 2-14

extensions

ALLOCATABLE, 4-12

Index-3

formatted I/O, 4-13

non-ANSI, -ansi flag, 3-11

other I/O, 4-15

stream I/O, 4-13

VALUE, 4-13

VAX structures and unions, 4-14

extensions and features, 1-2

external C functions, 2-10

external names, 3-19

F
f95 command line, 2-3, 3-1

fdumpmod for viewing module contents, 2-7, 4-21

features

Fortran 95, 4-1

release history, B-1

features and extensions, 1-2

FFLAGS environment variable, 2-18

file

executable, 2-3

object, 2-3

size too big, 2-18

file names

recognized by the compiler, 2-4, 4-3

FIXED directive, 4-17, 4-18

fixed-format source, 3-23

flags, See options

floating-point

fpversion , displays hardware platform, 2-17

interval arithmetic, 3-64

non-standard, 3-24

preferences, -fsimple , 3-26

rounding, 3-25

trapping mode, 3-27

See also the Numerical Computation Guide
form

tab, 4-1

Fortran

compatibility with legacy, 3-20, 5-1

features and extensions, 1-2

incompatibilities with legacy, 5-5

preprocessor, 3-15

invoking with -F , 3-19

utilities, 1-3

Fortran 2000 extensions, 4-12

Fortran 95

case, 4-3

directives, 4-16, 4-17

features, 4-1

Forte Developer 7 release, B-1

handling nonstandard Fortran 77 aliasing, 5-8

I/O extensions, 4-15

linking with Fortran 77, 5-7

modules, 4-18

fpp , Fortran preprocessor, 2-5, 3-15, 3-19, 3-25

fpversion , show floating-point platform

information, 2-17

FREE directive, 4-17, 4-18

free-format source, 3-25

fsplit , Fortran utility, 1-3

function

external C, 2-10

function-level reordering, 3-62

G
global program checking, -Xlist , 3-48

global symbols

weak, 2-12

gprof
-pg , profile by procedure, 3-41

H
hardware architecture, 3-51, 3-57

help

command-line, 1-6

README information, 3-63

hexadecimal, 4-5

Hollerith, 4-5

I
I/O extensions, 4-15

IGNORE_TKR directive, 2-10

INCLUDE files, 3-29

floatingpoint.h , 5-8

system.inc , 2-16

incompatibilities, Fortran 77, 5-5

information files, 1-5

inline

templates, -libmil , 3-32

with -fast , 3-22

Index-4 Fortran User’s Guide • May 2002

inlining

automatic with -O4 , 3-37

with -inline , 3-30

installation, 1-5

path, 3-30

interfaces

library, 2-16

interval arithmetic

-xia option, 3-63

-xinterval option, 3-64

intrinsics

extensions, 4-21

interfaces, 2-16

legacy Fortran, 5-8

invalid, floating-point, 3-27

ISA, instruction set architecture, 3-51

L
large files, 2-18

legacy compiler options, 3-9

libm
searched by default, 3-31

library

build, -G , 3-28

disable system libraries, 3-35

dynamic search path in executable, 3-42

interfaces, 2-16

linking with -l , 3-32

multithread-save, 3-34

name a shared library, 3-28

path to shared library in executable, 3-36

position-independent and pure, 3-78

Sun Performance Library, 1-3, 3-67

vectorized math library, libmvec , 3-78

license information, 3-67

limit
command, 2-20

stack size, 3-44

limits

Fortran 95 compiler, 4-3

linear algebra routines, 3-67

linking

and parallelization with -parallel , 3-41

consistent compile and link, 2-6

consistent with compilation, 2-6

disable incremental linker, 3-64

disable system libraries, 3-35

enable dynamic linking, shared libraries, 3-17

explicit parallelization with

-explicitpar , 3-18

linker -Mmapfile option, 3-62

separate from compilation, 2-5

specifying libraries with -l , 3-32

weak names, 2-12

with automatic parallelization, -autopar , 3-12

with compilation, 2-3

list of directives, D-1

list of options, 3-29

loop

automatic parallelization, 3-12

dependence analysis, -depend , 3-16

executed once, -onetrip , 3-38

explicit parallelization, 3-18

parallelization messages, 3-32

unrolling with directive, 2-11

unrolling with -unroll , 3-47

M
macro options, 3-8

man pages, 1-4

man pages, accessing, xvii

MANPATH environment variable, setting, xix

math library

and -L dir option, 3-31

optimized version, 3-67

memory

actual real memory, display, 2-19

limit virtual memory, 2-20

optimizer out of memory, 2-18

messages

parallelization, 3-32, 3-47

runtime, A-1

suppress with -silent , 3-44

verbose, 3-47

misaligned data, specifying behavior, 3-68

.mod file, module file, 4-18

MODDIR environment variable, 3-33

modules, 4-18

creating and using, 2-7

default path, 3-33

fdumpmod , 2-7

fdumpmod for displaying module files, 4-21

.mod file, 4-18

-use , 4-20

Index-5

multithreading, See parallelization

multithread-safe libraries, 3-34

N
name

argument, do not append underscore, 2-10

object, executable file, 3-38

nonstandard_arithmetic() , 3-23

O
object files

compile only, 3-13

name, 3-38

object library search directories, 3-31

obsolete options, 3-10

octal, 4-4

one-trip DO loops, 3-38

OpenMP, 2-15, 3-34

directives summary, D-6

OPT directive, 2-13

-xmaxopt option, 3-67

optimization

across source files, 3-61, 3-64

aliasing, 3-50

floating-point, 3-26

inline user-written routines, 3-30

interprocedural, 3-64

levels, 3-36

loop unrolling, 3-47

loop unrolling by directive, 2-11

math library, 3-67

OPT directive, 2-13, 3-67

PIPELOOP directive, 2-13

PREFETCH directive, 2-14

specify cache, 3-55

specify instruction set architecture, 3-51

specify processor, 3-57

target hardware, 3-35

vector library transformations with -
xvector , 3-78

with debugging, 3-28

with -fast , 3-21

options

commonly used, 3-8

grouped by function, 3-3

legacy, 3-9

macros, 3-8

obsolete, 3-10

obsolete f77 flags not supported, 5-6

order of processing, 3-2

pass option to compilation phase, 3-41

summary, 3-3

syntax on command line, 3-2

unrecognized, 2-6

Reference to all option flags, 3-11

-a , 3-11

-aligncommon , 3-11

-ansi extensions, 3-11

-autopar , parallelize automatically, 3-12

-Bdynamic , 3-12

-Bstatic , 3-12

-C , check subscripts, 3-13

-c , compile only, 3-13

-cg89 , (obsolete), 3-14

-cg92 , (obsolete), 3-14

-copyargs , allow stores to literal

arguments, 3-14

-dalign , 3-15, 3-22

-dbl_align_all , force data alignment, 3-16

-depend
data dependency analysis, 3-16

-depend , 3-22

-dn , 3-16

-D name, define symbol, 3-14

-dryrun , 3-16

-dy , 3-16

-e , extended source lines, 3-17

-erroff , suppress warnings, 3-17

-errtags , display message tag with

warnings, 3-18

-explicitpar , parallelize explicitly, 3-18

-ext_names , externals without

underscore, 3-19

-F , 3-19

-f , align on 8-byte boundaries, 3-19

-f77 , 3-20

-fast , 3-21

-fixed , 3-23

-flags , 3-23

-fnonstd , 3-23

-fns , 3-22, 3-24

-fpp , Fortran preprocessor, 3-25

-free , 3-25

-fround= r, 3-25

Index-6 Fortran User’s Guide • May 2002

-fsimple
simple floating-point model, 3-26

-fsimple , 3-22

-ftrap , 3-27

-G , 3-28

-g , 3-28

-help , 3-29

-h name, 3-28

-I dir, 3-29

-inline , 3-30

-iorounding , 3-30

-KPIC , 3-31

-Kpic , 3-31

-L dir, 3-31

-libmil , 3-22, 3-32

-l library, 3-31

-loopinfo , show parallelization, 3-32

-Mdir, f95 modules, 3-33, 4-19

-moddir , 3-33

-mp=cray , Cray MP directives, 3-34

-mp=openmp , OpenMP directives, 3-34

-mp=sun , Sun MP directives, 3-34

–mt , multithread safe libraries, 3-34

-native , 3-35

-noautopar , 3-35

-nodepend , 3-35

-noexplicitpar , 3-35

-nolib , 3-35

-nolibmil , 3-36

-noreduction , 3-36

-norunpath , 3-36

-o , output file, 3-38

-On, 3-22, 3-36, 3-37

-onetrip , 3-38

-openmp , 3-38

-p , profile by procedure, 3-39

-pad= p, 3-22, 3-39

-parallel , parallelize loops, 3-40

-pg , profile by procedure, 3-41

-PIC , 3-39

-pic , 3-41

-Qoption , 3-41

-R list , 3-42

-r8const , 3-42

-reduction , 3-42

-S , 3-43

-s , 3-43

-sb , SourceBrowser, 3-43

-sbfast , 3-43

–silent , 3-44

-stackvar , 3-44, 3-74

-stop_status , 3-45

-temp , 3-46

-time , 3-46

-u , 3-46

-U , do not convert to lowercase, 3-46

-U name, undefine preprocessor macro, 3-46

-unroll , unroll loops, 3-46

-use , 4-20

-V , 3-47

-v , 3-47

-vpara , 3-47

-w , 3-48

-xa , 3-50

-xalias= list, 3-50

-xarch= isa, 3-51

-xautopar , 3-55

-xcache= c, 3-55

-xcg[89|92] , 3-56

-xchip= c, 3-57

-xcode= c, 3-58

-xcommoncheck , 3-60

-xcrossfile , 3-61

-xdepend , 3-62

-xexplicitpar , 3-62

-xF , 3-62

-xhasc , Hollerith as character, 3-62

-xhelp= h, 3-63

-xia , interval arithmetic, 3-63

-xildoff , 3-64

-xinline , 3-64

-xinterval= v for interval arithmetic, 3-64

-xipo , interprocedural optimizations, 3-64

-xlibmil , 3-67

-xlibmopt , 3-22, 3-67

-xlic_lib=sunperf , 3-67

-xlicinfo , 3-67

-Xlist , global program checking, 3-48

-xloopinfo , 3-67

-xmaxopt , 3-67

-xmemalign , 3-68

-xnolib , 3-69

-xnolibmopt , 3-69

-xO n, 3-69

-xopenmp , 3-69

-xparallel , 3-69

-xpg , 3-69

-xpp= p, 3-69

Index-7

-xprefetch , 2-14, 3-22

-xprefetch_level , 3-22, 3-72

-xprofile= p, 3-72

-xrecursive , 3-74

-xreduction , 3-74

-xregs= r, 3-74

-xs , 3-75

-xsafe=mem , 3-75

-xsb , 3-76

-xsbfast , 3-76

-xspace , 3-76

-xtarget=native , 3-22

-xtarget= t, 3-76, C-1

-xtime , 3-77

-xtypemap , 3-77

-xunroll , 3-78

-xvector , 3-22, 3-78

-ztext , 3-78

OPTIONS environment variable, 2-17

order of

functions, 3-62

order of processing, options, 3-2

overflow

stack, 3-44

trap on floating-point, 3-27

overindexing

aliasing, 3-50

P
padding, 3-39

parallelization

automatic, 3-12

automatic and explicit, -parallel , 3-40

directives, 4-18

directives (f77), 2-14

explicit, 3-18

loop information, 3-32

messages, 3-47

OpenMP, 2-15, 3-38

OpenMP directives summarized, D-6

reduction operations, 3-42

select directives style, 3-34

with multithreaded libraries, 3-34

See also Fortran Programming Guide
parameters, global consistency, -Xlist , 3-48

passes of the compiler, 3-47

path

#include , 3-29

dynamic libraries in executable, 3-42

library search, 3-31

to standard include files, 3-30

PATH environment variable, setting, xviii

performance

optimization, 3-21

Sun Performance Library, 1-3

performance library, 3-67

PIPELOOP directive, 2-13

pointee, 4-9

pointer, 4-9

aliasing, 3-50

position-independent code, 3-39, 3-41, 3-58, 3-59

POSIX library, not supported, 5-6

pragma, See directives

PREFETCH directive, 2-14

preprocessor, source file

define symbol, 3-14

force fpp , 3-25

fpp , cpp , 2-5

specify with -xpp= p, 3-69

undefine symbol, 3-46

preserve case, 3-46

print

asa , 1-3

processor

specify target processor, 3-57

prof , -p , 3-39

profiling

-pg , gprof , 3-41

-xprofile , 3-72

R
range of subscripts, 3-13

README file, 1-5, 3-63

recursive subprograms, 3-74

register usage, 3-74

release history, B-1

reorder functions, 3-62

rounding, 3-25, 3-26

Index-8 Fortran User’s Guide • May 2002

S
search

object library directories, 3-31

set

#include path, 3-29

shared library

build, -G , 3-28

disallow linking, -dn , 3-16

name a shared library, 3-28

pure, no relocations, 3-78

shell

limits, 2-19

shell prompts, xvii

SIGFPE, floating-point exception, 3-24

size of compiled code, 3-76

source file

preprocessing, 2-5

source format

mixing format of source lines (f95), 4-3

options (f95), 4-3

source lines

extended, 3-17

fixed-format, 3-23

free-format, 3-25

line length, 4-1

preprocessor, 3-69

preserve case, 3-46

SourceBrowser, 3-43

SPARC platform

cache, 3-55

chip, 3-57

code address space, 3-58

instruction set architecture, 3-53

register usage, -xregs , 3-74

-xtarget expansions, C-1

stack

increase stack size, 3-45

overflow, 3-44

standard

include files, 3-30

standards

conformance, 1-1

identify non-ANSI extensions, -ansi flag, 3-11

static

binding, 3-16

STOP statement, return status, 3-45

stream I/O, 4-13

strict (interval arithmetic), 3-64

strip executable of symbol table, -s , 3-43

suffix

of file names recognized by compiler, 2-4

of file names recognized by compiler (f95), 4-3

suppress

implicit typing, 3-46

linking, 3-13

warnings, 3-48

warnings by tag name, -erroff , 3-17

swap command, 2-19

swap space

display actual swap space, 2-19

limit amount of disk swap space, 2-18

symbol table

for dbx , 3-28, 3-75

syntax

compiler command line, 3-1

f95 command, 2-3, 3-1

options on compiler command line, 3-2

system.inc , 2-16

T
tab

form source, 4-1

tape I/O, not supported, 5-6

tcov
new style with -xprofile , 3-73

templates, inline, 3-32

temporary files, directory for, 3-46

trapping

floating-point exceptions, 3-27

on memory, 3-75

type declaration alternate form, 4-7

typographic conventions, xv

U
ulimit command, 2-19

underflow

gradual, 3-25

trap on floating-point, 3-27

underscore, 3-19

do not append to external names, 2-10

unrecognized options, 2-6

UNROLL directive, 2-11

usage

compiler, 2-3

Index-9

utilities, 1-3

V
variables

alignment, 4-7

local, 3-44

undeclared, 3-46

VAX VMS Fortran extensions, 4-14

version

id of each compiler pass, 3-47

W
warnings

message tags, 3-18

suppress messages, 3-48

suppress with -erroff , 3-17

undeclared variables, 3-46

use of non-standard extensions, 3-11

WEAK directive, 2-12

weak linker symbols, 2-12

widestneed (interval arithmetic), 3-64

Index-10 Fortran User’s Guide • May 2002

	Fortran User’s Guide
	Contents
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Documentation
	Accessing Related Solaris Documentation
	Sending Your Comments

	Introduction
	1.1 Standards Conformance
	1.2 Features of the Fortran 95 Compiler
	1.3 Other Fortran Utilities
	1.4 Debugging Utilities
	1.5 Sun Performance Library
	1.6 Interval Arithmetic
	1.7 Man Pages
	1.8 README Files
	1.9 Command-Line Help

	Using Forte Developer Fortran 95
	2.1 A Quick Start
	2.2 Invoking the Compiler
	2.2.1 Compile-Link Sequence
	2.2.2 Command-Line File Name Conventions
	2.2.3 Source Files
	2.2.4 Source File Preprocessors
	2.2.5 Separate Compiling and Linking
	2.2.6 Consistent Compiling and Linking
	2.2.7 Unrecognized Command-Line Arguments
	2.2.8 Fortran 95 Modules

	2.3 Directives
	2.3.1 General Directives
	2.3.2 Parallelization Directives

	2.4 Library Interfaces and system.inc
	2.5 Compiler Usage Tips
	2.5.1 Determining Hardware Platform
	2.5.2 Using Environment Variables
	2.5.3 Memory Size

	Fortran Compiler Options
	3.1 Command Syntax
	3.2 Options Syntax
	3.3 Options Summary
	3.3.1 Commonly Used Options
	3.3.2 Macro Flags
	3.3.3 Backward Compatibility and Legacy Options
	3.3.4 Obsolete Option Flags

	3.4 Options Reference
	–a
	-aligncommon[=n]
	–ansi
	-autopar
	–B{static|dynamic}
	–C
	–c
	–cg89
	–cg92
	–copyargs
	–Dname[=def]
	–dalign
	–dbl_align_all={yes|no}
	–depend
	-dn
	–dryrun
	–d{y|n}
	–e
	–erroff=taglist
	–errtags[={yes|no}]
	–explicitpar
	–ext_names=e
	–F
	–f
	-f77[=list]
	–fast
	–fixed
	–flags
	–fnonstd
	–fns[={no|yes}]
	–fpover[={yes|no}]
	-fpp
	–free
	–fround=r
	–fsimple[=n]
	–ftrap=t
	–G
	–g
	–hname
	–help
	–Ipath
	–inline=[%auto][[,][no%]f1,…[no%]fn]
	-iorounding=mode
	–Kpic
	–KPIC
	–Lpath
	–lx
	–libmil
	–loopinfo
	–Mpath
	-moddir=path
	–mp={%none|sun|cray|openmp}
	–mt
	–native
	–noautopar
	–nodepend
	–noexplicitpar
	–nolib
	–nolibmil
	–noreduction
	–norunpath
	–O[n]
	–O
	–O1
	–O2
	–O3
	–O4
	–O5
	–o name
	–onetrip
	-openmp
	–PIC
	–p
	–pad[=p]
	–parallel
	–pg
	–pic
	–Qoption pr ls
	–qp
	–R ls
	-r8const
	–reduction
	–S
	–s
	–sb
	–sbfast
	–silent
	–stackvar
	–stop_status=yn
	–temp=dir
	–time
	–U
	-Uname
	–u
	–unroll=n
	-use=list
	–V
	–v
	–vpara
	–w[n]
	–Xlist[x]
	–xa
	-xalias[=type_list]
	–xarch=isa
	–xautopar
	–xcache=c
	–xcg89
	–xcg92
	-xcheck=v
	–xchip=c
	–xcode=addr
	–xcommonchk[={no|yes}]
	–xcrossfile[=n]
	–xdepend
	–xexplicitpar
	–xF
	-xhasc[={yes|no}]
	–xhelp=h
	-xia[=v]
	–xild{off|on}
	–xinline=list
	-xinterval[=v]
	-xipo[={0|1|2}]
	-xknown_lib=library
	-xlang=f77
	–xlibmil
	–xlibmopt
	–xlic_lib=sunperf
	–xlicinfo
	–xloopinfo
	–xmaxopt[=n]
	-xmemalign[=<a>]
	–xnolib
	–xnolibmil
	–xnolibmopt
	–xOn
	-xopenmp
	–xpad
	–xparallel
	–xpg
	–xpp={fpp|cpp}
	–xprefetch[=a[,a]]
	-xprefetch_level=n
	–xprofile=p
	-xrecursive
	–xreduction
	–xregs=r
	–xs
	–xsafe=mem
	–xsb
	–xsbfast
	–xspace
	–xtarget=t
	–xtime
	–xtypemap=spec
	–xunroll=n
	–xvector[={yes|no}]
	–ztext

	Fortran 95 Features and Differences
	4.1 Language Features and Extensions
	4.1.1 Continuation Line Limits
	4.1.2 Fixed-Form Source Lines
	4.1.3 Tab Form
	4.1.4 Source Form Assumed
	4.1.5 Known Limits
	4.1.6 Boolean Type
	4.1.7 Abbreviated Size Notation for Numeric Data Types
	4.1.8 Size and Alignment of Data Types
	4.1.9 Cray Pointers
	4.1.10 Other Language Extensions
	4.1.11 I/O Extensions

	4.2 Directives
	4.2.1 Form of Special f95 Directive Lines
	4.2.2 FIXED and FREE Directives
	4.2.3 Parallelization Directives

	4.3 Module Files
	4.3.1 Searching for Modules
	4.3.2 The -use=list Option Flag
	4.3.3 The fdumpmod Command

	4.4 Intrinsics
	4.5 Forward Compatibility
	4.6 Mixing Languages

	FORTRAN 77 Compatibility: Migrating to Fortran 95
	5.1 Compatible f77 Features
	5.2 Incompatibility Issues
	5.3 Linking With f77-Compiled Routines
	5.3.1 Fortran 95 Intrinsics

	5.4 Additional Notes About Migrating to the f95 Compiler

	Runtime Error Messages
	A.1 Operating System Error Messages
	A.2 f95 Runtime I/O Error Messages

	Features Release History
	B.1 Fortran 95 New Features and Changes
	B.1.1 Forte Developer 7 Release:

	–xtarget Platform Expansions
	Fortran Directives Summary
	D.1 General Fortran Directives
	D.2 Special Fortran 95 Directives
	D.3 Sun Parallelization Directives
	D.4 Cray Parallelization Directives
	D.5 Fortran 95 OpenMP Directives

	Index

