
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Fortran 95 Interval Arithmetic
Programming Reference™

Forte Developer 7

Part No. 816-2562-10
May 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xiii

Who Should Use This Book xiii

How This Book Is Organized xiii

What Is Not in This Book xiv

Related Interval References xiv

Online Resources xiv

Typographic Conventions xvi

Shell Prompts xvii

Accessing Forte Developer Development Tools and Man Pages xvii

Accessing Forte Developer Documentation xx

Accessing Related Solaris Documentation xxii

Sending Your Comments xxii

1. Using Interval Arithmetic With f95 1-1

1.1 f95 INTERVAL Type and Interval Arithmetic Support 1-1

1.2 f95 Interval Support Goal: Implementation Quality 1-2

1.2.1 Quality Interval Code 1-2
iii

1.2.2 Narrow-Width Interval Results 1-3

1.2.3 Rapidly Executing Interval Code 1-3

1.2.4 Easy to Use Development Environment 1-4

1.3 Writing Interval Code for f95 1-4

1.3.1 Command-Line Options 1-5

1.3.2 Hello Interval World 1-5

1.3.3 Interval Declaration and Initialization 1-6

1.3.4 INTERVAL Input/Output 1-7

1.3.5 Single-Number Input/Output 1-8

1.3.6 Interval Statements and Expressions 1-12

1.3.7 Default Kind Type Parameter Value (KTPV) 1-13

1.3.8 Value Assignment V = expr 1-14

1.3.9 Mixed-Type Expression Evaluation 1-14

1.3.10 Arithmetic Expressions 1-17

1.3.11 Interval Order Relations 1-19

1.3.12 Intrinsic INTERVAL-Specific Functions 1-23

1.3.13 Interval Versions of Standard Intrinsic Functions 1-24

1.4 Code Development Tools 1-25

1.4.1 Debugging Support 1-25

1.4.2 Global Program Checking 1-25

1.4.3 Interval Functionality Provided in Sun Fortran Libraries 1-27

1.4.4 Porting Code and Binary Files 1-27

1.4.5 Parallelization 1-27

1.5 Error Detection 1-28

1.5.1 Known Containment Failures 1-30
iv Fortran 95 Interval Arithmetic Programming Reference • May 2002

2. f95 Interval Reference 2-1

2.1 Fortran Extensions 2-1

2.1.1 Character Set Notation 2-1

2.1.2 INTERVAL Constants 2-2

2.1.3 Internal Approximation 2-6

2.1.4 INTERVAL Statement 2-6

2.2 Data Type and Data Items 2-6

2.2.1 Name: INTERVAL 2-7

2.2.2 Kind Type Parameter Value (KTPV) 2-7

2.2.3 INTERVAL Arrays 2-8

2.3 INTERVAL Arithmetic Expressions 2-8

2.3.1 Mixed-Mode INTERVAL Expressions 2-9

2.3.2 Value Assignment 2-10

2.3.3 Interval Command-Line Options 2-12

2.3.4 Constant Expressions 2-15

2.4 Intrinsic Operators 2-16

2.4.1 Arithmetic Operators +, –, * , / 2-17

2.5 Power Operators X**N and X**Y 2-21

2.6 Dependent Subtraction Operator 2-23

2.7 Set Theoretic Operators 2-24

2.7.1 Hull: X ∪ Y or (X.IH.Y) 2-24

2.7.2 Intersection: X∩Y or (X.IX.Y) 2-24

2.8 Set Relations 2-25

2.8.1 Disjoint: X ∩Y = ∅ or (X .DJ. Y) 2-25

2.8.2 Element: r ∈ Y or (R.IN. Y) 2-25

2.8.3 Interior: (X .INT. Y) 2-26

2.8.4 Proper Subset: X ⊂ Y or (X .PSB. Y) 2-27
Contents v

2.8.5 Proper Superset: X ⊃ Y or (X .PSP. Y) 2-27

2.8.6 Subset: X ⊆ Y or (X .SB. Y) 2-27

2.8.7 Superset: X ⊇ Y or (X .SP. Y) 2-27

2.8.8 Relational Operators 2-28

2.9 Extending Intrinsic INTERVAL Operators 2-32

2.9.1 Extended Operators With Widest-Need Evaluation 2-40

2.9.2 INTERVAL (X [,Y, KIND]) 2-43

2.9.3 Specific Names for Intrinsic Generic INTERVAL Functions 2-49

2.10 INTERVAL Statements 2-50

2.10.1 Type Declaration 2-50

2.10.2 Input and Output 2-61

2.10.3 Intrinsic INTERVAL Functions 2-80

2.10.4 Mathematical Functions 2-81

2.10.5 Random Number Subroutine 2-90

2.11 References 2-91

Glossary Glossary-1

Index Index-1
vi Fortran 95 Interval Arithmetic Programming Reference • May 2002

Tables

TABLE 1-1 INTERVAL Specific Statements and Expressions 1-13

TABLE 1-2 Interval-Specific Operators 1-21

TABLE 1-3 Interval Libraries 1-27

TABLE 2-1 Font Conventions 2-2

TABLE 2-2 INTERVAL Sizes and Alignments 2-7

TABLE 2-3 INTRINSIC Operators 2-16

TABLE 2-4 Intrinsic INTERVAL Relational Operators 2-17

TABLE 2-5 Containment Set for Addition: x + y 2-19

TABLE 2-6 Containment Set for Subtraction: x – y 2-19

TABLE 2-7 Containment Set for Multiplication: x × y 2-20

TABLE 2-8 Containment Set for Division: x ÷ y 2-20

TABLE 2-9 exp(y(ln(x))) 2-22

TABLE 2-10 Results of X .DSUB. A For Different Values of X and A 2-23

TABLE 2-11 Operational Definitions of Interval Order Relations 2-29

TABLE 2-12 KTPV Specific Forms of the Intrinsic INTERVAL Constructor Function 2-46

TABLE 2-13 Specific Names for the Intrinsic INTERVAL ABS Function 2-49

TABLE 2-14 Default Values for Exponent Field in Output Edit Descriptors 2-69

TABLE 2-15 ATAN2 Indeterminate Forms 2-82

TABLE 2-16 Tests and Arguments of the REAL ATAN2 Function 2-84

TABLE 2-17 Tabulated Properties of Each Intrinsic INTERVAL Function 2-85
vii

TABLE 2-18 Intrinsic INTERVAL Type Conversion Functions 2-86

TABLE 2-19 Intrinsic INTERVAL Arithmetic Functions 2-87

TABLE 2-20 Intrinsic INTERVAL Trigonometric Functions 2-88

TABLE 2-21 Other Intrinsic INTERVAL Mathematical Functions 2-89

TABLE 2-22 Intrinsic INTERVAL-Specific Functions 2-89
viii Fortran 95 Interval Arithmetic Programming Reference • May 2002

Code Samples

CODE EXAMPLE 1-1 Hello Interval World 1-6

CODE EXAMPLE 1-2 Hello Interval World With INTERVAL Variables 1-6

CODE EXAMPLE 1-3 Interval Input/Output 1-7

CODE EXAMPLE 1-4 [inf, sup] Interval Output 1-9

CODE EXAMPLE 1-5 Single-Number Output 1-10

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion 1-11

CODE EXAMPLE 1-7 Mixed Precision With Widest-Need 1-15

CODE EXAMPLE 1-8 Mixed Types With Widest-Need 1-16

CODE EXAMPLE 1-9 Simple INTERVAL Expression Example 1-17

CODE EXAMPLE 1-10 Set-Equality Test 1-19

CODE EXAMPLE 1-11 Interval Relational Operators 1-20

CODE EXAMPLE 1-12 Set Operators 1-21

CODE EXAMPLE 1-13 Intrinsic INTERVAL-Specific Functions 1-23

CODE EXAMPLE 1-14 Interval Versions of Standard Intrinsic Functions 1-24

CODE EXAMPLE 1-15 INTERVAL Type Mismatch 1-26

CODE EXAMPLE 1-16 Invalid Endpoints 1-28

CODE EXAMPLE 1-17 Equivalence of Intervals and Non-Intervals 1-28

CODE EXAMPLE 1-18 Equivalence of INTERVAL Objects With Different KTPVs 1-29

CODE EXAMPLE 1-19 Assigning a REAL Expression to an INTERVAL Variable in Strict Mode 1-29

CODE EXAMPLE 1-20 Assigning an INTERVAL Expression to INTERVAL Variable in Strict Mode 1-29
ix

CODE EXAMPLE 1-21 INTEGER Overflow Containment Violation Under -xia=strict Mode 1-31

CODE EXAMPLE 2-1 KTPV of INTERVAL Constants 2-3

CODE EXAMPLE 2-2 Valid and Invalid INTERVAL Constants 2-5

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side) 2-10

CODE EXAMPLE 2-4 Mixed-Mode Assignment Statement 2-11

CODE EXAMPLE 2-5 Mixed-Mode Expression 2-14

CODE EXAMPLE 2-6 Constant Expressions 2-15

CODE EXAMPLE 2-7 Relational Operators 2-29

CODE EXAMPLE 2-8 Interval .IH. Operator Extension 2-33

CODE EXAMPLE 2-9 User-Defined Interface That Conflicts With the Use of the Intrinsic INTERVAL (+)
Operator 2-34

CODE EXAMPLE 2-10 User-Defined Interface Conflicts With Intrinsic Use of .IH. 2-35

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined INTERVAL Operator 2-36

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary "+" 2-37

CODE EXAMPLE 2-13 Correct Extension of Intrinsic INTERVAL Function WID 2-38

CODE EXAMPLE 2-14 Correct Extension of the Intrinsic INTERVAL Function ABS 2-39

CODE EXAMPLE 2-15 Correct Extension of the Intrinsic INTERVAL Function MIN 2-40

CODE EXAMPLE 2-16 Widest-Need Expression Processing When Calling a Predefined Version of an Intrinsic
INTERVAL Operator 2-41

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a User-Defined Operator 2-42

CODE EXAMPLE 2-18 Containment Using the .IH. Operator 2-45

CODE EXAMPLE 2-19 INTERVAL Conversion 2-47

CODE EXAMPLE 2-20 Create a Narrow Interval Containing a Given Real Number 2-48

CODE EXAMPLE 2-21 INTERVAL(NaN) 2-48

CODE EXAMPLE 2-22 Illegal Derived Type: INTERVAL 2-50

CODE EXAMPLE 2-23 Declaring Intervals With Different KTPVs 2-51

CODE EXAMPLE 2-24 Declaring and Initializing INTERVAL Variables 2-52

CODE EXAMPLE 2-25 Declaring INTERVAL Arrays 2-53

CODE EXAMPLE 2-26 DATA Statement Containing INTERVAL Variables 2-53

CODE EXAMPLE 2-27 Nonrepeatable Edit Descriptor Example 2-54

CODE EXAMPLE 2-28 Format Statements With INTERVAL-Specific Edit Descriptors 2-55
x Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 2-29 Default Interval Function 2-55

CODE EXAMPLE 2-30 Explicit INTERVAL(16) Function Declaration 2-56

CODE EXAMPLE 2-31 Intrinsic Function Declaration 2-57

CODE EXAMPLE 2-32 INTERVALS in a NAMELIST 2-57

CODE EXAMPLE 2-33 Constant Expression in Non-INTERVAL PARAMETER Attribute 2-59

CODE EXAMPLE 2-34 INTERVAL Pointers 2-59

CODE EXAMPLE 2-35 INTERVAL Statement Function 2-60

CODE EXAMPLE 2-36 INTERVAL Type Statement 2-61

CODE EXAMPLE 2-37 List Directed Input/Output Code 2-63

CODE EXAMPLE 2-38 The Decimal Point in an Input Value Dominates Format Specifiers 2-66

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number Input 2-66

CODE EXAMPLE 2-40 BZ Descriptor 2-67

CODE EXAMPLE 2-41 Y [inf, sup]-Style Output 2-70

CODE EXAMPLE 2-42 Yw.d Output 2-70

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic 2-71

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G }w.d Output, Where d Sets the Minimum Number of Significant Digits to
be Displayed 2-72

CODE EXAMPLE 2-45 Yw.dEe Output (The Usage of e Specifier) 2-73

CODE EXAMPLE 2-46 Ew.dEe, ENw.dEe, and ESw.dEe Edit Descriptors 2-74

CODE EXAMPLE 2-47 Fw.d Edit Descriptor 2-75

CODE EXAMPLE 2-48 Gw.dEe Edit Descriptor 2-75

CODE EXAMPLE 2-49 VE Output 2-76

CODE EXAMPLE 2-50 VEN Output 2-77

CODE EXAMPLE 2-51 VES Output 2-77

CODE EXAMPLE 2-52 VF Output Editing 2-78

CODE EXAMPLE 2-53 VG Output 2-79

CODE EXAMPLE 2-54 ATAN2 Indeterminate Forms 2-82
Code Samples xi

xii Fortran 95 Interval Arithmetic Programming Reference • May 2002

Before You Begin

This manual documents the intrinsic INTERVAL data types in the Sun™ Forte

Developer Fortran 95 compiler (f95).

Who Should Use This Book

This is a reference manual intended for programmers with a working knowledge of

the Fortran language, the Solaris™ operating environment, and UNIX commands.

How This Book Is Organized

This book contains the following two chapters:

Chapter 1 describes the goals for intrinsic interval support in f95 and provides code

samples that interval programmers can use to quickly learn more about the interval

features in f95 . This chapter contains the essential information to get started writing

interval code using f95 .

Chapter 2 is a complete description of the interval language extensions to f95 .

“Glossary,” contains definitions of interval terms.
xiii

What Is Not in This Book

This book is not an introduction to intervals and does not contain derivations of the

interval innovations included in f95 . For a list of sources containing introductory

interval information, see the Interval Arithmetic Readme.

Related Interval References

The interval literature is large and growing. Interval applications exist in various

substantive fields. However, most interval books and journal articles either contain

new interval algorithms, or are written for interval analysts who are developing new

interval algorithms. There is not yet a book titled “Introduction to Intervals.”

The Sun Forte Developer f95 compiler is not the only source of support for intervals.

Readers interested in other well known sources can refer to the following books:

■ IBM High Accuracy Arithmetic - Extended Scientific Computation (ACRITH-

XSC), General Information, GC 33-6461-01 IBM Corp., 1990.

■ R.Klatte, U.Kulisch, M.Neaga, D.Ratz, Ch.Ullrich, PASCAL-XSC Language
Reference With Examples, Springer, 1991.

■ R.Klatte, U.Kulisch, A.Wiethoff, C.Lawo, M. Rauch, C-XSC Class Library for
Extended Scientific Computing, Springer, 1993.

■ R.Hammer, M.Hocks, U.Kulisch, D.Ratz, Numerical Toolbox for Verified Computing I,
Basic Numerical Problems, Springer, 1993.

For a list of technical reports that establish the foundation for the interval

innovations implemented in f95 , see “References” on page 2-91. See the Interval

Arithmetic Readme for the location of the online versions of these references.

Online Resources

Additional interval information is available at various web sites and by subscribing

to email lists. For a list of online resources, refer to the Interval Arithmetic Readme.
xiv Fortran 95 Interval Arithmetic Programming Reference • May 2002

Web Sites

A detailed bibliography and interval FAQ can be obtained online at the URLs listed

in the Interval Arithmetic Readme.

Email

To discuss interval arithmetic issues or ask questions regarding the use of interval

arithmetic, a mailing list has been constructed. Anyone can send questions to this

list. Refer to the Interval Arithmetic Readme for instructions on how to subscribe to

this mailing list.

To report a suspected interval error, send email to

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

FORTEDEV "7.0 mm/ dd/ yy" Interval

where mm/dd/yy is the month, day, and year.

Code Examples

All code examples in this book are contained in the following directory:

/opt/SUNWspro/examples/intervalmath/docExamples

The name of each file is ce n-m.f95 , where n is the chapter in which the example

occurs and m is the number of the example. Additional interval examples can be

found in the following directory:

/opt/SUNWspro/examples/intervalmath/general
Before You Begin xv

Typographic Conventions

Note – Examples use math% as the system prompt.

TABLE P-1 Typeface Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Code samples, the names of

commands, files, and directories;

on-screen computer output

INTERVAL(4): : X = [2,3]

PRINT *, "X = ", X

AaBbCc123 What you type, contrasted with

on-screen computer output

math% f95 -xia test.f95

math% a.out

X = [2.0,3.0]

my_system%

^d Press the Control and d keys to

terminate an application

A, B = ^d

AaBbCc123 Placeholders for INTERVAL
language elements

The INTERVAL affirmative order

relational operators op ∈ {LT, LE, EQ,

GE, GT} are equivalent to the

mathematical operators

.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

op >,≥,=,≤,<{ }∈
xvi Fortran 95 Interval Arithmetic Programming Reference • May 2002

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…,fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-2 Code Conventions (Continued)

Code
Symbol Meaning Notation Code Example
Before You Begin xvii

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

% echo $PATH
xviii Fortran 95 Interval Arithmetic Programming Reference • May 2002

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

% man dbx
Before You Begin xix

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.
xx Fortran 95 Interval Arithmetic Programming Reference • May 2002

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt
Before You Begin xxi

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
xxii Fortran 95 Interval Arithmetic Programming Reference • May 2002

CHAPTER 1

Using Interval Arithmetic With f95

1.1 f95 INTERVAL Type and Interval
Arithmetic Support
Interval arithmetic is a system for computing with intervals of numbers. Because

interval arithmetic always produces intervals that contain the set of all possible

result values, interval algorithms have been developed to perform surprisingly

difficult computations. For more information on interval applications, see the

Interval Arithmetic Readme.

Since the inception of interval arithmetic, interval algorithms that produce narrow-

width results have been developed, and the syntax and semantics for interval

language support have been designed. However, relatively little progress has been

made in providing commercially available and supported interval compilers. With

one exception (M77 Minnesota FORTRAN 1977 Standards Version Edition 1),

interval systems have been based on pre-processors, C++ classes, or Fortran 90

modules. The goals of intrinsic compiler support for interval data types in f95 are:

■ Reliability

■ Speed

■ Ease-of-use

Sun Forte Developer Fortran 95 interval support is a significant extension to Fortran.
1-1

1.2 f95 Interval Support Goal:
Implementation Quality
The goal of intrinsic INTERVAL support in f95 is to stimulate development of

commercial interval solver libraries and applications by providing program

developers with:

■ Quality interval code

■ Narrow-width interval results

■ Rapidly executing interval code

■ An easy to use interval software development environment that includes interval-

specific language support and compiler features

Support and features are components of implementation quality. Not all possible

quality of implementation features have been implemented. Throughout this book,

various unimplemented quality of implementation opportunities are described.

Additional suggestions from users are welcome.

1.2.1 Quality Interval Code

As a consequence of evaluating any interval expression, a valid interval-supporting

compiler must produce an interval that contains the set of all possible results. The

set of all possible results is called the containment set (cset) of the given expression.

The requirement to enclose an expression’s cset is the containment constraint of

interval arithmetic. The failure to satisfy the containment constraint is a containment

failure. A silent containment failure (with no warning or documentation) is a fatal

error in any interval computing system. By satisfying this single constraint, intervals

provide otherwise unprecedented computing quality.

Given the containment constraint is satisfied, implementation quality is determined

by the location of a point in the two-dimensional plane whose axes are runtime and

interval width. On both axes, small is better. How to trade runtime for interval width

depends on the application. Both runtime and interval width are obvious measures

of interval-system quality. Because interval width and runtime are always available,

measuring the accuracy of both interval algorithms and implementation systems is

no more difficult than measuring their speed.

The Sun Forte Developer tools for performance profiling can be used to tune interval

programs. However, in f95 , no interval-specific tools exist to help isolate where an

algorithm may gain unnecessary interval width. As described in Section 1.4, “Code
1-2 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Development Tools” on page 1-25, some interval dbx and global program checking

(GPC) support are provided. Adding additional interval-specific code development

and debugging tools are quality of implementation opportunities.

1.2.2 Narrow-Width Interval Results

All the normal language and compiler quality of implementation opportunities exist

for intervals, including rapid execution and ease-of-use.

Valid interval implementation systems include a new additional quality of

implementation opportunity: Minimize the width of computed intervals while

always satisfying the containment constraint.

If an interval’s width is as narrow as possible, it is said to be sharp. For a given

floating-point precision, an interval result is sharp if its width is as narrow as

possible.

The following can be said about the width of intervals produced by the f95
compiler:

■ Individual intervals are sharp approximations of constants.

■ Individual interval arithmetic operators produce sharp results.

■ Intrinsic mathematical functions usually produce sharp results.

1.2.3 Rapidly Executing Interval Code

By providing compiler optimization and hardware instruction support, INTERVAL
operations are not necessarily slower than their REALfloating-point counterparts. In

f95 , the following can be said about the speed of intrinsic interval operators and

mathematical functions:

■ Arithmetic operations are reasonably fast.

■ The speed of default INTERVAL mathematical functions is generally less than

2 times that of their DOUBLE PRECISIONcounterparts. KIND = 4 intrinsic

interval math functions are provided, but are not tuned for speed (unlike their

KIND = 8 counterparts). KIND = 16 mathematical functions are not provided in

this release. However, other INTERVAL KIND = 16 functions are supported.

■ The following intrinsic INTERVAL array functions are optimized for performance:

■ SUM
■ PRODUCT
■ DOT_PRODUCT
■ MATMUL
Chapter 1 Using Interval Arithmetic With f95 1-3

1.2.4 Easy to Use Development Environment

The intrinsic INTERVAL data type in Fortran facilitates interval code development,

testing, and execution. To make interval code transparent (easy to write and read),

interval syntax and semantics have been added to Fortran. User acceptance will

ultimately determine which interval features are added to standard Fortran.

By introducing intervals as an intrinsic data type to Fortran, all of the applicable

syntax and semantics of the Fortran language become immediately available. Sun

Forte Developer Fortran 95 includes the following interval-specific Fortran

extensions:

■ INTERVAL data types

■ INTERVAL arithmetic operations and intrinsic mathematical functions form a

closed mathematical system. (This means that valid results are produced for any

possible operator-operand combination, including division by zero and other

indeterminate forms involving zero and infinities.)

■ Three classes of interval relational operators:

■ Certainly

■ Possibly

■ Set

■ Intrinsic INTERVAL-specific operators, such as .IX . (intersection) and .IH .

(interval hull)

■ INTERVAL-specific functions, such as INF , SUP, and WID

■ INTERVAL single-number input/output

■ Expression-context-dependent INTERVAL constants

■ Interval-specific mixed-mode (kind type parameter value (KTPV) and/or type)

expression processing

For examples and more information on these and other intrinsic interval functions,

see CODE EXAMPLE 1-11 through CODE EXAMPLE 1-14 and Section 2.10.4.5, “Intrinsic

Functions” on page 2-85.

Chapter 2 contains detailed descriptions of these and other interval features.

1.3 Writing Interval Code for f95
The examples in this section are designed to help new interval programmers to

understand the basics and to quickly begin writing useful interval code. Modifying

and experimenting with the examples is strongly recommended.
1-4 Fortran 95 Interval Arithmetic Programming Reference • May 2002

All code examples in this book are contained in the directory:

/opt/SUNWspro/examples/intervalmath/docExamples

The name of each file is ce n-m.f95, where n is the chapter in which the example

occurs, and m is the number of the example. Additional interval examples are

contained in the directory:

/opt/SUNWspro/examples/intervalmath/general

1.3.1 Command-Line Options

The following f95 command-line macro is the simplest way to invoke recognition of

INTERVAL data types as intrinsic and to control INTERVAL expression processing:

■ Compiler support for widest-need interval expression processing is invoked by

including:

-xia or -xia=widestneed

■ Compiler support for strict interval expression processing is invoked by

including:

-xia=strict

For intrinsic INTERVAL data types to be recognized by the compiler, either -xia or

-xinterval must be entered in the f95 command line.

All command-line options that interact with intervals are described in Section 2.3.3,

“Interval Command-Line Options” on page 2-12. Widest-need and strict expression

processing are described in Section 2.3, “INTERVAL Arithmetic Expressions” on

page 2-8.

The simplest command-line invocation of f95 with interval support is shown in

CODE EXAMPLE 1-1.

1.3.2 Hello Interval World

Unless explicitly stated otherwise, all code examples are compiled using the -xia
command-line option. The -xia or -xinterval command-line option is required

to use the interval extensions to f95 .
Chapter 1 Using Interval Arithmetic With f95 1-5

CODE EXAMPLE 1-1 is the interval equivalent of “hello world.”

CODE EXAMPLE 1-1 uses -directed output to print the labeled sum of the intervals [2,

3] and [4, 5].

1.3.3 Interval Declaration and Initialization

The INTERVAL declaration statement performs the same functions for INTERVAL
data items as the REAL, INTEGER, and COMPLEXdeclarations do for their respective

data items. The default INTERVAL kind type parameter value (KTPV) is twice the

default INTEGERKTPV. This permits any default INTEGERto be exactly represented

using a degenerate default INTERVAL. See Section 1.3.7, “Default Kind Type

Parameter Value (KTPV)” on page 1-13 for more information.

CODE EXAMPLE 1-2 uses INTERVAL variables and initialization to perform the same

operation as CODE EXAMPLE 1-1.

In line 1, the variables, X and Y are declared to be default type INTERVAL variables

and are initialized to [2, 3] and [4, 5], respectively. Line 2 uses list-directed output to

print the labeled interval sum of X and Y.

CODE EXAMPLE 1-1 Hello Interval World

math% cat ce1-1.f95
PRINT *, "[2, 3] + [4, 5] = ", [2, 3] + [4, 5] ! line 1
END
math% f95 -xia ce1-1.f95
math% a.out
 [2, 3] + [4, 5] = [6.0,8.0]

CODE EXAMPLE 1-2 Hello Interval World With INTERVAL Variables

math% cat ce1-2.f95
INTERVAL :: X = [2, 3], Y = [4, 5] ! Line 1
PRINT *, "[2, 3] + [4, 5] = ", X+Y ! Line 2
END
math% f95 -xia ce1-2.f95
math% a.out
 [2, 3] + [4, 5] = [6.0,8.0]
1-6 Fortran 95 Interval Arithmetic Programming Reference • May 2002

1.3.4 INTERVAL Input/Output

Full support for reading and writing intervals is provided. Reading and writing

INTERVAL and COMPLEXdata items are similar. Intervals use square brackets,

instead of parentheses as delimiters.

In f95 the input conversion process constructs a sharp interval that contains the

input decimal value. If the value is machine representable, the internal machine

approximation is degenerate. If the value is not machine representable, an interval

having width of 1-ulp (unit-in-the-last-place of the mantissa, pronounced “ulp”) is

constructed.

The simplest way to read and print INTERVAL data items is with -directed input and

output.

CODE EXAMPLE 1-3 is a simple tool to help users become familiar with interval

arithmetic and single-number INTERVAL input/output using -directed READand

PRINT statements. Complete support for formatted INTERVAL input/output is

provided, as described in Section 2.10.2, “Input and Output” on page 2-61.

Note – The interval containment constraint requires that directed rounding be used

during input and output. With single-number input followed immediately by single-

number output, a decimal digit of accuracy can appear to be lost. In fact, the width

of the input interval is increased by at most 1-ulp, when the input value is not

machine representable. See Section 1.3.5, “Single-Number Input/Output” on

page 1-8 and CODE EXAMPLE 1-6

CODE EXAMPLE 1-3 Interval Input/Output

math% cat ce1-3.f95
 INTERVAL :: X, Y
 INTEGER :: IOS = 0
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE = 'NO')
 READ(*, *, IOSTAT = IOS) X, Y
 DO WHILE (IOS >= 0)
 PRINT *, " For X =", X, ", and Y =", Y
 PRINT *, "X+Y =", X+Y
 PRINT *, "X-Y =", X-Y
 PRINT *, "X*Y =", X*Y
 PRINT *, "X/Y =", X/Y
 PRINT *, "X**Y =", X**Y
 WRITE(*, 1, ADVANCE = 'NO')
 READ(*, *, IOSTAT=IOS) X, Y
 END DO
Chapter 1 Using Interval Arithmetic With f95 1-7

Note – The empty interval is supported in f95 . The empty interval can be entered

as "[empty] ". Infinite interval endpoints are also supported, as described in

Section 2.10.2.1, “External Representations” on page 2-62 and illustrated in

CODE EXAMPLE 2-37.

1.3.5 Single-Number Input/Output

One of the most frustrating aspects of reading interval output is comparing interval

infima and suprema to count the number of digits that agree. For example,

CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5 shows the interval output of a program

that generates different random width INTERVAL data.

1 FORMAT(" X, Y = ? ")
 END
%math f95 -xia ce1-3.f95
%math a.out
 Press Control/D to terminate!
 X, Y = ? [1,2] [3,4]
 For X = [1.0,2.0] , and Y = [3.0,4.0]
 X+Y = [4.0,6.0]
 X-Y = [-3.0,-1.0]
 X*Y = [3.0,8.0]
 X/Y = [0.25,0.66666666666666675]
 X**Y = [1.0,16.0]
 X, Y = ? [1,2] -inf
 For X = [1.0,2.0] , and Y = [-Inf,-1.7976931348623157E+308]
 X+Y = [-Inf,-1.7976931348623155E+308]
 X-Y = [1.7976931348623157E+308,Inf]
 X*Y = [-Inf,-1.7976931348623157E+308]
 X/Y = [-1.1125369292536012E-308,0.0E+0]
 X**Y = [0.0E+0,Inf]
 X, Y = ? ^d

CODE EXAMPLE 1-3 Interval Input/Output (Continued)
1-8 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Note – Only program output is shown in CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5.

The code that generates the output is included with the examples located in the

/opt/SUNWspro/examples/intervalmath/docExamples directory.

CODE EXAMPLE 1-4 [inf, sup] Interval Output

%math f95 -xia ce1-4.f95
%math a.out
Press Control/D to terminate!
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,4,0
[0.2017321E-029, 0.2017343E-029]
[0.2176913E-022, 0.2179092E-022]
[-0.3602303E-006,-0.3602302E-006]
[-0.3816341E+038,-0.3816302E+038]
[-0.1011276E-039,-0.1011261E-039]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,8,0
[-0.3945547546440221E+035, -0.3945543600894656E+035]
[0.5054960140922359E-270, 0.5054960140927415E-270]
[-0.2461623589326215E-043, -0.2461623343163864E-043]
[-0.2128913523672577E+204, -0.2128913523672576E+204]
[-0.3765492464030608E-072, -0.3765492464030606E-072]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,16,0
[0.199050353252318620256245071374058E+055,
0.199050353252320610759742664557447E+055]
[-0.277386431989417915223682516437493E+203,
-0.277386431989417915195943874118822E+203]
[0.132585288598265472316856821380503E+410,
0.132585288598265472316856822706356E+410]
[0.955714436647437881071727891682804E+351,
0.955714436647437881071727891683760E+351]
[-0.224211897768824210398306994401732E+196,
-0.224211897768824210398306994177519E+196]
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: ^d
Chapter 1 Using Interval Arithmetic With f95 1-9

Compare the output readability in CODE EXAMPLE 1-4 with CODE EXAMPLE 1-5.

Because reading and interactively entering interval data can be tedious, a single-
number interval format is introduced. The single-number convention is that any

number not contained in brackets is interpreted as an interval whose lower and

upper bounds are constructed by subtracting and adding 1 unit to the last displayed

digit.

Thus during interval input and output,

2.345 = [2.344, 2.346],

2.34500 = [2.34499, 2.34501],

and

23 = [22, 24].

Symbolically,

[2.34499, 2.34501] = 2.34500 + [-1, +1]uld

CODE EXAMPLE 1-5 Single-Number Output

%math a.out
 Press Control/D to terminate!
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,4,1
 0.20173 E-029
 0.218 E-022
 -0.3602303E-006
 -0.38163 E+038
 -0.10112 E-039
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,8,1
 -0.394554 E+035
 0.505496014092 E-270
 -0.2461623 E-043
 -0.2128913523672577E+204
 -0.3765492464030607E-072
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: 5,16,1
 0.19905035325232 E+055
 -0.2773864319894179152 E+203
 0.132585288598265472316856822 E+410
 0.955714436647437881071727891683 E+351
 -0.224211897768824210398306994 E+196
Enter number of intervals, KTPV (4,8,16) and 1 for single-number output: ^d
1-10 Fortran 95 Interval Arithmetic Programming Reference • May 2002

where [-1, +1]uld means that the interval [-1, +1] is added to the last digit of the

preceding number. The subscript, uld, is a mnemonic for “unit in the last digit.”

Note – The single number input/output representation is not used to represent

INTERVAL literal constants in f95 code.

To represent a degenerate interval, a single number can be enclosed in square

brackets. For example,

[2.345] = [2.345, 2.345] = 2.345000000000.....

This convention is used both for single-number input/output and to represent

degenerate literal INTERVAL constants in Fortran code. Thus, type [0.1] to enter an

exact decimal number, even though 0.1 is not machine representable.

During input to a program, both [0.1,0.1] and [0.1] represents the point, 0.1.

However, the single-number input/output value 0.1 represents the interval

0.1 + [-1, +1]uld = [0, 0.2].

Note – A uld and an ulp are different. A uld refers to the construction of an interval

using the single number input/output format to add and subtract one unit to and

from the last displayed digit. An ulp is the smallest possible increment or decrement

that can be made to an internal machine number.

In the single-number display format, trailing zeros are significant. See Section 2.10.2,

“Input and Output” on page 2-61 for more information.

Intervals can always be entered and displayed using the traditional [inf, sup] display

format. In addition, a single number in square brackets denotes a point. For

example, on input, [0.1] is interpreted as the number 1/10. To guarantee

containment, directed rounding is used to construct an internal approximation that

is known to contain the number 1/10.

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion

math% cat ce1-6.f95
 INTERVAL :: X
 INTEGER :: IOS = 0
 CHARACTER*30 BUFFER
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE='NO')
 READ(*, '(A12)', IOSTAT=IOS) BUFFER
Chapter 1 Using Interval Arithmetic With f95 1-11

CODE EXAMPLE 1-6 notes:

■ Single numbers in square brackets represent degenerate intervals.

■ When a non-machine representable number is read using single-number input,

conversion from decimal to binary (radix conversion) and the containment

constraint force the number’s interval width to be increased by 1-ulp (unit in the

last place of the mantissa). When this result is displayed using single-number

output, it can appear that a decimal digit of accuracy has been lost. This is not so.

To echo single-number interval inputs, use character input together with internal

READstatement data conversion, as shown in CODE EXAMPLE 1-6.

1.3.6 Interval Statements and Expressions

The f95 compiler contains the following INTERVAL-specific statements, expressions,

and extensions:

■ The INTERVAL data type, related instructions, and statements described in

TABLE 1-1 are supported.

■ All intrinsic functions that accept real arguments have corresponding interval

versions.

 DO WHILE (IOS >= 0)
 PRINT *, ' Your input was: ', BUFFER
 READ(BUFFER, '(Y12.16)') X
 PRINT *, "Resulting stored interval is:", X
 PRINT '(A, Y12.2)', ' Single number interval output is:', X
 WRITE(*, 1, ADVANCE='NO')
 READ(*, '(A12)', IOSTAT=IOS) BUFFER
 END DO
1 FORMAT(" X = ? ")
 END
math% f95 -xia ce1-6.f95
math% a.out
 Press Control/D to terminate!
 X = ? 1.37
 Your input was: 1.37
 Resulting stored interval is: [1.3599999999999998,1.3800000000000002]
 Single number interval output is: 1.3
 X = ? 1.444
 Your input was: 1.444
 Resulting stored interval is: [1.4429999999999998,1.4450000000000001]
 Single number interval output is: 1.44
 X = ? ^d

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion (Continued)
1-12 Fortran 95 Interval Arithmetic Programming Reference • May 2002

■ A number of intrinsic INTERVAL-specific functions and operators have been

added, including INTERVAL-specific relational operators and set-theoretic

functions. For a complete of intrinsic INTERVAL functions and INTERVAL
operators, see Section 2.10.3, “Intrinsic INTERVAL Functions” on page 2-80 and

Section 2.10.4, “Mathematical Functions” on page 2-81

1.3.7 Default Kind Type Parameter Value (KTPV)

In f95 the default INTEGERKTPV is KIND(0) = 4. To represent any default

INTEGERwith a degenerate default INTERVAL requires the default INTERVAL KTPV,

KIND([0]) , to be 2*KIND(0) = 8. Choosing 8 for the default INTERVAL KTPV is

also done because:

■ Intervals are often used to perform numerically intense computations, as have

been performed on CDC and Cray machines.

■ When evaluating a single arithmetic expression, the width of intervals necessarily

grows because of accumulated rounding errors, dependence, and cancellation.

Extra precision can help to reduce the effect of accumulated rounding errors and

cancellation. Other means are required to reduce or eliminate the effect of

dependence.

TABLE 1-1 INTERVAL Specific Statements and Expressions

Statement/expression Description

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

Default INTERVAL type declaration

KIND=4 INTERVAL

KIND=8 INTERVAL

KIND=16 INTERVAL

[a, b] See Note 1 Literal INTERVAL constant: [a, b]

[a] See Note 2 [a, a]

INTERVAL A

PARAMETER A=[c, d] Named constant: A

V = expr See Note 3 Value assignment

FORMAT(E, EN, ES, F, G, VE,

VF, VG, VEN, VES, Y) See Note 4
E, EN, ES, F, G, VE, VF, VG,

VEN, VES, Y edit descriptors
Chapter 1 Using Interval Arithmetic With f95 1-13

TABLE 1-1 notes:

1. The letters a and b are placeholders for literal decimal constants, such as 0.1 and

0.2 .

2. A single decimal constant contained in square brackets denotes a degenerate

INTERVAL constant. The same convention is used in input/output.

3. Let expr stand for any Fortran arithmetic expression, whether or not it contains

items of type INTERVAL. An assignment statement, V = expr , evaluates the

expression, expr , and assigns the resulting value to V. Mixed-mode INTERVAL
expressions are not permitted under the -xia=strict command line option.

Under the -xia or -xia=widestneed option, mixed-mode expressions are

correctly evaluated using widest-need expression processing. Before expression

evaluation under widest-need, all integer and floating-point data items are

promoted to containing intervals with the largest KTPV found anywhere in the

expression, including, V. For details, see Section 2.3.2, “Value Assignment” on

page 2-10.

4. Interval input/output support is designed to provide flexibility, readability, and

ease of code development. The most important new edit descriptor is Y, which is

used to read and display intervals using the single-number interval format. For a

complete description of all edit descriptors that can process intervals, see

Section 2.10.2, “Input and Output” on page 2-61.

1.3.8 Value Assignment V = expr

The INTERVAL assignment statement assigns the value of an interval expression,

denoted by the placeholder expr , to an INTERVAL variable, array element, array,

array section, or structure component V. The syntax is:

V = expr

where V must have an INTERVAL type, and expr denotes any non-COMPLEX
numeric expression. Under widest-need expression processing, the expression expr
need not be an INTERVAL expression. Under strict expression processing, expr must

be an INTERVAL expression with the same KTPV as V.

1.3.9 Mixed-Type Expression Evaluation

Gracefully handling mixed-type INTERVAL expressions is an important ease-of-use

feature, because it facilitates writing transparent (easy to understand) mathematical

expressions.
1-14 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Mixed-type INTERVAL expressions are supported to make writing and reading

interval code no more difficult than it is for REALcode. The interval containment

constraint is satisfied in mixed-mode expressions using either widest-need or strict
expression processing.

1.3.9.1 Widest-Need and Strict Expression Processing

Computing narrow-width interval results is facilitated if the width of INTERVAL
constants is dynamically defined by expression context, as described in Section 2.3,

“INTERVAL Arithmetic Expressions” on page 2-8. In mixed-KTPV expressions,

shown in CODE EXAMPLE 1-7, dynamically increasing the KTPV of INTERVAL
variables can also decrease the width of INTERVAL expression results.

In line 3, KTPVmax = KIND(Z) = 8 . This value is used to promote the KTPV of X and

Y to 8 before computing their product and storing the result in Z1.

These steps are shown explicitly in the equivalent strict code in line 4.

The process of scanning a statement to determine the maximum KTPV and

performing the necessary promotions, is called widest-need expression processing,

see Section 2.3, “INTERVAL Arithmetic Expressions” on page 2-8.

For syntax and semantics of the intrinsic INTERVAL constructor functions, see

Section 2.9, “Extending Intrinsic INTERVAL Operators” on page 2-32.

CODE EXAMPLE 1-7 Mixed Precision With Widest-Need

math% cat ce1-7.f95
INTERVAL(4) :: X = [1, 2], Y = [3, 4]
INTERVAL :: Z1, Z2

! Widest-need Code
Z1 = X*Y ! Line 3

! Equivalent Strict Code
Z2 = INTERVAL(X, KIND=8)*INTERVAL(Y, KIND=8) ! Line 4
IF (Z1 .SEQ. Z2) PRINT *, ’Check.’
END
math% f95 -xia ce1-7.f95
math% a.out
 Check.
Chapter 1 Using Interval Arithmetic With f95 1-15

1.3.9.2 Mixed-Mode (Type and KTPV) Expressions

If the widest-need principle is used with both KTPVs and data types, mixed-mode

(type and KTPV) INTERVAL expressions can be safely and predictably evaluated. For

example, in CODE EXAMPLE 1-8, the expression for Y1 in line 3 is an interval

expression, because X and Y1 are INTERVAL variables.

To guarantee containment, a containing interval must be used in place of a real

approximation to the constant 0.1. However, KTPVmax = 16, because KIND(X) = 16 .

Therefore, the INTERVAL constant [0.1_16], a sharp KTPV = 16 interval containing

the exact value, 1/10, is used to update X. Finally, the result is converted to a

KTPV = 4 containing interval and assigned to Y1. Line 4 contains the equivalent

strict code. Under strict expression processing, neither mixed-type nor mixed-KTPV

expressions are permitted.

The logical steps in widest-need expression processing are:

1. Scan the entire statement, including the left-hand side, for any INTERVAL data
items.

The presence of any INTERVAL constants, variables, or intrinsic functions, makes the

expression’s type INTERVAL.

2. Scan the INTERVAL expressions for KTPVmax , based on the KTPV of each
INTERVAL, REAL, INTEGER, constant, or variable.

CODE EXAMPLE 1-8 Mixed Types With Widest-Need

math% cat ce1-8.f95
INTERVAL(16) :: X = [0.1, 0.3]
INTERVAL(4) :: Y1, Y2

! Widest-need code
 Y1 = X + 0.1 ! Line 3

! Equivalent strict code
 Y2 = INTERVAL(X + [0.1_16], KIND=4) ! Line 4
 IF (Y1 == Y2) PRINT *, "Check"
END

math% f95 -xia ce1-8.f95
math% a.out
 Check
1-16 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Note – Integers are converted to intervals with twice their KTPV so all integer

values can be exactly represented.

3. Promote all variables and constants to intervals with KTPVmax.

4. Evaluate the expression.

5. Convert the result to a lower KTPV if needed to match the left-hand side’s KTPV.

6. Assign the resulting value to the left-hand side.

These steps guarantee that mixed-mode INTERVAL expression processing satisfies

the containment constraint and efficiently produces reasonably narrow interval

results.

Mixed-mode INTERVAL expression evaluation using widest-need expression

processing is supported by default with the -xia command-line flag. Using -xia=
strict eliminates any automatic type conversions to intervals and any automatic

KTPV increases of INTERVAL variables. In strict mode, all interval type and

precision conversions must be explicitly coded.

1.3.10 Arithmetic Expressions

Writing arithmetic expressions that contain INTERVAL data items is simple and

straightforward. Except for INTERVAL literal constants and intrinsic INTERVAL-

specific functions, INTERVAL expressions look like REALarithmetic expressions. In

particular, with widest-need expression processing, REALand INTEGERvariables

and literal constants can be freely used anywhere in an INTERVAL expression, such

as in CODE EXAMPLE 1-9.

CODE EXAMPLE 1-9 Simple INTERVAL Expression Example

math% cat ce1-9.f95
INTEGER :: N = 3
REAL :: A = 5.0
INTERVAL :: X

X = 0.1*A/N ! Line 5
PRINT *, "0.1*A/N = ", X
END
Chapter 1 Using Interval Arithmetic With f95 1-17

Because X, the variable to which the assignment is made in line 5, is an INTERVAL,

the following steps are taken before evaluating the expression 0.1*A/N :

1. The literal constant 0.1 is converted to the default INTERVAL variable containing

the degenerate interval [0.1] .

While not required in a valid interval system implementation, Sun Forte

Developer Fortran 95 performs sharp data conversions. For example, the internal

approximation of [0.1] is 1-ulp wide.

2. The REALvariable A is converted to the degenerate interval [5] .

3. The INTEGERvariable N is converted to the degenerate interval [3].

The expression [0.1] × [5]/[3] is evaluated using interval arithmetic. The above steps

are part of widest-need expression processing, which is required to satisfy the

containment constraint when evaluating mixed-mode INTERVAL expressions. See

Section 1.3.9, “Mixed-Type Expression Evaluation” on page 1-14.

An INTERVAL assignment statement must satisfy one requirement: the variable to

which the assignment is made must be an INTERVAL variable, array element, array,

array section, or structure component. For more information on the widest-need

processing mode, see Section 2.3.1, “Mixed-Mode INTERVAL Expressions” on

page 2-9.

Because the interval system implemented in Sun Forte Developer Fortran 95 is

closed, if any INTERVAL expression fails to produce a valid interval result, it is a

compiler error that should be reported. See Section 1.4, “Code Development Tools”

on page 1-25 for information on how to report a suspected error and Section 1.5.1,

“Known Containment Failures” on page 1-30 for a list of known errors.

Note – Not all cset equivalent INTERVAL expressions produce intervals having the

same width. Additionally, it is often not possible to compute a sharp result by

simply evaluating a single INTERVAL expression. In general, interval result width

depends on the value of INTERVAL arguments and the form of the expression.

math% f95 -xia ce1-9.f95
math% a.out
 0.1*A/N = [0.16666666666666662,0.16666666666666672]

CODE EXAMPLE 1-9 Simple INTERVAL Expression Example (Continued) (Continued)

math% cat ce1-9.f95
1-18 Fortran 95 Interval Arithmetic Programming Reference • May 2002

1.3.11 Interval Order Relations

Ordering intervals is more complicated than ordering points. Testing whether 2 is

less than 3 is unambiguous. With intervals, while the interval [2,3] is certainly less

than the interval [4,5] , what should be said about [2,3] and [3,4] ?

Three different classes of INTERVAL relational operators are implemented:

■ certainly

■ possibly

■ set

For a certainly-relation to be true, every element of the operand intervals must

satisfy the relation. A possibly-relation is true if it is satisfied by any elements of the

operand intervals. The set-relations treat intervals as sets. The three classes of

INTERVAL relational operators converge to the normal relational operators on points

if both operand intervals are degenerate.

To distinguish the three operator classes, the normal two-letter Fortran relation

mnemonics are prefixed with the letters C, P, or S. In f95 the set operators .SEQ. and

.SNE. are the only operators for which the point defaults (.EQ. or == and .NE. or

/=) are supported. In all other cases, the relational operator class must be explicitly

identified, as for example in:

■ .CLT. certainly less than

■ .PLT. possibly less than

■ .SLT. set less than

See Section 2.4, “Intrinsic Operators” on page 2-16 for the syntax and semantics of all

INTERVAL operators.

The following program demonstrates the use of a set-equality test.

Line 2 uses the set-equality test to verify that X+Y is equal to the interval [6, 8].

An equivalent line 2 is:

IF(X+Y == [6, 8]) PRINT *, "Check." ! line 2

CODE EXAMPLE 1-10 Set-Equality Test

math% cat ce1-10.f95
INTERVAL :: X = [2, 3], Y = [4, 5] ! Line 1
IF(X+Y .SEQ. [6, 8]) PRINT *, "Check." ! Line 2
END
math% f95 -xia ce1-10.f95
math% a.out
 Check.
Chapter 1 Using Interval Arithmetic With f95 1-19

Use CODE EXAMPLE 1-11 and CODE EXAMPLE 1-12 to explore the result of INTERVAL-

specific relational operators.

CODE EXAMPLE 1-11 Interval Relational Operators

math% cat ce1-11.f95
 INTERVAL :: X, Y
 INTEGER :: IOS = 0
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X, Y
 DO WHILE (IOS >= 0)
 PRINT *, " For X =", X, ", and Y =", Y
 PRINT *, ’X .CEQ. Y, X .PEQ. Y, X .SEQ. Y =’, &
 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y
 PRINT *, ’X .CNE. Y, X .PNE. Y, X .SNE. Y =’, &
 X .CNE. Y, X .PNE. Y, X .SNE. Y
 PRINT *, ’X .CLE. Y, X .PLE. Y, X .SLE. Y =’, &
 X .CLE. Y, X .PLE. Y, X .SLE. Y
 PRINT *, ’X .CLT. Y, X .PLT. Y, X .SLT. Y =’, &
 X .CLT. Y, X .PLT. Y, X .SLT. Y
 PRINT *, ’X .CGE. Y, X .PGE. Y, X .SGE. Y =’, &
 X .CGE. Y, X .PGE. Y, X .SGE. Y
 PRINT *, ’X .CGT. Y, X .PGT. Y, X .SGT. Y =’, &
 X .CGT. Y, X .PGT. Y, X .SGT. Y
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X, Y
 END DO
1 FORMAT(" X, Y = ")
 END
math% f95 -xia ce1-11.f95
math% a.out
 Press Control/D to terminate!
 X, Y = [2] [3]
 For X = [2.0,2.0] , and Y = [3.0,3.0]
 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y = F F F
 X .CNE. Y, X .PNE. Y, X .SNE. Y = T T T
 X .CLE. Y, X .PLE. Y, X .SLE. Y = T T T
 X .CLT. Y, X .PLT. Y, X .SLT. Y = T T T
 X .CGE. Y, X .PGE. Y, X .SGE. Y = F F F
 X .CGT. Y, X .PGT. Y, X .SGT. Y = F F F
 X, Y = 2 3
1-20 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 1-12 demonstrates the use of the INTERVAL-specific operators ed in

TABLE 1-2.

 For X = [1.0,3.0] , and Y = [2.0,4.0]
 X .CEQ. Y, X .PEQ. Y, X .SEQ. Y = F T F
 X .CNE. Y, X .PNE. Y, X .SNE. Y = F T T
 X .CLE. Y, X .PLE. Y, X .SLE. Y = F T T
 X .CLT. Y, X .PLT. Y, X .SLT. Y = F T T
 X .CGE. Y, X .PGE. Y, X .SGE. Y = F T F
 X .CGT. Y, X .PGT. Y, X .SGT. Y = F T F
 X, Y = ^d

TABLE 1-2 Interval-Specific Operators

Operator Name Mathematical Symbol

.IH. Interval Hull ∪

.IX. Intersection ∩

.DJ. Disjoint

.IN. Element ∈

.INT. Interior See Section 2.8.3, “Interior:

(X .INT. Y) ” on page 2-26.

.PSB. Proper Subset ⊂

.PSP. Proper Superset ⊃

.SB. Subset ⊆

.SP. Superset ⊇

CODE EXAMPLE 1-12 Set Operators

math% cat ce1-12.f95
 INTERVAL :: X, Y
 INTEGER :: IOS = 0
 REAL(8) :: R = 1.5
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X, Y

CODE EXAMPLE 1-11 Interval Relational Operators (Continued)

A B∩ ∅=
Chapter 1 Using Interval Arithmetic With f95 1-21

 DO WHILE (IOS >= 0)
 PRINT *, " For X =", X, ", and Y =", Y
 PRINT *, ’X .IH. Y =’, X .IH. Y
 PRINT *, ’X .IX. Y =’, X .IX. Y
 PRINT *, ’X .DJ. Y =’, X .DJ. Y
 PRINT *, ’R .IN. Y =’, R .IN. Y
 PRINT *, ’X .INT. Y =’, X .INT. Y
 PRINT *, ’X .PSB. Y =’, X .PSB. Y
 PRINT *, ’X .PSP. Y =’, X .PSP. Y
 PRINT *, ’X .SP. Y =’, X .SP. Y
 PRINT *, ’X .SB. Y =’, X .SB. Y
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X, Y
 END DO
1 FORMAT(" X, Y = ? ")
 END
math% f95 -xia ce1-12.f95
math% a.out
 Press Control/D to terminate!
 X, Y = ? [1] [2]
 For X = [1.0,1.0] , and Y = [2.0,2.0]
 X .IH. Y = [1.0,2.0]
 X .IX. Y = [EMPTY]
 X .DJ. Y = T
 R .IN. Y = F
 X .INT. Y = F
 X .PSB. Y = F
 X .PSP. Y = F
 X .SP. Y = F
 X .SB. Y = F
 X, Y = ? [1,2] [1,3]
 For X = [1.0,2.0] , and Y = [1.0,3.0]
 X .IH. Y = [1.0,3.0]
 X .IX. Y = [1.0,2.0]
 X .DJ. Y = F
 R .IN. Y = T
 X .INT. Y = F
 X .PSB. Y = T
 X .PSP. Y = F
 X .SP. Y = F
 X .SB. Y = T
 X, Y = ? ^d

CODE EXAMPLE 1-12 Set Operators (Continued)
1-22 Fortran 95 Interval Arithmetic Programming Reference • May 2002

1.3.12 Intrinsic INTERVAL-Specific Functions

A variety of intrinsic INTERVAL-specific functions are provided. See Section 2.10.4.5,

“Intrinsic Functions” on page 2-85. Use CODE EXAMPLE 1-13 to explore how intrinsic

INTERVAL functions behave.

CODE EXAMPLE 1-13 Intrinsic INTERVAL-Specific Functions

math% cat ce1-13.f95
 INTERVAL :: X, Y
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X
 DO WHILE (IOS >= 0)
 PRINT *, " For X =", X
 PRINT *, ’MID(X)= ’, MID(X)
 PRINT *, ’MIG(X)= ’, MIG(X)
 PRINT *, ’MAG(X)= ’, MAG(X)
 PRINT *, ’WID(X)= ’, WID(X)
 PRINT *, ’NDIGITS(X)= ’, NDIGITS(X)
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X
 END DO
1 FORMAT(" X = ?")
 END
math% f95 -xia ce1-13.f95
math% a.out
 Press Control/D to terminate!
 X = ? [1.23456,1.234567890]
 For X = [1.2345599999999998,1.2345678900000002]
 MID(X)= 1.234563945
 MIG(X)= 1.2345599999999998
 MAG(X)= 1.2345678900000001
 WID(X)= 7.890000000232433E-6
 NDIGITS(X)= 6
 X = ? [1,10]
 For X = [1.0,10.0]
 MID(X)= 5.5
 MIG(X)= 1.0
 MAG(X)= 10.0
 WID(X)= 9.0
 NDIGITS(X)= 1
 X = ? ^d
Chapter 1 Using Interval Arithmetic With f95 1-23

1.3.13 Interval Versions of Standard Intrinsic Functions

Every Fortran intrinsic function that accepts REALarguments has an interval version.

See Section 2.10.4.5, “Intrinsic Functions” on page 2-85. Use CODE EXAMPLE 1-14 to

explore how some intrinsic functions behave.

CODE EXAMPLE 1-14 Interval Versions of Standard Intrinsic Functions

math% cat ce1-14.f95
 INTERVAL :: X, Y
 INTEGER :: IOS = 0
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X
 DO WHILE (ios >= 0)
 PRINT *, "For X =", X
 PRINT *, ’ABS(X) = ’, ABS(X)
 PRINT *, ’LOG(X) = ’, LOG(X)
 PRINT *, ’SQRT(X)= ’, SQRT(X)
 PRINT *, ’SIN(X) = ’, SIN(X)
 PRINT *, ’ACOS(X)= ’, ACOS(X)
 WRITE(*, 1, ADVANCE=’NO’)
 READ(*, *, IOSTAT=IOS) X
 END DO
1 FORMAT(" X = ?")
 END
math% f95 -xia ce1-14.f95
math% a.out
 Press Control/D to terminate!
 X = ? [1.1,1.2]
For X = [1.0999999999999998,1.2000000000000002]
 ABS(X) = [1.0999999999999998,1.2000000000000002]
 LOG(X) = [0.095310179804324726,0.18232155679395479]
 SQRT(X)= [1.0488088481701514,1.0954451150103324]
 SIN(X) = [0.89120736006143519,0.93203908596722652]
 ACOS(X)= [EMPTY]
 X = ? [-0.5,0.5]
For X = [-0.5,0.5]
 ABS(X) = [0.0E+0,0.5]
 LOG(X) = [-Inf,-0.69314718055994528]
 SQRT(X)= [0.0E+0,0.70710678118654758]
 SIN(X) = [-0.47942553860420307,0.47942553860420307]
 ACOS(X)= [1.0471975511965976,2.0943951023931958]
 X = ? ^d
1-24 Fortran 95 Interval Arithmetic Programming Reference • May 2002

1.4 Code Development Tools
Information on interval code development tools is available online. See the Interval

Arithmetic Readme for a list of interval web sites and other online resources.

To report a suspected interval error, send email to

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

FORTEDEV "7.0 mm/ dd/ yy" Interval

where mm/dd/yy is the month, day, and year.

1.4.1 Debugging Support

In Sun Forte Developer, interval data types are supported by dbx to the following

extent:

■ The values of individual INTERVAL variables can be printed using the print
command.

■ The value of all INTERVAL variables can be printed using the dump command.

■ New values can be assigned to INTERVAL variables using the assign command.

■ There is no provision to visualize INTERVAL data arrays.

■ All generic functionality that is not data type specific should work.

For additional details on dbx functionality, see Debugging a Program With dbx.

1.4.2 Global Program Checking

Global program checking (GPC) in Sun Forte Developer Fortran 95 detects one

interval-specific error: INTERVAL type mismatches in user-supplied routine calls.

CODE EXAMPLE 1-15 shows an example of GPC detecting an INTERVAL type mismatch.
Chapter 1 Using Interval Arithmetic With f95 1-25

CODE EXAMPLE 1-15 INTERVAL Type Mismatch

math% cat ce1-15.f95
INTERVAL X
X = [-1.0,+2.9]
PRINT *,X
CALL SUB(X)
END
SUBROUTINE SUB(Y)
INTEGER Y(2)
PRINT *,Y
END
math% f95 -xia ce1-15.f95 -Xlistf

(See ce1-15.lst)-

ce1-15.f95 Tue Mar 12 12:51:05 2002 page 1

FILE "ce1-15.f95"
 1 INTERVAL X
 2 X = [-1.0,+2.9]
 3 PRINT *,X
 4 CALL SUB(X)
 ^
**** ERR #325: argument "x" is variable, but dummy argument is array
 See: "ce1-15.f95" line #6
 4 CALL SUB(X)
 ^
**** ERR #560: variable "x" referenced as integer across main/sub/ in
 line #7 but set as interval by main in line #2
 5 END
 6 SUBROUTINE SUB(Y)
 7 INTEGER Y(2)
 8 PRINT *,Y
 9 END
1-26 Fortran 95 Interval Arithmetic Programming Reference • May 2002

1.4.3 Interval Functionality Provided in Sun Fortran

Libraries

The following libraries contain intrinsic INTERVAL routines.

1.4.4 Porting Code and Binary Files

There is limited legacy interval Fortran code with which to contend. Until language

syntax and semantics are standardized, different providers of interval compiler

support will inevitably diverge. The standardization process will be facilitated if

users provide feedback regarding the most favored INTERVAL syntax and semantics.

Comments can be sent to the email alias ed in the Interval Arithmetic Readme.

The representation of intervals in binary files will change as compilers supporting

narrower interval systems are made available.

1.4.5 Parallelization

In this release, the -autopar compiler option has no effect on loops containing

interval arithmetic operations. These loops are not automatically parallelized. The

-explicitpar compiler option must be used to parallelize loops marked with

explicit parallelization directives.

TABLE 1-3 Interval Libraries

Library Name Needed Options

intrinsic INTERVAL array functions libifai None

intrinsic INTERVAL library libsunimath None
Chapter 1 Using Interval Arithmetic With f95 1-27

1.5 Error Detection
The following code samples list interval-specific error messages. Each code sample

includes the error message and the sample code that produced the error.

CODE EXAMPLE 1-16 Invalid Endpoints

math% cat ce1-16.f95
INTERVAL :: I = [2., 1.]
END

math% f95 -xia ce1-16.f95

INTERVAL :: I = [2., 1.]
 ^
"ce1-16.f95", Line = 1, Column = 24: ERROR: The left endpoint of
the interval constant must be less than or equal to the right
endpoint.

f95comp: 2 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-17 Equivalence of Intervals and Non-Intervals

math% cat ce1-17.f95
INTERVAL :: I
REAL :: R
EQUIVALENCE (I, R)
END

math% f95 -xia ce1-17.f95

EQUIVALENCE (I, R)
 ^
"ce1-17.f95", Line = 3, Column = 14: ERROR: Equivalence of
INTERVAL object "I" and REAL object "R" is not allowed.

f95comp: 4 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
1-28 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 1-18 Equivalence of INTERVAL Objects With Different KTPVs

math% cat ce1-18.f95
INTERVAL(4) :: I1
INTERVAL(8) :: I2
EQUIVALENCE (I1, I2)
END

math% f95 -xia ce1-18.f95

EQUIVALENCE (I1, I2)
 ^
"ce1-18.f95", Line = 3, Column = 14: ERROR: Equivalence of the
interval objects "I1" and "I2" with the different kind type
parameters is not allowed.

f95comp: 4 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-19 Assigning a REALExpression to an INTERVAL Variable in Strict Mode

math% cat ce1-19.f95
INTERVAL :: X
REAL :: R
X = R
END
math% f95 -xia=strict ce1-19.f95

X = R
 ^
"ce1-19.f95", Line = 3, Column = 3: ERROR: Assignment of a REAL
expression to a INTERVAL variable is not allowed.

f95comp: 4 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-20 Assigning an INTERVAL Expression to INTERVAL Variable in Strict
Mode

math% cat ce1-20.f95
INTERVAL :: X
INTERVAL(16) :: y
X = Y
END
Chapter 1 Using Interval Arithmetic With f95 1-29

1.5.1 Known Containment Failures

Whenever an interval containment failure can occur, a compile-time warning should

be issued. There are no know containment failures under widest-need expression

processing. In -xia =strict mode, it is possible to violate the containment constraint

with an interval ** (integer expression) operation if the integer expression

overflows.

1.5.1.1 Integer Overflow

Numerical inaccuracies are normally associated with REALrather than INTEGER
expressions. In one respect, INTEGERexpressions are harder to detect than REAL
expressions. When REALexpressions overflow, an exception is raised and an IEEE

infinity is generated. The exception is a warning that overflow has occurred.

Infinities tend to propagate in floating-point computations, thereby alerting users of

a potential problem. It is also possible to trap on overflow.

When INTEGERexpressions overflow, they silently wrap around to some possibly-

opposite-signed value. Moreover, the only practical way to detect integer overflow is

to perform the inverse operation and test for equality on every integer operation.

Integer constant expressions are safe because they are evaluated during compilation

where overflow is detected and signalled with a warning message.

Under -xia=widestneed expression processing when the second operand of the **
operator is an integer expression that overflows, the returned interval is guaranteed

to contain the correct result. However, the same is not true under -xia=strict
processing, because it is not possible to promote integers to intervals prior to

evaluating the given expression without widest-need expression processing, The

same is true if the second operand of the ** operator is the INTERVAL type

conversion routine.

math% f95 -xia=strict ce1-20.f95

X = Y
 ^
"ce1-20.f95", Line = 3, Column = 3: ERROR: Assignment of an
interval expression to an interval variable is not allowed when
they have different kind type parameter values.

f95comp: 4 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 1-20 Assigning an INTERVAL Expression to INTERVAL Variable in Strict
Mode (Continued)
1-30 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 1-21 shows that widest-need expression processing is extended to all

intrinsic INTEGERoperations and functions inside integer expressions in the second

operand of the ** operator. This is not true under -xia=strict mode.

CODE EXAMPLE 1-21 INTEGEROverflow Containment Violation Under -xia=strict
Mode

math% cat ce1-21.f95
 INTERVAL :: X = [1.5], Y = [1.5], Z = [1.5]
 INTEGER :: I = HUGE(0)

 PRINT *, "BEFORE POW"
 PRINT *, "X = ", X
 PRINT *, "Y = ", Y
 PRINT *, "Z = ", Z
 PRINT *, "I = ", I

 X = X**(I+1) ! I+1 - integer overflow
 Y = Y*(Y**I)
 Z = Z**(INTERVAL(I)+INTERVAL(1))

 PRINT *, "I+1=",I,"+",1,"=",I+1

 PRINT *, "RESULTS:"
 PRINT *, "X = ", X
 PRINT *, "Y = ", Y
 PRINT *, "Z = ", Z
END

math% f95 -xia ce1-21.f95
math% a.out
 BEFORE POW
 X = [1.5,1.5]
 Y = [1.5,1.5]
 Z = [1.5,1.5]
 I = 2147483647
 I+1= 2147483647 + 1 = -2147483648
 RESULTS:
 X = [1.7976931348623157E+308,Inf]
 Y = [1.7976931348623157E+308,Inf]
 Z = [1.7976931348623157E+308,Inf]
Chapter 1 Using Interval Arithmetic With f95 1-31

This code demonstrates a silent containment failure in -xia=strict mode and the

correct interval results in -xia=widestneed mode. For information on the power

operator, see Section 2.5, “Power Operators X**N and X**Y ” on page 2-21.

math% f95 -xia=strict ce1-21.f95
math% a.out
 BEFORE POW
 X = [1.5,1.5]
 Y = [1.5,1.5]
 Z = [1.5,1.5]
 I = 2147483647
 I+1= 2147483647 + 1 = -2147483648
 RESULTS:
 X = [0.0E+0,4.9406564584124655E-324]
 Y = [1.7976931348623157E+308,Inf]
 Z = [1.7976931348623157E+308,Inf]

CODE EXAMPLE 1-21 INTEGEROverflow Containment Violation Under -xia=strict
Mode (Continued)
1-32 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CHAPTER 2

f95 Interval Reference

This chapter is a reference for the syntax and semantics of the intrinsic INTERVAL
types implemented in Sun Forte Developer Fortran 95. The sections can be read in

any order.

Unless explicitly stated otherwise, the INTERVAL data type has the same properties

as other intrinsic numeric types. This chapter highlights differences between the

REALand INTERVAL types.

Some code examples are not complete programs. The implicit assumption is that

these examples are compiled with the -xia command line option.

2.1 Fortran Extensions
INTERVAL data types are a non-standard extension to Fortran. However, where

possible, the implemented syntax and semantics conform to the style of Fortran.

2.1.1 Character Set Notation

Left and right square brackets, "[...] ", are added to the Fortran character set to

delimit literal INTERVAL constants.

Throughout this document, unless explicitly stated otherwise, INTEGER, REAL, and

INTERVAL constants mean literal constants. Constant expressions and named

constants (PARAMETERS) are always explicitly identified as such.
2-1

TABLE 2-1 shows the character set notation used for code and mathematics.

Note – Pay close attention to font usage. Different fonts represent an interval’s

exact, external mathematical value and an interval’s machine-representable, internal

approximation.

2.1.2 INTERVAL Constants

In f95 , an INTERVAL constant is either a single integer or real decimal number

enclosed in square brackets, [3.5] , or a pair of integer or real decimal numbers

separated by a comma and enclosed in square brackets, [3.5 E-10, 3.6 E-10] . If a

degenerate interval is not machine representable, directed rounding is used to round

the exact mathematical value to an internal machine representable interval known to

satisfy the containment constraint.

An INTERVALconstant with both endpoints of type default INTEGER, default REALor

REAL(8) , has the default type INTERVAL.

If an endpoint is of type default INTEGER, default REALor REAL(8) , it is internally

converted to a value of the type REAL(8) .

If an endpoint’s type is INTEGER(8) , it is internally converted to a value of type

REAL(16) .

If an endpoint’s type is INTEGER(4) , it is internally converted to a value of type

REAL(8) .

If an endpoint’s type is INTEGER(1) or INTEGER(2) , it is internally converted to a

value of type REAL(4) .

If both endpoints are of type REALbut have different KTPVs, they are both internally

represented using the approximation method of the endpoint with greater decimal

precision.

TABLE 2-1 Font Conventions

Character Set Notation

Fortran code INTERVAL :: X=[0.1,0.2]

Input to programs and commands Enter X: ? [2.3,2.4]

Placeholders for constants in code [a,b]

Scalar mathematics x(a + b) = xa + xb

Interval mathematics X(A + B) XA + XB⊆
2-2 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The KTPV of an INTERVAL constant is the KTPV of the part with the greatest decimal

precision.

CODE EXAMPLE 2-1 shows the KTPV of various INTERVAL constants.

A Fortran constant, such as 0.1 or [0.1,0.2] , is associated with the two values: the

external value it represents and its internal approximation. In Fortran, the value of a

constant is its internal approximation. There is no need to distinguish between a

constant’s external value and its internal approximation. Intervals require this

distinction to be made. To represent a Fortran constant’s external value, the

following notation is used:

ev(0.1) = 0.1 or ev([0.1,0.2])= [0.1, 0.2].

The notation ev stands for external value.

Following the Fortran Standard, the numerical value of an INTERVAL constant is its

internal approximation. The external value of an INTERVAL constant is always

explicitly labelled as such.

For example, the INTERVAL constant [1, 2] and its external value ev([1, 2]) are

equal to the mathematical value [1, 2]. However, while ev([0.1, 0.2]) = [0.1, 0.2],

[0.1, 0.2] is only an internal machine approximation, because the numbers 0.1 and

0.2 are not machine representable. The value of the INTERVAL constant, [0.1, 0.2]
is its internal machine approximation. The external value is denoted ev([0.1, 0.2]).

CODE EXAMPLE 2-1 KTPV of INTERVAL Constants

math% cat ce2-1.f95
IF(KIND([9_8, 9.0]) == 16 .AND. &
 KIND([9_8, 9_8]) == 16 .AND. &
 KIND([9_4, 9_4]) == 8 .AND. &
 KIND([9_2, 9_2]) == 4 .AND. &
 KIND([9, 9.0_16]) == 16 .AND. &
 KIND([9, 9.0]) == 8 .AND. &
 KIND([9, 9]) == 8 .AND. &
 KIND([9.0_4, 9.0_4]) == 4 .AND. &
 KIND([1.0Q0, 1.0_16]) == 16 .AND. &
 KIND([1.0_8, 1.0_4]) == 8 .AND. &
 KIND([1.0E0, 1.0Q0]) == 16 .AND. &
 KIND([1.0E0, 1]) == 8 .AND. &
 KIND([1.0Q0, 1]) == 16) PRINT *, ’CHECK’
END
math% f95 -xia ce2-1.f95
math% a.out
CHECK
Chapter 2 f95 Interval Reference 2-3

Under strict expression processing, an INTERVALconstant’s internal approximation is

fixed, as it is for other Fortran numeric typed constants. The value of a REALconstant

is its internal approximation. Similarly, the value of an INTERVAL constant’s internal

approximation is referred to as the constant’s value. A constant’s external value,

which is not a defined concept in standard Fortran, can be different from its internal

approximation. Under widest-need expression processing, an INTERVAL constant’s

internal value is context-dependent. Nevertheless, an INTERVAL constant’s internal

approximation must contain its external value in both strict and widest-need

expression processing.

Like any mathematical constant, the external value of an INTERVAL constant is

invariant. The external value of a named INTERVAL constant (PARAMETER) cannot

change within a program unit. However, as with any named constant, in different

program units, different values can be associated with the same named constant.

Because intervals are opaque, there is no language requirement to store the

information needed to internally represent an interval. Intrinsic functions are

provided to access the infimum and supremum of an interval. Nevertheless, an

INTERVAL constant is defined by an ordered pair of REALor INTEGERconstants. The

constants are separated by a comma, and the pair is enclosed in square brackets. The

first constant is the infimum or lower bound, and the second, is the supremum or

upper bound.

If only one constant appears inside the square brackets, the represented interval is

degenerate, having equal infimum and supremum. In this case, an internal interval

approximation is constructed that is guaranteed to contain the single decimal literal

constant’s external value.

A valid interval must have an infimum that is less than or equal to its supremum.

Similarly, an INTERVAL constant must also have an infimum that is less than or equal

to its supremum. For example, the following code fragment must evaluate to true:

INF([0.1]) .LE. SUP([0.1]).

CODE EXAMPLE 2-2 contains examples of valid and invalid INTERVAL constants.
2-4 Fortran 95 Interval Arithmetic Programming Reference • May 2002

For additional information regarding INTERVAL constants, see the supplementary

paper [4] cited in Section 2.11, “References” on page 2-91.

CODE EXAMPLE 2-2 Valid and Invalid INTERVAL Constants

math% cat ce2-2.f95
 INTERVAL :: X
 X=[2,3]
 X=[0.1] !Case 1: Interval containing the decimal number 1/10
 X=[2,] !Case 2: Invalid - missing supremum
 X=[3_2,2_2] !Case 3: Invalid - infimum > supremum
 X=[2_8,3_8]
 X=[2,3_8]
 X=[0.1E0_8]
 X=[2_16,3_16] !Case 4: Invalid - KTPV 16 is not valid for type INTEGER
 X=[2,3.0_16]
 X=[0.1E0_16]
 END
math% f95 -xia ce2-2.f95

 X=[2,] !Case 2: Invalid - missing supremum
 ^
"ce2-2.f95", Line = 4, Column = 10: ERROR: Unexpected syntax: "operand" was expected
but found "]".

 X=[3_2,2_2] !Case 3: Invalid - infimum > supremum
 ^
"ce2-2.f95", Line = 5, Column = 14: ERROR: The left endpoint of the interval constant
must be less than or equal to the right endpoint.

 X=[2_16,3_16] !Case 4: Invalid - KTPV 16 is not valid for type INTEGER
 ^
"ce2-2.f95", Line = 9, Column = 7: ERROR: The kind type parameter value 16 is not
valid for type INTEGER.
 ^
"ce2-2.f95", Line = 9, Column = 12: ERROR: The kind type parameter value 16 is not
valid for type INTEGER.

f95comp: 12 SOURCE LINES
f95comp: 4 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
Chapter 2 f95 Interval Reference 2-5

2.1.3 Internal Approximation

The internal approximation of a REALconstant does not necessarily equal the

constant’s external value. For example, because the decimal number 0.1 is not a

member of the set of binary floating-point numbers, this value can only be

approximated by a binary floating-point number that is close to 0.1. For REALdata

items, the approximation accuracy is unspecified in the Fortran standard. For

INTERVAL data items, a pair of floating-point values is used that is known to contain

the set of mathematical values defined by the decimal numbers used to symbolically

represent an INTERVAL constant. For example, the mathematical interval [0.1, 0.2] is

the external value of the INTERVAL constant [0.1,0.2] .

Just as there is no Fortran language requirement to accurately approximate REAL
constants, there is also no language requirement to approximate an interval’s

external value with a narrow width INTERVAL constant. There is a requirement for an

INTERVAL constant to contain its external value.

ev(INF([0.1,0.2])) inf(ev([0.1,0.2])) = inf([0.1, 0.2])

and

sup([0.1, 0.2]) = sup(ev([0.1,0.2])) ev(SUP([0.1,0.2]))

f95 INTERVAL constants are sharp. This is a quality of implementation feature.

2.1.4 INTERVAL Statement

The INTERVAL declaration statement is the only INTERVAL-specific statement added

to the Fortran language in f95 . For a detailed description of the INTERVAL
declaration statement and standard Fortran statements that interact with INTERVAL
data items, see “INTERVAL Statements” on page 50.

2.2 Data Type and Data Items
If the -xia or -xinterval options are entered in the f95 command line, or if they

are set either to widestneed or to strict , the INTERVAL data type is recognized as

an intrinsic numeric data type in f95 . If neither option is entered in the f95
command line, or if they are set to no , the INTERVAL datatype is not recognized as

intrinsic. See Section 2.3.3, “Interval Command-Line Options” on page 2-12 for

details on the INTERVAL command-line options.

≤

≤

2-6 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.2.1 Name: INTERVAL

The intrinsic type INTERVAL is added to the six intrinsic Fortran data types. The

INTERVAL type is opaque, meaning that an INTERVAL data item’s internal format is

not specified. Nevertheless, an INTERVAL data item’s external format is a pair of

REALdata items having the same kind type parameter value (KTPV) as the INTERVAL
data item.

2.2.2 Kind Type Parameter Value (KTPV)

An INTERVAL data item is an approximation of a mathematical interval consisting of

a lower bound or infimum and an upper bound or supremum. INTERVAL data items

have all the properties of other numeric data items.

The KTPV of a default INTERVAL data item is 8. The size of a default INTERVAL data

item with no specified KTPV is 16 bytes. The size of a default INTERVAL data item in

f95 cannot be changed using the -xtypemap or -r8const command line options.

For more information, see Section 2.3.3.1, “-xtypemap and -r8const
Command-Line Options” on page 2-13. Thus

KIND([0])= 2*KIND(0) = KIND(0.0_8) = 8

provided the size of the default REALand INTEGERdata items is not changed using

-xtypemap.

2.2.2.1 Size and Alignment Summary

The size and alignment of INTERVAL types is unaffected by f95 compiler options.

TABLE 2-2 contains INTERVAL sizes and alignments.

Note – INTERVAL arrays align the same as their elements.

TABLE 2-2 INTERVAL Sizes and Alignments

Data Type Byte Size Alignment

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

16

8

16

32

8

4

8

16
Chapter 2 f95 Interval Reference 2-7

2.2.3 INTERVAL Arrays

INTERVAL arrays have all the properties of arrays with different numeric types. See

CODE EXAMPLE 2-25 for the declaration of INTERVAL arrays.

Interval versions of the following intrinsic array functions are supported:

ALLOCATED(), ASSOCIATED() , CSHIFT() , DOT_PRODUCT(), EOSHIFT() , KIND() ,

LBOUND(),MATMUL(),MAXVAL(),MERGE() ,MINVAL() ,NULL() ,PACK() ,PRODUCT(),
RESHAPE(),SHAPE() ,SIZE() ,SPREAD(),SUM() ,TRANSPOSE(),UBOUND(),UNPACK().

The MINLOC() , and MAXLOC()intrinsic functions are not defined for INTERVALarrays

because the MINVALand MAXVALintrinsic applied to an INTERVALarray might return

an interval value not possessed by any element of the array. See the following

sections for descriptions of the MAXand MIN intrinsic functions:

■ Section 2.10.4.3, “Maximum: MAX(X1,X2,[X3,...]) ” on page 2-84

■ Section 2.10.4.4, “Minimum: MIN(X1,X2,[X3, ...]) ” on page 2-84

For example MINVAL((/[1,2],[3,4]/)) = [1,3] and

MAXVAL(/[1,2],[3,4]/) = [2,4] .

Array versions of the following intrinsic INTERVAL-specific functions are supported:

ABS() , INF(), MAG() , MAX() , MID() , MIG() , MIN() , NDIGITS() , SUP() , WID() .

Array versions of the following intrinsic INTERVAL-mathematical functions are

supported:ACOS() ,AINT() ,ANINT() ,ASIN() ,ATAN() ,ATAN2() ,CEILING() ,COS() ,

COSH(),EXP() ,FLOOR() ,LOG() ,LOG10() ,MOD(),SIGN() ,SIN() ,SINH() ,SQRT() ,

TAN() , TANH() .

Array versions of the following INTERVAL constructors are supported:

INTERVAL() , DINTERVAL() , SINTERVAL() , QINTERVAL() .

2.3 INTERVAL Arithmetic Expressions
INTERVAL arithmetic expressions are constructed from the same arithmetic operators

as other numerical data types. The fundamental difference between INTERVAL and

non-INTERVAL (point) expressions is that the result of any possible INTERVAL
expression is a valid INTERVAL that satisfies the containment constraint of interval

arithmetic. In contrast, point expression results can be any approximate value.
2-8 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.3.1 Mixed-Mode INTERVAL Expressions

Mixed-mode (INTERVAL-point) expressions require widest-need expression

processing to guarantee containment. Expression processing is widest-need by

default when support for intervals is invoked using either the -xia command-line

macro or the -xinterval command line option. If widest-need expression

processing is not wanted, use the options -xia=strict or -xinterval=strict to

invoke strict expression processing. Mixed-mode INTERVAL expressions are

compile-time errors under strict expression processing. Mixed-mode operations

between INTERVAL and COMPLEXoperands are not supported.

With widest-need expression processing, the KTPV of all operands in an interval

expression is promoted to KTPVmax, the highest INTERVAL KTPV found anywhere in

the expression.

Note – KTPV promotion is performed before expression evaluation.

Widest-need expression processing guarantees:

■ Interval containment

■ No type or precision conversions add width to the converted intervals

Note – Unless there is a specific requirement to use strict expression processing, it is

strongly recommended that users employ widest-need expression processing. In any

expression or subexpression, explicit INTERVAL type and KTPV conversions can

always be made.

Each of the following examples is designed to illustrate the behavior and utility of

widest-need expression processing. There are three blocks of code in each example:

■ Generic code that is independent of the expression processing mode (widest-need,

or strict)

■ Widest-need code

■ Equivalent strict code

The examples are designed to communicate three messages:

■ Except in special circumstances, use the widest-need expression processing.

■ Whenever widest-need expression processing is enabled, but is not wanted, it can

be overridden using the INTERVAL constructor to coerce type and KTPV

conversions.

■ With strict expression processing, INTERVAL type and precision conversions must

be explicitly specified using INTERVAL constants and the INTERVAL constructor.
Chapter 2 f95 Interval Reference 2-9

2.3.2 Value Assignment

The INTERVAL assignment statement assigns a value of an INTERVAL scalar, array

element, or array expression to an INTERVAL variable, array element or array. The

syntax is:

V = expr

where expr is a placeholder for an interval arithmetic or array expression, and V is

an INTERVAL variable, array element, array, array section, or structure component.

Executing an INTERVAL assignment causes the expression to be evaluated using

either widest-need or strict expression processing. The resulting value is then

assigned to V. The following steps occur when evaluating an expression using

widest-need expression processing:

1. The interval KTPV of every point (non-INTERVAL) data item is computed.

If the point item is an integer, the resulting interval KTPV is twice the integer’s

KTPV. Otherwise an interval’s KTPV is the same as the point item’s KTPV.

2. The expression, including the left-hand side of an assignment statement, is

scanned for the maximum interval KTPV, denoted KTPVmax.

3. All point and INTERVAL data items in the INTERVAL expression are promoted to

KTPVmax, prior to evaluating the expression.

4. If KIND(V) < KTPVmax after the expression is evaluated, the expression result is

converted to a containing interval with KTPV = KIND(V) and the resulting value

is assigned to V.

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side)

math% cat ce2-3.f95
INTERVAL(4) :: X1, Y1
INTERVAL :: X2, Y2 ! Same as: INTERVAL(8) :: X2, Y2
INTERVAL(16) :: X3, Y3

! Widest-need code
 X1 = 0.1
 X2 = 0.1
 X3 = 0.1

! Equivalent strict code
Y1 = [0.1_4]
Y2 = [0.1_8]
Y3 = [0.1_16]
2-10 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Note – Under widest-need, the KTPV of the variable to which assignment is made

(the left-hand side) is included in determining the value of KTPVmax to which all

items in an INTERVAL statement are promoted.

IF(X1 .SEQ. Y1) PRINT *, "Check1."
IF(X2 .SEQ. Y2) PRINT *, "Check2."
IF(X3 .SEQ. Y3) PRINT *, "Check3."
END

math% f95 -xia ce2-3.f9 5
math% a.out
 Check1.
 Check2.
 Check3.

CODE EXAMPLE 2-4 Mixed-Mode Assignment Statement

math% cat ce2-4.f95
INTERVAL(4) :: X1, Y1
INTERVAL(8) :: X2, Y2
REAL(8) :: R = 0.1

! Widest-need code
 X1 = R*R ! Line 4
 X2 = X1*R ! Line 5

! Equivalent strict code
 Y1 = INTERVAL((INTERVAL(R, KIND=8)*INTERVAL(R, KIND=8)), KIND=4)! Line 6
 Y2 = INTERVAL(X1, KIND=8)*INTERVAL(R, KIND=8) ! Line 7

IF((X1 == Y1)) PRINT *, "Check1." ! Line 8
IF((X2 == Y2)) PRINT *, "Check2." ! Line 9
END

math% f95 -xia ce2-4.f95
math% a.out
 Check1.
 Check2.

CODE EXAMPLE 2-3 KTPVmax Depends on KIND (Left-Hand Side) (Continued)
Chapter 2 f95 Interval Reference 2-11

CODE EXAMPLE 2-4 notes:

■ The equivalent strict code shows the steps required to reproduce the results

obtained using widest-need expression processing.

■ In line 4, KIND(R) = 8, but KIND(X1) = 4. To guarantee containment and produce a

sharp result, R is converted to a KTPVmax = 8 containing interval before evaluating

the expression. Then the result is converted to a KTPV-4 containing interval and

assigned to X1. These steps are made explicit in the equivalent strict code in line 6.

■ In line 5, KIND(R) = KIND(X2) = 8. Therefore, X1 is promoted to a KTPV-8

INTERVAL before the expression is evaluated and the result assigned to X2. Line 7

shows the equivalent strict code.

■ The checks in lines 8 and 9 verify that the widest-need and strict results are

identical. For more detailed information on widest-need and strict expression

processing, see Section 2.3, “INTERVAL Arithmetic Expressions” on page 2-8.

2.3.3 Interval Command-Line Options

Interval features in the f95 compiler are activated by means of the following

command-line options:

■ -xinterval =(no|widestneed|strict) is a command-line option to enable

processing of intervals and to control permitted expression evaluation syntax.

■ "no" disables the interval extensions to f95 .

■ "widestneed " enables widest-need expression processing and functions the

same as -xinterval if no option is specified. See Section 2.3.1, “Mixed-Mode

INTERVAL Expressions” on page 2-9.

■ "strict " requires all INTERVAL type and KTPV conversions to be explicit, or it

is a compile-time error, as described in Section 1.5, “Error Detection” on

page 1-28.

■ -xia =(widestneed|strict) is a macro that enables the processing of INTERVAL
data types and sets a suitable floating-point environment. If -xia is not

mentioned (the first default), there is no expansion.

-xia expands into the following.

-xinterval=widestneed
-ftrap=%none
-fns=no
-fsimple=0
2-12 Fortran 95 Interval Arithmetic Programming Reference • May 2002

-xia=(widestneed|strict) expands into the following.

-xinterval=(widestneed|strict)
-ftrap=%none
-fns=no
-fsimple=0

Previously set values of -ftrap , -fns , -fsimple are superseded.

It is a fatal error if at the end of command line processing

-xinterval=(widestneed|strict) isset,andeither -fsimple , -fns ,or -ftrap is

set to any value other than

-fsimple=0
-fns=no
-ftrap=no
-ftrap=%none

When using command-line options:

■ At the end of the command-line processing, if -ansi is set and -xinterval is set

to either widestneed or strict , the following warning is issued: "Interval
data types are a non-standard feature" .

■ -fround = <r> : (Set the IEEE rounding mode in effect at startup) does not

interact with -xia because INTERVALoperations and routines save and restore the

rounding mode upon entry and exit.

When recognition of INTERVAL types is activated:

■ INTERVAL operators and functions become intrinsic.

■ The same restrictions are imposed on the extension of intrinsic INTERVAL
operators and functions as are imposed on the extension of standard intrinsic

operators and functions.

■ Intrinsic INTERVAL-specific function names are recognized. See Section 2.2.3,

“INTERVAL Arrays” on page 2-8 and Section 2.10.4, “Mathematical Functions” on

page 2-81.

2.3.3.1 -xtypemap and -r8const Command-Line Options

The size of a default INTERVAL variable declared only with the INTERVAL keyword

cannot be changed using the -xtypemap and -r8const command line options.
Chapter 2 f95 Interval Reference 2-13

While these command line options have no influence on the size of default INTERVAL
types, the options can change the result of mixed-mode INTERVAL expressions, as

shown in CODE EXAMPLE 2-5.

Note – Although -xtypemap has no influence on the KTPV of X, it can influence the

value of X.

CODE EXAMPLE 2-5 Mixed-Mode Expression

math% cat ce2-5.f95
REAL :: R
INTERVAL :: X
R = 1.0E0 - 1.0E-15
PRINT *, 'R = ', R
X = 1.0E0 - R
PRINT *, 'X = ', X
IF (0.0 .IN. X) THEN
 PRINT *, 'X contains zero'
ELSE
 PRINT *, 'X does not contain zero'
ENDIF
PRINT *, 'WID(X) = ', WID(X)
END
math% f95 -xia ce2-5.f95
math% a.out
 R = 1.0
 X = [0.0E+0,0.0E+0]
 X contains zero
 WID(X) = 0.0E+0
math% f95 -xia -xtypemap=real:64,double:64,integer:64 ce2-5.f95
math% a.out
 R = 0.999999999999999
 X = [9.9920072216264088E-16,9.9920072216264089E-16]
 X does not contain zero
 WID(X) = 0.0E+0
2-14 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.3.4 Constant Expressions

INTERVAL constant expressions may contain INTERVAL literal and named constants,

as well as any point constant expression components. Therefore, each operand or

argument is itself, another constant expression, a constant, a named constant, or an

intrinsic function called with constant arguments.

Note – Under widest-need expression processing, interval context is used to

determine the KTPV of INTERVAL constants. See Section 1.3.7, “Default Kind Type

Parameter Value (KTPV)” on page 1-13 for more information.

INTERVAL constant expressions are permitted wherever an INTERVAL constant is

allowed.

CODE EXAMPLE 2-6 Constant Expressions

math% cat ce2-6.f95
INTERVAL :: P, Q
! Widest-need code
P = SIN([1.23])+[3.45]/[9, 11.12]

! Equivalent strict code
Q = SIN([1.23_8])+[3.45_8]/[9.0_8, 11.12_8]
IF(P .SEQ. Q) PRINT *, ’Check’
END
math% f95 -xia ce2-6.f95
math% a.out
 Check
Chapter 2 f95 Interval Reference 2-15

2.4 Intrinsic Operators
TABLE 2-3 lists the intrinsic operators that can be used with intervals. In TABLE 2-3, X
and Y are intervals.

Precedence of operators:

■ The operator ** takes precedence over the *, /, +, -, .IH. , and .IX. operators.

■ The operators * and / take precedence over the +, -, .IH. , and .IX. operators.

■ The operators + and – take precedence over the .IH. and .IX. operators.

■ The operators .IH . and .IX . take precedence over the // operator.

With the exception of the interval ** operator and an integer exponent, interval

operators can only be applied to two interval operands with the same kind type

parameter value. Thus the type and KTPV of an interval operator’s result are the

same as the type and KTPV of its operands.

If the second operand of the interval ** operator is an integer, the first operand can

be of any interval KTPV. In this case, the result has the type and KTPV of the first

operand.

TABLE 2-3 INTRINSIC Operators

Operator Operation Expression Meaning

** Exponentiation X**Y Raise X to the INTERVAL power Y

X**N Raise X to the INTEGERpower N (See Note 1)

* Multiplication X*Y Multiply X and Y

/ Division X/Y Divide X by Y

+ Addition X+Y Add X and Y

+ Identity +X Same as X (without a sign)

- Subtraction X-Y Subtract Y from X

- Numeric Negation -X Negate X

.IH. INTERVAL hull X.IH.Y Interval hull of X and Y

.IX. Intersection X.IX.Y Intersect X and Y

(1)If N is an integer expression, overflow can cause a containment failure under -xia=strict expression
processing. This is not a problem under widest-need expression processing. Users must be responsible for
preventing integer overflow under strict expression processing. See Section 1.5.1.1, “Integer Overflow” on
page 1-30 for more information.
2-16 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Some INTERVAL-specific operators have no point analogs. These can be grouped into

three categories: set, certainly, and possibly, as shown in TABLE 2-4. A number of

unique set-operators have no certainly or possibly analogs.

The precedence of intrinsic INTERVAL relational operators is the same as the

precedence of REALrelational operators.

Except for the .IN . operator, intrinsic INTERVAL relational operators can only be

applied to two INTERVAL operands with the same KTPV.

The first operand of the .IN . operator is of any INTEGERor REAL type. The second

operand can have any interval KTPV.

The result of the INTERVAL relational expression has the default LOGICAL kind type

parameter.

2.4.1 Arithmetic Operators +, –, * , /

Formulas for computing the endpoints of interval arithmetic operations on finite

REAL intervals are motivated by the requirement to produce the narrowest interval

that is guaranteed to contain the set of all possible point results. Ramon Moore

independently developed these formulas and more importantly, was the first to

develop the analysis needed to apply interval arithmetic. For more information, see

R. Moore, Interval Analysis, Prentice-Hall, 1966.

TABLE 2-4 Intrinsic INTERVAL Relational Operators

Set Relational
Operators

.SP. .PSP .SB. .PSB. .IN. .DJ.

.EQ.

(same as ==)

.NEQ.

(same as /=)

.SEQ. .SNE. .SLT. .SLE. .SGT. .SGE.

Certainly
Relational
Operators

.CEQ. .CNE. .CLT. .CLE. .CGT. .CGE.

Possibly Relational
Operators

.PEQ. .PNE. .PLT. .PLE. .PGT. .PGE.
Chapter 2 f95 Interval Reference 2-17

The set of all possible values was originally defined by performing the operation in

question on any element of the operand intervals. Therefore, given finite intervals,

[a, b] and [c, d], with ,

,

with division by zero being excluded. The formulas, or their logical equivalent, are:

Directed rounding is used when computing with finite precision arithmetic to

guarantee the set of all possible values is contained in the resulting interval.

The set of values that any interval result must contain is called the containment set

(cset) of the operation or expression that produces the result.

To include extended intervals (with infinite endpoints) and division by zero, csets

can only indirectly depend on the value of arithmetic operations on real operands.

For extended intervals, csets are required for operations on points that are normally

undefined. Undefined operations include the indeterminate forms:

.

The containment-set closure identity solves the problem of identifying the value of

containment sets of expressions at singular or indeterminate points. The identity

states that containment sets are function closures. The closure of a function at a point

on the boundary of its domain includes all limit or accumulation points. For details,

see the Glossary and the supplementary papers [1], [3], [10], and [11] cited in

Section 2.11, “References” on page 2-91.

The following is an intuitive way to justify the values included in an expression’s

cset. Consider the function

.

The question is: what is the cset of h(x0), for x0 = 0 ? To answer this question,

consider the function

.

op {+, –, , }÷×∈

a b,[] op c d,[] x yop x a b,[]∈ y c d,[]∈and{ }⊇

a b,[] c d,[]+ a c+ b d+[,]=

a b,[] c d,[]– a d– b c–[,]=

a b,[] c d,[]× min a c a d b c b d×,×,×,×() max a c a d b c b d×,×,×,×()[,]=

a b,[] c d,[]⁄ min
a
c
--- a

d
--- b

c
--- b

d
---, , , 

  max
a
c
--- a

d
--- b

c
--- b

d
---, , , 

 , , if 0 c d,[]∉=

1 0÷ 0 ∞× 0 0÷ and ∞ ∞÷, , ,

h x() 1
x
---=

f x() x
x 1+
------------=
2-18 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Clearly, f(x0) = 0, for x0 = 0. But, what about

or

?

The function g(x0) is undefined for x0 = 0, because h(x0) is undefined. The cset of h(x0)

for x0 = 0 is the smallest set of values for which g(x0) = f(x0). Moreover, this must be

true for all composite functions of h. For example if

g’(y) = ,

then g(x) = g’(h(x)). In this case, it can be proved that the cset of h(x0) = if

x0 = 0, where denotes the set consisting of the two values, and .

TABLE 2-5 through TABLE 2-8, contain the csets for the basic arithmetic operations. It is

convenient to adopt the notation that an expression denoted by f(x) simply means its

cset. Similarly, if

,

the containment set of f over the interval X, then hull(f(x)) is the sharp interval that

contains f(X).

TABLE 2-5 Containment Set for Addition: x + y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {-∞} {x0 + y0} {+∞}

{+∞} {+∞} {+∞}

TABLE 2-6 Containment Set for Subtraction: x – y

{−∞} {real: y0} {+∞}

{−∞} {-∞} {-∞}

{real: x0} {+∞} {x0 – y0} {-∞}

{+∞} {+∞} {+∞}

g x() 1

1
1
x
--- 

 +

------------------=

g x() 1
1 h x()+
--------------------=

1
1 y+

∞– +∞,{ }
∞– +∞,{ } ∞– +∞

f X() f x()
x X∈
∪=

ℜ*

ℜ*

ℜ*

ℜ*
Chapter 2 f95 Interval Reference 2-19

All inputs in the tables are shown as sets. Results are shown as sets or intervals.

Customary notation, such as , , and

, is used, with the understanding that csets are implied when

needed. Results for general set (or interval) inputs are the union of the results of the

single-point results as they range over the input sets (or intervals).

In one case, division by zero, the result is not an interval, but the set, . In

this case, the narrowest interval in the current system that does not violate the

containment constraint of interval arithmetic is the interval .

Sign changes produce the expected results.

To incorporate these results into the formulas for computing interval endpoints, it is

only necessary to identify the desired endpoint, which is also encoded in the

rounding direction. Using to denote rounding down (towards -∞) and to denote

rounding up (towards +∞),

and .

and .

Similarly, because ,

and .

TABLE 2-7 Containment Set for Multiplication: x × y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} {+∞} {+∞} {-∞} {-∞}

{real: x0 < 0} {+∞} {x × y} {0} {x × y} {-∞}

{0} {0} {0} {0}

{real: x0 > 0} {-∞} x × y {0} x × y {+∞}

{+∞} {-∞} {-∞} {+∞} {+∞}

TABLE 2-8 Containment Set for Division: x ÷ y

{−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} [0, +∞] {+∞} {-∞, +∞} {-∞} [-∞, 0]

{real: x0 ≠ 0} {0} {x ÷ y} {-∞, +∞} {x ÷ y} {0}

{0} {0} {0} {0} {0}

{+∞} [-∞, 0] {-∞} {-∞, +∞} {+∞} [0, +∞]

ℜ*

ℜ* ℜ*

ℜ*

ℜ*

∞–() +∞()+ ∞–= ∞–() y+ ∞–=
∞–() +∞()+ ℜ∗=

∞– +∞,{ }

∞– +∞,[] ℜ∗=

↓ ↑

↓ +∞() +∞()÷ 0= ↑ +∞() +∞()÷ +∞=

↓ 0 +∞()× -∞= ↑ 0 +∞()× +∞=

hull -∞ +∞,{ }() -∞ +∞,[]=

↓ x 0÷ ∞–= ↑ x 0÷ +∞=
2-20 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Finally, the empty interval is represented in Fortran by the character string [empty]
and has the same properties as the empty set, denoted in the algebra of sets. Any

arithmetic operation on an empty interval produces an empty interval result. For

additional information regarding the use of empty intervals, see the supplementary

papers [6] and [7] cited in Section 2.11, “References” on page 2-91.

Using these results, f95 implements the “simple” closed interval system. The system

is closed because all arithmetic operations and functions always produce valid

interval results. See the supplementary papers [2] and [8] cited in Section 2.11,

“References” on page 2-91.

2.5 Power Operators X**N and X**Y
The power operator can be used with integer exponents (X**N) and continuous

exponents (X**Y). With a continuous exponent, the power operator has

indeterminate forms, similar to the four arithmetic operators.

In the integer exponents case, the set of all values that an enclosure of must

contain is .

Monotonicity can be used to construct a sharp interval enclosure of the integer

power function. When n = 0, Xn, which represents the cset of Xn, is 1 for all

, and for all n.

In the continuous exponents case, the set of all values that an interval enclosure of

X**Y must contain is

where and are their respective containment sets. The

function exp(y(ln(x))) makes explicit that only values of need be considered,

and is consistent with the definition of X**Y with REALarguments in Fortran.

The result is empty if either INTERVAL argument is empty, or if x < 0. This is also

consistent with the point version of X**Y in Fortran.

∅

X
n

z z x
n∈ x X∈and{ }

x -∞ +∞,[]∈ ∅n ∅=

Y X()ln()()exp z z y x()ln()()exp y Y0 x X0∈,∈,∈{ }=

Y X()ln()()exp y x()ln()()exp
x 0≥
Chapter 2 f95 Interval Reference 2-21

TABLE 2-9 displays the containment sets for all the singularities and indeterminate

forms of exp(y(ln(x))).

The results in TABLE 2-9 can be obtained in two ways:

■ Directly computing the closure of the composite expression, exp(y(ln(x))) for the

values of x0 and y0 for which the expression is undefined.

■ Use the containment-set evaluation theorem to bound the set of values in a

containment set.

For most compositions, the second option is much easier. If sufficient conditions are

satisfied, the closure of a composition can be computed from the composition of its

closures. That is, the closure of each sub-expression can be used to compute the

closure of the entire expression. In the present case,

exp(y(ln(x))) = .

That is, the cset of the expression on the left is equal to the composition of csets on

the right.

It is always the case that

exp(y(ln(x))) ⊆ .

Note that this is exactly how interval arithmetic works on intervals. The needed

closures of the ln and exp functions are:

A necessary condition for closure-composition equality is that the expression must

be a single-use expression (or SUE), which means that each independent variable can

appear only once in the expression.

In the present case, the expression is clearly a SUE.

TABLE 2-9 exp(y(ln(x)))

x0 y0 exp(y(ln(x)))

0 y0 < 0 +∞

1 -∞ [0,+∞]

1 +∞ [0,+∞]

+∞ 0 [0,+∞]

0 0 [0,+∞]

exp y0 ln x0()×()

exp y0 ln x0()×()

ln 0() ∞–=

ln +∞() +∞=

exp ∞–() 0=

exp +∞() +∞=
2-22 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The entries in TABLE 2-9 follow directly from using the containment set of the basic

multiply operation in TABLE 2-7 on the closures of the ln and exp functions. For

example, with x0 = 1 and y0 = -∞, ln(x0) = 0. For the closure of multiplication on the

values -∞ and 0 in TABLE 2-7, the result is [-∞, +∞]. Finally, exp([-∞, +∞]) = [0, +∞], the

second entry in TABLE 2-9. Remaining entries are obtained using the same steps.

These same results are obtained from the direct derivation of the containment set of

exp(y(ln(x))). At this time, sufficient conditions for closure-composition equality of

any expression have not been identified. Nevertheless,

■ The containment-set evaluation theorem guarantees that a containment failure

can never result from computing a composition of closures instead of a closure.

■ An expression must be a SUE for closure-composition equality to be true.

2.6 Dependent Subtraction Operator
The dependent subtraction operator .DSUB. can be used to recover either operand of

a previous interval addition.

Two interval variables are dependent when one interval variable is a result of an

interval arithmetic operation applied to the other interval variable. For example, if

X = A + B, then X depends on both A and B. Dependent interval subtraction

produces narrower interval results when recovering A or B from X.

Dependent operations cannot be applied to interval constants because interval

constants are not the result of an interval operation, and therefore, cannot be

dependent. Applying dependent operations to interval constants produces a

compile-time error.

The result of X.DSUB.A returns an enclosure of B given that X = A + B, as shown

in TABLE 2-10.

TABLE 2-10 Results of X .DSUB. A For Different Values of X and A

A = [EMPTY] A = Finite Interval A = [-inf , inf]

X = [EMPTY] [-inf , inf] [EMPTY] [EMPTY]

X = Finite Interval [-inf , inf] Finite interval1 [-inf , inf]

X = [-inf , inf] [-inf , inf] [-inf , inf] [-inf , inf]

1. The returned finite interval must always enclose B, given that X = A + B.
Chapter 2 f95 Interval Reference 2-23

2.7 Set Theoretic Operators
f95 supports the following set theoretic operators for determining the interval hull

and intersection of two intervals.

2.7.1 Hull: X ∪ Y or (X.IH.Y)

Description: Interval hull of two intervals. The interval hull is the smallest interval

that contains all the elements of the operand intervals.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Same as X.

2.7.2 Intersection: X∩Y or (X.IX.Y)

Description: Intersection of two intervals.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Same as X.

X Y inf X Y∪() sup X Y∪(),[]≡.IH.

Y if X ∅ ,=,
X if Y ∅ , and=,
min x y(,) max x y(,)[,] , otherwise.






=

X Y z z Xandz Y∈∈ }{≡.IX.

∅ if X ∅=() or Y ∅=() or min x y(,) max x y(,)<(),

max x y(,) min x y(,)[,] , otherwise.






=

2-24 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.8 Set Relations
f95 provides the following set relations that have been extended to support intervals.

2.8.1 Disjoint: X ∩Y = ∅ or (X .DJ. Y)

Description: Test if two intervals are disjoint.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.2 Element: r ∈ Y or (R.IN. Y)

Description: Test if the number, R, is an element of the interval, Y.

Mathematical and operational definitions:

Arguments: The type of R is INTEGERor REAL, and the type of Y is INTERVAL.

Result type: Default logical scalar.

X Y.DJ. X ∅=() or Y ∅=() or

X ∅≠() and Y ∅≠() and x X∈∀ y Y :∈ x y≠∀,()()
≡

X ∅=()= or Y ∅=() or X ∅≠() and

Y ∅≠() and y x<() or x y<()()
(

)

r Y∈ y Y∈∃ : y r=()≡
Y ∅≠()= and y r≤() and r y≤()
Chapter 2 f95 Interval Reference 2-25

The following comments refer to the set relation:

■ Under widest-need expression processing, R and Y having different KTPVs has no

impact on how they are evaluated. Widest-need expression processing applies to

Y, but does not apply to the evaluation of R. After evaluation, KTPV promotion of

Y or R is done before the inclusion test is performed.

■ Under strict expression evaluation, R and Y must have the same KTPV.

■ If R is NaN (Not a Number), R .IN. Y is unconditionally false.

■ If Y is empty, R .IN. Y is unconditionally false.

2.8.3 Interior: (X .INT. Y)

Description: Test if X is in interior of Y.

The interior of a set in topological space is the union of all open subsets of the set.

For intervals, the relation X .INT. Y (X in interior of Y) means that X is a subset of Y,

and both of the following relations are false:

■ , or in Fortran: INF(Y) .IN. X
■ , or in Fortran: SUP(Y) .IN. X

Note also that, , but [empty] .INT. [empty] = true

The empty set is open and therefore is a subset of the interior of itself.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

r Y∈

inf Y() X∈
sup Y() X∈

∅ ∅∉

X Y.INT. X ∅=() or≡
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''< <∀()()

X ∅=() or X ∅≠() and Y ∅≠() and y x<() and x y<()()=
2-26 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.8.4 Proper Subset: X ⊂ Y or (X .PSB. Y)

Description: Test if X is a proper subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.5 Proper Superset: X ⊃ Y or (X .PSP. Y)

Description: See proper subset with .

2.8.6 Subset: X ⊆ Y or (X .SB. Y)

Description: Test if X is a subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same KTPV.

Result type: Default logical scalar.

2.8.7 Superset: X ⊇ Y or (X .SP. Y)

Description: See subset with .

X Y.PSB. X Y⊆() and X Y≠()≡

X ∅=() and Y ∅≠()() or

X ∅≠() and Y ∅≠() and y x<() and x y<() or

y x<() x y≤()and

=

X Y↔

X Y.SB. X ∅=() or
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''≤ ≤∀()()

≡

X ∅=() or= X ∅≠() and Y ∅≠() and y x≤() and x y≤()()

X Y↔
Chapter 2 f95 Interval Reference 2-27

2.8.8 Relational Operators

An intrinsic INTERVAL relational operator, denoted . qop. , is composed by

concatenating:

■ The required period delimiters

■ An operator prefix, q ∈ {C,P,S }, where C, P, and S stand for certainly, possibly, and

set, respectively

■ A Fortran relational operator suffix, op ∈ {LT, LE , EQ, NE, GT, GE}

In place of .SEQ. and .SNE. , .EQ. (or ==) and .NE. (or /=) defaults are accepted. To

eliminate code ambiguity, all other INTERVAL relational operators must be made

explicit by specifying a prefix.

All INTERVAL relational operators have equal precedence. Arithmetic operators have

higher precedence than relational operators.

INTERVAL relational expressions are evaluated by first evaluating the two operands,

after which the two expression values are compared. If the specified relationship

holds, the result value is true; otherwise, it is false.

When widest-need expression processing is invoked, it applies to both INTERVAL
operand expressions of INTERVAL relational operators.

Letting "nop" stand for the complement of the operator op, the certainly and possibly

operators are related as follows:

.C op. ≡ .NOT.(.P nop.)

.P op. ≡ .NOT.(.C nop.)

Note – This identity between certainly and possibly operators holds unconditionally

if op ∈ {EQ, NE}, and otherwise, only if neither operand is empty. Conversely, the

identity does not hold if op ∈ {LT, LE, GT, GE} and either operand is empty.

Assuming neither operand is empty, TABLE 2-11 contains the Fortran operational

definitions of all INTERVAL relational operators of the form:

[x, x]. qop.[y, y] .
2-28 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The first column contains the value of the prefix, and the first row contains the value

of the operator suffix. If the tabled condition holds, the result is true.

TABLE 2-11 Operational Definitions of Interval Order Relations

LT. LE. EQ. GE. GT. NE.

.S x < y
and
x < y

x ≤ y
and
x ≤ y

x = y
and
x = y

x ≥ y
and
x ≥ y

x > y
and
x > y

x ≠ y
or
x ≠ y

.C x < y x ≤ y y ≤ x
and
x ≤ y

x ≥ y x > y x > y
or
y > x

.P x < y x ≤ y x ≤ y
and
y ≤ x

x ≥ y x > y y > x
or
x > y

CODE EXAMPLE 2-7 Relational Operators

math% cat ce2-7.f95
INTERVAL :: X = [1.0, 3.0], Y = [2.0, 4.0], Z
INTEGER :: V = 4, W = 5
LOGICAL :: L1, L2, L3, L4
REAL :: R

L1 = (X == X) .AND. (Y .SEQ. Y)
L2 = X .SLT. Y

! Widest-need code
Z = W
L3 = W .CEQ. Z
L4 = X-Y .PLT. V-W
IF(L1 .AND. L2 .AND. L3 .AND. L4) PRINT *, 'Check1'

! Equivalent (for the assignment to L3 and L4) strict code
L3 = INTERVAL(W, KIND=8) .CEQ. Z
L4 = X-Y .PLT. INTERVAL(V, KIND=8)-INTERVAL(W, KIND=8)
IF(L3 .AND. L4) PRINT *, 'Check2'
END
math% f95 -xia ce2-7.f95
math% a.out
 Check1
 Check2
Chapter 2 f95 Interval Reference 2-29

CODE EXAMPLE 2-7 notes:

■ L1 is true because an interval is set-equal to itself and the default .EQ. (or ==)

operator is the same as .SEQ. .

■ L2 is true because (INF(X).LT.INF(Y)).AND.(SUP(X).LT.SUP(Y)) is true.

■ L3 is true because widest need promotes Wto the interval [5,5] and two intervals

are certainly equal if and only if all four of their endpoints are equal.

■ L4 is true because evaluating the interval expressions X–Y and V–Wyields the

intervals [-3,1] and [-1,-1] respectively. Therefore the expression (INF(X-Y)
.LT. SUP(V-W)) is true.

2.8.8.1 Set Relational Operators

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points , the mathematical definition of the corresponding

set-relation, .Sop., between two non-empty intervals is:

For the relation between two points , the corresponding set relation,

.SNE. , between two non-empty intervals X and Y is:

Empty intervals are explicitly considered in each of the following relations. In each

case:

Arguments: X and Y must be intervals with the same KTPV.

Result type: default logical scalar.

2.8.8.2 Certainly Relational Operators

The certainly relational operators are true if the underlying relation is true for every

element of the operand intervals. For example, [a,b] .CLT. [c,d] is true if x < y for

all and . This is equivalent to b < c.

op >,≥,=,≤,<{ }∈

x and y
X andY

X Y.S op. x X y Y∈∃,∈ : x op y∀() and y Y x X:∈∃,∈ x op y∀().≡

≠ x andy

X Y.SNE. x X∈∃ y Y :∈ x y≠∀,() or y Y∈∃ x X :∈ x y≠∀,().≡

x a b,[]∈ y c d[,]∈
2-30 Fortran 95 Interval Arithmetic Programming Reference • May 2002

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points x and y, the corresponding certainly-true relation .Cop. between

two intervals, X and Y, is

.

With the exception of the anti-affirmative certainly-not-equal relation, if either

operand of a certainly relation is empty, the result is false. The one exception is the

certainly-not-equal relation, .CNE. , which is true in this case.

For each of the certainly relational operators:

Arguments: X and Y must be intervals with the same KTPV.

Result type: default logical scalar.

2.8.8.3 Possibly Relational Operators

The possibly relational operators are true if any element of the operand intervals

satisfy the underlying relation. For example, [a,b] .PLT. [c,d] is true if there

exists an and a such that x < y. This is equivalent to a < d.

For an affirmative order relation with

op ∈ {LT, LE, EQ, GE, GT} and

,

between two points x and y, the corresponding possibly-true relation .Pop. between

two intervals X and Y is defined as follows:

.

If the empty interval is an operand of a possibly relation then the result is false. The

one exception is the anti-affirmative possibly-not-equal relation, .PNE. , which is true
in this case.

For each of the possibly relational operators:

Arguments: X and Y must be INTERVALS with the same KTPV.

Result type: default logical scalar.

op >,≥,=,≤,<{ }∈

X Y.C op. X ∅≠() and Y ∅≠() and x X y Y∈∀,∈ : x yop∀()≡

x a b,[]∈ y c d[,]∈

op >,≥,=,≤,<{ }∈

X Y.P op. X ∅≠() and Y ∅≠() and x X y Y∈∃,∈ : x yop∃()≡
Chapter 2 f95 Interval Reference 2-31

2.9 Extending Intrinsic INTERVAL
Operators
If the operator specified in the INTERFACEstatement of a user provided operator

interface block is an intrinsic INTERVAL operator (for example .IH.), an extension to

the intrinsic INTERVAL operator is created.

A user-provided operator function that extends an intrinsic INTERVAL operator may

not extend the operator for those data types of its operands for which this operator

is predefined.

For the combinations of arguments listed below, intrinsic interval operators +, -, *, /,

.IH ., .IX ., and ** are predefined and cannot be extended by users.

(any INTERVAL type, any INTERVAL type)

(any INTERVAL type, any REALor INTEGERtype)

(any REALor INTEGERtype, any INTERVAL type)

The interval operator ** with the integer exponent is predefined and cannot be

extended by users for the following combination of arguments:

(any INTERVAL type, any INTEGERtype)

Except for the operator .IN . interval relational operators are predefined for the

combinations of arguments listed below and cannot be extended by users.

(any INTERVAL type, any INTERVAL type)

(any INTERVAL type, any REALor INTEGERtype)

(any REALor INTEGERtype, any INTERVAL type)

The interval relational operator .IN . is predefined and cannot be extended by users

for the following combination of arguments:

(any REALor INTEGERtype, any INTERVAL type)
2-32 Fortran 95 Interval Arithmetic Programming Reference • May 2002

In CODE EXAMPLE 2-8, both S1 and S2 interfaces are correct, because .IH. is not

predefined for (LOGICAL, INTERVAL(16)) operands.

CODE EXAMPLE 2-8 Interval .IH. Operator Extension

math% cat ce2-8.f95
MODULE M
INTERFACE OPERATOR (.IH.)
 MODULE PROCEDURE S1
 MODULE PROCEDURE S2
END INTERFACE
CONTAINS
REAL FUNCTION S1(L, Y)
LOGICAL, INTENT(IN) :: L
INTERVAL(16), INTENT(IN) :: Y
 S1 = 1.0
END FUNCTION S1

INTERVAL FUNCTION S2(R1, R2)
REAL, INTENT(IN) :: R1
REAL, INTENT(IN) :: R2
 S2 = [2.0]
END FUNCTION S2
END MODULE M

PROGRAM TEST
USE M
INTERVAL(16) :: X = [1, 2]
LOGICAL :: L = .TRUE.
REAL :: R = 0.1
PRINT *, ’L .IH. X = ’, L .IH. X
PRINT *, ’R1 .IH. R2 =’, R1 .IH. R2
END PROGRAM TEST

math% f95 -xia ce2-8.f95
math% a.out
 L .IH. X = 1.0
 R1 .IH. R2 = [2.0,2.0]
Chapter 2 f95 Interval Reference 2-33

The extension of the + operator in CODE EXAMPLE 2-9 is incorrect because the attempt

is made to change the definition of the intrinsic INTERVAL (+) operator, which is

predefined for (INTERVAL, INTERVAL) type operands.

CODE EXAMPLE 2-9 User-Defined Interface That Conflicts With the Use of the Intrinsic
INTERVAL (+) Operator

math% cat ce2-9.f95
MODULE M1
INTERFACE OPERATOR (+)
 MODULE PROCEDURE S4
END INTERFACE
CONTAINS
REAL FUNCTION S4(X, Y)
INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
 S4 = 4.0
END FUNCTION S4
END MODULE M1

PROGRAM TEST
USE M1
INTERVAL :: X = [1.0], Y = [2.0]
PRINT *, 'X + Y = ', X + Y
END PROGRAM TEST

math% f95 -xia ce2-9.f95

MODULE M1
 ^
"ce2-9.f95", Line = 1, Column = 8: ERROR: The compiler has detected
errors in module "M1". No module information file will be created for
this module.

 MODULE PROCEDURE S4
 ^
"ce2-9.f95", Line = 3, Column = 22: ERROR: This specific interface "S4"
conflicts with the intrinsic use of "+".

USE M1
 ^
"ce2-9.f95", Line = 14, Column = 5: ERROR: Module "M1" has compile
errors, therefore declarations obtained from the module via the USE
statement may be incomplete.
f95comp: 17 SOURCE LINES
f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
2-34 Fortran 95 Interval Arithmetic Programming Reference • May 2002

In CODE EXAMPLE 2-10, the following S1 interface is incorrect, because .IH. is

predefined for (INTERVAL(4) , INTERVAL(8)) operands.

CODE EXAMPLE 2-10 User-Defined Interface Conflicts With Intrinsic Use of .IH.

math% cat ce2-10.f95
MODULE M
INTERFACE OPERATOR (.IH.)
 MODULE PROCEDURE S1
END INTERFACE
CONTAINS
INTERVAL FUNCTION S1(X, Y)
INTERVAL(4), INTENT(IN) :: X
INTERVAL(8), INTENT(IN) :: Y
 S1 = [1.0]
END FUNCTION S1
END MODULE M

PROGRAM TEST
USE M
INTERVAL(4) :: X = [1.0]
INTERVAL(8) :: Y = [2.0]
PRINT *, ’X .IH. Y = ’, X .IH. Y
END PROGRAM TEST
math% f95 -xia ce2-10.f95

MODULE M
 ^
"ce2-10.f95", Line = 1, Column = 8: ERROR: The compiler has detected
errors in module "M". No module information file will be created for
this module.

 MODULE PROCEDURE S1
 ^
"ce2-10.f95", Line = 3, Column = 22: ERROR: This specific interface "S1"
conflicts with the intrinsic use of "ih".
USE M
 ^
"ce2-10.f95", Line = 14, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the USE
statement may be incomplete.

f95comp: 18 SOURCE LINES
f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
Chapter 2 f95 Interval Reference 2-35

The number of arguments of an operator function that extends an intrinsic INTERVAL
operator must agree with the number of operands needed for the intrinsic operator,

as shown in CODE EXAMPLE 2-11.

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined
INTERVAL Operator

math% cat ce2-11.f95
MODULE M
INTERFACE OPERATOR (.IH.)
 MODULE PROCEDURE S1
END INTERFACE
CONTAINS
REAL FUNCTION S1(R)
REAL, INTENT(IN) :: R
 S1 = 1.0
END FUNCTION S1
END MODULE M

PROGRAM TEST
USE M
REAL :: R = 0.1
PRINT *, ’ .IH. R = ’, .IH. R
END PROGRAM TEST
math% f95 -xia ce2-11.f95

MODULE M
 ^
"ce2-11.f95", Line = 1, Column = 8: ERROR: The compiler has detected
errors in module "M". No module information file will be created for
this module.
 MODULE PROCEDURE S1
 ^
"ce2-11.f95", Line = 3, Column = 22: ERROR: The specific interface "S1"
must have exactly two dummy arguments when inside a defined binary
operator interface block.

USE M
 ^
"ce2-11.f95", Line = 13, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the USE
statement may be incomplete.
2-36 Fortran 95 Interval Arithmetic Programming Reference • May 2002

A binary intrinsic INTERVAL operator cannot be extended with unary operator

function having an INTERVAL argument.

In CODE EXAMPLE 2-12, the S1 interface is incorrect, because "+" is predefined for the

INTERVAL operand.

PRINT *, ’ .IH. R = ’, .IH. R
 ^
"ce2-11.f95", Line = 15, Column = 24: ERROR: Unexpected syntax:
"operand" was expected but found ".".

f95comp: 16 SOURCE LINES
f95comp: 4 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary
"+"

math% cat ce2-12.f95
MODULE M
INTERFACE OPERATOR (+)
 MODULE PROCEDURE S1
END INTERFACE
CONTAINS
REAL FUNCTION S1(X)
 INTERVAL, INTENT(IN) :: X
 S1 = 1.0
END FUNCTION S1
END MODULE M
PROGRAM TEST
USE M
INTERVAL :: X = 0.1
PRINT *, ' + X = ', + X
END PROGRAM TEST

math% f95 -xia ce2-12.f95

MODULE M
 ^
"ce2-12.f95", Line = 1, Column = 8: ERROR: The compiler has detected
errors in module "M". No module information file will be created for
this module.

CODE EXAMPLE 2-11 Incorrect Change in the Number of Arguments in a Predefined
INTERVAL Operator (Continued)
Chapter 2 f95 Interval Reference 2-37

In a generic interface block, if the generic name specified in the INTERFACEstatement

is the name of an intrinsic INTERVAL subprogram, the specific user-defined

subprograms extend the predefined meaning of the intrinsic subprogram.

All references to subprograms having the same generic name must be unambiguous.

The intrinsic subprogram is treated as a collection of specific intrinsic subprograms,

the interface definitions of which are also specified in the generic interface block.

 MODULE PROCEDURE S1
 ^
"ce2-12.f95", Line = 3, Column = 22: ERROR: This specific interface "S1"
conflicts with the intrinsic use of "+".

USE M
 ^
"ce2-12.f95", Line = 13, Column = 5: ERROR: Module "M" has compile
errors, therefore declarations obtained from the module via the USE
statement may be incomplete.

f95comp: 16 SOURCE LINES
f95comp: 3 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-13 Correct Extension of Intrinsic INTERVAL Function WID

math% cat ce2-13.f95
MODULE M
INTERFACE WID
 MODULE PROCEDURE S1
 MODULE PROCEDURE S2
END INTERFACE
CONTAINS
REAL FUNCTION S1(X)
REAL, INTENT(IN) :: X
 S1 = 1.0
END FUNCTION S1
INTERVAL FUNCTION S2(X, Y)
INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
 S2 = [2.0]
END FUNCTION S2
END MODULE M

CODE EXAMPLE 2-12 User-Defined Interface That Conflicts With the Intrinsic Use of Unary
"+" (Continued)
2-38 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 2-14 is correct.

PROGRAM TEST
USE M
INTERVAL :: X = [1, 2], Y = [3, 4]
REAL :: R = 0.1
PRINT *, WID(R)
PRINT *, WID(X, Y)

END PROGRAM TEST
math% f95 -xia ce2-13.f95
math% a.out
 1.0
 [2.0,2.0]

CODE EXAMPLE 2-14 Correct Extension of the Intrinsic INTERVAL Function ABS

math% cat ce2-14.f95
MODULE M
INTERFACE ABS
 MODULE PROCEDURE S1
END INTERFACE
CONTAINS
INTERVAL FUNCTION S1(X)
INTERVAL, INTENT(IN) :: X
 S1 = [-1.0]
END FUNCTION S1
END MODULE M
PROGRAM TEST
USE M
INTERVAL :: X = [1, 2]
PRINT *, ABS(X)

END PROGRAM TEST
math% f95 -xia ce2-14.f95
math% a.out
 [-1.0,-1.0]

CODE EXAMPLE 2-13 Correct Extension of Intrinsic INTERVAL Function WID (Continued)
Chapter 2 f95 Interval Reference 2-39

CODE EXAMPLE 2-15 is correct.

2.9.1 Extended Operators With Widest-Need

Evaluation

CODE EXAMPLE 2-16 illustrates how widest-need expression processing occurs when

calling predefined versus extended versions of an intrinsic INTERVAL operator.

CODE EXAMPLE 2-15 Correct Extension of the Intrinsic INTERVAL Function MIN

math% cat ce2-15.f95
MODULE M
INTERFACE MIN
 MODULE PROCEDURE S1
END INTERFACE
CONTAINS
INTERVAL FUNCTION S1(X, Y)
 INTERVAL(4), INTENT(IN) :: X
 INTERVAL(8), INTENT(IN) :: Y
 S1 = [-1.0]
END FUNCTION S1
END MODULE M

PROGRAM TEST
USE M
INTERVAL(4) :: X = [1, 2]
INTERVAL(8) :: Y = [3, 4]
REAL :: R = 0.1
PRINT *, MIN(X, Y)
END PROGRAM TEST
math% f95 -xia ce2-15.f95
math% a.out
 [-1.0,-1.0]
2-40 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 2-16 Widest-Need Expression Processing When Calling a Predefined
Version of an Intrinsic INTERVAL Operator

math% cat ce2-16.f95
MODULE M
INTERFACE OPERATOR (.IH.)
 MODULE PROCEDURE S4
END INTERFACE
CONTAINS
INTERVAL FUNCTION S4(X, Y)
 COMPLEX, INTENT(IN) :: X
 COMPLEX, INTENT(IN) :: Y
 S4 = [0]
END FUNCTION S4
END MODULE M
USE M
INTERVAL :: X = [1.0]
REAL :: R = 1.0
COMPLEX :: C = (1.0, 0.0)
X = (R-0.1).IH.(R-0.2) ! intrinsic interval .IH. is invoked,
 ! widest-need on both arguments

X = X .IH. (R+R) ! intrinsic interval .IH. is invoked,
 ! widest-need on both arguments

X = X .IH. (R+R+X) ! intrinsic interval .IH. is invoked,
 ! widest-need on the second argument

X = (R+R) .IH. (R+R+X) ! intrinsic interval .IH. is invoked,
 ! widest-need on both arguments

X = C .IH. (C+R) ! s4 is invoked, no widest-need
END

math% f95 -xia ce2-16.f95
math% a.out
Chapter 2 f95 Interval Reference 2-41

CODE EXAMPLE 2-17 illustrates how widest-need expression processing occurs when

calling a user-defined operator.

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a
User-Defined Operator

math% cat ce2-17.f95
MODULE M
INTERFACE OPERATOR (.AA.)
 MODULE PROCEDURE S1
 MODULE PROCEDURE S2
END INTERFACE
CONTAINS
INTERVAL FUNCTION S1(X, Y)
INTERVAL, INTENT(IN) :: X
REAL, INTENT(IN) :: Y
 PRINT *, ’S1 is invoked.’
 S1 = [1.0]
END FUNCTION S1
INTERVAL FUNCTION S2(X, Y)
INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
 PRINT *, ’S2 is invoked.’
 S2 = [2.0]
END FUNCTION S2
END MODULE M
USE M
INTERVAL :: X = [1.0]
REAL :: R = 1.0
X = X .AA. R+R ! S1 is invoked
X = X .AA. X ! S2 is invoked
END

math% f95 -xia ce2-17.f95

 MODULE PROCEDURE S1
 ^
"ce2-17.f95", Line = 3, Column = 22: WARNING: Widest-need evaluation
does not apply to arguments of user-defined operation.

USE M
 ^
"ce2-17.f95", Line = 20, Column = 5: WARNING: Widest-need evaluation
does not apply to arguments of user-defined operation.
f95comp: 26 SOURCE LINES
2-42 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.9.2 INTERVAL (X [,Y, KIND])

Description: Convert to INTERVAL type.

Class: Elemental function.

Arguments:

X is of type INTEGER, REAL, or INTERVAL.

Y (optional) is of type INTEGERor REAL. If X is of type INTERVAL, Y must not be

present.

KIND (optional) is a scalar INTEGERinitialization expression.

Result characteristics: INTERVAL

If KIND is present, its value is used to determine the result’s KTPV; otherwise, the

result’s KTPV is the same as a default interval.

Containment:

Containment is guaranteed if X is an interval. For example, given

INTERVAL(16):: X ,

the result of INTERVAL(X, KIND=4) contains the INTERVAL X.

However, given REAL(8) X , Y, the result of INTERVAL(X,Y,KIND=4) does not

necessarily contain the internal interval X .IH. Y. The reason is that X and Y can be

REALexpressions, the values of which cannot be guaranteed.

The INTERVAL constructor does not necessarily contain the value of a literal

INTERVALconstant with the same endpoints. For example, INTERVAL(1.1,1.3) does

not necessarily contain the external value ev([1.1 , 1.3]) = [1.1, 1.3]. The reason is

that the internal values of REALconstants are approximations with unknown

accuracy.

To construct an interval that always contains two REALvalues, use the interval hull

operator .IH. , as shown in CODE EXAMPLE 2-18.

f95comp: 0 ERRORS, 2 WARNINGS, 0 OTHER MESSAGES, 0 ANSI
math% a.out
 S1 is invoked.
 S2 is invoked.

CODE EXAMPLE 2-17 Widest-Need Expression Processing When Invoking a
User-Defined Operator (Continued)
Chapter 2 f95 Interval Reference 2-43

Result value: The interval result value is a valid interval.

If Y is absent and X is an interval, then INTERVAL(X [,KIND]) is an interval

containing X and INTERVAL(X [,KIND]) is an interval with left and right endpoints

[XL,XU] , where

XL = REAL(INF(X) [,KIND]) rounded down, so that XL .LE. INF(X)

and

XU = REAL(SUP(X)[,KIND]) rounded up, so that XU.GE.SUP(X) .

If both X and Y are present (and are therefore not intervals), then INTERVAL(X,Y
[,KIND]) is an interval with left and right endpoints equal to REAL(X [,KIND]) and

REAL(Y [,KIND]) respectively.

Note – In this case, rounding direction is not specified. Therefore, containment is

not provided.

[-inf,inf] is returned in two cases:

■ If both X and Y are present and Y is less than X.

■ If either X or Y or both do not represent a mathematical integer or real number (for

example, when one or both REALarguments is a NaN).

2.9.2.1 Limiting the Scope of Widest-Need

The intrinsic INTERVAL constructor function can be used in two ways:

■ To perform KTPV conversions of INTERVAL variables or expressions

■ To insulate a non-INTERVAL expression from mixed-mode INTERVAL expression

evaluation.

Given the non-INTERVAL (REALor INTEGER) expression, EXP, the code

is the same as

INTERVAL Y
REAL R
R = EXP
Y = R

INTERVAL Y
Y = INTERVAL(EXP)
2-44 Fortran 95 Interval Arithmetic Programming Reference • May 2002

This is not the same as

The later will evaluate EXP as an interval expression. In the first two code

fragments, the expression EXP is evaluated as a non-INTERVAL expression, and the

result is used to construct a degenerate interval.

With two arguments, EXP1 and EXP2, INTERVAL(EXP1, EXP2) insulates both

expressions from widest-need expression processing and constructs an interval with

endpoints equal to the result of the non-INTERVAL evaluation of the expressions.

Including the KIND parameter makes it possible to control the KTPV of the result.

This is most often needed under -strict expression processing where explicit KTPV

conversions are necessary.

The intrinsic INTERVAL function with non-INTERVALarguments should be used with

care. Whenever interval containment is desired, use the interval hull operator .IH. ,

as shown in CODE EXAMPLE 2-18.

The INTERVAL constructor acts as a boundary between INTERVAL and REALor

INTEGERexpressions. On the non-INTERVAL side of this boundary, accuracy (and

therefore containment) guarantees cannot be enforced.

INTERVAL Y
Y = EXP

CODE EXAMPLE 2-18 Containment Using the .IH. Operator

math% cat ce2-18.f95
REAL(16) :: A, B
INTERVAL :: X1, X2
PRINT *, "Press Control/D to terminate!"
WRITE(*, 1, ADVANCE='NO')
READ(*, *, IOSTAT=IOS) A, B
DO WHILE (IOS >= 0)
 PRINT *, " FOR A =", A, ", AND B =", B

 ! Widest need code
 X1 = A .IH. B
 ! Equivalent strict code

X2 = INTERVAL(INTERVAL(A, KIND=16) .IH. INTERVAL(B, KIND=16))
 IF (X1 .SEQ. X2) PRINT *, 'Check.'
 PRINT *, 'X1 = ', X1
 WRITE(*, 1, ADVANCE='NO')
 READ(*, *, IOSTAT=IOS) A, B
END DO
Chapter 2 f95 Interval Reference 2-45

See Section 2.9.2, “INTERVAL (X [,Y, KIND])” on page 2-43 for details on the use of

the intrinsic INTERVAL constructor function.

2.9.2.2 KTPV-Specific Names of Intrinsic INTERVAL Constructor
Functions

As shown in TABLE 2-12, the intrinsic INTERVAL constructor function can be called

using a KTPV-specific form that does not use the optional KIND parameter.

1 FORMAT(" A, B = ")
END
math% f95 -xia ce2-18.f95
math% a.out
Press Control/D to terminate!
A, B = 1.3 1.7
FOR A = 1.3 , AND B = 1.7
Check.
X1 = [1.2999999999999998,1.7000000000000002]
A, B = 0.0 0.2
FOR A = 0.0E+0 , AND B = 0.2
Check.
X1 = [0.0E+0,0.20000000000000002]
A, B = ^d

TABLE 2-12 KTPV Specific Forms of the Intrinsic INTERVAL Constructor Function

KTPV -Specific Name Result

DINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 8) or INTERVAL(X[,Y])

SINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 4)

QINTERVAL(X[,Y]) INTERVAL(X[,Y], KIND = 16)

CODE EXAMPLE 2-18 Containment Using the .IH. Operator (Continued)
2-46 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.9.2.3 Intrinsic INTERVAL Constructor Function Conversion
Examples

The three examples in this section illustrate how to use the intrinsic INTERVAL
constructor to perform conversions from REAL to INTERVAL type data items.

CODE EXAMPLE 2-19 shows that REALexpression arguments of the INTERVAL
constructor are evaluated using REALarithmetic and are, therefore, insulated from

widest-need expression evaluations.

CODE EXAMPLE 2-19 notes:

■ Lines 7 and 10: Interval X is assigned a degenerate interval with both endpoints

equal to the internal representation of the real constant 0.1

■ Line 15: Interval DX is assigned an interval with left and right endpoints equal to

the result of REALexpressions R+S and T+R8 respectively

■ Line 17: Interval Y is converted to a containing KTPV-8 interval.

CODE EXAMPLE 2-19 INTERVAL Conversion

math% cat ce2-19.f95
REAL :: R = 0.1, S = 0.2, T = 0.3
REAL(8) :: R8 = 0.1D0, T1, T2
INTERVAL(4) :: X, Y
INTERVAL(8) :: DX, DY
R = 0.1
Y = INTERVAL(R, R, KIND=4)
X = INTERVAL(0.1, KIND=4) ! Line 7
IF (X == Y) PRINT *, ’Check1’
X = INTERVAL(0.1, 0.1, KIND=4) ! Line 10
IF (X == Y) PRINT *, ’Check2’
T1 = R+S
T2 = T+R8
DY = INTERVAL(T1, T2)
DX = INTERVAL(R+S, T+R8) ! Line 15
IF (DX == DY) PRINT *, ’Check3’
DX = INTERVAL(Y, KIND=8) ! Line 17
IF (Y .CEQ. INTERVAL(0.1, 0.1, KIND=8)) PRINT *, ’Check4’
END

math% f95 -xia ce2-19.f95
math% a.out
 Check1
 Check2
 Check3
 Check4
Chapter 2 f95 Interval Reference 2-47

CODE EXAMPLE 2-20 shows how the INTERVAL constructor can be used to construct

the smallest possible interval, Y, such that the endpoints of Y are not elements of a

given interval, X.

Given an interval X, a sharp interval Y satisfying the condition X .INT. Y is

constructed. For information on the interior set relation, Section 2.8.3, “Interior:

(X .INT. Y) ” on page 2-26.

CODE EXAMPLE 2-21 illustrates when the INTERVAL constructor returns the interval [-

INF , INF] and [MAX_FLOAT, INF].

CODE EXAMPLE 2-20 Create a Narrow Interval Containing a Given Real Number

math% cat ce2-20.f95
INTERVAL :: X = [10.E-10,11.E+10]
INTERVAL :: Y
Y = INTERVAL(-TINY(INF(X)), TINY(INF(X))) + X
PRINT *, X .INT. Y
END
%math f95 -xia ce2-20
%math a.out
 T

CODE EXAMPLE 2-21 INTERVAL(NaN)

math% cat ce2-21.f95
REAL :: R = 0., S = 0.
T = R/S ! Line 2
PRINT *, T
PRINT *, INTERVAL(T, S) ! Line 4
PRINT *, INTERVAL(T, T) ! Line 5
PRINT *, INTERVAL(2., 1.) ! Line 6
PRINT *, INTERVAL(1./R) ! Line 7
END

math% f95 -xia ce2-21.f95
math% a.out
 NaN
 [-Inf,Inf]
 [-Inf,Inf]
 [-Inf,Inf]
 [1.7976931348623157E+308,Inf]
2-48 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 2-21 notes:

■ Line 2: Variable T is assigned a NaNvalue.

■ Lines 4 and 5: One of the arguments of the INTERVAL constructor is a NaNand the

result is the interval [-INF, INF] .

■ Line 6: The interval [-INF, INF] is constructed instead of an invalid interval

[2,1].

■ Line 7: The interval [MAX_FLOAT, INF] is constructed. This interval contains the

interval [INF , INF]. See the supplementary paper [8] cited in Section 2.11,

“References” on page 2-91, for a discussion of the chosen intervals to internally

represent.

2.9.3 Specific Names for Intrinsic Generic INTERVAL
Functions

The f95 specific names for intrinsic generic INTERVAL functions end with the generic

name of the intrinsic and start with V, followed by S, D, or Q for arguments of type

INTERVAL(4) , INTERVAL(8) , and INTERVAL(16) , respectively.

In f95, only the following specific intrinsic functions are supported for the

INTERVAL(16) data type: VQABS, VQAINT, VQANINT, VQINF, VQSUP, VQMID, VQMAG,
VQMIG, and VQISEMPTY.

To avoid name space clashes in non-interval programs, the specific names are made

available only by the command line options:

■ -xinterval
■ -xinterval=strict or -xinterval=widestneed
■ macro -xia, -xia=strict or -xia=widestneed

See Section 2.3.3, “Interval Command-Line Options” on page 2-12 for more

information.

All the supported intrinsic functions have specific names. For example, TABLE 2-13

lists the names for the INTERVAL version of the ABS intrinsic.

TABLE 2-13 Specific Names for the Intrinsic INTERVAL ABSFunction

Specific Name Argument Result

VSABS INTERVAL(4) INTERVAL(4)

VDABS INTERVAL(8) INTERVAL(8)

VQABS INTERVAL(16) INTERVAL(16)
Chapter 2 f95 Interval Reference 2-49

The remaining specific intrinsic functions are listed in Section 2.10.4.5, “Intrinsic

Functions” on page 2-85.

2.10 INTERVAL Statements
This section describes the INTERVAL statements recognized by f95 . The syntax and

description of each statement is given, along with possible restrictions and examples.

2.10.1 Type Declaration

An INTERVALstatement is used to declare INTERVALnamed constants, variables, and

function results. INTERVAL is an intrinsic numeric type declaration statement with

the same syntax and semantics as standard numeric type declaration statements. The

same specifications are available for use with the INTERVAL statement as exist for use

in other numeric type declarations.

Description: The declaration can be INTERVAL, INTERVAL(4) , INTERVAL(8) , or

INTERVAL(16) .

2.10.1.1 INTERVAL

For a declaration such as

INTERVAL :: W

the variable, W, has the default INTERVAL KTPV of 8 and occupies 16 bytes of

contiguous memory. In Sun Forte Developer Fortran 95, the default INTERVAL KTPV

is not altered by the command-line options -xtypemap or -r8const .

INTERVAL cannot be used as a derived type name. For example the code in

CODE EXAMPLE 2-22 is illegal.

CODE EXAMPLE 2-22 Illegal Derived Type: INTERVAL

math% cat ce2-22.f95
TYPE INTERVAL
 REAL :: INF, SUP
END TYPE INTERVAL

END
2-50 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.10.1.2 INTERVAL(n) , for n ∈{4, 8, 16}

For a declaration such as

INTERVAL(n) :: W

the variable, W, has KTPV = n and occupies 2n bytes of contiguous memory.

CODE EXAMPLE 2-23 contains INTERVAL variable declarations with different KTPVs.

Widest-need and strict value alignment is also shown.

math% f95 -xia ce2-22.f95

TYPE INTERVAL
 ^
"ce2-22.f95", Line = 1, Column = 6: ERROR: A derived type type-name
must not
be the same as the name of the intrinsic type INTERVAL.

f95comp: 5 SOURCE LINES
f95comp: 1 ERRORS, 0 WARNINGS, 0 OTHER MESSAGES, 0 ANSI

CODE EXAMPLE 2-23 Declaring Intervals With Different KTPVs

math% cat ce2-23.f95
INTERVAL(4) :: X1, X2
INTERVAL(8) :: Y1, Y2
INTERVAL(16) :: Z1, Z2
REAL(8) :: D = 1.2345

! Widest-need code
 X1 = D
 Y1 = D
 Z1 = D

! Equivalent strict code
X2 = INTERVAL(INTERVAL(D, KIND=8), KIND=4)
Y2 = INTERVAL(D, KIND=8)
Z2 = INTERVAL(D, KIND=16)

CODE EXAMPLE 2-22 Illegal Derived Type: INTERVAL (Continued)
Chapter 2 f95 Interval Reference 2-51

CODE EXAMPLE 2-24 illustrates how to declare and initialize INTERVAL variables. See

Section 2.1.2, “INTERVAL Constants” on page 2-2 regarding the different ways to

represent INTERVAL constants.

IF (X1 == X2) PRINT *, ’Check1’
IF (Y1 == Y2) PRINT *, ’Check2’
IF (Z1 == Z2) PRINT *, ’Check3’
END
math% f95 -xia ce2-23.f95
math% a.out
 Check1
 Check2
 Check3

CODE EXAMPLE 2-24 Declaring and Initializing INTERVAL Variables

math% cat ce2-24.f95
INTERVAL :: U = [1, 9.1_8], V = [4.1]

! Widest-need code
INTERVAL :: W1 = 0.1_16

! Equivalent strict code
INTERVAL :: W2 = [0.1_16]

PRINT *, U, V
IF (W1 .SEQ. W2) PRINT *, ’Check’
END

math% f95 -xia ce2-24.f95
math% a.out
[1.0,9.1000000000000015] [4.0999999999999996,4.1000000000000006]
 Check

CODE EXAMPLE 2-23 Declaring Intervals With Different KTPVs (Continued)
2-52 Fortran 95 Interval Arithmetic Programming Reference • May 2002

In any initializing declaration statement, if the type of the data expression does not

match the type of the symbolic name, type conversion is performed.

2.10.1.3 DATAStatements

Syntax

The syntax for DATAstatements containing INTERVAL variables is the same as for

other numeric data types except that INTERVAL variables are initialized using

INTERVAL constants.

2.10.1.4 EQUIVALENCEStatements

Any INTERVAL variables or arrays may appear in an EQUIVALENCEstatement with

the following restriction: If an equivalence set contains an INTERVAL variable or

array, all of the objects in the equivalence set must have the same type, as shown in

CODE EXAMPLE 1-18. This is a standard, not interval-specific, Fortran restriction.

CODE EXAMPLE 2-25 Declaring INTERVAL Arrays

math% cat ce2-25.f95
INTERVAL(4) :: R(5), S(5)
INTERVAL :: U(5), V(5)
INTERVAL(16) :: X(5), Y(5)
END
math% f95 -xia ce2-25.f95
math% a.out

CODE EXAMPLE 2-26 DATAStatement Containing INTERVAL Variables

math% cat ce2-26.f95
INTERVAL X
DATA X/[1,2]/
END

math% f95 -xia ce2-26.f95
math% a.out
Chapter 2 f95 Interval Reference 2-53

2.10.1.5 FORMATStatements

Syntax

The repeatable edit descriptors for intervals are:

Fw.d, VFw.d, Dw.d, VDw.d, Dw.dEe, VDw.dEe, Yw.d, and Yw.dEe

where

D ∈ {E, EN, ES, G }

w and e are nonzero, unsigned integer constants

d is an unsigned integer constant.

See Section 2.10.2, “Input and Output” on page 2-61 for the specifications of how

edit descriptors process INTERVAL data. For the behavior of standard edit

descriptors with non-INTERVAL data, see the Fortran Reference Manual.

All standard Fortran edit descriptors accept intervals. The prefix V can be added to

the standard E, F, and G edit descriptors for interval-only versions.

As shown in CODE EXAMPLE 2-27, no modifications to nonrepeatable edit descriptors

are required when reading or writing INTERVAL data.

Description

Repeatable Edit Descriptors

The repeatable edit descriptors E, F, EN, ES, G, VE, VEN, VES, VF, VG, and Y
specify how INTERVAL data are edited.

CODE EXAMPLE 2-27 Nonrepeatable Edit Descriptor Example

math% cat ce2-27.f95
INTERVAL :: X = [-1.3, 1.3]
WRITE(*, ’(SP, VF20.5)’) X
WRITE(*, ’(SS, VF20.5)’) X
END
math% f95 -xia ce2-27.f95
math% a.out
 [-1.30001,+1.30001]
 [-1.30001, 1.30001]
2-54 Fortran 95 Interval Arithmetic Programming Reference • May 2002

CODE EXAMPLE 2-28 contains examples of INTERVAL-specific edit descriptors.

See Section 2.10.2, “Input and Output” on page 2-61 for additional examples.

2.10.1.6 FUNCTION(External)

As shown in CODE EXAMPLE 2-29, there is no difference between an interval and a

non-interval external function, except for the use of INTERVAL types (INTERVAL,

INTERVAL(4) , INTERVAL(8) , or INTERVAL(16)) in the function’s and argument’s

definitions.

CODE EXAMPLE 2-28 Format Statements With INTERVAL-Specific Edit Descriptors

math% cat ce2-28.f95

 10 FORMAT(VE22.4E4)
 20 FORMAT(VEN22.4)
 30 FORMAT(VES25.5)
 40 FORMAT(VF25.5)
 50 FORMAT(VG25.5)
 60 FORMAT(VG22.4E4)
 70 FORMAT(Y25.5)

 END

math% f95 -xia ce2-28.f95
math% a.out

CODE EXAMPLE 2-29 Default Interval Function

math% cat ce2-29.f95
PROGRAM ce2_29
INTERVAL :: X, Y
EXTERNAL SQR
INTERVAL :: SQR

Y = [4.0]
X = SQR(Y)
print *, "X = ", X
print *, "KIND(X) =", KIND(X)
END
Chapter 2 f95 Interval Reference 2-55

The default INTERVAL in line 1 can be made explicit, as shown in

CODE EXAMPLE 2-30.

INTERVAL FUNCTION SQR (A) !Line 1
INTERVAL :: A
SQR = A**2
RETURN
END

math% f95 -xia ce2-29.f95
math% a.out
 X = [16.0,16.0]
 KIND(X) = 8

CODE EXAMPLE 2-30 Explicit INTERVAL(16) Function Declaration

math% cat ce2-30.f95
PROGRAM ce2_30
INTERVAL(16) :: X, Y
EXTERNAL SQR
INTERVAL(16) :: SQR

Y = [4.0]
X = SQR(Y)
print *, "X = ", X
print *, "KIND(X) =", KIND(X)
END

INTERVAL(16) FUNCTION SQR (A) !Line 1
INTERVAL(16) :: A
SQR = A**2
RETURN
END
math% f95 -xia ce2-30.f95
math% a.out
 X = [16.0,16.0]
 KIND(X) = 16

CODE EXAMPLE 2-29 Default Interval Function (Continued)
2-56 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.10.1.7 IMPLICIT Attribute

Use the IMPLICIT attribute to specify the default type of interval names.

2.10.1.8 INTRINSIC Statement

Use the INTRINSIC statement to declare intrinsic functions, so they can be passed as

actual arguments.

Note – Specific names of generic functions must be used in the INTRINSIC
statement and passed as actual arguments. See Section 2.9.3, “Specific Names for

Intrinsic Generic INTERVAL Functions” on page 2-49 and Section 2.10.4.5, “Intrinsic

Functions” on page 2-85.

Because they are generic, the following intrinsic INTERVAL functions cannot be

passed as actual arguments:

NDIGITS, INTERVAL

2.10.1.9 NAMELISTStatement

The NAMELISTstatement supports intervals.

IMPLICIT INTERVAL (8) (V)

CODE EXAMPLE 2-31 Intrinsic Function Declaration

INTRINSIC VDSIN, VDCOS, VSSIN, VSCOS
X = CALC(VDSIN, VDCOS, VSSIN, VSCOS)

CODE EXAMPLE 2-32 INTERVALS in a NAMELIST

CHARACTER(8) :: NAME
CHARACTER(4) :: COLOR
INTEGER :: AGE
INTERVAL(4) :: HEIGHT
INTERVAL(4) :: WEIGHT
NAMELIST /DOG/ NAME, COLOR, AGE, WEIGHT, HEIGHT
Chapter 2 f95 Interval Reference 2-57

2.10.1.10 PARAMETERAttribute

The PARAMETERattribute is used to assign the result of an INTERVAL initialization to

a named constant (PARAMETER).

Syntax

PARAMETER(p = e [, p = expr]...)

p INTERVAL symbolic name

expr INTERVAL constant expression

= assigns the value of e to the symbolic name, p

Description

Both the symbolic name, p, and the constant expression, expr, must have INTERVAL
types.

Exponentiation to an integer power is allowed in constant expressions.

Mixed-mode INTERVAL expression evaluation is supported in the definition of

interval named constants under widest-need expression processing. If the constant

expression’s type does not match the named constant’s type, type conversion of the

constant expression is performed under widest-need expression processing.

Note – In f95 , non-INTERVAL constant expressions are evaluated at compile time

without regard to their possible subsequent use in mixed-mode INTERVAL
expressions. They are outside the scope of widest-need expression processing.

Therefore, no requirement exists to contain the value of the point expression used to

set the value of non-INTERVAL named constants. To remind users whenever a

non-INTERVAL named constant appears in a mixed-mode INTERVAL expression, a

compile-time warning message is issued. Named constants, as defined by the

Fortran standard, are more properly called read-only variables. There is no external

value associated with a read-only variable.
2-58 Fortran 95 Interval Arithmetic Programming Reference • May 2002

In standard Fortran 95, named constants cannot be used to represent the infimum

and supremum of an INTERVAL constant. This is a known error that this constraint is

not enforced in this release.

Note – XRdoes not contain 1/10, whereas XI does.

2.10.1.11 Fortran 95-Style POINTER

Intervals can be associated with pointers.

CODE EXAMPLE 2-33 Constant Expression in Non-INTERVAL PARAMETERAttribute

math% cat ce2-33.f95
REAL(4), PARAMETER :: R4 = 0.1
INTERVAL(4), PARAMETER :: I4 = 0.1
INTERVAL(16), PARAMETER :: I16 = 0.1
INTERVAL :: XR, XI
XR = R4
XI = I4
IF ((.NOT.(XR.SP.I16)).AND. (XI.SP.I16)) PRINT *, ’Check.’
END
math% f95 -xia ce2-33.f95
math% a.out
 Check.

CODE EXAMPLE 2-34 INTERVAL Pointers

math% cat ce2-34.f95
INTERVAL, POINTER :: PX
INTERVAL, TARGET :: X
X = [0.1,0.3]
PX => X
PRINT*, X
PRINT*, PX
END
math% f95 -xia ce2-34.f95
math% a.out
 [0.099999999999999991,0.30000000000000005]
 [0.099999999999999991,0.30000000000000005]
Chapter 2 f95 Interval Reference 2-59

2.10.1.12 Statement Function

A statement function can be used to declare and evaluate parameterized INTERVAL
expressions. Non-INTERVAL statement function restrictions apply.

2.10.1.13 Type Statement

The type statement specifies the data type of variables in a variable list. Optionally

the type statement specifies array dimensions, and initializes variables with values.

Syntax

The syntax is the same as for non-INTERVAL numeric data types, except that type can

be one of the following INTERVAL type specifiers: INTERVAL, INTERVAL(4),
INTERVAL(8) , or INTERVAL(16).

Description

Properties of the type statement are the same for INTERVAL types as for other

numeric data types.

CODE EXAMPLE 2-35 INTERVAL Statement Function

math% cat ce2-35.f95
INTERVAL :: X, F
F(X) = SIN(X)**2 + COS(X)**2
IF(1 .IN. F([0.5])) PRINT *, ’Check’
END
math% f95 -xia ce2-35.f95
math% a.out
 Check
2-60 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Restrictions

Same as for non-INTERVAL numeric types.

CODE EXAMPLE 2-36 notes:

■ J is initialized to [0.0]

■ K is initialized to an interval containing [0.1, 0.2]

■ L is initialized to an interval containing [0.1]

2.10.1.14 WRITEStatement

The WRITEstatement accepts INTERVAL variables and processes an input/output list

in the same way that non-INTERVAL type variables are processed. Formatted writing

of INTERVAL data is performed using the defined INTERVAL edit descriptors.

NAMELIST-directed WRITEstatements support intervals.

2.10.1.15 READStatement

The READstatement accepts INTERVAL variables and processes an input/output list

in the same way that non-INTERVAL type variables are processed.

2.10.2 Input and Output

The process of performing INTERVAL input/output is the same as for other

non-INTERVAL data types.

CODE EXAMPLE 2-36 INTERVAL Type Statement

math% cat ce2-36.f95

INTERVAL :: I,J = [0.0]
INTERVAL(16) :: K = [0.1, 0.2_16]
INTERVAL(16) :: L = [0.1]

END
math% f95 -xia ce2-36.f95
math% a.out
Chapter 2 f95 Interval Reference 2-61

2.10.2.1 External Representations

Let x be an external (decimal) number that can be read or written using either

list-directed or formatted input/output. See the subsections in Section 2.1, “Fortran

Extensions” on page 2-1 regarding the regarding the distinction between internal

approximations and external values. Such a number can be used to represent either

an external interval, or an endpoint. There are three displayable forms of an external

interval:

■ [X_inf, X_sup] represents the mathematical interval

■ [X] represents the degenerate mathematical interval , or [x]

■ X represents the non-degenerate mathematical interval [x] + [-1,+1]uld (unit in the

last digit). This form is the single-number representation, in which the last

decimal digit is used to construct an interval (see the Y edit descriptor). In this

form, trailing zeros are significant. Thus 0.10 represents interval [0.09, 0.11] ,

100E-1 represents interval [9.9, 10.1] , and 0.10000000 represents the interval

[0.099999999, 0.100000001] .

A positive or negative infinite interval endpoint is input/output as a case-insensitive

string INF or INFINITY prefixed with a minus or an optional plus sign.

The empty interval is input/output as the case-insensitive string EMPTYenclosed in

square brackets, "[...]" . The string, EMPTY, may be preceded or followed by blanks.

CODE EXAMPLE 1-6 can be used to experiment with extended intervals.

See Section 2.4.1, “Arithmetic Operators +, –, * , / ” on page 2-17, for more details.

2.10.2.2 Input

On input, any external interval, X, or its components, X_inf and X_sup , can be

formatted in any way that is accepted by the Dw.d edit descriptor. Therefore, let

input-field, input-field1, and input-field2 be valid input fields for the Dw’. d, Dw1. d, and

Dw2. d edit descriptors, respectively.

Let w be the width of an interval input field. On input, w must be greater than zero.

All INTERVAL edit descriptors accept input INTERVAL data in each of the following

three forms:

■ [input-field1, input-field2], in which case w1 + w2 = w - 3 or w = w1 + w2 + 3

■ [input-field], in which case w’ = w-2 or w = w’+2

■ input-field, in which case w’ = w

The first form (two numbers enclosed in brackets and separated by a comma) is the

familiar [inf, sup] representation.

The second form (a single number enclosed in brackets) denotes a point or

degenerate interval.

x x[,]

x x[,]
2-62 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The third form (without brackets) is the single-number form of an interval in which

the last displayed digit is used to determine the interval’s width. See Section 2.10.2.7,

“Single-Number Editing With the Y Edit Descriptor” on page 2-69. For more detailed

information, see M. Schulte, V. Zelov, G.W. Walster, D. Chiriaev, “Single-Number

Interval I/O,” Developments in Reliable Computing, T. Csendes (ed.), (Kluwer 1999).

If an infimum is not internally representable, it is rounded down to an internal

approximation known to be less than the exact value. If a supremum is not internally

representable, it is rounded up to an internal approximations known to be greater

than the exact input value. If the degenerate interval is not internally representable,

it is rounded down and rounded up to form an internal INTERVAL approximation

known to contain the exact input value.

2.10.2.3 List-Directed Input

If an input list item is an INTERVAL, the corresponding element in the input record

must be an external interval or a null value.

An external interval value may have the same form as an INTERVAL, REAL, or

INTEGERliteral constant. If an interval value has the form of a REALor INTEGER
literal constant with no enclosing square brackets, "["... "]", the external interval is

interpreted using the single-number interval representation: [x] + [-1,1]uld (unit in the

last digit).

When using the [inf, sup] input style, an end of record may occur between the

infimum and the comma or between the comma and the supremum.

A null value, specified by two consecutive commas, means that the corresponding

INTERVAL list item is unchanged.

Note – Do not use a null value for the infimum or supremum of an interval.

CODE EXAMPLE 2-37 List Directed Input/Output Code

math% cat ce2-37.f95
INTERVAL, DIMENSION(6) :: X
INTEGER I
DO I = LBOUND(X, 1), UBOUND(X, 1)
 READ(*, *) X(I)
 WRITE(*, *) X(I)
END DO
END
Chapter 2 f95 Interval Reference 2-63

2.10.2.4 Formatted Input/Output

The INTERVAL edit descriptors are:

■ Ew.dEe
■ ENw.d
■ ESw.d
■ Fw.d
■ Gw.dEe
■ VEw.dEe
■ VENw.dEe
■ VESw.dEe
■ VFw.d
■ VGw.dE
■ Yw.dEe

In the INTERVAL edit descriptors:

■ w specifies the number of positions occupied by the field

■ d specifies the number of digits to the right of the decimal point

■ Ee specifies the width of exponent field

The parameters w and d must be used. Ee is optional

The w and d specifiers must be present and are subject to the following constraints:

■ e > 0

■ w ≥ 0 when using the F edit descriptor, or w > 0 when using all edit descriptors

other than F.

math% f95 -xia ce2-37.f95
math% a.out
1.234500
 [1.2344989999999997,1.2345010000000001]
[1.2345]
 [1.2344999999999999,1.2345000000000002]
[-inf,2]
 [-Inf,2.0]
[-inf]
 [-Inf,-1.7976931348623157E+308]
[EMPTY]
 [EMPTY]
[1.2345,1.23456]
 [1.2344999999999999,1.2345600000000002]

CODE EXAMPLE 2-37 List Directed Input/Output Code
2-64 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Input Actions

Input actions for formatted interval input are the same as for other numeric data

types, except that in all cases, the stored internal approximation contains the external

value represented by the input character string. Containment can require outward

rounding of interval endpoints. Given any input interval characters, input_string ,

the corresponding external value, ev(input_string), and the resulting internal

approximation after input conversion, X, are related:

ev(input_string) X.

During input, all interval edit descriptors have the same semantics. The value of

parameter w, is the field width containing the external interval. The value of e is

ignored.

Output Actions

Output actions for formatted interval output are the same as for other data types,

except that in all cases, the mathematical value of the output character string must

contain the mathematical value of the internal data item in the output list.

Containment can require outward rounding of interval endpoints. Given any

internal interval, X, the corresponding output characters, output_string , and the

external value, ev(output_string), are related:

X ev(output_string).

During output, edit descriptors cause the internal value of interval output list items

to be displayed using different formats. However, the containment constraint

requires that

ev(input_string) X ev(output_string)

2.10.2.5 Formatted Input

The behavior of formatted input is identical for all INTERVAL edit descriptors listed

in Section 2.10.2.4, “Formatted Input/Output” on page 2-64. All inputs described in

Section 2.10.2.2, “Input” on page 2-62 are accepted.

⊆

⊆

⊆ ⊆
Chapter 2 f95 Interval Reference 2-65

If the input field contains a decimal point, the value of d is ignored. If a decimal point

is omitted from the input field, d determines the position of the decimal point in the

input value; that is, the input value is read as an integer and multiplied by 10(- d).

CODE EXAMPLE 2-38 The Decimal Point in an Input Value Dominates Format Specifiers

math% cat ce2-38.f95
INTERVAL :: X, Y
READ(*, '(F10.4)') X
READ(*, '(F10.4)') Y
WRITE(*, *)'1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, E19.6)') X
WRITE(*, '(1X, E19.6)') Y
END
math% f95 -xia ce2-38.f95
math% a.out
[.1234]
[1234]
 1234567890123456789012345678901234567890-position
 0.123400E+000
 0.123400E+000

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number
Input

math% cat ce2-39.f95
INTERVAL, DIMENSION(9) :: X
INTEGER :: I
READ(*, '(Y25.3)') X(1)
READ(*, '(E25.3)') X(2)
READ(*, '(F25.3)') X(3)
READ(*, '(G25.3) ') X(4)
READ(*, '(VE25.3)') X(5)
READ(*, '(VEN25.3)') X(6)
READ(*, '(VES25.3)') X(7)
READ(*, '(VF25.3)') X(8)
READ(*, '(VG25.3)') X(9)
DO I = LBOUND(X, 1), UBOUND(X, 1)
 PRINT *, X(I)
END DO
END
2-66 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Blank Editing (BZ)

Because trailing zeros are significant in single-number INTERVAL input, the BZ
control edit descriptor is ignored when processing leading and trailing blanks for

input to INTERVAL list items.

%math f95 -xia ce2-39.f95
%math a.out
1.23
1.23
1.23
1.23
1.23
1.23
1.23
1.23
1.23
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]
 [1.2199999999999999,1.2400000000000003]

CODE EXAMPLE 2-40 BZ Descriptor

math% cat ce2-40.f95
INTERVAL :: X
REAL(4) :: R
READ(*, ’(BZ, F40.6)’) X
READ(*, ’(BZ, F40.6)’) R
WRITE(*, ’(VF40.3)’) X
WRITE(*, ’(F40.3)’) R
END

CODE EXAMPLE 2-39 All of the INTERVAL Edit Descriptors Can Accept Single-Number
Input (Continued)
Chapter 2 f95 Interval Reference 2-67

Scale Factor (P)

The P edit descriptor changes the scale factor for Y, VE, VEN, VES, VF, and VG
descriptors and for F, E, EN, ES, and Gedit descriptors when applied to intervals. The

P edit descriptor scales interval endpoints the same way it scales REALvalues.

2.10.2.6 Formatted Output

The F, E, EN, ES, and Gedit descriptors applied to intervals have the same meaning as

the Y edit descriptor except that if the F or Gedit descriptor is used, the output field

may be formatted using the F edit descriptor. If the E edit descriptors are used, the

output field always has the form prescribed by the corresponding E, EN, or ES edit

descriptor.

Formatted INTERVAL output has the following properties:

■ A positive interval endpoint starts with an optional plus sign.

■ A negative endpoint always starts with a leading minus sign.

■ A zero interval endpoint never starts with a leading plus or minus.

■ The VF, VE, VEN, VES, and VGedit descriptors provide [inf, sup]-style formatting of

intervals.

■ The Y edit descriptor produces single-number interval output.

■ If an output list item matching the VF, VE, VEN, VES, or VG, or Y edit descriptor is

any type other than INTERVAL, the entire output field is filled with asterisks.

■ If the output field’s width, w, in VF, VE, VEN, VES, VGedit descriptors is an even

number, the field is filled with one leading blank character and w-1 is used for the

output field’s width.

math% f95 -xia ce2-40.f95
math% a.out
[.9998]
 .9998
[0.999, 1.000]
 1.000

CODE EXAMPLE 2-40 BZ Descriptor (Continued)
2-68 Fortran 95 Interval Arithmetic Programming Reference • May 2002

On output, the default values for the exponent field, e, are shown in TABLE 2-14.

2.10.2.7 Single-Number Editing With the Y Edit Descriptor

The Y edit descriptor formats extended interval values in the single-number form.

If the external INTERVAL value is not degenerate, the output format is the same as for

a REALor INTEGERliteral constant (X without square brackets, "["..."] "). The external

value is interpreted as a non-degenerate mathematical interval [x] + [-1,1]uld. The

general form of the Y edit descriptor is:

Yw.dEe

The d specifier sets the number of places allocated for displaying significant digits.

However, the actual number of displayed digits may be more or less than d,

depending on the value of w and the width of the external interval.

The e specifier (if present) defines the number of places in the output subfield

reserved for the exponent.

The presence of the e specifier forces the output field to have the form prescribed by

the E (as opposed to F) edit descriptor.

The single-number interval representation is often less precise than the [inf, sup]

representation. This is particularly true when an interval or its single-number

representation contains zero or infinity.

For example, the external value of the single-number representation for [-15, +75] is

ev([0E2]) = [-100, +100]. The external value of the single-number representation for

[1, ∞] is ev([0E+inf]) = .

TABLE 2-14 Default Values for Exponent Field in Output Edit Descriptors

Edit Descriptor INTERVAL(4) INTERVAL(8) INTERVAL(16)

Y, E, EN, ES, G 3 3 3

VE, VEN, VES, VG 3 3 3

-∞ +∞,[]
Chapter 2 f95 Interval Reference 2-69

In these cases, to produce a narrower external representation of the internal

approximation, the VGw.d’Ee edit descriptor is used, with d’ ≥ 1 to display the

maximum possible number of significant digits within the w-character input field.

If it is possible to represent a degenerate interval within the w-character output field,

the output string for a single number is enclosed in obligatory square brackets,

"[", "] " to signify that the result is a point.

If there is sufficient field width, the E or F edit descriptor is used, depending on

which can display the greater number of significant digits. If the number of

displayed digits using the E and F edit descriptor is the same, the F edit descriptor is

used.

CODE EXAMPLE 2-41 Y [inf, sup]-Style Output

math% cat ce2-41.f95
INTERVAL :: X = [-1, 10]
INTERVAL :: Y = [1, 6]
WRITE(*, '(Y20.5)') X
WRITE(*, '(Y20.5)') Y
END
math% f95 -xia ce2-41.f95
math% a.out
 [-1. ,0.1E+002]
 [1.0 ,6.0]

CODE EXAMPLE 2-42 Yw.d Output

cat math% cat ce2-42.f95
WRITE(*, *) ’1234567890123456789012345678901234567890-position’
WRITE(*, ’(1x, F20.6)’) [1.2345678, 1.23456789]
WRITE(*, ’(1x, F20.6)’) [1.234567, 1.2345678]
WRITE(*, ’(1x, F20.6)’) [1.23456, 1.234567]
WRITE(*, ’(1x, F20.6)’) [1.2345, 1.23456]
WRITE(*, ’(1x, F20.6)’) [1.5111, 1.5112]
WRITE(*, ’(1x, F20.6)’) [1.511, 1.512]
WRITE(*, ’(1x, F20.6)’) [1.51, 1.52]
WRITE(*, ’(1x, F20.6)’) [1.5, 1.5]
END
2-70 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Increasing interval width decreases the number of digits displayed in the

single-number representation. When the interval is degenerate all remaining

positions are filled with zeros and brackets are added if the degenerate interval

value is represented exactly.

The intrinsic function NDIGITS (see TABLE 2-22) returns the maximum number of

significant digits necessary to write an INTERVAL variable or array using the

single-number display format.

math% f95 -xia ce2-42.f95
math% a.out
 1234567890123456789012345678901234567890-position
 1.2345679
 1.234567
 1.23456
 1.2345
 1.511
 1.51
 1.5
 [1.50000000000]

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic

math% cat ce2-43.f95
INTEGER :: I, ND, T, D, DIM
PARAMETER(D=5) ! Some default number of digits
PARAMETER(DIM=8)
INTERVAL, DIMENSION(DIM) :: X
CHARACTER(20) :: FMT
X = (/ [1.2345678, 1.23456789], &
 [1.234567, 1.2345678], &
 [1.23456, 1.234567], &
 [1.2345, 1.23456], &
 [1.5111, 1.5112], &
 [1.511, 1.512], &
 [1.51, 1.52], &
 [1.5]/)
ND=0

CODE EXAMPLE 2-42 Yw.d Output (Continued)
Chapter 2 f95 Interval Reference 2-71

For readability, the decimal point is always located in position p = e + d + 4, counting

from the right of the output field.

DO I=1, DIM
 T = NDIGITS(X(I))
 IF(T == EPHUGE(T)) THEN ! The interval is degenerate
 ND = MAX(ND, D)
 ELSE
 ND = MAX(ND, T)
 ENDIF
END DO
WRITE(FMT, ’(A2, I2, A1, I1, A1)’) ’(E’, 10+ND, ’.’, ND, ’)’
DO I=1, DIM
 WRITE(*, FMT) X(I)
END DO
END
math% f95 -xia ce2-43.f95
math% a.out
 0.12345679E+001
 0.1234567 E+001
 0.123456 E+001
 0.12345 E+001
 0.1511 E+001
 0.151 E+001
 0.15 E+001
[0.15000000E+001]

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G }w.d Output, Where d Sets the Minimum Number of
Significant Digits to be Displayed

math% cat ce2-44.f95
INTERVAL :: X = [1.2345678, 1.23456789]
INTERVAL :: Y = [1.5]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, F20.5)') X
WRITE(*, '(1X, F20.5)') Y
WRITE(*, '(1X, E20.5)') X
WRITE(*, '(1X, E20.5)') Y
WRITE(*, '(1X, G20.5)') X
WRITE(*, '(1X, G20.5)') Y
WRITE(*, '(1X, Y20.5)') X
WRITE(*, '(1X, Y20.5)') Y
END

CODE EXAMPLE 2-43 Yw.d Output Using the NDIGITS Intrinsic (Continued)
2-72 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The optional e specifier specifies the number of exponent digits. If the number of

exponent digits is specified, w must be at least d + e + 7.

math% f95 -xia ce2-44.f95
math% a.out
 1234567890123456789012345678901234567890-position
 1.2345679
 [1.5000000000]
 0.12345E+001
 [0.15000E+001]
 1.2345679
 [1.5000000000]
 1.2345679
 [1.5000000000]

CODE EXAMPLE 2-45 Yw.dEe Output (The Usage of e Specifier)

math% cat ce2-45.f95
INTERVAL :: X = [1.2345, 1.2346]
INTERVAL :: Y = [3.4567, 3.4568]
INTERVAL :: Z = [1.5]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, Y19.5E4)') X
WRITE(*, '(1X, Y19.5E4)') Y
WRITE(*, '(1X, Y19.5E4)') Z
WRITE(*, '(1X, Y19.5E3)') X
WRITE(*, '(1X, Y19.5E3)') Y
WRITE(*, '(1X, Y19.5E3)') Z
END
math% f95 -xia ce2-45.f95
math% a.out
 1234567890123456789012345678901234567890-position
 0.1234 E+0001
 0.3456 E+0001
 [0.15000E+0001]
 0.1234 E+001
 0.3456 E+001
 [0.15000E+001]

CODE EXAMPLE 2-44 {Y, F, E, EN,ES,G }w.d Output, Where d Sets the Minimum Number of
Significant Digits to be Displayed (Continued)
Chapter 2 f95 Interval Reference 2-73

2.10.2.8 E, EN, and ES Edit Descriptors

The E, EN, and ES edit descriptors format INTERVAL data items using the

single-number E, EN, and ES forms of the Y edit descriptor.

The general forms are:

Ew.dEe

ENw.dEe

ESw.dEe

2.10.2.9 F Edit Descriptor

The F edit descriptor formats INTERVAL data items using only the F form of the

INTERVAL Y edit descriptor. The general form is:

Fw.d

CODE EXAMPLE 2-46 Ew.dEe, ENw.dEe, and ESw.dEe Edit Descriptors

math% cat ce2-46.f95
INTERVAL :: X = [1.2345678, 1.23456789]
INTERVAL :: Y = [1.5]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, E20.5)') X
WRITE(*, '(1X, E20.5E3)') X
WRITE(*, '(1X, E20.5E3)') Y
WRITE(*, '(1X, E20.5E4)') X
WRITE(*, '(1X, E20.5E2)') X
END
math% f95 -xia ce2-46.f95
math% a.out
 1234567890123456789012345678901234567890-position
 0.12345E+001
 0.12345E+001
 [0.15000E+001]
 0.12345E+0001
 0.12345E+01
2-74 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Using the F descriptor, it is possible to display more significant digits than specified

by d. Positions corresponding to the digits that are not displayed are filled with

blanks.

2.10.2.10 G Edit Descriptor

The G edit descriptor formats INTERVAL data items using the single-number E or F
form of the Y edit descriptor. The general form is:

Gw.dEe

CODE EXAMPLE 2-47 Fw.d Edit Descriptor

math% cat ce2-47.f95
INTERVAL :: X = [1.2345678, 1.23456789]
INTERVAL :: Y = [2.0]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, F20.4)') X
WRITE(*, '(1X, E20.4)') X
WRITE(*, '(1X, F20.4)') Y
WRITE(*, '(1X, E20.4)') Y
END
math% f95 -xia ce2-47.f95
math% a.out
 1234567890123456789012345678901234567890-position
 1.2345679
 0.1234E+001
 [2.000000000]
 [0.2000E+001]

CODE EXAMPLE 2-48 Gw.dEe Edit Descriptor

math% cat ce2-48.f95
INTERVAL :: X = [1.2345678, 1.23456789]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, G20.4)') X
WRITE(*, '(1X, G20.4E3)') X
END
math% f95 -xia ce2-48.f95
math% a.out
 1234567890123456789012345678901234567890-position
 1.2345679
 0.1234E+001
Chapter 2 f95 Interval Reference 2-75

Note – If it is impossible to output interval endpoints according to the F descriptor,

G edit descriptor uses the E descriptor

2.10.2.11 VE Edit Descriptor

The general form of the VE edit descriptor is:

VEw.dEe

Let Xd be a valid external value using the Ew’.d edit descriptor. The VE edit

descriptor outputs INTERVAL data items in the following form:

[X_inf,X_sup] , where w’ = (w-3)/2 .

The external values, X_inf and X_sup , are lower and upper bounds, respectively, on

the infimum and supremum of the INTERVAL output list item.

2.10.2.12 VENEdit Descriptor

The general form of the VENedit descriptor is:

VENw.dEe

Let X_inf and X_sup be valid external values displayed using the ENw’.d edit

descriptor. The VENedit descriptor outputs an INTERVAL data item in the following

form:

[X_inf,X_sup] , where w’ = (w-3)/2 .

CODE EXAMPLE 2-49 VE Output

math% cat ce2-49.f95
INTERVAL :: X = [1.2345Q45, 1.2346Q45]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, VE25.3)') X
WRITE(*, '(1X, VE33.4E4)') X
END

math% f95 -xia ce2-49.f95
math% a.out
 1234567890123456789012345678901234567890-position
 [0.123E+046, 0.124E+046]
 [0.1234E+0046, 0.1235E+0046]
2-76 Fortran 95 Interval Arithmetic Programming Reference • May 2002

The external values, X_inf and X_sup , are lower and upper bounds, respectively, on

the infimum and supremum of the INTERVAL output list item.

2.10.2.13 VESEdit Descriptor

The general form of the VESedit descriptor is:

VESw.dEe

Let X_inf and X_sup be a valid external values using the ESw’.d edit descriptor. The

VESedit descriptor outputs an INTERVAL data item in the following form:

[X_inf,X_sup] , where w’ = (w-3)/2 .

The external values, X_inf and X_sup , are lower and upper bounds, respectively, on

the infimum and supremum of the INTERVAL output list item.

CODE EXAMPLE 2-50 VENOutput

math% cat ce2-50.f95
INTERVAL :: X = [1024.82]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, VEN25.3)') X
WRITE(*, '(1X, VEN33.4E4)') X
END

math% f95 -xia ce2-50.f95
math% a.out
 1234567890123456789012345678901234567890-position
 [1.024E+003, 1.025E+003]
 [1.0248E+0003, 1.0249E+0003]

CODE EXAMPLE 2-51 VESOutput

math% cat ce2-51.f95
INTERVAL :: X = [21.234]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, VES25.3)') X
WRITE(*, '(1X, VES33.4E4)') X
END
Chapter 2 f95 Interval Reference 2-77

2.10.2.14 VF Edit Descriptor

Let X_inf and X_sup be valid external values displayed using the Fw’.d edit

descriptor. The VF edit descriptor outputs INTERVAL data items in the following

form:

[X_inf,X_sup] , where w’ = (w-3)/2 .

The external values, X_inf and X_sup , are lower and upper bounds, respectively, on

the infimum and supremum of the INTERVAL output list item.

Note – If it is impossible to output an interval endpoint according to the specified

interval edit descriptor, asterisks are printed. For example, [0.9999, ******]

math% f95 -xia ce2-51.f95
math% a.out
 1234567890123456789012345678901234567890-position
 [2.123E+001, 2.124E+001]
 [2.1233E+0001, 2.1235E+0001]

CODE EXAMPLE 2-52 VF Output Editing

math% cat ce2-52.f95
INTERVAL :: X = [1.2345, 1.2346], Y = [1.2345E11, 1.2346E11]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, VF25.3)') X
WRITE(*, '(1X, VF25.3)') Y
END
math% f95 -xia ce2-52.f95
math% a.out
 1234567890123456789012345678901234567890-position
 [1.234, 1.235]
 [***********,***********]

CODE EXAMPLE 2-51 VESOutput
2-78 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.10.2.15 VGEdit Descriptor

For INTERVAL output, VGediting is the same as VE or VF editing, except that the G
edit descriptor is used to format the displayed interval endpoints.

Note – If it is impossible to output interval endpoints according to the F descriptor,

the VGedit descriptor uses the E descriptor.

2.10.2.16 Unformatted Input/Output

Unformatted input/output is used to transfer data to and from memory locations

without changing its internal representation. With intervals, unformatted

input/output is particularly important, because outward rounding on input and

output is avoided.

Note – Use only unformatted INTERVAL input and output to read and write

unformatted INTERVAL data. Binary file compatibility with future releases is not

guaranteed. Unformatted input/output relies on the fact that INTERVAL data items

are opaque.

CODE EXAMPLE 2-53 VGOutput

math% cat ce2-53.f95
INTERVAL :: X = [1.2345, 1.2346], Y = [1.2345E11, 1.2346E11]
WRITE(*, *) '1234567890123456789012345678901234567890-position'
WRITE(*, '(1X, VG25.3)') X
WRITE(*, '(1X, VG25.3)') Y
END

math% f95 -xia ce2-53.f95
math% a.out
 1234567890123456789012345678901234567890-position
 [1.23 , 1.24]
 [0.123E+012, 0.124E+012]
Chapter 2 f95 Interval Reference 2-79

2.10.2.17 List-Directed Output

REALconstants for left and right endpoints are produced using either an F or an E
edit descriptor. Let |x| be the absolute value of an output interval endpoint. Then if

,

the endpoint is produced using the 0PFw.d edit descriptor. Otherwise, the 1PEw.dEe
descriptor is used. In f95 , d1 = -2 and d2 = +8 .

For the output of INTERVAL data items in f95 , the values for d and e are the same as

for the REAL types with the same KTPV. The value of w reflects the need to

conveniently accommodate two REALvalues and three additional characters for

square brackets, "[", "] ", and the comma, as shown in CODE EXAMPLE 2-37.

2.10.2.18 Single-Number Input/Output and Base Conversions

Single-number INTERVAL input, immediately followed by output, can appear to

suggest that a decimal digit of accuracy has been lost, when in fact radix conversion

has caused a 1 or 2 ulp increase in the width of the stored input interval. For

example, an input of 1.37 followed by an immediate print will result in 1.3 being

output. See Section 2.10.2.4, “Formatted Input/Output” on page 2-64.

As shown in CODE EXAMPLE 1-6, programs must use character input and output to

exactly echo input values and internal reads to convert input character strings into

valid internal approximations.

2.10.3 Intrinsic INTERVAL Functions

This section contains the defining properties of the f95 intrinsic INTERVAL functions.

Generic intrinsic INTERVAL functions that accept arguments with more than one

KTPV have both generic and KTPV-specific names. When an intrinsic function is

invoked using its KTPV-specific name, arguments must have the matching KTPV.

Note – In f95 , some KTPV-16 specific intrinsic functions are not provided. This is

an outstanding quality of implementation opportunity.

With functions that accept more than one INTERVAL data item (for example,

SIGN(A,B)), all arguments must have the same KTPV. Under widest-need expression

processing, compliance with this restriction is automatic. With strict expression

processing, developers are responsible for enforcing type and KTPV restrictions on

intrinsic function arguments. Compile-time errors result when different KTPVs are

encountered.

10
d1 x 10

d2≤ ≤
2-80 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.10.4 Mathematical Functions

This section lists the type-conversion, trigonometric, and other functions that accept

INTERVAL arguments. The symbols and in the interval are used to denote

its ordered elements, the infimum, or lower bound and supremum, or upper bound,

respectively. In point (non-interval) function definitions, lowercase letters x and y are

used to denote REALor INTEGERvalues.

When evaluating a function, f, of an interval argument, X, the interval result, f(X),

must be an enclosure of its containment set, f(x). Therefore,

A similar result holds for functions of n-variables. Determining the containment set

of values that must be included when the interval contains values outside the

domain of f is discussed in the supplementary paper [1] cited in Section 2.11,

“References” on page 2-91. The results therein are needed to determine the set of

values that a function can produce when evaluated on the boundary of, or outside

its domain of definition. This set of values, called the containment set is the key to

defining interval systems that return valid results, no matter what the value of a

function’s arguments or an operator’s operands. As a consequence, there are no

argument restrictions on any intrinsic INTERVAL functions in f95 .

2.10.4.1 Division With Intersection Function DIVIX

The function DIVIX returns the interval enclosure of the result of the interval

division operation (A/B) intersected with the interval C.

In the case when A contains zero, the mathematical result of the interval division

operation (A/B) is the union of two disjoint intervals. Each interval in the union can

be represented in the currently implemented interval arithmetic system. The DIVIX
function is a convenient way to compute one or both of these intervals.

2.10.4.2 Inverse Tangent Function ATAN2(Y,X)

This sections provides additional information about the inverse tangent function.

For further details, see the supplementary paper [9] cited in Section 2.11,

“References” on page 2-91.

x x x x,[]

f X() f x()
x X∈
∪=

x x,[]
Chapter 2 f95 Interval Reference 2-81

Description: Interval enclosure of the inverse tangent function over a pair of

intervals.

Mathematical definition:

Class: Elemental function.

Special values: TABLE 2-15 and CODE EXAMPLE 2-54 display the ATAN2 indeterminate

forms.

TABLE 2-15 ATAN2Indeterminate Forms

y0 x0

0 0 [-1, 1] [-1, 1]

+∞ +∞ [0, 1] [0, 1]

+∞ -∞ [0, 1] [-1, 0]

-∞ -∞ [-1, 0] [-1, 0]

-∞ +∞ [-1, 0] [0, 1]

CODE EXAMPLE 2-54 ATAN2Indeterminate Forms

math% cat ce2-54.f95

 INTERVAL :: X, Y
 INTEGER :: IOS = 0
 PRINT *, "Press Control/D to terminate!"
 WRITE(*, 1, ADVANCE='NO')
 READ(*, *, IOSTAT=IOS) Y, X
 DO WHILE (IOS >= 0)
 PRINT *, "For Y =", Y, "For X =", X
 PRINT *, 'ATAN2(Y,X) = ', ATAN2(Y,X)
 WRITE(*, 1, ADVANCE='NO')
 READ(*, *, IOSTAT=IOS) Y, X
 END DO
1 FORMAT("Y, X = ?")
 END

2 Y X,()atan θ
h θsin y0=
h θcos x0=

h x0
2

y0
2

+()=
1 2⁄

 
 
 
 
 

x X∈
y Y∈

∪⊇

θsin h θsin y0={ } θcos h θcos x0={ } θ h x0
2

y0
2

+()=
1 2⁄{ }

π– π,[]

0 π
2
---,[]

π
2
--- π,[]

π–
π–

2
-------,[]

π–
2

------- 0,[]
2-82 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Arguments: Y is of type INTERVAL. X is of the same type and KIND type parameter as

Y.

Result characteristics: Same as the arguments.

Result value: The interval result value is an enclosure for the specified interval. An

ideal enclosure is an interval of minimum width that contains the exact

mathematical interval in the description.

The result is empty if one or both arguments are empty.

In the case where x < 0 and , to get a sharp interval enclosure (denoted by Θ),

the following convention uniquely defines the set of all possible returned interval

angles:

This convention, together with

results in a unique definition of the interval angles Θ that ATAN2(Y, X) must include.

TABLE 2-16 contains the tests and arguments of the REAL ATAN2function that are

used to compute the endpoints of Θ in the algorithm that satisfies the constraints

required to produce sharp interval angles. The first two columns define the

distinguishing cases. The third column contains the range of possible values of the

math% f95 -xia ce2-54.f95
math% a.out
 Press Control/D to terminate!
Y, X = ? [0] [0]
For Y = [0.0E+0,0.0E+0] For X = [0.0E+0,0.0E+0]
 ATAN2(Y,X) = [-3.1415926535897936,3.1415926535897936]
Y, X = ? inf inf
For Y = [1.7976931348623157E+308,Inf] For X = [1.7976931348623157E+308,Inf]
 ATAN2(Y,X) = [0.0E+0,1.5707963267948968]
Y, X = ? inf -inf
For Y = [1.7976931348623157E+308,Inf] For X = [-Inf,-1.7976931348623157E+308]
 ATAN2(Y,X) = [1.5707963267948965,3.1415926535897936]
Y, X = ? -inf +inf
For Y = [-Inf,-1.7976931348623157E+308] For X = [1.7976931348623157E+308,Inf]
 ATAN2(Y,X) = [-1.5707963267948968,0.0E+0]
Y, X = ? -inf -inf
For Y = [-Inf,-1.7976931348623157E+308] For X =
[-Inf,-1.7976931348623157E+308]
 ATAN2(Y,X) = [-3.1415926535897936,-1.5707963267948965]
Y, X = ? ^d

CODE EXAMPLE 2-54 ATAN2Indeterminate Forms (Continued)

0 Y∈

π– m Θ() π≤<

0 w Θ() 2π≤≤
Chapter 2 f95 Interval Reference 2-83

midpoint, m(Θ), of the interval Θ. The last two columns show how the endpoints of

Θ are computed using the REAL ATAN2intrinsic function. Directed rounding must be

used to guarantee containment.

2.10.4.3 Maximum: MAX(X1,X2,[X3,...])

Description: Range of maximum.

The containment set for max(X1,..., Xn) is:

.

The implementation of the MAXintrinsic must satisfy:

MAX(X1,X2,[X3, ...]) {max(X1, ..., Xn)}.

Class: Elemental function.

Arguments: The arguments are of type INTERVAL and have the same type and KIND
type parameter.

Result characteristics: The result is of type INTERVAL. The kind type parameter is

that of the arguments.

2.10.4.4 Minimum: MIN(X1,X2,[X3, ...])

Description: Range of minimum.

The containment set for min(X1,..., Xn) is:

.

The implementation of the MIN intrinsic must satisfy:

MIN(X1,X2,[X3, ...]) {min(X1, ..., Xn)}.

Class: Elemental function.

Arguments: The arguments are of type INTERVAL and have the same type and KIND
type parameter.

TABLE 2-16 Tests and Arguments of the REAL ATAN2Function

Y X m(Q) θ θ

- < y x < 0 ATAN2(y, x) ATAN2(, x) + 2π

- = y x < 0 ATAN2(y, x) 2π − θ

< - x < 0 ATAN2(y, x) - 2π ATAN2(, x)

y---
π
2
--- m Θ() π< < y---

y--- m Θ() π=

y y--- π– m Θ()
π–

2
-------< < y---

z z max x1 … xn, ,() x,
i

Xi∈={ } sup hull x1 … xn, ,()() sup hull x1 … xn, ,()(),[]=

⊇

z z min x1 … xn, ,() x,
i

Xi∈={ } inf hull x1 … xn, ,()() inf hull x1 … xn, ,()(),[]=

⊇

2-84 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Result characteristics: The result is of type INTERVAL. The kind type parameter is

that of the arguments.

2.10.4.5 Intrinsic Functions

Tables TABLE 2-19 through TABLE 2-22 list the properties of intrinsic functions that

accept interval arguments. TABLE 2-17 lists the tabulated properties of intrinsic

INTERVAL functions in these tables.

KTPV 4, 8 and 16 versions of intrinsic INTERVAL functions are defined. The

corresponding specific intrinsic names begin with VS, VDor VQ, from interVal
Single, Double and Quad.

For each specific REAL intrinsic function, a corresponding intrinsic INTERVAL
function exists with a VS, VD, or VQprefix, such as VSSIN() and VDSIN() .

Because indeterminate forms are possible, special values of the X**Y and ATAN2

function are contained in Section 2.5, “Power Operators X**N and X**Y ” on

page 2-21 and Section 2.10.4.2, “Inverse Tangent Function ATAN2(Y,X) ” on

page 2-81, respectively. The remaining intrinsic functions do not require this

treatment.

TABLE 2-17 Tabulated Properties of Each Intrinsic INTERVAL Function

Tabulated Property Description

Intrinsic Function what the function does

Definition mathematical definition

No. of Args. number of arguments the function accepts

Generic Name the function’s generic name

Type-Specific Names the function’s specific names

Argument Type data type associated with each specific name

Function Type data type returned for specific argument data type
Chapter 2 f95 Interval Reference 2-85

TABLE 2-18 Intrinsic INTERVAL Type Conversion Functions

Conversion To No. of Args. Generic Name Argument Type Function Type

INTERVAL 1, 2, or 3 INTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL

INTERVAL(4) 1 or 2 SINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(4)

INTERVAL(8) 1 or 2 DINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTEGER

REAL

REAL(8)

REAL(16)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(8)

INTERVAL(16) 1 or 2 QINTERVAL INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(16)

INTEGER

REAL

REAL(8)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)

INTERVAL(16)
2-86 Fortran 95 Interval Arithmetic Programming Reference • May 2002

TABLE 2-19 Intrinsic INTERVAL Arithmetic Functions

Intrinsic
Function

Point
Definition

No.
of
Args.

Generic
Name

Specific
Names Argument Type Function Type

Absolute value |a| 1 ABS VDABS

VSABS

VQABS

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Truncation

See Note 1
int(a) 1 AINT VDINT

VSINT

VQINT

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Nearest integer int(a + .5)

if a ≥ 0
int(a - .5)

if a < 0

1 ANINT VDNINT

VSNINT

VQNINT

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Remainder a-b(int(a/b)) 2 MOD VDMOD

VSMOD

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Transfer of sign

See Note 2
|a| sgn(b) 2 SIGN VDSIGN

VSSIGN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Choose largest

value See Note 3
max(a,b,...) ≥2 MAX MAX INTERVAL INTERVAL

Choose smallest

value See Note 3
min(a,b,...) ≥2 MIN MIN INTERVAL INTERVAL

Floor floor(A) 1 FLOOR INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Ceiling ceiling(A) 1 CEILING INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Precision precision(A) 1 PRECISION INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

Range range(A) 1 RANGE INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

(1) int(a) = floor(a) if a > 0 and ceiling(a) if a < 0

(2) The signum function sgn(a) = -1 if a < 0, +1 if a > 0 and 0 if a = 0

(3) The MIN and MAXintrinsic functions ignore empty interval arguments unless all arguments are empty, in which case, the empty in-
terval is returned.
Chapter 2 f95 Interval Reference 2-87

TABLE 2-20 Intrinsic INTERVAL Trigonometric Functions

Intrinsic
Function

Point
Definition

No. of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Sine sin(a) 1 SIN VDSIN

VSSIN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Cosine cos(a) 1 COS VDCOS

VSCOS

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Tangent tan(a) 1 TAN VDTAN

VSTAN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arcsine arcsin(a) 1 ASIN VDASIN

VSASIN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arccosine arccos(a) 1 ACOS VDACOS

VSACOS

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arctangent arctan(a) 1 ATAN VDATAN

VSATAN

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Arctangent

See Note 1
arctan(a/b) 2 ATAN2 VDATAN2

VSATAN2

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic

Sine

sinh(a) 1 SINH VDSINH

VSSINH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic

Cosine

cosh(a) 1 COSH VDCOSH

VSCOSH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Hyperbolic

Tangent

tanh(a) 1 TANH VDTANH

VSTANH

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

(1) arctan(a/b) = θ, given a = h sinθ, b = h cosθ, and h2 = a2 + b2.
2-88 Fortran 95 Interval Arithmetic Programming Reference • May 2002

TABLE 2-21 Other Intrinsic INTERVAL Mathematical Functions

Intrinsic
Function

Point
Definition

No. of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Square Root

See Note 1
exp{ln(a)/2} 1 SQRT VDSQRT

VSSQRT

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Exponential exp(a) 1 EXP VDEXP

VSEXP

INTERVAL

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Natural

logarithm

ln(a) 1 LOG VDLOG

VSLOG

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

Common

logarithm

log(a) 1 LOG10 VDLOG10

VSLOG10

INTERVAL(8)

INTERVAL(4)

INTERVAL(8)

INTERVAL(4)

(1) sqrt(a) is multi-valued. A proper interval enclosure must contain both the positive and negative square
roots. Defining the SQRT intrinsic to be

eliminates this difficulty.

TABLE 2-22 Intrinsic INTERVAL-Specific Functions

Intrinsic
Function

Definition
No.
of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Infimum inf([a, b]) = a 1 INF VDINF

VSINF

VQINF

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Supremum sup([a, b]) = b 1 SUP VDSUP

VSSUP

VQSUP

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Width w([a, b]) = b - a 1 WID VDWID

VSWID

VQWID

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Midpoint mid([a, b]) =

(a + b)/2
1 MID VDMID

VSMID

VQMID

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Magnitude

See Note 1
max(|a|) ∈A 1 MAG VDMAG

VSMAG

VQMAG

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: NDIGITS([-inf, +inf]) = NDIGITS([EMPTY]) = 0

aln
2

 
 
 

exp
Chapter 2 f95 Interval Reference 2-89

2.10.5 Random Number Subroutine

RANDOM_NUMBER(HARVEST)returns through the interval variable HARVESTone

pseudorandom interval [a, b], or an array of pseudorandom intervals from uniform

distributions over the ranges 0 ≤ a ≤ 1, and a ≤ b ≤ 1.

Mignitude

See Note 2
min(|a|) ∈A 1 MIG VDMIG

VSMIG

VQMIG

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

REAL(8)

REAL(4)

REAL(16)

Test for empty

interval

true if A
is empty

1 ISEMPTY VDISEMPTY

VSISEMPTY

VQISEMPTY

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

LOGICAL

LOGICAL

LOGICAL

Division with

intersection

3 DIVIX VDDIVIX

VSDIVIX

VQDIVIX

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

INTERVAL(8)

INTERVAL(4)

INTERVAL(16)

Number of digits

See Note 3
Maximum

number of

digits using Y
edit descriptor

1 NDIGITS INTERVAL

INTERVAL(4)

INTERVAL(16)

INTEGER

INTEGER

INTEGER

TABLE 2-22 Intrinsic INTERVAL-Specific Functions (Continued)

Intrinsic
Function

Definition
No.
of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: NDIGITS([-inf, +inf]) = NDIGITS([EMPTY]) = 0

A B⁄() C∩
2-90 Fortran 95 Interval Arithmetic Programming Reference • May 2002

2.11 References
The following technical reports are available online. See the Interval Arithmetic

Readme for the location of these files.

1. G.W. Walster, E.R. Hansen, and J.D. Pryce, “Extended Real Intervals and the

Topological Closure of Extended Real Relations,” Technical Report, Sun

Microsystems. February 2000.

2. G. William Walster, “Empty Intervals,” Technical Report, Sun Microsystems. April

1998.

3. G. William Walster, “Closed Interval Systems,” Technical Report, Sun

Microsystems. August 1999.

4. G. William Walster, “Literal Interval Constants,” Technical Report, Sun

Microsystems. August 1999.

5. G. William Walster, “Widest-Need Interval Expression Evaluation,” Technical

Report, Sun Microsystems. August 1999.

6. G. William Walster, “Compiler Support of Interval Arithmetic With Inline Code

Generation and Nonstop Exception Handling,” Technical Report, Sun

Microsystems. February 2000.

7. G. William Walster, “Finding Roots on the Edge of a Function’s Domain,”

Technical Report, Sun Microsystems. February 2000.

8. G. William Walster, “Implementing the ‘Simple’ Closed Interval System,”

Technical Report, Sun Microsystems. February 2000.

9. G. William Walster, “Interval Angles and the Fortran ATAN2 Intrinsic Function,”

Technical Report, Sun Microsystems. February 2000.

10. G. William Walster, “The ‘Simple’ Closed Interval System,” Technical Report, Sun

Microsystems. February 2000.

11. G. William Walster, Margaret S. Bierman, “Interval Arithmetic in Forte Developer

Fortran,” Technical Report, Sun Microsystems. March 2000.
Chapter 2 f95 Interval Reference 2-91

2-92 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Glossary

affirmative relation An order relation other than certainly, possibly, or set not equal. Affirmative
relations affirm something, such as a < b.

affirmative relational
operators An affirmative relational operator is an element of the set: {<, ≤, =, ≥, >}.

anti-affirmative
relation An anti-affirmative relation is a statement about what cannot be true. The order

relation ≠ is the only anti-affirmative relation in Fortran.

anti-affirmative
relational operator The Fortran .NE. and /= operators implement the anti-affirmative relation.

The certainly, possible, and set versions for interval operands are denoted

.CNE. , .PNE. , and .SNE. , respectively.

assignment statement An assignment statement is a Fortran statement having the form:

V = expr ession. The left-hand side of the assignment statement is the

variable, array element, or array, V.

certainly true
relational operator See relational operators: certainly true.

closed interval A closed interval includes its endpoints. A closed interval is a closed set. The

interval [2, 3] = {z | 2 ≤ z ≤ 3} is closed, because its endpoints are included. The

interval (2, 3) = {z | 2 < z < 3} is open, because its endpoints are not included.

Interval arithmetic, as implemented in f95 , only deals with closed intervals.

closed mathematical
system In a closed mathematical system, there can be no undefined operator-operand

combinations. Any defined operation on elements of a closed system must

produce an element of the system. The real number system is not closed,

because, in this system, division by zero is undefined.
Glossary-1

compact set A compact set contains all limit or accumulation points in the set. That is, given

the set, S, and sequences, , the closure of S is ,

where denotes an accumulation or limit point of the sequence {sj}.

The set of real numbers is {z | -∞ < z < +∞} is not compact. The set of extended

real numbers, , is compact.

composite expression Forming a new expression, f, (the composite expression) from the given

expressions, g and h by the rule f({ }) = g(h({ })) for all singleton sets, { } =

{x1} {xn} in the domain of h for which h is in the domain of g.

Singleton set arguments connote the fact that expressions can be either

functions or relations.

constant expression A constant expression in Fortran contains no variables or arrays. It can contain

constants and operands. The expression [2, 3] + [4, 5] is a constant

expression. If X is a variable, the expression X + [2, 3] is not a constant

expression. If Y is a named constant, Y + [2, 3] is a constant expression.

containment
constraint The containment constraint on the interval evaluation, f([x]), of the expression, f,

at the degenerate interval, [x], is f([x]) ⊇ f(x), where f(x) denotes the

containment set of all possible values that f([x]) must contain. Because the

containment set of 1 / 0 = {-∞, +∞}, [1] / [0] = hull({-∞, +∞}) = [-∞, +∞]. See also

containment set.

containment failure A containment failure is a failure to satisfy the containment constraint. For

example, a containment failure results if [1]/[0] is defined to be [empty]. This

can be seen by considering the interval expression

for X=[0] and Y, given . The containment set of the first expression is [0].

However, if [1]/[0] is defined to be [empty], the second expression is also

[empty]. This is a containment failure.

containment set The containment set, h(x) of the expression h is the smallest set that does not

violate the containment constraint when h is used as a component of any

composition, f({x}) = g(h(x), x).

For h(x, y) = x ÷ y,

h(+∞, +∞) = [0, +∞].

See also f(set).

containment set closure
identity Given any expression f(x) = f(x1, , xn) of n-variables and the point, x0, then

= f({x0}), the closure of f at the point, x0.

sj{ } S∈ S lim j ∞→ s
j

sj S∈{ }=
lim j ∞→

ℜ∗

x x x
…⊗ ⊗

X
X Y+
-------------- 1

1 Y
X
----+

-------------=

0 Y∉

…
f x

˜
()
Glossary-2 Fortran 95 Interval Arithmetic Programming Reference • May 2002

containment set
equivalent Two expressions are containment-set equivalent if their containment sets are

everywhere identical.

context-dependent
INTERVAL constant The internal approximation of an INTERVAL constant under widest-need

expression processing is context dependent, because it is a sharp interval with

KTPV that equals KTPVmax. Any approximation for the interval constant [a, b]

can be used, provided,

[a,b] ⊇ ev([a,b]),

where ev([a,b]) denotes the external value of the interval constant, [a, b].

Choosing any internal approximation is permitted, provided containment is

not violated. For example, the internal approximations, [0.1_4] , [0.1_8] ,

and [0.1_16] , all have external value, ev(0.1) = 1/10, and therefore do not

violate the containment constraint. Under widest-need expression processing

the internal approximation is used that has the same KTPV as KTPVmax.

degenerate interval A degenerate interval is a zero-width interval. A degenerate interval is a

singleton set, the only element of which is a point. In most cases, a degenerate

interval can be thought of as a point. For example, the interval [2, 2] is

degenerate, and the interval [2, 3] is not.

directed rounding Directed rounding is rounding in a particular direction. In the context of interval

arithmetic, rounding up is towards +∞, and rounding down is towards -∞. The

direction of rounding is symbolized by the arrows, ↓ and ↑. Therefore, with

5-digit arithmetic, ↑ 2.00001 = 2.0001. Directed rounding is used to implement

interval arithmetic on computers so that the containment constraint is never

violated.

disjoint interval Two disjoint intervals have no elements in common. The intervals [2, 3] and

[4, 5] are disjoint. The intersection of two disjoint intervals is the empty

interval.

empty interval The empty interval, [empty], is the interval with no members. The empty interval

naturally occurs as the intersection of two disjoint intervals. For example,

[2, 3] ∩ [4,5] = [empty].

empty set The empty set, , is the set with no members. The empty set naturally occurs

as the intersection of two disjoint sets. For example, {2, 3} ∩ {4, 5} = .

ev(literal_constant) The notation ev(literal_constant) is used to denote the external value

defined by a literal constant character string. For example, ev(0.1) = 1/10, in

spite of the fact that an internal approximation of 0.1 must be used, because the

constant 0.1 is not machine representable.

exception In the IEEE 754 floating-point standard, an exception occurs when an attempt is

made to perform an undefined operation, such as division by zero.

∅
∅

Glossary-3

exchangeable
expression Two expressions are exchangeable if they are containment-set equivalent (their

containment sets are everywhere identical).

expression context In widest-need expression processing, the two attributes that define expression
context are the expression’s type and the maximum KTPV (KTPVmax).

expression processing:
strict See strict expression processing.

expression processing:
widest-need See widest-need expression processing.

extended interval The term extended interval refers to intervals whose endpoints can be extended

real numbers, including -∞ and +∞. For completeness, the empty interval is

also included in the set of extended real intervals.

external
representation The external representation of a Fortran data item is the character string used to

define it during input data conversion, or the character string used to display it

after output data conversion.

external value The external value of a Fortran literal constant is the mathematical value defined

by the literal constant’s character string. The external value of a literal constant

is not necessarily the same as the constant’s internal approximation, which, in

the Fortran standard, is the only defined value of a literal constant. See

ev(literal_constant).

f(set) The notation, f(set), is used to symbolically represent the containment set of an

expression evaluated over a set of arguments. For example, for the expression,

f(x, y) = xy, the containment constraint that the interval expression [0] × [+∞]

must satisfy is

[0] × [+∞] ⊇ = [-∞, +∞].

hull See interval hull.

infimum
(plural, infima) The infimum of a set of numbers is the set’s greatest lower bound. This is either

the smallest number in the set or the largest number that is less than all the

numbers in the set. The infimum, inf([a, b]), of the interval constant [a, b] is a.

interval algorithm An interval algorithm is a sequence of operations used to compute an interval

result.

internal
approximation In Fortran, the internal approximation of a literal constant is a machine

representable value. There is no internal approximation accuracy requirement

in the Fortran standard.

interval arithmetic Interval arithmetic is the system of arithmetic used to compute with intervals.
Glossary-4 Fortran 95 Interval Arithmetic Programming Reference • May 2002

interval box An interval box is a parallelepiped with sides parallel to the n-dimensional

Cartesian coordinate axes. An interval box is conveniently represented using

an n-dimensional interval vector, X = (X1,..., Xn)T.

INTERVAL constant An INTERVAL constant is the closed corrected set: [a, b] ={z | a ≤ z ≤ b} defined

by the pair of numbers, a ≤ b.

INTERVAL constant’s
external value An INTERVAL constant’s external value is the mathematical value defined by the

interval constant’s character string. See also external value.

INTERVAL
constant’s internal

approximation In f95 , an INTERVAL constant’s internal approximation is the sharp internal

approximation of the constant’s external value. Therefore, it is the narrowest

possible machine representable interval that contains the constant’s external

value.

interval hull The interval hull operator, , on a pair of intervals ,

is the smallest interval that contains both X and Y (also represented as

). For example,

[2, 3] [5, 6] = [2, 6].

INTERVAL-specific
function In f95 , an INTERVAL-specific function is an interval function that is not an

interval version of a standard Fortran function. For example, WID, MID, INF ,

and SUP, are INTERVAL-specific functions.

interval width Interval width, w([a, b]) = b - a.

intrinsic INTERVAL
data type In Fortran, there are four intrinsic numeric data types: INTEGER, REAL,

DOUBLE PRECISION REAL, and COMPLEX. With the command line option -xia
or -xinterval , f95 recognizes INTERVAL as an intrinsic data type.

intrinsic INTERVAL-
specific function In f95 , there are a variety of intrinsic INTERVAL-specific functions, including:

WID, HULL, MID, INF , and SUP.

kind type parameter
value (KTPV) In Fortran, each intrinsic data type is parameterized using a kind type parameter

value (KTPV), which selects the kind (precision) of the data type. In f95 , there

are three INTERVAL KTPVs: 4, 8, and 16. The default interval KTPV is 8.

KTPV (kind type
parameter value) See kind type parameter value (KTPV).

KTPVmax In widest-need expression processing of interval expressions, all intervals are

converted to the maximum value of the KTPV of any data item in the

expression. This maximum value is given the name KTPVmax.

∪ X x x,[] Yand y y,[]= =

X Y∪()inf X Y∪()sup,[]

∪

Glossary-5

left endpoint The left endpoint of an interval is the same as its infimum or lower bound.

literal constant In f95 , an interval literal constant is the character string used to define the

constant’s external value.

literal constant’s
external value In f95 , an interval literal constant’s external value is the mathematical value

defined by the constant’s character string. See also external value.

literal constant’s
internal

approximation In f95 , an interval literal constant’s internal approximation is the sharp machine

representable interval that contains the constant’s external value.

lower bound See infimum (plural, infima).

mantissa When written in scientific notation, a number consists of a mantissa or

significand and an exponent power of 10. The E edit descriptor in Fortran

displays numbers in terms of a mantissa or significand and an exponent, or

power of 10.

mixed-KTPV INTERVAL
expression A mixed-KTPV INTERVAL expression contains constants and/or variables with

different KTPVs. For example, [1_4] + [0.2_8] is a mixed-KTPV INTERVAL
expression. Mixed-KTPV interval expressions are permitted under widest-need

expression processing, but are not permitted under strict expression

processing.

mixed-mode (type and
KTPV) INTERVAL

expression A mixed-mode INTERVAL expression contains data items of different types and

KTPV. For example, the expression [0.1] + 0.2 is a mixed-mode expression.

[0.1] is an INTERVAL constant with KTPV = 8, while 0.2 is a REALconstant

with KTPV = 4.

mixed-type INTERVAL
expression A mixed-type INTERVAL expression contains data items of different types. For

example, the expression [0.1] + 0.2D0 is a mixed-type INTERVAL expression,

because [0.1] is an INTERVAL, and 0.2D0 is a DOUBLE PRECISIONconstant.

They both have the same KTPV = 8.

multiple-use expression
(MUE) A multiple-use expression (MUE) is an expression in which at least one

independent variable appears more than once.

named constant A named constant is declared and initialized in a PARAMETERstatement.

Because the value of a named constant is not context dependent, a more

appropriate name for a data item in a PARAMETERdeclaration is “read-only

variable.”
Glossary-6 Fortran 95 Interval Arithmetic Programming Reference • May 2002

narrow-width
interval Let the interval [a, b] be an approximation of the value . If w[a, b] =

b - a, is small, [a, b] is a narrow-width interval. The narrower the width of the

interval [a, b], the more accurately [a, b] approximates ν. See also sharp
interval result.

opaque data type An opaque data type leaves the structure of internal approximations unspecified.

INTERVAL data items are opaque. Therefore, programmers cannot count on

INTERVAL data items being internally represented in any particular way. The

intrinsic functions INF and SUPprovide access to the components of an

interval. The INTERVAL constructor can be used to manually construct any

valid interval.

point A point (as opposed to an interval), is a number. A point in n-dimensional

space, is represented using an n-dimensional vector, x = (x1,..., xn)T. A point and

a degenerate interval, or interval vector, can be thought of as the same. Strictly,

any interval is a set, the elements of which are points.

possibly true relational
operators See relational operators: possibly true.

quality of
implementation Quality of implementation, is a phrase used to characterize properties of

compiler support for intervals. Narrow width is a new quality of

implementation opportunity provided by intrinsic compiler support for

INTERVAL data types.

radix conversion Radix conversion is the process of converting back and forth between external

decimal numbers and internal binary numbers. Radix conversion takes place in

formatted and list-directed input/output. Because the same numbers are not

always representable in the binary and decimal number systems, guaranteeing

containment requires directed rounding during radix conversion.

read-only variable A read-only variable is not a defined construct in standard Fortran. Nevertheless,

a read-only variable is a variable, the value of which cannot be changed once it

is initialized. In standard Fortran, without interval support, there is no need to

distinguish between a named constant and a read-only variable. Because

widest-need expression processing uses the external value of constants, the

distinction between a read-only variable and a named constant must be made.

As implemented in f95 , the symbolic name that is initialized in a PARAMETER
declaration is a read-only variable.

relational operators:
certainly true The certainly true relational operators are {.CLT., .CLE., .CEQ., .CNE., .CGE., .CGT.}.

Certainly true relational operators are true if the relation in question is true for

all elements in the operand intervals. That is [a, b] .Cop. [c, d] = true if x .op. y =

true for all .

For example, [a, b] .CLT. [c, d] if b < c.

ν a b,[]∈

x a b,[]∈ andy c d,[]∈
Glossary-7

relational operators:
possibly true The possibly true relational operators are {.PLT., .PLE., .PEQ., .PNE., .PGE., .PGT.}.

Possibly true relational operators are true if the relation in question is true for

any elements in operand intervals. For example, [a, b] .PLT. [c, d] if a < d.

relational operators:
set The set relational operators are {.SLT., .SLE., .SEQ., .SNE., .SGE., .SGT.}. Set

relational operators are true if the relation in question is true for the endpoints

of the intervals. For example, [a, b] .SEQ. [c, d] if (a = c) and (b = d).

right endpoint See supremum (plural, suprema).

scope of widest-need
expression processing See widest-need expression processing: scope.

set theoretic Set theoretic is the means of or pertaining to the algebra of sets.

sharp interval result A sharp interval result has a width that is as narrow as possible. A sharp

interval result is equal to the hull of an expression’s containment. Given the

limitations imposed by a particular finite precision arithmetic, a sharp interval

result is the narrowest possible finite precision interval that contains the

expression’s containment set.

single-number
input/output Single-number input/output, uses the single-number external representation for

an interval, in which the interval [-1, +1]uld is implicitly added to the last

displayed digit. The subscript uld is an acronym for unit in the last digit. For

example 0.12300 represents the interval 0.12300 + [-1, +1]uld = [0.12299,

0.12301].

single-number
INTERVAL data

conversion Single-number INTERVAL data conversion is used by the Y edit descriptor to read

and display external intervals using the single-number representation. See

single-number input/output.

single-use expression
(SUE) A single-use expression (SUE) is an expression in which each variable only

occurs once. For example

is a single use expression, whereas

is not.

1

1 Y
X
----+

X
X Y+

Glossary-8 Fortran 95 Interval Arithmetic Programming Reference • May 2002

strict expression
processing Under strict expression processing, no automatic type or KTPV changes are made

by the compiler. Mixed type and mixed KTPV INTERVAL expressions are not

allowed. Any type and/or KTPV changes must be explicitly programmed.

supremum
(plural, suprema) The supremum of a set of numbers is the set’s least upper bound. This is either

the largest number in the set or the smallest number that is greater than all the

numbers in the set. The supremum, sup([a, b]), of the interval constant [a, b] is b.

unit in the last digit
(uld) In single number input/output, one unit in the last digit (uld) is added to and

subtracted from the last displayed digit to implicitly construct an interval.

unit in the last place
(ulp) One unit in the last place (ulp) of an internal machine number is the smallest

possible increment or decrement that can be made using the machine’s

arithmetic. Therefore, if the width of a computed interval is 1-ulp, this is the

narrowest possible non-degenerate interval with a given KTPV.

upper bound See supremum (plural, suprema).

valid interval result A valid interval result, [a, b] must satisfy two requirements:

■ a ≤ b
■ [a, b] must not violate the containment constraint

value assignment In Fortran, an assignment statement computes the value of the expression to

the right of the assignment of value operator, =, and stores the value in the

variable, array element, or array to the left of the assignment of value operator.

widest-need expression
processing Under widest-need expression processing, automatic type and KTPV changes are

made by the compiler. Any non-interval subexpressions are promoted to

intervals and KTPVs are set to KTPVmax.

widest-need expression
processing: scope In Fortran, scope refers to that part of an executable program where data

and/or operations are defined and unambiguous. The scope of widest-need

expression processing is limited by calls to functions and subroutines.
Glossary-9

Glossary-10 Fortran 95 Interval Arithmetic Programming Reference • May 2002

Index
SYMBOLS
.CEQ. , 2-17

.CGE. , 2-17

.CGT. , 2-17

.CLE. , 2-17

.CLT. , 2-17

.CNE. , 2-17

.DJ. , 2-17, 2-25

.DSUB. , 2-23

.EQ. , 2-17

.IH. , 2-16, 2-24

.IN. , 2-17, 2-25

.INT. , 2-26

.IX. , 2-16, 2-24

.NEQ. , 2-17

.PEQ. , 2-17

.PGT. , 2-17

.PLE. , 2-17

.PLT. , 2-17

.PNE. , 2-17

.PSB. , 2-17, 2-27

.PSP. , 2-17, 2-27

.SB. , 2-17, 2-27

.SEQ. , 2-17

.SGE. , 2-17

.SGT. , 2-17

.SLE. , 2-17

.SLT. , 2-17

.SNE. , 2-17

.SP. , 2-17, 2-27

A
ABS, 2-8, 2-87

accessible documentation, xxi

ACOS, 2-8, 2-88

affirmative relation, Glossary-1

affirmative relational operators, Glossary-1

AINT , 2-8, 2-87

ALLOCATED, 2-8

ANINT, 2-8, 2-87

-ansi , 2-13

anti-affirmative relation, Glossary-1

anti-affirmative relational operator, Glossary-1

arithmetic expressions, 1-17

arithmetic operators, 2-17

formulas, 2-18

arrays

INTERVAL, 2-8

see also INTERVAL array functions, 2-8

ASIN, 2-8, 2-88

assignment statement, Glossary-1

assignment statements

evaluating with widest-need, 2-10

INTERVAL, 2-10

ASSOCIATED, 2-8

ATAN, 2-8, 2-88

ATAN2, 2-8, 2-88

indeterminate forms, 2-82

attribute

IMPLICIT , 2-57

PARAMETER, 2-58

-autopar , 1-27
Index-1

B
base conversion, 1-12, 2-80

binary files, 1-27

BZ edit descriptor, 2-67

C
CEILING , 2-8, 2-87

certainly relational operators, 2-17, 2-30

certainly-relation, 1-19

character set notation

constants, 2-2

closed interval, Glossary-1

closed mathematical system, 1-4, Glossary-1

code examples

location, 1-5

naming convention, 1-5

command-line macro, 1-5

command-line options

-ansi , 2-13

-autopar , 1-27

effect on KTPV, 2-7

-explicitpar , 1-27

-fns , 2-13

-fround , 2-13

-fsimple , 2-13

-ftrap , 2-13

-r8const , 2-13

-xia , 1-5, 2-12

-xia=strict , 1-5

-xia=widestneed , 1-5

-xinterval , 2-12

-xtypemap , 2-13

compact set, Glossary-2

compilers, accessing, xvii

composite expression, Glossary-2

constant expression, Glossary-2

constants

character set notation, 2-2

external value, 2-4

literal, 2-1

named, 2-1, 2-58

strict interval expression processing, 2-4

constructor functions

KTPV-specific names, 2-46

containment constraint, Glossary-2

containment failure, 1-2, Glossary-2

errors, 1-30

containment set, 2-18, Glossary-2

containment set equivalent, Glossary-3

containment-set closure identity, 2-18

context-dependent INTERVAL constant, Glossary-3

COS, 2-8, 2-88

COSH, 2-8, 2-88

cset

see containment set

CSHIFT, 2-8

D
D edit descriptor, 2-62

DATA, 2-53

data

INTERVAL data type, 2-7

representing intervals, 1-7

dbx , 1-3, 1-25

debugging tools

dbx , 1-3, 1-25

GPC, 1-3, 1-25

default INTEGER KTPV, 1-6

default KTPV, 1-13

degenerate interval, 2-2, Glossary-3

representation, 1-11

DINTERVAL, 2-8, 2-86

directed rounding, 2-2, 2-18, Glossary-3

disjoint interval, Glossary-3

disjoint set relation, 2-25

display format

inf, sup, 1-11

DIVIX function, 2-81, 2-90

documentation index, xx

documentation, accessing, xx

DOT_PRODUCT, 2-8

DSUB, dependent subtraction operator, 2-23

E
E edit descriptor, 2-74

edit descriptors

BZ, 2-67

D, 2-62

E, 2-74

F, 2-74

forms, 2-62

G, 2-75
Index-2 Fortran 95 Interval Arithmetic Programming Reference • May 2002

input fields, 2-62

list-directed output, 2-63, 2-80

P, 2-68

repeatable, 2-54

summary, 2-68

VE, 2-76

VEN, 2-76

VES, 2-77

VF, 2-78

VG, 2-79

w, d, e parameters, 2-64

element set relation, 2-25

empty interval, Glossary-3

empty set, Glossary-3

endpoint type

internal type conversions, 2-2

EOSHIFT, 2-8

EQUIVALENCE statement, 2-53

restrictions, 2-53

errors

containment failure, 1-30

error detection, 1-28

integer overflow, 1-30

ev(literal_constant), Glossary-3

exceptions, Glossary-3

exchangeable expression, Glossary-4

EXP, 2-8, 2-89

-explicitpar , 1-27

expression context, 1-15, Glossary-4

expression evaluation

mixed-type, 1-14

expression processing

mixed-mode, 1-4

strict, 1-15

widest-need, 1-15

expressions

composite, Glossary-2

constant, Glossary-2

INTERVAL, 2-8

INTERVAL constant, 2-15

mixed type and KTPV, 1-16

extended interval, Glossary-4

extended operators

widest-need expression processing, 2-40

extending intrinsic INTERVAL operators, 2-32

external functions, 2-55

external representation, Glossary-4

external value, 2-3, 2-4, Glossary-4

notation, 2-3

F
F edit descriptor, 2-74

f(set), Glossary-4

f95 interval support features, 1-4

FLOOR, 2-8, 2-87

-fns , 2-13

FORMAT, 1-13, 2-54

formatted input, 2-65

Fortran INTERVAL extensions, 2-1

-fround , 2-13

-fsimple , 2-13

-ftrap , 2-13

FUNCTION, 2-55

functions

constructor, 2-46

external, 2-55

statement, 2-60

G
G edit descriptor, 2-75

global program checking (GPC), 1-3, 1-25

-Xlistf , 1-26

H
hull

see INTERVAL hull

I
implementation quality, 1-2

IMPLICIT attribute, 2-57

indeterminate forms

ATAN2, 2-82

power operator, 2-22

INF , 2-8, 2-89

inf, sup display format, 1-11

infima, 1-8

infimum, 2-4, Glossary-4

input list, 2-63

input/output

entering INTERVAL data, 1-7

formatted input, 2-65

list-directed input, 2-63

list-directed output, 2-80
Index-3

single number, 1-4, 1-8, 1-10

single-number, 2-80

unformatted input/output, 2-79

integer overflow, 1-30

INTERFACE, 2-32

interior set relation, 2-26

internal approximation, 2-6, Glossary-4

intersection set theoretic operator, 2-16, 2-23, 2-24

INTERVAL, 1-13, 2-6, 2-8, 2-43

alignment, 2-7

arrays, 2-8

assignment statements, 2-10

expressions, 2-8

size, 2-7

interval algorithm, Glossary-4

interval arithmetic, 1-1, Glossary-4

INTERVAL arithmetic functions

ABS, 2-87

AINT , 2-87

ANINT, 2-87

MAX, 2-84, 2-87

MIN, 2-84, 2-87

MOD, 2-87

SIGN, 2-87

VDABS, 2-87

VDINT, 2-87

VDMOD, 2-87

VDNINT, 2-87

VDSIGN, 2-87

VQABS, 2-87

VQINT, 2-87

VQNINT, 2-87

VSABS, 2-87

VSINT, 2-87

VSMOD, 2-87

VSNINT, 2-87

VSSIGN, 2-87

INTERVAL arithmetic operations, 1-4

INTERVAL array functions, 1-27

ABS, 2-8

ACOS, 2-8

AINT , 2-8

ALLOCATED, 2-8

ANINT, 2-8

ASIN, 2-8

ASSOCIATED, 2-8

ATAN, 2-8

ATAN2, 2-8

CEILING , 2-8

COS, 2-8

COSH, 2-8

CSHIFT, 2-8

DINTERVAL, 2-8

DOT_PRODUCT, 2-8

EOSHIFT, 2-8

EXP, 2-8

FLOOR, 2-8

INF , 2-8

INTERVAL, 2-8

KIND, 2-8

LBOUND, 2-8

LOG, 2-8

LOG10, 2-8

MAG, 2-8

MATMUL, 2-8

MAX, 2-8

MAXLOC, 2-8

MAXVAL, 2-8

MERGE, 2-8

MID, 2-8

MIG, 2-8

MIN, 2-8

MINLOC, 2-8

MINVAL, 2-8

MOD, 2-8

NDIGITS , 2-8

NULL, 2-8

PACK, 2-8

PRODUCT, 2-8

QINTERVAL, 2-8

RESHAPE, 2-8

SHAPE, 2-8

SIGN, 2-8

SIN , 2-8

SINH, 2-8

SINTERVAL, 2-8

SIZE , 2-8

SPREAD, 2-8

SQRT, 2-8

SUM, 2-8

SUP, 2-8

TAN, 2-8

TANH, 2-8

TRANSPOSE, 2-8

UBOUND, 2-8

UNPACK, 2-8

WID, 2-8

INTERVAL assignment statements, 1-14, 2-10
Index-4 Fortran 95 Interval Arithmetic Programming Reference • May 2002

interval box, Glossary-5

INTERVAL constant expressions, 2-15

INTERVAL constants, 1-4, Glossary-5

external value, Glossary-5

internal approximation, 2-6, Glossary-5

KTPV, 2-3

strict expression processing, 2-4

strict interval expression processing, 2-4

type, 2-2

widest-need interval expression processing, 2-4

INTERVAL data type, 1-4

INTERVAL expressions, 1-12, 2-8

INTERVAL hull, 2-16, Glossary-5

INTERVAL hull set theoretic operator, 2-24

INTERVAL input

input fields, 2-62

INTERVAL input/output, 1-7

INTERVAL library, 1-27

INTERVAL mathematical functions

EXP, 2-89

LOG, 2-89

LOG10, 2-89

SQRT, 2-89

VDEXP, 2-89

VDLOG, 2-89

VDLOG10, 2-89

VDSQRT, 2-89

VSEXP, 2-89

VSLOG, 2-89

VSLOG10, 2-89

VSSQRT, 2-89

interval order relations, 1-19

certainly, 1-19

definitions, 2-29

possibly, 1-19

set, 1-19

INTERVAL relational operators, 1-4, 2-17

.CEQ. , 2-17

.CGE. , 2-17

.CGT. , 2-17

.CLE. , 2-17

.CLT. , 2-17

.CNE. , 2-17

.DJ. , 2-17

.EQ. , 2-17

.IN. , 2-17

.NEQ. , 2-17

.PEQ. , 2-17

.PGT. , 2-17

.PLE. , 2-17

.PLT. , 2-17

.PNE. , 2-17

.PSB. , 2-17

.PSP. , 2-17

.SB. , 2-17

.SEQ. , 2-17

.SGE. , 2-17

.SGT. , 2-17

.SLE. , 2-17

.SLT. , 2-17

.SNE. , 2-17

.SP. , 2-17

interval resources

code examples, xv

email, xv

papers, xiv

web sites, xv

INTERVAL- specific operators, 1-4

INTERVAL statements, 1-12, 2-50

interval support

performance, 1-3

INTERVAL support goals, 1-2

INTERVAL trigonometric functions

ACOS, 2-88

ASIN, 2-88

ATAN, 2-88

ATAN2, 2-88

COS, 2-88

COSH, 2-88

SIN , 2-88

SINH, 2-88

TAN, 2-88

TANH, 2-88

VDACOS, 2-88

VDASIN, 2-88

VDATAN, 2-88

VDATAN2, 2-88

VDCOS, 2-88

VDCOSH, 2-88

VDSIN, 2-88

VDSINH, 2-88

VDTAN, 2-88

VDTANH, 2-88

VSACOS, 2-88

VSASIN, 2-88

VSATAN, 2-88

VSATAN2, 2-88

VSCOS, 2-88
Index-5

VSCOSH, 2-88

VSSIN, 2-88

VSSINH, 2-88

VSTAN, 2-88

VSTANH, 2-88

INTERVAL type conversion functions

DINTERVAL, 2-86

INTERVAL, 2-86

QINTERVAL, 2-86

SINTERVAL, 2-86

INTERVAL variables

declaring and initializing, 2-51

interval width, Glossary-5

narrow, 1-1, 1-3, Glossary-7

related to base conversion, 2-80

sharp, 1-3

intervals

f95 interval support features, 1-4

goals of compiler support, 1-1

input/output, 1-7

INTERVAL-specific functions, 1-4, 1-23, Glossary-5

CEILING , 2-87

DIVIX , 2-81, 2-90

FLOOR, 2-87

INF , 2-89

ISEMPTY, 2-90

MAG, 2-89

MID, 2-89

MIG, 2-90

NDIGITS , 2-90

PRECISION, 2-87

RANGE, 2-87

SUP, 2-89

VDDIVIX , 2-90

VDINF, 2-89

VDISEMPTY, 2-90

VDMAG, 2-89

VDMID, 2-89

VDMIG, 2-90

VDSUP, 2-89

VDWID, 2-89

VQDIVIX , 2-90

VQINF, 2-89

VQISEMPTY, 2-90

VQMAG, 2-89

VQMID, 2-89

VQMIG, 2-90

VQSUP, 2-89

VQWID, 2-89

VSDIVIX , 2-90

VSINF, 2-89

VSISEMPTY, 2-90

VSMAG, 2-89

VSMID, 2-89

VSMIG, 2-90

VSSUP, 2-89

VSWID, 2-89

WID, 2-89

intrinsic f95 interval support, 1-2

intrinsic functions

INTERVAL, 1-23

properties, 2-85

standard, 1-24

VS,VD,VQ prefixes, 2-85

intrinsic INTERVAL data type, Glossary-5

intrinsic INTERVAL-specific function, Glossary-5

intrinsic operators, 2-16

arithmetic, 2-17

precedence of operators, 2-16

relational, 2-17

INTRINSIC statement, 2-57

ISEMPTY, 2-90

K
KIND, 2-8

kind type parameter value (KTPV), Glossary-5

alignment, 2-7

default values, 1-6, 1-13, 2-7

INTERVAL constant, 2-3

size, 2-7

specific constructor function names, 2-46

KTPVmax, 2-9, Glossary-5

L
LBOUND, 2-8

libraries

INTERVAL functions, 1-27

interval support, 1-27

list-directed input, 2-63

input list, 2-63

list-directed output, 2-80
Index-6 Fortran 95 Interval Arithmetic Programming Reference • May 2002

literal constants, 1-13, 2-1, Glossary-6

external value, Glossary-6

internal approximation, Glossary-6

LOG, 2-8, 2-89

LOG10, 2-8, 2-89

M
MAG, 2-8, 2-89

man pages, accessing, xvii

MANPATH environment variable, setting, xix

mantissa, Glossary-6

MATMUL, 2-8

MAX, 2-8, 2-84, 2-87

MAXLOC, 2-8

MAXVAL, 2-8

MERGE, 2-8

MID, 2-8, 2-89

MIG, 2-8, 2-90

MIN, 2-8, 2-84, 2-87

MINLOC, 2-8

MINVAL, 2-8

mixed-KTPV INTERVAL expression, Glossary-6

mixed-mode expression evaluation, 1-4

mixed-mode expressions

non-INTERVAL named constant compiler

warning, 2-58

type and KTPV, 1-16, Glossary-6

widest-need expression processing, 2-9

mixed-type expression evaluation, 1-14

mixed-type INTERVAL expressions, 1-14,

Glossary-6

MOD, 2-8, 2-87

multiple-use expression (MUE), Glossary-6

N
named constant, 1-13, 2-58, Glossary-6

named constants, 2-1

NAMELIST statement, 2-57

narrow intervals, 1-1, 1-3, Glossary-7

NDIGITS , 2-8, 2-90

non-INTERVAL named constants

mixed-mode expressions, 2-58

NULL, 2-8

O
online interval resources, xv

opaque

data type, Glossary-7

INTERVAL type, 2-7

operator precedence, 2-16

operators

arithmetic, 2-17

extending, 2-32

intrinsic, 2-16

power, 2-21

relational, 2-17

P
P edit descriptor, 2-68

PACK, 2-8

PARAMETER, 1-13

PARAMETER attribute, 2-58

parameters, named constants, 2-58

PATH environment variable, setting, xviii

performance, 1-3

point, Glossary-7

POINTER statement, 2-59

porting code, 1-27

possibly relational operators, 2-17, 2-31

possibly-relation, 1-19

power operator, 2-21

containment failure, 1-32

indeterminate forms, 2-22

singularities, 2-22

precedence of intrinsic operators, 2-16

PRECISION, 2-87

processing expressions

widest-need expression processing, 1-18

PRODUCT, 2-8

proper subset set relation, 2-27

proper superset set relation, 2-27

Q
QINTERVAL, 2-8, 2-86

quality of implementation, 1-2, Glossary-7
Index-7

R
-r8const , 2-13

radix conversion, 1-12, Glossary-7

RANDOM_NUMBER(HARVEST) subroutine, 2-90

RANGE, 2-87

READ statement, 2-61

read-only variable, Glossary-7

relational operators, 2-28

certainly true, Glossary-7

possibly true, Glossary-8

set, Glossary-8

RESHAPE, 2-8

S
scale factor, 2-68

semantics, 1-4

set relational operators, 2-17, 2-30

set relations, 2-25

disjoint, 2-25

element, 2-25

interior, 2-26

proper subset, 2-27

proper superset, 2-27

subset, 2-27

superset, 2-27

set theoretic, Glossary-8

set theoretic operators, 2-24

dependent subtraction, 2-23

INTERVAL hull, 2-16, 2-24

INTERVAL intersection, 2-16, 2-24

set-relations, 1-19

set-theoretic functions, 1-13

SHAPE, 2-8

sharp intervals, 1-3, Glossary-8

shell prompts, xvii

SIGN, 2-8, 2-87

SIN , 2-8, 2-88

single-number editing, Y edit descriptors

single-number editing, 2-69

single-number input/output, 1-4, 1-8, 2-80,

Glossary-8

single-number INTERVAL data

conversion, Glossary-8

single-number interval format, 1-10

single-number interval representation

precision, 2-69

single-use expression

see SUE

singularities

power operator, 2-22

SINH, 2-8, 2-88

SINTERVAL, 2-8, 2-86

SIZE , 2-8

SPREAD, 2-8

SQRT, 2-8, 2-89

standard intrinsic functions, 1-24

statement function, 2-60

statements

DATA, 2-53

EQUIVALENCE, 2-53

FORMAT, 1-13, 2-54

FUNCTION, 2-55

INTERFACE, 2-32

INTERVAL, 1-13, 2-6, 2-43, 2-50

INTRINSIC , 2-57

NAMELIST, 2-57

PARAMETER, 1-13

POINTER, 2-59

READ, 2-61

type, 2-60

WRITE, 2-61

strict expression processing, 1-5, 1-15, Glossary-9

subroutine, RANDOM_NUMBER(HARVEST), 2-90
subset set relation, 2-27

SUE, 2-22, Glossary-8

SUM, 2-8

SUP, 2-8, 2-89

superset set relation, 2-27

suprema, 1-8

supremum, 2-4, Glossary-9

syntax, 1-4

T
TAN, 2-8, 2-88

TANH, 2-8, 2-88

The, 2-49

TRANSPOSE, 2-8

type declaration, 2-50

type declaration statements

INTERVAL, 2-50

type statement, 2-60

typographic conventions, xvi
Index-8 Fortran 95 Interval Arithmetic Programming Reference • May 2002

U
UBOUND, 2-8

uld, 1-11, Glossary-9

ulp, 1-7, 1-12, Glossary-9

unformatted input/output, 2-79

unit in last digit

see uld

unit in last place

see ulp

UNPACK, 2-8

V
valid interval result, Glossary-9

value assignment, 1-13, Glossary-9

variables, INTERVAL, 2-51

VDABS, 2-87

VDACOS, 2-88

VDASIN, 2-88

VDATAN, 2-88

VDATAN2, 2-88

VDCOS, 2-88

VDCOSH, 2-88

VDDIVIX , 2-90

VDEXP, 2-89

VDINF, 2-89

VDINT, 2-87

VDISEMPTY, 2-90

VDLOG, 2-89

VDLOG10, 2-89

VDMAG, 2-89

VDMID, 2-89

VDMIG, 2-90

VDMOD, 2-87

VDNINT, 2-87

VDSIGN, 2-87

VDSIN, 2-88

VDSINH, 2-88

VDSQRT, 2-89

VDSUP, 2-89

VDTAN, 2-88

VDTANH, 2-88

VDWID, 2-89

VE edit descriptor, 2-76

VEN edit descriptor, 2-76

VES edit descriptor, 2-77

VF edit descriptor, 2-78

VG edit descriptor, 2-79

VQABS, 2-87

VQDIVIX , 2-90

VQINF, 2-89

VQINT, 2-87

VQISEMPTY, 2-90

VQMAG, 2-89

VQMID, 2-89

VQMIG, 2-90

VQNINT, 2-87

VQSUP, 2-89

VQWID, 2-89

VSABS, 2-87

VSACOS, 2-88

VSASIN, 2-88

VSATAN, 2-88

VSATAN2, 2-88

VSCOS, 2-88

VSCOSH, 2-88

VSDIVIX , 2-90

VSEXP, 2-89

VSINF, 2-89

VSINT, 2-87

VSISEMPTY, 2-90

VSLOG, 2-89

VSLOG10, 2-89

VSMAG, 2-89

VSMID, 2-89

VSMIG, 2-90

VSMOD, 2-87

VSNINT, 2-87

VSSIGN, 2-87

VSSIN, 2-88

VSSINH, 2-88

VSSQRT, 2-89

VSSUP, 2-89

VSTAN, 2-88

VSTANH, 2-88

VSWID, 2-89
Index-9

W
WID, 2-8, 2-89

widest-need expression processing, 1-15,

Glossary-9

command-line option, 1-5

evaluating assignment statements, 2-10

evaluating expressions, 1-18

extended operators, 2-40

limiting scope, 2-44

mixed-mode expressions, 2-9

scope, Glossary-9

steps, 1-16

WRITE statement, 2-61

X
X**N , 2-21

X**Y , 2-21

-xia , 2-12

-xinterval , 2-12

-Xlistf GPC example, 1-26

-xtypemap , 2-13
Index-10 Fortran 95 Interval Arithmetic Programming Reference • May 2002

	Fortran 95 Interval Arithmetic Programming Reference™
	Contents
	Tables
	Code Samples
	Before You Begin
	Who Should Use This Book
	How This Book Is Organized
	What Is Not in This Book
	Related Interval References
	Online Resources
	Web Sites
	Email
	Code Examples

	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Compilers and Tools
	Accessing Forte Developer Man Pages

	Accessing Forte Developer Documentation
	Product Documentation in Accessible Formats

	Accessing Related Solaris Documentation
	Sending Your Comments

	Using Interval Arithmetic With f95
	1.1 f95 INTERVAL Type and Interval Arithmetic Support
	1.2 f95 Interval Support Goal: Implementation Quality
	1.2.1 Quality Interval Code
	1.2.2 Narrow-Width Interval Results
	1.2.3 Rapidly Executing Interval Code
	1.2.4 Easy to Use Development Environment

	1.3 Writing Interval Code for f95
	1.3.1 Command-Line Options
	1.3.2 Hello Interval World
	1.3.3 Interval Declaration and Initialization
	1.3.4 INTERVAL Input/Output
	1.3.5 Single-Number Input/Output
	1.3.6 Interval Statements and Expressions
	1.3.7 Default Kind Type Parameter Value (KTPV)
	1.3.8 Value Assignment V = expr
	1.3.9 Mixed-Type Expression Evaluation
	1.3.9.1 Widest-Need and Strict Expression Processing
	1.3.9.2 Mixed-Mode (Type and KTPV) Expressions

	1.3.10 Arithmetic Expressions
	1.3.11 Interval Order Relations
	1.3.12 Intrinsic INTERVAL-Specific Functions
	1.3.13 Interval Versions of Standard Intrinsic Functions

	1.4 Code Development Tools
	1.4.1 Debugging Support
	1.4.2 Global Program Checking
	1.4.3 Interval Functionality Provided in Sun Fortran Libraries
	1.4.4 Porting Code and Binary Files
	1.4.5 Parallelization

	1.5 Error Detection
	1.5.1 Known Containment Failures
	1.5.1.1 Integer Overflow

	f95 Interval Reference
	2.1 Fortran Extensions
	2.1.1 Character Set Notation
	2.1.2 INTERVAL Constants
	2.1.3 Internal Approximation
	2.1.4 INTERVAL Statement

	2.2 Data Type and Data Items
	2.2.1 Name: INTERVAL
	2.2.2 Kind Type Parameter Value (KTPV)
	2.2.2.1 Size and Alignment Summary

	2.2.3 INTERVAL Arrays

	2.3 INTERVAL Arithmetic Expressions
	2.3.1 Mixed�Mode INTERVAL Expressions
	2.3.2 Value Assignment
	2.3.3 Interval Command�Line Options
	2.3.3.1 �xtypemap and �r8const Command�Line Options

	2.3.4 Constant Expressions

	2.4 Intrinsic Operators
	2.4.1 Arithmetic Operators +, –, *, /

	2.5 Power Operators X**N and X**Y
	2.6 Dependent Subtraction Operator
	2.7 Set Theoretic Operators
	2.7.1 Hull: X » Y or (X.IH.Y)
	2.7.2 Intersection: X«Y or (X.IX.Y)

	2.8 Set Relations
	2.8.1 Disjoint: X «Y = Æ or (X .DJ. Y)
	2.8.2 Element: r Œ Y or (R.IN. Y)
	2.8.3 Interior: (X�.INT.�Y)
	2.8.4 Proper Subset: X Ã Y or (X .PSB. Y)
	2.8.5 Proper Superset: X … Y or (X .PSP. Y)
	2.8.6 Subset: X Õ Y or (X .SB. Y)
	2.8.7 Superset: X Y or (X .SP. Y)
	2.8.8 Relational Operators
	2.8.8.1 Set Relational Operators
	2.8.8.2 Certainly Relational Operators
	2.8.8.3 Possibly Relational Operators

	2.9 Extending Intrinsic INTERVAL Operators
	2.9.1 Extended Operators With Widest�Need Evaluation
	2.9.2 INTERVAL (X [,Y, KIND])
	2.9.2.1 Limiting the Scope of Widest�Need
	2.9.2.2 KTPV�Specific Names of Intrinsic INTERVAL Constructor Functions
	2.9.2.3 Intrinsic INTERVAL Constructor Function Conversion Examples

	2.9.3 Specific Names for Intrinsic Generic INTERVAL Functions

	2.10 INTERVAL Statements
	2.10.1 Type Declaration
	2.10.1.1 INTERVAL
	2.10.1.2 INTERVAL(n), for n Œ{4, 8, 16}
	2.10.1.3 DATA Statements
	2.10.1.4 EQUIVALENCE Statements
	2.10.1.5 FORMAT Statements
	2.10.1.6 FUNCTION (External)
	2.10.1.7 IMPLICIT Attribute
	2.10.1.8 INTRINSIC Statement
	2.10.1.9 NAMELIST Statement
	2.10.1.10 PARAMETER Attribute
	2.10.1.11 Fortran 95�Style POINTER
	2.10.1.12 Statement Function
	2.10.1.13 Type Statement
	2.10.1.14 WRITE Statement
	2.10.1.15 READ Statement

	2.10.2 Input and Output
	2.10.2.1 External Representations
	2.10.2.2 Input
	2.10.2.3 List�Directed Input
	2.10.2.4 Formatted Input/Output
	2.10.2.5 Formatted Input
	2.10.2.6 Formatted Output
	2.10.2.7 Single�Number Editing With the Y Edit Descriptor
	2.10.2.8 E, EN, and ES Edit Descriptors
	2.10.2.9 F Edit Descriptor
	2.10.2.10 G Edit Descriptor
	2.10.2.11 VE Edit Descriptor
	2.10.2.12 VEN Edit Descriptor
	2.10.2.13 VES Edit Descriptor
	2.10.2.14 VF Edit Descriptor
	2.10.2.15 VG Edit Descriptor
	2.10.2.16 Unformatted Input/Output
	2.10.2.17 List�Directed Output
	2.10.2.18 Single�Number Input/Output and Base Conversions

	2.10.3 Intrinsic INTERVAL Functions
	2.10.4 Mathematical Functions
	2.10.4.1 Division With Intersection Function DIVIX
	2.10.4.2 Inverse Tangent Function ATAN2(Y,X)
	2.10.4.3 Maximum: MAX(X1,X2,[X3,...])
	2.10.4.4 Minimum: MIN(X1,X2,[X3, ...])
	2.10.4.5 Intrinsic Functions

	2.10.5 Random Number Subroutine

	2.11 References

	Glossary
	Index

