
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Debugging a Program With dbx

Forte Developer 7

Part No 816-2453-10
May 2002, Revision A

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xxv

How This Book Is Organized xxv

Typographic Conventions xxvii

Shell Prompts xxviii

Accessing Forte Developer Development Tools and Man Pages xxviii

Accessing Forte Developer Documentation xxx

Accessing Related Solaris Documentation xxxii

Sending Your Comments xxxiii

1. Getting Started With dbx 1

Compiling Your Code for Debugging 1

Starting dbx and Loading Your Program 2

Running Your Program in dbx 4

Debugging Your Program With dbx 5

Examining a Core File 5

Setting Breakpoints 7

Stepping Through Your Program 8

Looking at the Call Stack 9

Examining Variables 10
iii

Finding Memory Access Problems and Memory Leaks 11

Quitting dbx 12

Accessing dbx Online Help 12

2. Starting dbx 13

Starting a Debugging Session 13

Debugging a Core File 14

Debugging a Core File in the Same Operating Environment 14

If Your Core File is Truncated 15

Debugging a Mismatched Core File 15

Using the Process ID 18

The dbx Startup Sequence 19

Setting Startup Properties 19

Mapping the Compile-time Directory to the Debug-time Directory 20

Setting dbx Environment Variables 20

Creating Your Own dbx Commands 21

Compiling a Program for Debugging 21

Debugging Optimized Code 21

Code Compiled Without the -g Option 22

Shared Libraries Require the -g Option for Full dbx Support 22

Completely Stripped Programs 23

Quitting Debugging 23

Stopping a Process Execution 23

Detaching a Process From dbx 23

Killing a Program Without Terminating the Session 24

Saving and Restoring a Debugging Run 24

Using the save Command 24

Saving a Series of Debugging Runs as Checkpoints 26
iv Debugging a Program With dbx • May 2002

Restoring a Saved Run 26

Saving and Restoring Using replay 27

3. Customizing dbx 29

Using the dbx Initialization File 29

Creating a .dbxrc File 30

Initialization File Sample 30

Setting dbx Environment Variables 30

The dbx Environment Variables and the Korn Shell 36

4. Viewing and Navigating Through Code 37

Mapping to the Location of the Code 37

Scope 38

Changing the Current Scope 38

Relaxing the Scope Lookup Rules 39

Navigating Through Code 39

Navigating Through a File 39

Navigating Through Functions 40

Printing a Source Listing 41

Walking the Call Stack to Navigate Through Code 41

Qualifying Symbols With Scope Resolution Operators 42

Backquote Operator 42

C++ Double Colon Scope Resolution Operator 42

Block Local Operator 43

Linker Names 43

Scope Resolution Search Path 44

Locating Symbols 44

Printing a List of Occurrences of a Symbol 45

Determining Which Symbol dbx Uses 45
Contents v

Viewing Variables, Members, Types, and Classes 46

Looking Up Definitions of Variables, Members, and Functions 46

Looking Up Definitions of Types and Classes 48

Using the Auto-Read Facility 50

Debugging Without the Presence of .o Files 51

Listing Debugging Information for Modules 51

Listing Modules 52

5. Controlling Program Execution 53

Running a Program 53

Attaching dbx to a Running Process 54

Detaching dbx From a Process 55

Stepping Through a Program 56

Single Stepping 56

Continuing Execution of a Program 57

Calling a Function 58

Using Ctrl+C to Stop a Process 59

6. Setting Breakpoints and Traces 61

Setting Breakpoints 61

Setting a stop Breakpoint at a Line of Source Code 62

Setting a stop Breakpoint in a Function 63

Setting Multiple Breaks in C++ Programs 64

Setting Data Change Breakpoints 66

Setting Filters on Breakpoints 69

Tracing Execution 71

Setting a Trace 71

Controlling the Speed of a Trace 71

Directing Trace Output to a File 72
vi Debugging a Program With dbx • May 2002

Setting a when Breakpoint at a Line 72

Setting a Breakpoint in a Shared Library 72

Listing and Clearing Breakpoints 73

Listing Breakpoints and Traces 73

Deleting Specific Breakpoints Using Handler ID Numbers 73

Enabling and Disabling Breakpoints 74

Efficiency Considerations 74

7. Using the Call Stack 77

Finding Your Place on the Stack 77

Walking the Stack and Returning Home 78

Moving Up and Down the Stack 78

Moving Up the Stack 78

Moving Down the Stack 79

Moving to a Specific Frame 79

Popping the Call Stack 79

Hiding Stack Frames 80

Displaying and Reading a Stack Trace 81

8. Evaluating and Displaying Data 83

Evaluating Variables and Expressions 83

Verifying Which Variable dbx Uses 83

Variables Outside the Scope of the Current Function 84

Printing the Value of a Variable, Expression, or Identifier 84

Printing C++ 84

Dereferencing Pointers 86

Monitoring Expressions 86

Turning Off Display (Undisplaying) 87

Assigning a Value to a Variable 87
Contents vii

Evaluating Arrays 87

Array Slicing 88

Slices 91

Strides 92

9. Using Runtime Checking 95

Capabilities of Runtime Checking 95

When to Use Runtime Checking 96

Runtime Checking Requirements 96

Limitations 97

Using Runtime Checking 97

Turning On Memory Use and Memory Leak Checking 97

Turning On Memory Access Checking 97

Turning On All Runtime Checking 98

Turning Off Runtime Checking 98

Running Your Program 98

Using Access Checking (SPARC Only) 101

Understanding the Memory Access Error Report 102

Memory Access Errors 102

Using Memory Leak Checking 103

Detecting Memory Leak Errors 104

Possible Leaks 104

Checking for Leaks 105

Understanding the Memory Leak Report 106

Fixing Memory Leaks 108

Using Memory Use Checking 109

Suppressing Errors 110

Types of Suppression 111
viii Debugging a Program With dbx • May 2002

Suppressing Error Examples 112

Default Suppressions 113

Using Suppression to Manage Errors 113

Using Runtime Checking on a Child Process 114

Using Runtime Checking on an Attached Process 118

Using Fix and Continue With Runtime Checking 119

Runtime Checking Application Programming Interface 121

Using Runtime Checking in Batch Mode 121

bcheck Syntax 121

bcheck Examples 122

Enabling Batch Mode Directly From dbx 122

Troubleshooting Tips 123

Runtime Checking’s 8 Megabyte Limit 123

Runtime Checking Errors 125

Access Errors 125

Memory Leak Errors 128

10. Fixing and Continuing 131

Using Fix and Continue 131

How Fix and Continue Operates 132

Modifying Source Using Fix and Continue 132

Fixing Your Program 133

Continuing After Fixing 133

Changing Variables After Fixing 135

Modifying a Header File 136

Fixing C++ Template Definitions 136

11. Debugging Multithreaded Applications 137

Understanding Multithreaded Debugging 137
Contents ix

Thread Information 138

Viewing the Context of Another Thread 140

Viewing the Threads List 140

Resuming Execution 141

Understanding LWP Information 141

12. Debugging Child Processes 143

Attaching to Child Processes 143

Following the exec Function 144

Following the fork Function 144

Interacting With Events 145

13. Working With Signals 147

Understanding Signal Events 147

Catching Signals 149

Changing the Default Signal Lists 149

Trapping the FPE Signal 149

Sending a Signal in a Program 151

Automatically Handling Signals 151

14. Debugging C++ 153

Using dbx With C++ 153

Exception Handling in dbx 154

Commands for Handling Exceptions 154

Examples of Exception Handling 156

Debugging With C++ Templates 158

Template Example 158

Commands for C++ Templates 160

15. Debugging Fortran Using dbx 165
x Debugging a Program With dbx • May 2002

Debugging Fortran 165

Current Procedure and File 165

Uppercase Letters 166

Sample dbx Session 166

Debugging Segmentation Faults 170

Using dbx to Locate Problems 171

Locating Exceptions 172

Tracing Calls 172

Working With Arrays 174

Fortran 95 Allocatable Arrays 175

Showing Intrinsic Functions 176

Showing Complex Expressions 177

Showing Interval Expressions 179

Showing Logical Operators 179

Viewing Fortran 95 Derived Types 180

Pointer to Fortran 95 Derived Type 182

16. Debugging a Java Application With dbx 185

Using dbx With Java Code 185

Capabilities of dbx With Java Code 185

Limitations of dbx With Java Code 185

Environment Variables for Java Debugging 186

Starting to Debug a Java Application 187

Debugging a Class File 187

Debugging a JAR File 188

Debugging a Java Application That Has a Wrapper 189

Attaching dbx to a Running Java Application 189

Debugging a C Application or C++ Application That Embeds a Java

Application 190
Contents xi

Passing Arguments to the JVM Software 190

Specifying the Location of Your Java Source Files 190

Specifying the Location of Your C Source Files or C++ Source Files 190

Specifying a Path for Class Files That Use Custom Class Loaders 191

Setting Breakpoints on Code That Has Not Yet Been Loaded by the JVM

Software 191

Customizing Startup of the JVM Software 192

Specifying a Path Name for the JVM Software 193

Passing Run Arguments to the JVM Software 193

Specifying a Custom Wrapper for Your Java Application 193

Specifying 64-bit JVM Software 196

dbx Modes for Debugging Java Code 196

Switching from Java or JNI Mode to Native Mode 197

Switching Modes When You Interrupt Execution 197

Using dbx Commands in Java Mode 197

The Java Expression Evaluation in dbx Commands 197

Static and Dynamic Information Used by dbx Commands 198

Commands With Identical Syntax and Functionality in Java Mode and

Native Mode 199

Commands With Different Syntax in Java Mode 200

Commands Valid Only in Java Mode 201

17. Debugging at the Machine-Instruction Level 203

Examining the Contents of Memory 203

Using the examine or x Command 204

Using the dis Command 207

Using the listi Command 207

Stepping and Tracing at Machine-Instruction Level 208

Single Stepping at the Machine-Instruction Level 208
xii Debugging a Program With dbx • May 2002

Tracing at the Machine-Instruction Level 209

Setting Breakpoints at the Machine-Instruction Level 210

Setting a Breakpoint at an Address 211

Using the adb Command 211

Using the regs Command 211

Platform-Specific Registers 212

Intel Register Information 213

18. Using dbx With the Korn Shell 217

ksh-88 Features Not Implemented 217

Extensions to ksh-88 218

Renamed Commands 218

Rebinding of Editing Functions 219

19. Debugging Shared Libraries 221

Dynamic Linker 221

Link Map 222

Startup Sequence and .init Sections 222

Procedure Linkage Tables 222

Fix and Continue 222

Setting Breakpoints in Shared Libraries 223

Setting a Breakpoint in a Explicitly Loaded Library 223

A. Modifying a Program State 225

Impacts of Running a Program Under dbx 225

Commands That Alter the State of the Program 226

assign Command 226

pop Command 227

call Command 227
Contents xiii

print Command 227

when Command 228

fix Command 228

cont at Command 228

B. Event Management 229

Event Handlers 229

Creating Event Handlers 230

Manipulating Event Handlers 231

Using Event Counters 231

Setting Event Specifications 231

Breakpoint Event Specifications 232

Data Change Event Specifications 233

System Event Specifications 234

Execution Progress Event Specifications 237

Other Event Specifications 238

Event Specification Modifiers 241

Parsing and Ambiguity 243

Using Predefined Variables 244

Variables Valid for when Command 245

Variables Valid for Specific Events 246

Setting Event Handler Examples 247

Setting a Breakpoint for Store to an Array Member 247

Implementing a Simple Trace 247

Enabling a Handler While Within a Function (in function) 247

Determining the Number of Lines Executed 248

Determining the Number of Instructions Executed by a Source Line 248

Enabling a Breakpoint After an Event Occurs 249
xiv Debugging a Program With dbx • May 2002

Resetting Application Files for replay 249

Checking Program Status 249

Catch Floating Point Exceptions 250

C. Command Reference 251

adb Command 251

assign Command 251

attach Command 252

bsearch Command 253

call Command 254

cancel Command 255

catch Command 255

check Command 256

clear Command 259

collector Command 259

collector dbxsample Command 260

collector disable Command 261

collector enable Command 261

collector heaptrace Command 261

collector hwprofile Command 262

collector limit Command 262

collector mpitrace Command 263

collector pause Command 263

collector profile Command 263

collector resume Command 263

collector sample Command 264

collector show Command 264

collector status Command 265
Contents xv

collector store Command 265

collector synctrace Command 266

cont Command 267

dalias Command 267

dbx Command 268

dbxenv Command 270

debug Command 270

delete Command 273

detach Command 274

dis Command 274

display Command 275

down Command 276

dump Command 276

edit Command 276

examine Command 277

exception Command 277

exists Command 278

file Command 278

files Command 279

fix Command 279

fixed Command 280

frame Command 280

func Command 281

funcs Command 282

gdb Command 282

handler Command 283

hide Command 284
xvi Debugging a Program With dbx • May 2002

ignore Command 284

import Command 285

intercept Command 285

java Command 286

javastack Command 286

jclasses Command 287

joff Command 287

jon Command 287

jpkgs Command 288

kill Command 288

language Command 289

line Command 289

list Command 290

listi Command 292

loadobject Command 292

loadobject -dumpelf Command 293

loadobject -exclude Command 294

loadobject -hide Command 294

loadobject -list Command 295

loadobject -load Command 295

loadobject -use Command 296

lwp Command 297

lwps Command 297

mmapfile Command 297

module Command 298

modules Command 299

native Command 299
Contents xvii

next Command 300

nexti Command 301

pathmap Command 302

pop Command 304

print Command 304

proc Command 306

prog Command 307

quit Command 307

regs Command 308

replay Command 309

rerun Command 309

restore Command 310

rprint Command 310

rtc -showmap Command 311

run Command 311

runargs Command 312

save Command 313

scopes Command 313

search Command 313

showblock Command 314

showleaks Command 314

showmemuse Command 315

source Command 316

status Command 316

step Command 317

stepi Command 318

stop Command 319
xviii Debugging a Program With dbx • May 2002

stopi Command 323

suppress Command 324

sync Command 325

syncs Command 326

thread Command 326

threads Command 327

trace Command 329

tracei Command 332

uncheck Command 333

undisplay Command 334

unhide Command 335

unintercept Command 335

unsuppress Command 336

up Command 336

use Command 337

whatis Command 337

when Command 339

wheni Command 340

where Command 341

whereami Command 342

whereis Command 342

which Command 343

whocatches Command 343

Index 345
Contents xix

xx Debugging a Program With dbx • May 2002

Tables

TABLE P-1 Typeface Conventions xxvii

TABLE P-2 Code Conventions xxvii

TABLE 3-1 dbx Environment Variables 31

TABLE 11-1 Thread and LWP States 139

TABLE B-1 Variables Valid for sig Event 246

TABLE B-2 Variable Valid for exit Event 246

TABLE B-3 Variable Valid for dlopen and dlclose Events 246

TABLE B-4 Variables Valid for sysin and sysout Events 246

TABLE B-5 Variable Valid for proc_gone Events 246
xxi

xxii Debugging a Program With dbx • May 2002

Figures

FIGURE 8-1 Example of a Two-dimensional, Rectangular Slice With a Stride of 1 91

FIGURE 8-2 Example of a Two-dimensional, Rectangular Slice with a Stride of 2 92

FIGURE 13-1 Intercepting and Cancelling the SIGINT Signal 148
xxiii

xxiv Debugging a Program With dbx • May 2002

Before You Begin

dbx is an interactive, source-level, command-line debugging tool. Debugging a
Program With dbx is intended for programmers with a working knowledge of

Fortran, C, or C++, and some understanding of the Solaris™ operating environment

and UNIX® commands, who want to debug an application using dbx commands.

How This Book Is Organized

Debugging a Program With dbx contains the following chapters and appendixes:

Chapter 1 gives you the basics of using dbx to debug an application.

Chapter 2 describes how to start a debugging session, discusses compilation options,

and tells you how to save all or part of session and replay it later.

Chapter 3 describes how to set dbx environment variables to customize your

debugging environment and how to use the initialization file, .dbxrc , to preserve

changes and adjustments from session to session.

Chapter 4 tells you about visiting source files and functions; locating symbols; and

looking up variables, members, types, and classes.

Chapter 5 describes how to run, attach to, detach from,. continue execution of, stop,

and rerun a program under dbx . It also tells you how to single-step through

program code.

Chapter 6 describes how to set, clear, and list breakpoints and traces.

Chapter 7 tells you how to examine the call stack and how to debug a core file.

Chapter 8 shows you how to evaluate data; display the values of expressions,

variables, and other data structures; and assign values to variables.
xxv

Chapter 9 describes how to use runtime checking to detect memory leak and

memory access errors in your program automatically.

Chapter 10 describes the fix and continue feature of dbx that allows you to modify

and recompile a source file and continue executing without rebuilding your entire

program.

Chapter 11 tells you how to find information about threads.

Chapter 12 describes several dbx facilities that help you debug child processes.

Chapter 13 tells you how to use dbx to work with signals.

Chapter 14 describes dbx support of C++ templates, and the commands available for

handling C++ exceptions and how dbx handles these exceptions.

Chapter 15 introduces some of the dbx facilities you can use to debug a Fortran

program.

Chapter 16 describes how you can use dbx to debug an application that is a mixture

of Java™ code and C JNI (Java™ Native Interface) code or C++ JNI code.

Chapter 17 tells you how to use event management and execution control command

at the machine-instruction level, how to display the contents of memory at specific

addresses, and how to display source code lines along with their corresponding

machine instructions.

Chapter 18 explains the differences between ksh-88 and dbx commands.

Chapter 19 describes dbx support for program that use dynamically linked, shared

libraries.

Appendix A focuses on dbx commands that change your program or its behavior

when you run it under dbx .

Appendix B tells you how to manage events, and describes how dbx can perform

specific actions when specific events occur in the program you are debugging.

Appendix C gives detailed syntax and functional descriptions of all of the dbx
commands.
xxvi Debugging a Program With dbx • May 2002

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…fn] xinline=alpha,dos
Before You Begin xxvii

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
xxviii Debugging a Program With dbx • May 2002

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

% echo $PATH

% man dbx
Before You Begin xxix

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.
xxx Debugging a Program With dbx • May 2002

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Related Forte Developer Documentation

The following table describes related documentation that is available at

file:/opt/SUNWspro/docs/index.html . If your product software is not

installed in the /opt directory, ask your system administrator for the equivalent

path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt

Document Title Description

dbx Readme Lists new features, known problems, limitations,

and incompatibilities of dbx .

dbx(1) man page Describes the dbx command.

C User’s Guide Describes the Forte Developer 7 C programming

language compiler along with ANSI C compiler-

specific information.
Before You Begin xxxi

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

C++ User’s Guide Instructs you in the use of the Forte Developer 7

C++ compiler and provides detailed information

on command-line compiler options.

Fortran User’s Guide Describes the compile-time environment and

command-line options for the Forte Developer 7

Fortran compiler.

Program Performance Analysis Tools Describes the performance analysis tools that

are available with Forte Developer 7.

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.

Solaris Software Developer

Collection

SPARC Assembly Language
Reference Manual

Describes the assembler that

runs on the SPARC architecture

and translates source files that

are in assembly language

format into object files in

linking format.

Document Title Description
xxxii Debugging a Program With dbx • May 2002

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
Before You Begin xxxiii

xxxiv Debugging a Program With dbx • May 2002

CHAPTER 1

Getting Started With dbx

dbx is an interactive, source-level, command-line debugging tool. You can use it to

run a program in a controlled manner and to inspect the state of a stopped program.

dbx gives you complete control of the dynamic execution of a program, including

collecting performance and memory usage data, monitoring memory access, and

detecting memory leaks.

You can use dbx to debug an application written in C, C++, or Fortran. You can also,

with some limitations (see “Limitations of dbx With Java Code” on page 185), debug

an application that is a mixture of Java™ code and C JNI (Java™ Native Interface)

code or C++ JNI code.

This chapter gives you the basics of using dbx to debug an application. It contains

the following sections:

■ Compiling Your Code for Debugging

■ Starting dbx and Loading Your Program

■ Running Your Program in dbx
■ Debugging Your Program With dbx
■ Quitting dbx
■ Accessing dbx Online Help

Compiling Your Code for Debugging

You must prepare your program for source-level debugging with dbx by compiling

it with the -g option, which is accepted by the C compiler, C++ compiler, Fortran 95

compiler, and Java compiler. For more information, see “Compiling a Program for

Debugging” on page 21.
1

Starting dbx and Loading Your Program

To start dbx , type the dbx command at a shell prompt:

To start dbx and load the program to be debugged:

To start dbx and load a program that is a mixture of Java code and C JNI code or

C++ JNI code:

You can use the dbx command to start dbx and attach it to a running process by

specifying the process ID.

$ dbx

$ dbx program_name

$ dbx program_name{.class | .jar}

$ dbx - process_id
2 Debugging a Program With dbx • May 2002

If you don’t know the process ID of the process, use the ps command to determine

it, then use the dbx command to attach to the process. For example:

For more information on the dbx command and start-up options, see “dbx
Command” on page 268 and the dbx (1) man page, or type dbx -h .

If you are already running dbx , you can load the program to be debugged, or switch

from the program you are debugging to another program, with the debug
command:

$ ps -def | grep Freeway
 fred 1855 1 1 16:21:36 ? 0:00 Freeway

 fred 1872 1865 0 16:22:33 pts/5 0:00 grep Freeway
$ dbx - 1855
Reading -
Reading ld.so.1
Reading libXm.so.4
Reading libgen.so.1
Reading libXt.so.4
Reading libX11.so.4
Reading libce.so.0
Reading libsocket.so.1
Reading libm.so.1
Reading libw.so.1
Reading libc.so.1
Reading libSM.so.6
Reading libICE.so.6
Reading libXext.so.0
Reading libnsl.so.1
Reading libdl.so.1
Reading libmp.so.2
Reading libc_psr.so.1
Attached to process 1855
stopped in _libc_poll at 0xfef9437c
0xfef9437c: _libc_poll+0x0004:ta 0x8
Current function is main
 48 XtAppMainLoop(app_context);
(dbx)

(dbx) debug program_name
Chapter 1 Getting Started With dbx 3

To load or switch to a program that includes Java code and C JNI code or C++ JNI

code:

If you are already running dbx , you can also use the debug command to attach dbx
to a running process:

To attach dbx to a running process that includes Java™ code and C JNI (Java™

Native Interface) code or C++ JNI code:

For more information on the debug command, see “debug Command” on page 270.

Running Your Program in dbx
To run your most recently loaded program in dbx , use the run command. If you

type the run command initially without arguments, the program is run without

arguments. To pass arguments or redirect the input or output of your program, use

the following syntax:

For example:

When you run an application that includes Java code, the run arguments are passed

to the Java application, not to the JVM software. Do not include the main class name

as an argument.

(dbx> debug program_name{.class | .jar}

(dbx) debug program_name process_id

(dbx) debug program_name{.class | .jar} process_id

run [arguments] [< input_file] [> output_file]

(dbx) run -h -p < input > output
Running: a.out
(process id 1234)
execution completed, exit code is 0
(dbx)
4 Debugging a Program With dbx • May 2002

If you repeat the run command without arguments, the program restarts using the

arguments or redirection from the previous run command. You can reset the options

using the rerun command. For more information on the run command, see “run
Command” on page 311. For more information on the rerun command, see “rerun
Command” on page 309.

Your application may run to completion and terminate normally. If you have set

breakpoints, it will probably stop at a breakpoint. If your application contains bugs,

it may stop because of a memory fault or segmentation fault.

Debugging Your Program With dbx
You are likely to be debugging your program for one of the following reasons:

■ To determine where and why it is crashing. Strategies for locating the cause of a

crash include:

■ Running the program in dbx . dbx reports the location of the crash when it

occurs.

■ Examining the core file and looking at a stack trace (see “Examining a Core

File” on page 5 and “Looking at the Call Stack” on page 9).

■ To determine why your program is giving incorrect results. Strategies include:

■ Setting breakpoints to stop execution so that you can check your program’s

state and look at the values of variables (see “Setting Breakpoints” on page 7

and “Examining Variables” on page 10).

■ Stepping through your code one source line at a time to monitor how the

program state changes (see “Stepping Through Your Program” on page 8).

■ To find a memory leak or memory management problem. Runtime checking lets

you detect runtime errors such as memory access errors and memory leak errors

and lets you monitor memory usage (see “Finding Memory Access Problems and

Memory Leaks” on page 11).

Examining a Core File

To determine where your program is crashing, you may want to examine the core

file, the memory image of your program when it crashed. You can use the where
command (see “where Command” on page 341) to determine where the program

was executing when it dumped core.
Chapter 1 Getting Started With dbx 5

Note – dbx cannot tell you the state of a Java application from a core file as it can

with native code.

To debug a core file, type:

or

In the following example, the program has crashed with a segmentation fault and

dumped core. The user starts dbx and loads the core file. Then he uses the where
command to display a stack trace, which shows that the crash occurred at line 9 of

the file foo.c .

For more information on debugging core files, see “Debugging a Core File” on

page 14. For more information on using the call stack, see “Looking at the Call

Stack” on page 9.

$ dbx program_name core

$ dbx - core

% dbx a.out core
Reading a.out
core file header read successfully
Reading ld.so.1
Reading libc.so.1
Reading libdl.so.1
Reading libc_psr.so.1
program terminated by signal SEGV (no mapping at the fault address)
Current function is main
 9 printf("string ’%s’ is %d characters long\n", msg,
strlen(msg));
(dbx) where
 [1] strlen(0x0, 0x0, 0xff337d24, 0x7efefeff, 0x81010100,
0xff0000), at
0xff2b6dec
=>[2] main(argc = 1, argv = 0xffbef39c), line 9 in "foo.c"
(dbx)
6 Debugging a Program With dbx • May 2002

Note – If your program is dynamically linked with any shared libraries, it is best to

debug the core file in the same operating environment in which it was created. For

information on debugging a core file that was created in a different operating

environment, see “Debugging a Mismatched Core File” on page 15.

Setting Breakpoints

A breakpoint is a location in your program where you want the program to stop

executing temporarily and give control to dbx . Set breakpoints in areas of your

program where you suspect bugs. If your program crashes, determine where the

crash occurs and set a breakpoint just before this part of your code.

When your program stops at a breakpoint, you can then examine the state of

program and the values of variables. dbx allows you to set many types of

breakpoints (see Chapter 6).

The simplest type of breakpoint is a stop breakpoint. You can set a stop breakpoint

to stop in a function or procedure. For example, to stop when the main function is

called:

For more information on the stop in command, see “Setting a stop Breakpoint in

a Function” on page 63 and “stop Command” on page 319.

Or you can set a stop breakpoint to stop at a particular line of source code. For

example, to stop at line 13 in the source file t.c :

For more information on the stop at command, see “Setting a stop Breakpoint at

a Line of Source Code” on page 62 and “stop Command” on page 319.

(dbx) stop in main
(2) stop in main

(dbx) stop at t.c:13
(3) stop at “t.c”:13
Chapter 1 Getting Started With dbx 7

You can determine the line at which you wish to stop by using the file command

to set the current file and the list command to list the function in which you wish

to stop. Then use the stop at command to set the breakpoint on the source line:

To continue execution of your program after it has stopped at a breakpoint, use the

cont command (see “Continuing Execution of a Program” on page 57 and “cont
Command” on page 267).

To get a list of all current breakpoints use the status command:

Now if you run your program, it stops at the first breakpoint:

Stepping Through Your Program

After you have stopped at a breakpoint, you may want to step through your

program one source line at a time while you compare its actual state with the

expected state. You can use the step and next commands to do so. Both commands

execute one source line of your program, stopping when that line has completed

execution. The commands handle source lines that contain function calls differently:

the step command steps into the function, while the next command steps over the

function. The step up command continues execution until the current function

returns control to the function that called it.

(dbx) file t.c
(dbx) list main
10 main(int argc, char *argv[])
11 {
12 char *msg = "hello world\n";
13 printit(msg);
14 }
(dbx) stop at 13
(4) stop at “t.c”:13

(dbx) status
(2) stop in main
(3) stop at "t.c":13

(dbx) run
...
stopped in main at line 12 in file "t.c"
12 char *msg = "hello world\n";
8 Debugging a Program With dbx • May 2002

Note – Some functions, notably library functions such as printf , may not have

been compiled with the -g option, so dbx cannot step into them. In such cases, step
and next perform similarly.

The following example shows the use of the step and next commands as well as

the breakpoint set in “Setting Breakpoints” on page 7.

For more information on stepping through your program, see “Stepping Through a

Program” on page 56. For more information on the step and next commands, see

“step Command” on page 317 and “next Command” on page 300.

Looking at the Call Stack

The call stack represents all currently active routines—those that have been called

but have not yet returned to their respective caller. In the stack, the functions and

their arguments are listed in the order in which they were called. A stack trace

shows where in the program flow execution stopped and how execution reached this

point. It provides the most concise description of your program’s state.

(dbx) stop at 13
(3) stop at "t.c":13
(dbx) run
Running: a.out
stopped in main at line 13 in file "t.c"

13 printit(msg);
(dbx) next
Hello world
stopped in main at line 14 in file "t.c"

14 }

(dbx) run
Running: a.out
stopped in main at line 13 in file "t.c"

13 printit(msg);
(dbx) step
stopped in printit at line 6 in file "t.c"

6 printf("%s\n", msg);
(dbx) step up
Hello world
printit returns
stopped in main at line 13 in file "t.c"

13 printit(msg);
(dbx)
Chapter 1 Getting Started With dbx 9

To display a stack trace, use the where command:

For functions that were compiled with the -g option, the arguments names and their

types are known so accurate values are displayed. For functions without debugging

information hexadecimal numbers are displayed for the arguments. These numbers

are not necessarily meaningful. For example, in the stack trace above, frame 1 shows

the contents of the SPARC input registers $i0 through $i5 ; only the contents of

registers $i0 through $i1 are meaningful since only two arguments were passed to

printf in the example shown on page 9.

You can stop in a function that was not compiled with the -g option. When you stop

in such a function dbx searches down the stack for the first frame whose function is

compiled with the -g option—in this case printit()— and sets the current scope

(see “Scope” on page 38) to it. This is denoted by the arrow symbol (=>).

For more information on the call stack, see Chapter 7.

Examining Variables

While a stack trace may contain enough information to fully represent the state of

your program, you may need to see the values of more variables. The print
command evaluates an expression and prints the value according to the type of the

expression. The following example shows several simple C expressions:

(dbx) stop in printf
(dbx) run
(dbx) where

[1] printf(0x10938, 0x20a84, 0x0, 0x0, 0x0, 0x0), at 0xef763418
=>[2] printit(msg = 0x20a84 "hello world\n"), line 6 in "t.c"

[3] main(argc = 1, argv = 0xefffe93c), line 13 in "t.c"
(dbx)

(dbx) print msg
msg = 0x20a84 "Hello world"
(dbx) print msg[0]
msg[0] = ’h’
(dbx) print *msg
*msg = ’h’
(dbx) print &msg
&msg = 0xefffe8b4
10 Debugging a Program With dbx • May 2002

You can track when the values of variables and expressions change using data

change breakpoints (see “Setting Data Change Breakpoints” on page 66). For

example, to stop execution when the value of the variable count changes, type:

Finding Memory Access Problems and Memory

Leaks

Runtime checking consists of two parts: memory access checking, and memory use

and leak checking. Access checking checks for improper use of memory by the

debugged application. Memory use and leak checking involves keeping track of all

the outstanding heap space and then on demand or at termination of the program,

scanning the available data spaces and identifying the space that has no references.

Memory access checking, and memory use and leak checking, are enabled with the

check command. To turn on memory access checking only, type:

To turn on memory use and memory leak checking, type:

After turning on the types of runtime checking you want, run your program. The

program runs normally, but slowly because each memory access is checked for

validity just before it occurs. If dbx detects invalid access, it displays the type and

location of the error. You can then use dbx commands such as where to get the

current stack trace or print to examine variables.

Note – You cannot use runtime checking on an application that is a mixture of Java

code and C JNI code or C++ JNI code.

For detailed information on using runtime checking, see Chapter 9.

(dbx) stop change count

(dbx) check -access

(dbx) check -memuse
Chapter 1 Getting Started With dbx 11

Quitting dbx
A dbx session runs from the time you start dbx until you quit dbx ; you can debug

any number of programs in succession during a dbx session.

To quit a dbx session, type quit at the dbx prompt.

When you start dbx and attach it to a running process using the process_id option,

the process survives and continues when you quit the debugging session. dbx
performs an implicit detach before quitting the session.

For more information about quitting dbx, see “Quitting Debugging” on page 23.

Accessing dbx Online Help

dbx includes a help file that you can access with the help command:

(dbx) quit

(dbx) help
12 Debugging a Program With dbx • May 2002

CHAPTER 2

Starting dbx

This chapter explains how to start, execute, save, restore, and quit a dbx debugging

session. It contains the following sections:

■ Starting a Debugging Session

■ Setting Startup Properties

■ Debugging Optimized Code

■ Quitting Debugging

■ Saving and Restoring a Debugging Run

Starting a Debugging Session

How you start dbx depends on what you are debugging, where you are, what you

need dbx to do, how familiar you are with dbx , and whether or not you have set up

any dbx environment variables.

The simplest way to start a dbx session is to type the dbx command at a shell

prompt.

To start dbx from a shell and load a program to be debugged, type:

$ dbx

$ dbx program_name
13

To start dbx and load a program that is a mixture of Java code and C JNI code or

C++ JNI code:

For more information on the dbx command and start-up options, see “dbx
Command” on page 268 and the dbx (1) man page.

Debugging a Core File

If the program that dumped core was dynamically linked with any shared libraries,

it is best to debug the core file in the same operating environment in which it was

created. dbx has limited support for the debugging of “mismatched” core files (for

example, core files produced on a system running a different version or patch level

of the Solaris operating environment.

Note – dbx cannot tell you the state of a Java application from a core file as it can

with native code.

Debugging a Core File in the Same Operating

Environment

To debug a core file, type:

You can also debug a core file using the debug command when dbx is already

running:

You can substitute - for the program name and dbx will attempt to extract the

program name from the core file. dbx may not find the executable if its full path

name is not available in the core file. If this happens, specify the complete path name

of the binary when you tell dbx to load the core file.

$ dbx program_name{ .class | .jar }

$ dbx program_name core

(dbx) debug -c core program_name
14 Debugging a Program With dbx • May 2002

If the core file is not in the current directory, you can specify its path name (for

example, /tmp/core).

Use the where command (see “where Command” on page 341) to determine where

the program was executing when it dumped core.

When you debug a core file, you can also evaluate variables and expressions to see

the values they had at the time the program crashed, but you cannot evaluate

expressions that make function calls. You cannot single step or set breakpoints.

If Your Core File is Truncated

If you have problems loading a core file, check whether you have a truncated core

file. If you have the maximum allowable size of core files set too low when the core

file is created, then dbx cannot read the resulting truncated core file. In the C shell,

you can set the maximum allowable core file size using the limit command (see the

limit (1) man page). In the Bourne shell and Korn shell, use the ulimit command

(see the limit (1) man page). You can change the limit on core file size in your shell

start-up file, re-source the start-up file, and then rerun the program that produced

the core file to produce a complete core file.

If the core file is incomplete, and the stack segment is missing, then stack retrace

information is not available. If the runtime linker information is missing, then the

list of loadobjects is not available. In this case, you get an error message about

librtld_db.so not being initialized. If the list of LWPs is missing, then no thread

information, lwp information, or stack retrace information is available.If you run the

where command, you get an error saying the program was not “active.”

Debugging a Mismatched Core File

Sometimes a core file is created on one system (the core-host) and you want to load

the core file on another machine (the dbx-host) to debug it. However, two problems

with libraries may arise when you do so:

■ The shared libraries used by the program on the core-host may not be the same

libraries as those on the dbx-host. To get proper stack traces involving the

libraries, you’ll want to make these original libraries available on the dbx-host.

■ dbx uses system libraries in /usr/lib to help understand the implementation

details of the run time linker and threads library on the system. It may also be

necessary to provide these system libraries from the core-host so that dbx can

understand the runtime linker data structures and the threads data structures.
Chapter 2 Starting dbx 15

The user libraries and system libraries can change in patches as well as major Solaris

operating environment upgrades, so this problem can even occur on the same host,

if, for example, a patch was installed after the core file was collected, but before

running dbx on the core file.

dbx may display one or more of the following error messages when you load a

“mismatched” core file:

Eliminating Shared Library Problems

To eliminate the library problems and debug a “mismatched” core file with dbx , you

can now do the following:

1. Set the dbx environment variable core_lo_pathmap to on .

2. Use the pathmap command to tell dbx where the correct libraries for the core file
are located.

3. Use the debug command to load the program and the core file.

For example, assuming that the root partition of the core-host has been exported

over NFS and can be accessed via /net/core-host/ on the dbx-host machine, you

would use the following commands to load the program prog and the core file

prog.core for debugging:

If you are not exporting the root partition of the core-host, you must copy the

libraries by hand. You need not re-create the symbolic links. (For example, you need

not make a link from libc.so to libc.so.1 ; just make sure libc.so.1 is

available.)

dbx: core file read error: address 0xff3dd1bc not available
dbx: warning: could not initialize librtld_db.so.1 -- trying
libDP_rtld_db.so
dbx: cannot get thread info for 1 -- generic libthread_db.so error
dbx: attempt to fetch registers failed - stack corrupted
dbx: read of registers from (0xff363430) failed -- debugger service
failed

(dbx) dbxenv core_lo_pathmap on
(dbx) pathmap /usr /net/core-host/usr
(dbx) pathmap /appstuff /net/core-host/appstuff
(dbx) debug prog prog.core
16 Debugging a Program With dbx • May 2002

Things to Remember

Keep the following things in mind when debugging a mismatched core file:

■ The pathmap command does not recognize a pathmap for ’/’ so you cannot use

the following command:

pathmap / /net/core-host

■ The single-argument mode for the pathmap command does not work with

loadobject pathnames, so use the two argument from-path to-path mode.

■ Debugging the core file is likely to work better if the dbx-host has either the same

or a more recent version of the Solaris operating environment than the core-host,

though this is not always necessary.

■ The system libraries that you might need are:

■ For the runtime linker:

/usr/lib/ld.so.1
/usr/lib/librtld_db.so.1
/usr/lib/sparcv9/ld.so.1
/usr/lib/sparcv9/librtld_db.so.1

■ For the threads library, depending on which implementation of libthread
you are using:

/usr/lib/libthread_db.so.1
/usr/lib/sparcv9/libthread_db.so.1
/usr/lib/lwp/libthread_db.so.1
/usr/lib/lwp/sparcv9/libthread_db.so.1

The /usr/lib/lwp files apply only if you are running dbx in the Solaris 8

operating environment and only if you are using the alternate libthread library.

You will need the SPARC-V9 versions of the xxx_db.so libraries if dbx is running

on a 64-bit capable version of the Solaris operating environment (if the command

isalist displays sparcv9) since these system libraries are loaded and used as

part of dbx , not as part of the target program.

The ld.so.1 libraries are part of the core file image like libc.so or any other

library, so you need the SPARC or SPARC-V9 ld.so.1 library that matches the

program that created the core file.
Chapter 2 Starting dbx 17

■ If you are looking at a core file from a threaded program, and the where
command does not display a stack, try using lwp commands. For example:.

The lack of a thread stack can indicate a problem with thread_db.so.1
Therefore, you might also want to try copying the proper libthread_db.so.1
library from the core-host.

Using the Process ID

You can attach a running process to dbx using the process ID as an argument to the

dbx command.

To attach dbx to a running process that includes Java™ code and C JNI (Java™

Native Interface) code or C++ JNI code:

You can also attach to a process using its process ID without knowing the name of

the program.

Because the program name remains unknown to dbx , you cannot pass arguments to

the process in a run command.

(dbx) where
current thread: t@0
[1] 0x0(), at 0xffffffff
(dbx) lwps
o>l@1 signal SIGSEGV in _sigfillset()
(dbx) lwp l@1
(dbx) where
=>[1] _sigfillset(), line 2 in "lo.c"

[2] _liblwp_init(0xff36291c, 0xff2f9740, ...
[3] _init(0x0, 0xff3e2658, 0x1, ...

...

$ dbx program_name process_id

$ dbx program_name{.class | .jar} process_id

$ dbx - process_id
18 Debugging a Program With dbx • May 2002

For more information, see “Attaching dbx to a Running Process” on page 54.

The dbx Startup Sequence

When you start dbx , if you did not specify the -S option when you gave the dbx
command, dbx looks for the installation startup file, dbxrc , in the directory install-
directory/SUNWspro/lib , where the default install-directory is /opt . (If your Forte

Developer software is not installed in /opt , dbx derives the path to the dbxrc file

from the path to the dbx executable.) If the file is readable, dbx reads it.

If you specified the -S option, or the file install-directory/SUNWspro/lib/dbxrc
does not exist or is not readable dbx searches for the startup file .dbxrc in the

current directory, then in $HOME. You can specify a different startup file explicitly

using the -s to the dbx command. For more information, see “Using the dbx
Initialization File” on page 29

A startup file may contain any dbx command, and commonly contains alias ,

dbxenv , pathmap , and Korn shell function definitions. However, certain commands

require that a program has been loaded or a process has been attached to. All startup

files are loaded before the program or process is loaded. The startup file may also

source other files using the source or . (period) command. You can also use the

startup file to set other dbx options.

As dbx loads program information, it prints a series of messages, such as Reading
filename.

Once the program is finished loading, dbx is in a ready state, visiting the “main”

block of the program (for C or C++: main() ; for Fortran 95: MAIN()). Typically, you

set a breakpoint (for example, stop in main) and then issue a run command for a

C program.

Setting Startup Properties

You can use the pathmap , dbxenv , and alias commands to set startup properties

for your dbx sessions.
Chapter 2 Starting dbx 19

Mapping the Compile-time Directory to the

Debug-time Directory

By default, dbx looks in the directory in which the program was compiled for the

source files associated with the program being debugged. If the source or object files

are not there or the machine you are using does not use the same path name, you

must inform dbx of their location.

If you move the source or object files, you can add their new location to the search

path. The pathmap command creates a mapping from your current view of the file

system to the name in the executable image. The mapping is applied to source paths

and object file paths.

Add common pathmaps to your .dbxrc file.

To establish a new mapping from the directory from to the directory to, type:

If -c is used, the mapping is applied to the current working directory as well.

The pathmap command is useful for dealing with automounted and explicit NFS-

mounted file systems with different base paths on differing hosts. Use -c when you

try to correct problems due to the automounter because current working directories

are inaccurate on automounted file systems.

The mapping of /tmp_mnt to / exists by default.

For more information, see “pathmap Command” on page 302.

Setting dbx Environment Variables

You can use the dbxenv command to either list or set dbx customization variables.

You can place dbxenv commands in your .dbxrc file. To list variables, type:

You can also set dbx environment variables. See Chapter 3 for more information

about the .dbxrc file and about setting these variables.

For more information, see “Setting dbx Environment Variables” on page 30 and

“dbxenv Command” on page 270.

(dbx) pathmap [-c] from to

$ dbxenv
20 Debugging a Program With dbx • May 2002

Creating Your Own dbx Commands

You can create your own dbx commands using the kalias or dalias commands.

For more information, see “dalias Command” on page 267.

Compiling a Program for Debugging

You must prepare your program for debugging with dbx by compiling it with the -g
or -g0 option.

The -g option instructs the compiler to generate debugging information during

compilation.

For example, to compile using C++, type:

In C++, the -g option turns on debugging and turns off inlining of functions. The

-g0 (zero) option turns on debugging and does not affect inlining of functions. You

cannot debug inline functions with the -g0 option. The -g0 option can significantly

decrease link time and dbx start-up time (depending on the use of inlined functions

by the program).

To compile optimized code for use with dbx , compile the source code with both the

-O (uppercase letter O) and the -g options.

Debugging Optimized Code

The dbx tool provides partial debugging support for optimized code. The extent of

the support depends largely upon how you compiled the program.

When analyzing optimized code, you can:

■ Stop execution at the start of any function (stop in function command)

■ Evaluate, display, or modify arguments

■ Evaluate, display, or modify global or static variables

■ Single-step from one line to another (next or step command)

However, with optimized code, dbx cannot evaluate, display, or modify local

variables

% CC -g example_source.cc
Chapter 2 Starting dbx 21

When programs are compiled with optimization and debugging enabled at the same

time (using the -O -g options), dbx operates in a restricted mode.

The details about which compilers emit which kind of symbolic information under

what circumstances is considered an unstable interface and is likely to change from

release to release.

Source line information is available, but the code for one source line might appear in

several different places for an optimized program, so stepping through a program by

source line results in the “current line” jumping around in the source file, depending

on how the code was scheduled by the optimizer.

Tail call optimization can result in missing stack frames when the last effective

operation in a function is a call to another function.

Generally, symbolic information for parameters, local variables, and global variables

is available for optimized programs. Type information about structs, unions, C++

classes, and the types and names of local variables, global variables, and parameters

should be available. Complete information about the location of these items in the

program is not available for optimized programs. The C++ compiler does not

provide symbolic type information about local variables; the C compiler does.

Code Compiled Without the -g Option

While most debugging support requires that a program be compiled with -g , dbx
still provides the following level of support for code compiled without -g :

■ Backtrace (dbx where command)

■ Calling a function (but without parameter checking)

■ Checking global variables

Note, however, that dbx cannot display source code unless the code was compiled

with the -g option. This restriction also applies to code that has had strip -x
applied to it.

Shared Libraries Require the -g Option for Full

dbx Support

For full support, a shared library must also be compiled with the -g option. If you

build a program with shared library modules that were not compiled with the -g
option, you can still debug the program. However, full dbx support is not possible

because the information was not generated for those library modules.
22 Debugging a Program With dbx • May 2002

Completely Stripped Programs

The dbx tool can debug programs that have been completely stripped. These

programs contain some information that can be used to debug your program, but

only externally visible functions are available. Some runtime checking works on

stripped programs or load objects: memory use checking works, and access checking

works with code stripped with strip -x but not with code stripped with strip .

Quitting Debugging

A dbx session runs from the time you start dbx until you quit dbx ; you can debug

any number of programs in succession during a dbx session.

To quit a dbx session, type quit at the dbx prompt.

When you start dbx and attach it to a running process using the process_id option,

the process survives and continues when you quit the debugging session. dbx
performs an implicit detach before quitting the session.

Stopping a Process Execution

You can stop execution of a process at any time by pressing Ctrl+C without leaving

dbx .

Detaching a Process From dbx

If you have attached dbx to a process, you can detach the process from dbx without

killing it or the dbx session by using the detach command.

To detach a process from dbx without killing the process, type:

For more information, see “detach Command” on page 274.

(dbx) quit

(dbx) detach
Chapter 2 Starting dbx 23

Killing a Program Without Terminating the

Session

The dbx kill command terminates debugging of the current process as well as

killing the process. However, kill preserves the dbx session itself leaving dbx
ready to debug another program.

Killing a program is a good way of eliminating the remains of a program you were

debugging without exiting dbx .

To kill a program executing in dbx , type:

For more information, see “kill Command” on page 288.

Saving and Restoring a Debugging Run

The dbx tool provides three commands for saving all or part of a debugging run and

replaying it later:

■ save [-number] [filename]
■ restore [filename]
■ replay [- number]

Using the save Command

The save command saves to a file all debugging commands issued from the last

run , rerun , or debug command up to the save command. This segment of a

debugging session is called a debugging run.

The save command saves more than the list of debugging commands issued. It

saves debugging information associated with the state of the program at the start of

the run—breakpoints, display lists, and the like. When you restore a saved run, dbx
uses the information in the save-file.

(dbx) kill
24 Debugging a Program With dbx • May 2002

You can save part of a debugging run; that is, the whole run minus a specified

number of commands from the last one entered. Example A shows a complete saved

run. Example B shows the same run saved, minus the last two steps.

If you are not sure where you want to end the run you are saving, use the history
command to see a list of the debugging commands issued since the beginning of the

session.

Note – By default, the save command writes information to a special save-file. If

you want to save a debugging run to a file you can restore later, you can specify a

file name with the save command. See “Saving a Series of Debugging Runs as

Checkpoints” on page 26.

To save an entire debugging run up to the save command, type:

To save part of a debugging run, use the save number command, where number is

the number of commands back from the save command that you do not want

saved.

Example A: Saving a complete run Example B: Saving a run minus the last two steps

debug debug

stop at line stop at line

run run

next next

next next

stop at line stop at line

continue continue

next next

next next

step step

next next

save save-2

(dbx) save

(dbx) save - number
Chapter 2 Starting dbx 25

Saving a Series of Debugging Runs as

Checkpoints

If you save a debugging run without specifying a file name, dbx writes the

information to a special save-file. Each time you save, dbx overwrites this save-file.

However, by giving the save command a filename argument, you can save a

debugging run to a file that you can restore later, even if you have saved other

debugging runs since the one saved to filename.

Saving a series of runs gives you a set of checkpoints, each one starting farther back in

the session. You can restore any one of these saved runs, continue, then reset dbx to

the program location and state saved in an earlier run.

To save a debugging run to a file other than the default save-file:

Restoring a Saved Run

After saving a run, you can restore the run using the restore command. dbx uses

the information in the save-file. When you restore a run, dbx first resets the internal

state to what it was at the start of the run, then reissues each of the debugging

commands in the saved run.

Note – The source command also reissues a set of commands stored in a file, but it

does not reset the state of dbx ; it only reissues the list of commands from the current

program location.

Prerequisites for an Exact Restoration of a Saved Run

For exact restoration of a saved debugging run, all the inputs to the run must be

exactly the same: arguments to a run -type command, manual inputs, and file inputs.

Note – If you save a segment and then issue a run , rerun , or debug command

before you do a restore , restore uses the arguments to the second, post-save

run , rerun , or debug command. If those arguments are different, you might not get

an exact restoration.

(dbx) save filename
26 Debugging a Program With dbx • May 2002

To restore a saved debugging run:, type:

To restore a debugging run saved to a file other than the default save-file:, type:

Saving and Restoring Using replay

The replay command is a combination command, equivalent to issuing a save -1
followed immediately by a restore . The replay command takes a negative

number argument, which it passes to the save portion of the command. By default,

the value of -number is -1 , so replay works as an undo command, restoring the last

run up until, but not including, the last command issued.

To replay the current debugging run, minus the last debugging command issued,

type:

To replay the current debugging run and stop the run before a specific command,

use the dbx replay command, where number is the number of commands back from

the last debugging command.

(dbx) restore

(dbx) restore filename

(dbx) replay

(dbx) replay - number
Chapter 2 Starting dbx 27

28 Debugging a Program With dbx • May 2002

CHAPTER 3

Customizing dbx

This chapter describes the dbx environment variables you can use to customize

certain attributes of your debugging environment, and how to use the initialization

file, .dbxrc , to preserve your changes and adjustments from session to session.

This chapter is organized into the following sections:

■ Using the dbx Initialization File

■ The dbx Environment Variables and the Korn Shell

■ Setting dbx Environment Variables

Using the dbx Initialization File

The dbx initialization file, .dbxrc , stores dbx commands that are executed each

time you start dbx . Typically, the file contains commands that customize your

debugging environment, but you can place any dbx commands in the file. If you

customize dbx from the command line while you are debugging, those settings

apply only to the current debugging session.

Note – A .dbxrc file should not contain commands that execute your code.

However, you can put such commands in a file, and then use the dbx source
command to execute the commands in that file.

During startup, the search order is:

1. Installation directory (unless you specify the -S option to the dbx command)

install-directory/SUNWspro/lib/dbxrc . The default install-directory is /opt . If

your Forte Developer software is not installed in /opt, dbx derives the path to the

dbxrc file from the path to the dbx executable.

2. Current directory ./.dbxrc
29

3. Home directory $HOME/.dbxrc

Creating a .dbxrc File

To create a .dbxrc file that contains common customizations and aliases, type in the

command pane:

You can then customize the resulting file by using your text editor to uncomment the

entries you want to have executed.

Initialization File Sample

Here is a sample .dbxrc file:

The first line changes the default setting for the case sensitivity control:

■ dbxenv is the command used to set dbx environment variables. (For a complete

list of dbx environment variables, see “Setting dbx Environment Variables” on

page 30.)

■ input_case_sensitive is the dbx environment variable that controls case

sensitivity.

■ false is the setting for input_case_sensitive .

The next line is a debugging command, catch , which adds a system signal, FPE, to

the default list of signals to which dbx responds, stopping the program.

Setting dbx Environment Variables

You can use the dbxenv command to set the dbx environment variables that

customize your dbx sessions.

help .dbxrc>$HOME/.dbxrc

dbxenv input_case_sensitive false
catch FPE
30 Debugging a Program With dbx • May 2002

To display the value of a specific variable, type:

To show all variables and their values, type:

To set the value of a variable, type:

TABLE 3-1 shows all of the dbx environment variables that you can set:

(dbx) dbxenv variable

(dbx) dbxenv

(dbx) dbxenv variable value

TABLE 3-1 dbx Environment Variables

dbx Environment Variable What the Variable Does

array_bounds_check on|off If set to on , dbx checks the array bounds.

Default: on .

CLASSPATHX Lets you specify to dbx a path for Java class files that

are loaded by custom class loaders

core_lo_pathmap Controls whether dbx uses pathmap settings to

locate the correct libraries for a “mismatched” core

file. Default: off .

disassembler_version
autodetect|v8|v9|v9vis

SPARC platform: Sets the version of dbx 's built-in

disassembler for SPARC V8, V9, or V9 with the

Visual Instruction set. Default is autodetect , which

sets the mode dynamically depending on the type of

the machine a.out is running on.

IA platforms: The valid choice is autodetect .

fix_verbose on|off Governs the printing of compilation line during a

fix . Default: off

follow_fork_inherit on|off When following a child, inherits or does not inherit

breakpoints. Default: off
Chapter 3 Customizing dbx 31

follow_fork_mode
parent|child|both|ask

Determines which process is followed after a fork;

that is, when the current process executes a fork ,

vfork , or fork1 . If set to parent , the process

follows the parent. If set to child , it follows the

child. If set to both , it follows the child, but the

parent process remains active. If set to ask , you are

asked which process to follow whenever a fork is

detected. Default: parent .

follow_fork_mode_inner
unset|

parent|child|both

Of relevance after a fork has been detected if

follow_fork_mode was set to ask , and you chose

stop . By setting this variable, you need not use

cont -follow .

input_case_sensitive
autodetect|

true|false

If set to autodetect , dbx automatically selects case

sensitivity based on the language of the file: false
for Fortran files, otherwise true . If true , case

matters in variable and function names; otherwise,

case is not significant.

Default: autodetect.

JAVASRCPATH Specifies the directories in which dbx should look for

Java source files.

jdbx_mode Stores the current dbx mode. It can have the

following settings: java , jni, or native .

jvm_invocation The jvm_invocation environment variable lets you

customize the way the JVM™ software is started.

(The terms “Java virtual machine” and “JVM” mean

a virtual machine for the Java™ platform.) For more

information, see “Customizing Startup of the JVM

Software” on page 192.

language_mode
autodetect|main|c|
ansic|c++|fortran|
fortran90

Governs the language used for parsing and

evaluating expressions. autodetect : sets to the

language of the current file. Useful if debugging

programs with mixed languages (default). main : sets

language of the main routine in the program. Useful

if debugging homogeneous programs. c , c++ ,

ansic , c++ , objc , fortran , fortran90 : sets to

selected language.

mt_scalable on|off When enabled, dbx will be more conservative in its

resource usage and will be able to debug processes

with upwards of 300 LWPs. The down side is

significant slowdown. Default: off .

output_auto_flush on|off Automatically calls fflush() after each call .

Default: on

TABLE 3-1 dbx Environment Variables (Continued)

dbx Environment Variable What the Variable Does
32 Debugging a Program With dbx • May 2002

output_base
8|10|16|automatic

Default base for printing integer constants. Default:

automatic (pointers in hexadecimal characters, all

else in decimal).

output_class_prefix on |
off

Used to cause a class member to be prefixed with

classname(s) when its value or declaration is printed.

If set to on , it causes the class member to be prefixed.

Default: on .

output_dynamic_type on|off When set to on , -d is the default for printing,

displaying, and inspecting. Default: off .

output_inherited_members
on|off

When set to on , -r is the default for printing,

displaying, and inspecting. Default: off .

output_list_size num Governs the default number of lines to print in the

list command. Default: 10.

output_log_file_name filename Name of the command logfile.

Default: /tmp/dbx.log. uniqueID

output_max_string_length
number

Sets number of characters printed for char *s .

Default: 512.

output_pretty_print on|off Sets -p as the default for printing, displaying, and

inspecting. Default: off .

output_short_file_name
on|off

Displays short path names for files. Default: on .

overload_function on|off For C++, if set to on , does automatic function

overload resolution. Default: on .

overload_operator on|off For C++, if set to on , does automatic operator

overload resolution. Default: on .

pop_auto_destruct on|off If set to on , automatically calls appropriate

destructors for locals when popping a frame.

Default: on .

proc_exclusive_attach
on|off

If set to on , keeps dbx from attaching to a process if

another tool is already attached. Warning: be aware

that if more than one tool attaches to a process and

tries to control it chaos ensues. Default: on .

rtc_auto_continue on|off Logs errors to rtc_error_log_file_name and

continue. Default: off .

rtc_auto_suppress on|off If set to on , an RTC error at a given location is

reported only once. Default: off .

TABLE 3-1 dbx Environment Variables (Continued)

dbx Environment Variable What the Variable Does
Chapter 3 Customizing dbx 33

rtc_biu_at_exit
on|off|verbose

Used when memory use checking is on explicitly or

via check -all . If the value is on , a non-verbose

memory use (blocks in use) report is produced at

program exit. If the value is verbose , a verbose

memory use report is produced at program exit. The

value off causes no output. Default: on .

rtc_error_limit number Number of RTC errors to be reported. Default: 1000.

rtc_error_log_file_name
filename

Name of file to which RTC errors are logged if

rtc_auto_continue is set. Default:

/tmp/dbx.errlog. uniqueID

rtc_error_stack on|off If set to on , stack traces show frames corresponding

to RTC internal mechanisms. Default: off .

rtc_inherit on|off If set to on , enables runtime checking on child

processes that are executed from the debugged

program and causes LD_PRELOADto be inherited.

Default: off .

rtc_mel_at_exit
on|off|verbose

Used when memory leak checking is on . If the value

is on , a non-verbose memory leak report is produced

at program exit. If the value is verbose , a verbose

memory leak report is produced at program exit. The

value off causes no output. Default: on .

run_autostart on|off If set to on with no active program, step , next ,

stepi , and nexti implicitly run the program and

stop at the language-dependent main routine. If set

to on , cont implies run when necessary.

Default: off .

run_io stdio|pty Governs whether the user program’s input/output is

redirected to dbx 's stdio or a specific pty. The pty is

provided by run_pty . Default: stdio .

run_pty ptyname Sets the name of the pty to use when run_io is set to

pty . Ptys are used by graphical user interface

wrappers.

run_quick on|off If set to on , no symbolic information is loaded. The

symbolic information can be loaded on demand

using prog -readsysms . Until then, dbx behaves

as if the program being debugged is stripped.

Default: off .

TABLE 3-1 dbx Environment Variables (Continued)

dbx Environment Variable What the Variable Does
34 Debugging a Program With dbx • May 2002

run_savetty on | off Multiplexes tty settings, process group, and

keyboard settings (if -kbd was used on the

command line) between dbx and the program being

debugged. Useful when debugging editors and

shells. Set to on if dbx gets SIGTTIN or SIGTTOU
and pops back into the shell. Set to off to gain a

slight speed advantage. The setting is irrelevant if

dbx is attached to the program being debugged or is

running under the dbx Debugger. Default: on .

run_setpgrp on | off If set to on , when a program is run, setpgrp(2) is

called right after the fork. Default: off .

scope_global_enums on |off If set to on , enumerators are put in global scope and

not in file scope. Set before debugging information is

processed (~/.dbxrc). Default: off .

scope_look_aside on | off If set to on , finds file static symbols, even when not

in scope. Default: on .

session_log_file_name
filename

Name of the file where dbx logs all commands and

their output. Output is appended to the file. Default:

"" (no session logging).

stack_find_source on|off When set to on , dbx attempts to find and

automatically make active a stack frame with source

when the program being debugged comes to a stop

in a function that is not compiled with -g .

Default: on .

stack_max_size number Sets the default size for the where command.

Default: 100.

stack_verbose on|off Governs the printing of arguments and line

information in where . Default: on .

step_events on|off When set to on , allows breakpoints while using step
and next commands to step through code. Default:

off .

step_granularity statement
| line

Controls granularity of source line stepping. When

set to statement the following code:

a(); b();

takes the two next commands to execute. When set

to line a single next command executes the code.

The granularity of line is particularly useful when

dealing with multiline macros. Default: statement .

TABLE 3-1 dbx Environment Variables (Continued)

dbx Environment Variable What the Variable Does
Chapter 3 Customizing dbx 35

The dbx Environment Variables and the
Korn Shell

Each dbx environment variable is also accessible as a ksh variable. The name of the

ksh variable is derived from the dbx environment variable by prefixing it with

DBX_. For example dbxenv stack_verbose and echo $DBX_stack_verbose
yield the same output. You can assign the value of the variable directly or with the

dbxenv command.

suppress_startup_message
number

Sets the release level below which the startup

message is not printed. Default: 3.01.

symbol_info_compression
on|off

When set to on , reads debugging information for

each include file only once. Default: on .

trace_speed number Sets the speed of tracing execution. Value is the

number of seconds to pause between steps.

Default: 0.50.

TABLE 3-1 dbx Environment Variables (Continued)

dbx Environment Variable What the Variable Does
36 Debugging a Program With dbx • May 2002

CHAPTER 4

Viewing and Navigating Through
Code

Each time the program you are debugging stops, dbx prints the source line

associated with the stop location. At each program stop, dbx resets the value of the

current function to the function in which the program is stopped. Before the program

starts running and when it is stopped, you can move to, or navigate through,

functions and files elsewhere in the program.

This chapter describes how dbx navigates through code and locates functions and

symbols. It also covers how to use commands to navigate through code or look up

declarations for identifiers, types, and classes.

This chapter is organized into the following sections

■ Mapping to the Location of the Code

■ Navigating Through Code

■ Qualifying Symbols With Scope Resolution Operators

■ Locating Symbols

■ Viewing Variables, Members, Types, and Classes

■ Using the Auto-Read Facility

Mapping to the Location of the Code

dbx must know the location of the source and object code files associated with a

program. The default directory for the object files is the directory the files were in

when the program was last linked. The default directory for the source files is the

one they were in when last compiled. If you move the source or object files, or copy

them to a new location, you must either relink the program, change to the new

location before debugging, or use the pathmap command.
37

If you move the source or object files, you can add their new location to the search

path. The pathmap command creates a mapping from your current view of the file

system to the name in the executable image. The mapping is applied to source paths

and object file paths.

To establish a new mapping from the directory from to the directory to:

If -c is used, the mapping is applied to the current working directory as well.

The pathmap command is also useful for dealing with automounted and explicit

NFS mounted file systems with different base paths on differing hosts. Use -c when

you try to correct problems due to the automounter because current working

directories are inaccurate on automounted file systems.

The mapping of /tmp_mnt to / exists by default.

For more information, see “pathmap Command” on page 302.

Scope

The scope is a subset of a program defined in terms of the visibility of a variable or

function. A symbol is said to be “in scope” if its name is visible at the given point of

execution. In C, functions may have global or file-static scope; variables may have

global, file-static, function, or block scope.

Changing the Current Scope

In dbx , scope also refers to the point in the program where the search for a given

symbol begins. Normally, it is the same as the current line, but several commands

can change the current scope without causing the point of execution to move:

func

file

up, down, frame

list procedure

(dbx) pathmap [-c] from to
38 Debugging a Program With dbx • May 2002

Relaxing the Scope Lookup Rules

To relax the scope lookup rules for static symbols and C++ member functions, set the

dbx environment variable scope_look_aside to on:

dbxenv scope_look_aside on

or use the “double backquote” prefix:

stop in ‘‘ func4 func4 may be static and not in scope

If the dbx environment variable scope_look_aside is set to on, dbx looks for:

■ Static variables defined in other files if not found in current scope. Files from

libraries in /usr/lib are not searched.

■ C++ member functions without class qualification

■ Instantiations of C++ inline member functions in other files if a member function

is not instantiated in current file.

Navigating Through Code

When a program is stopped, you can navigate through code elsewhere in the

program. You can navigate through any function or file that is part of the program.

Navigating sets the current scope (see “Scope” on page 38). It is useful for

determining when and at what source line you want to set a stop at breakpoint.

For information on setting stop at breakpoints, see “Setting a stop Breakpoint at

a Line of Source Code” on page 62 and “Setting a stop Breakpoint in a Function” on

page 63.

Navigating Through a File

You can navigate through any file dbx recognizes as part of the program (even if a

module or file was not compiled with the -g option). Navigating through a file does

not change the current function. To navigate through a file:

(dbx) file filename
Chapter 4 Viewing and Navigating Through Code 39

Using the file command without arguments echoes the file name of the file you are

currently navigating.

dbx displays the file from its first line unless you specify a line number.

For information on setting a stop at breakpoint at a line of source code, see “Setting

a stop Breakpoint at a Line of Source Code” on page 62.

Navigating Through Functions

You can use the func command to navigate through a function. To navigate through

a function, type the command func followed by the function name. For example:

The func command by itself echoes the currently navigated function.

For more information, see “func Command” on page 281

Selecting From a List of C++ Ambiguous Function Names

If you try to navigate through a C++ member function with an ambiguous name or

an overloaded function name, a list is displayed, showing all functions with the

overloaded name. Type the number of the function you want to navigate. If you

know which specific class a function belongs to, you can type the class name and

function name. For example:

(dbx) file

(dbx) file filename ; list line_number

(dbx) func adjust_speed

(dbx) func block::block
40 Debugging a Program With dbx • May 2002

Choosing Among Multiple Occurrences

If multiple symbols are accessible from the same scope level, dbx prints a message

reporting the ambiguity.

In the context of the which command, choosing from the list of occurrences does not

affect the state of dbx or the program. Whichever occurrence you choose, dbx echoes

the name.

The which command tells you which symbol dbx would choose. In the case of

ambiguous names, the overload display list indicates that dbx has not yet

determined which occurrence of two or more names it would use. dbx lists the

possibilities and waits for you to choose one.

For more information, see “func Command” on page 281.

Printing a Source Listing

Use the list command to print the source listing for a file or function. Once you

navigate through a file, list prints number lines from the top. Once you navigate

through a function, list prints its lines.

For detailed information on the list command, see “list Command” on page 290.

Walking the Call Stack to Navigate Through Code

Another way to navigate through code when a live process exists is to “walk the call

stack,” using the stack commands to view functions currently on the call stack,

which represents all currently active routines. Walking the stack causes the current

function and file to change each time you display a stack function. The stop location

is considered to be at the “bottom” of the stack, so to move away from it, use the up
command, that is, move toward the main or begin function. Use the down
command to move toward the current frame.

(dbx) func main
(dbx) which C::foo
More than one identifier ’foo’.
Select one of the following:

0) Cancel
1) ‘a.out‘t.cc‘C::foo(int)
2) ‘a.out‘t.cc‘C::foo()

>1
‘a.out‘t.cc‘C::foo(int)
Chapter 4 Viewing and Navigating Through Code 41

For more information on walking the call stack, see “Walking the Stack and

Returning Home” on page 78.

Qualifying Symbols With Scope
Resolution Operators

When using the func or file command, you might need to use scope resolution
operators to qualify the names of the functions that you give as targets.

dbx provides three scope resolution operators with which to qualify symbols: the

backquote operator (‘), the C++ double colon operator (::), and the block local

operator (:lineno). You use them separately or, in some cases, together.

In addition to qualifying file and function names when navigating through code,

symbol name qualifying is also necessary for printing and displaying out-of-scope

variables and expressions, and for displaying type and class declarations (whatis
command). The symbol qualifying rules are the same in all cases; this section covers

the rules for all types of symbol name qualifying.

Backquote Operator

Use the backquote character (‘) to find a variable or function of global scope:

A program can use the same function name in two different files (or compilation

modules). In this case, you must also qualify the function name to dbx so that it

registers which function you will navigate. To qualify a function name with respect

to its file name, use the general purpose backquote (‘) scope resolution operator.

C++ Double Colon Scope Resolution Operator

Use the double colon operator (::) to qualify a C++ member function, a top level

function, or a variable with global scope with:

(dbx) print ‘item

(dbx) func ‘ file_name‘ function_name
42 Debugging a Program With dbx • May 2002

■ An overloaded name (same name used with different argument types)

■ An ambiguous name (same name used in different classes)

You might want to qualify an overloaded function name. If you do not qualify it,

dbx displays an overload list so you can choose which function you will navigate. If

you know the function class name, you can use it with the double colon scope

resolution operator to qualify the name.

For example, if hand is the class name and draw is the function name, type:

Block Local Operator

The block local operator (:line_number) is used in conjunction with the backquote

operator. It identifies the line number of an expression that references the instance

you are interested in.

In the following example, :230 is the block local operator.

Linker Names

dbx provides a special syntax for looking up symbols by their linker names

(mangled names in C++). Prefix the symbol name with a # (pound sign) character

(use the ksh escape character \ (backslash) before any $ (dollar sign) characters), as

in these examples:

(dbx) func class:: function_name (args)

(dbx) func hand::draw

(dbx) stop in `animate.o`change_glyph:230`item

(dbx) stop in #.mul
(dbx) whatis #\$FEcopyPc
(dbx) print `foo.c`#staticvar
Chapter 4 Viewing and Navigating Through Code 43

Scope Resolution Search Path

When you issue a debugging command with a symbol target name, the search order

is as follows:

1. Within the scope of the current function. If the program is stopped in a nested

block, dbx searches within that block, then in the scope of all enclosing blocks.

2. For C++ only: class members of the current function‘s class and its base class.

3. For C++ only: the current name space.

4. The immediately enclosing “compilation unit,” generally, the file containing the

current function.

5. The LoadObject1 scope.

6. The global scope.

7. If none of the above searches are successful, dbx assumes you are referencing a

private, or file static, variable or function. dbx optionally searches for a file static

symbol in every compilation unit depending on the value of the dbxenv setting

scope_look_aside .

dbx uses whichever occurrence of the symbol it first finds along this search path.

If dbx cannot find the symbol, it reports an error.

Locating Symbols

In a program, the same name might refer to different types of program entities and

occur in many scopes. The dbx whereis command lists the fully qualified name—

hence, the location—of all symbols of that name. The dbx which command tells you

which occurrence of a symbol dbx uses if you give that name as the target of a

debugging command (see “which Command” on page 343).

1. Loadobject is short for “loadable object” as defined by the SVR4 ABI. Executables (a.out) and shared
libraries (*.so) are loadobjects.
44 Debugging a Program With dbx • May 2002

Printing a List of Occurrences of a Symbol

To print a list of all the occurrences of a specified symbol, use whereis symbol,
where symbol can be any user-defined identifier. For example:

The output includes the name of the loadable object(s) where the program defines

symbol, as well as the kind of entity each object is: class, function, or variable.

Because information from the dbx symbol table is read in as it is needed, the

whereis command registers only occurrences of a symbol that are already loaded.

As a debugging session gets longer, the list of occurrences can grow.

For more information, see “whereis Command” on page 342.

Determining Which Symbol dbx Uses

The which command tells you which symbol with a given name dbx uses if you

specify that name (without fully qualifying it) as the target of a debugging

command. For example:

If a specified symbol name is not in a local scope, the which command searches for

the first occurrence of the symbol along the scope resolution search path. If which finds

the name, it reports the fully qualified name.

(dbx) whereis table
forward: `Blocks`block_draw.cc`table
function: `Blocks`block.cc`table::table(char*, int, int, const
point&)
class: `Blocks`block.cc`table
class: `Blocks`main.cc`table
variable: `libc.so.1`hsearch.c`table

(dbx) func
wedge::wedge(char*, int, int, const point&, load_bearing_block*)
(dbx) which draw
`block_draw.cc`wedge::draw(unsigned long)
Chapter 4 Viewing and Navigating Through Code 45

If at any place along the search path, the search finds multiple occurrences of symbol
at the same scope level, dbx prints a message in the command pane reporting the

ambiguity.

dbx shows the overload display, listing the ambiguous symbols names. In the

context of the which command, choosing from the list of occurrences does not affect

the state of dbx or the program. Whichever occurrence you choose, dbx echoes the

name.

The which command gives you a preview of what happens if you make symbol (in

this example, block) an argument of a command that must operate on symbol (for

example, a print command). In the case of ambiguous names, the overload display

list indicates that dbx does not yet register which occurrence of two or more names

it uses. dbx lists the possibilities and waits for you to choose one. For more

information on the which command, see “which Command” on page 343.

Viewing Variables, Members, Types, and
Classes

The whatis command prints the declarations or definitions of identifiers, structs,

types and C++ classes, or the type of an expression. The identifiers you can look up

include variables, functions, fields, arrays, and enumeration constants.

For more information, see “whatis Command” on page 337.

Looking Up Definitions of Variables, Members,

and Functions

To print out the declaration of an identifier, type:

(dbx) which fid
More than one identifier ’fid’.
Select one of the following:

0) Cancel
1) `example‘file1.c‘fid
2) ‘example‘file2.c‘fid

(dbx) whatis identifier
46 Debugging a Program With dbx • May 2002

Qualify the identifier name with file and function information as needed.

For C++ programs, whatis identifier lists function template instantiations. Template

definitions are displayed with whatis -t identifier. See “Looking Up Definitions of

Types and Classes” on page 48.

For Java programs, whatis identifier, lists the declaration of a class, a method in the

current class, a local variable in the current frame, or a field in the current class

To print out the member function, type:

To print out the data member, type:

On a variable, whatis tells you the variable‘s type.

On a field, whatis gives the field‘s type.

(dbx) whatis block::draw
void block::draw(unsigned long pw);
(dbx) whatis table::draw
void table::draw(unsigned long pw);
(dbx) whatis block::pos
class point *block::pos();
(dbx) whatis table::pos
class point *block::pos();

(dbx) whatis block::movable
int movable;

(dbx) whatis the_table
class table *the_table;

(dbx) whatis the_table->draw
void table::draw(unsigned long pw);
Chapter 4 Viewing and Navigating Through Code 47

When you are stopped in a member function, you can look up the this pointer.

Looking Up Definitions of Types and Classes

The -t option of the whatis command displays the definition of a type. For C++,

the list displayed by whatis -t includes template definitions and class template

instantiations.

To print the declaration of a type or C++ class, type:

To see inherited members, the whatis command takes an -r option (for recursive)

that displays the declaration of a specified class together with the members it

inherits from base classes.

The output from a whatis -r query may be long, depending on the class hierarchy

and the size of the classes. The output begins with the list of members inherited

from the most ancestral class. The inserted comment lines separate the list of

members into their respective parent classes.

Here are two examples, using the class table , a child class of the parent class

load_bearing_block , which is, in turn, a child class of block .

(dbx) stop in brick::draw
(dbx) cont
(dbx) where 1
brick::draw(this = 0x48870, pw = 374752), line 124 in
 "block_draw.cc"
(dbx) whatis this
class brick *this;

(dbx) whatis -t type_or_class_name

(dbx) whatis -t -r class_name
48 Debugging a Program With dbx • May 2002

Without -r , whatis reports the members declared in class table :

Here are results when whatis -r is used on a child class to see members it inherits:

(dbx) whatis -t class table
class table : public load_bearing_block {
public:
 table::table(char *name, int w, int h, const class point
&pos);
 virtual char *table::type();
 virtual void table::draw(unsigned long pw);
};

(dbx) whatis -t -r class table

class table : public load_bearing_block {

public:

/* from base class table::load_bearing_block::block */

block::block();

block::block(char *name, int w, int h, const class point &pos,
class load_bearing_block *blk);

virtual char *block::type();

char *block::name();

int block::is_movable();

// deleted several members from example protected:

char *nm;

int movable;

int width;

int height;

class point position;

class load_bearing_block *supported_by;

Panel_item panel_item;

 /* from base class table::load_bearing_block */

public:

load_bearing_block::load_bearing_block();

load_bearing_block::load_bearing_block(char *name, int w, int
h,const class point &pos, class load_bearing_block *blk);

virtual int load_bearing_block::is_load_bearing();

virtual class list *load_bearing_block::supported_blocks();

void load_bearing_block::add_supported_block(class block &b);

void load_bearing_block::remove_supported_block(class block
&b);

virtual void load_bearing_block::print_supported_blocks();

virtual void load_bearing_block::clear_top();

virtual void load_bearing_block::put_on(class block &object);
Chapter 4 Viewing and Navigating Through Code 49

Using the Auto-Read Facility

In general, compile the entire program you want to debug using the -g option.

Depending on how the program was compiled, the debugging information

generated for each program and shared library module is stored in either the object

code file (.o file) for each program and shared library module, or the program

executable file.

When you compile with the -g -c compiler option, debugging information for each

module remains stored in its .o file. dbx then reads in debugging information for

each module automatically, as it is needed, during a session. This read-on-demand

facility is called Auto-Read. Auto-Read is the default for dbx .

Auto-Read saves considerable time when you are loading a large program into dbx .

Auto-Read depends on the continued presence of the program .o files in a location

known to dbx .

Note – If you archive .o files into .a files, and link using the archive libraries, you

can then remove the associated .o files, but you must keep the .a files.

By default, dbx looks for files in the directory where they were when the program

was compiled and the .o files in the location from which they were linked, using the

absolute path recorded at compile time. If the files are not there, use the pathmap
command to set the search path.

class point load_bearing_block::get_space(class block
&object);

class point load_bearing_block::find_space(class block
&object);

class point load_bearing_block::make_space(class block
&object);

protected:

class list *support_for;

/* from class table */

public:

table::table(char *name, int w, int h, const class point &pos);

virtual char *table::type();

virtual void table::draw(unsigned long pw);

};
50 Debugging a Program With dbx • May 2002

If no object file is produced, debugging information is stored in the executable. That

is, for a compilation that does not produce .o files, the compiler stores all the

debugging information in the executable. The debugging information is read the

same way as for applications compiled with the -xs option. See “Debugging

Without the Presence of .o Files” next.

Debugging Without the Presence of .o Files

Programs compiled with -g -c store debugging information for each module in the

module’s .o file. Auto-Read requires the continued presence of the program and

shared library .o files.

When it is not feasible to keep program .o files or shared library .o files for

modules that you want to debug, compile the program using the compiler -xs
option (in addition to -g). You can have some modules compiled with -xs and some

without. The -xs option instructs the compiler to have the linker place all the

debugging information in the program executable; therefore the .o files do not have

to be present to debug those modules.

In dbx 4.0, the debugging information for modules compiled with the -xs option is

loaded during dbx startup. For a large program compiled with -xs , this might cause

dbx to start slowly.

In dbx 5.0, dbx 6.0, and dbx 7.0, the loading of debugging information for modules

compiled with -xs is also delayed in the same way as the debugging information

stored in .o files.:

Listing Debugging Information for Modules

The module command and its options help you to keep track of program modules

during the course of a debugging session. Use the module command to read in

debugging information for one or all modules. Normally, dbx automatically and

“lazily” reads in debugging information for modules as needed.

To read in debugging information for a module name, type:

To read in debugging information for all modules, type:

(dbx) module [-f] [-q] name

(dbx) module [-f] [-q] -a
Chapter 4 Viewing and Navigating Through Code 51

where:

To print the name of the current module, type:

Listing Modules

The modules command helps you keep track of modules by listing module names.

To list the names of modules containing debugging information that have already

been read into dbx , type:

To list names of all program modules (whether or not they contain debugging

information), type:

To list all program modules that contain debugging information, type:

where:

-a Specifies all modules.

-f Forces reading of debugging information, even if the file is newer than

the executable.

-q Specifies quiet mode.

-v Specifies verbose mode, which prints language, file names, and so on.

This is the default.

(dbx) module

(dbx) modules [-v] -read

(dbx) modules [-v]

(dbx) modules [-v] -debug

-v Specifies verbose mode, which prints language, file names, and so on.
52 Debugging a Program With dbx • May 2002

CHAPTER 5

Controlling Program Execution

The commands used for running, stepping, and continuing (run , rerun , next ,

step , and cont) are called process control commands. Used together with the event

management commands described in Appendix B, you can control the run-time

behavior of a program as it executes under dbx .

This chapter is organized into the following sections:

■ Running a Program

■ Attaching dbx to a Running Process

■ Detaching dbx From a Process

■ Stepping Through a Program

■ Using Ctrl+C to Stop a Process

Running a Program

When you first load a program into dbx , dbx navigates to the program’s “main”

block (main for C, C++, and Fortran 90; MAIN for Fortran 77; the main class for Java

code). dbx waits for you to issue further commands; you can navigate through code

or use event management commands.

You can set breakpoints in the program before running it.

Note – When debugging an application that is a mixture of Java™ code and C JNI

(Java™ Native Interface) code or C++ JNI code, you may want to set breakpoints in

code that has not yet been loaded. For information on setting breakpoints on such

code, see “Setting Breakpoints on Code That Has Not Yet Been Loaded by the JVM

Software” on page 191.

Use the run command to start program execution.
53

To run a program in dbx without arguments, type:

You can optionally add command-line arguments and redirection of input and

output.

Note – You cannot redirect the input and output of a Java application.

Output from the run command overwrites an existing file even if you have set

noclobber for the shell in which you are running dbx .

The run command without arguments restarts the program using the previous

arguments and redirection. For more information, see “run Command” on page 311.

The rerun command restarts the program and clears the original arguments and

redirection. For more information, see “rerun Command” on page 309.

Attaching dbx to a Running Process

You might need to debug a program that is already running. You would attach to a

running process if:

■ You wanted to debug a running server, and you did not want to stop or kill it.

■ You wanted to debug a running program that has a graphical user interface, and

you didn’t want to restart it.

■ Your program was looping indefinitely, and you want to debug it without killing

it.

You can attach dbx to a running program by using the program’s process_id number

as an argument to the dbx debug command.

Once you have debugged the program, you can then use the detach command to

take the program out from the control of dbx without terminating the process.

If you quit dbx after attaching it to a running process, dbx implicitly detaches before

terminating.

(dbx) run

(dbx) run [arguments][< input_file] [> output_file]
54 Debugging a Program With dbx • May 2002

To attach dbx to a program that is running independently of dbx , you can use either

the attach command or the debug command.

To attach dbx to a process that is already running, type:

or

You can substitute a – (dash) for the program_name; dbx automatically finds the

program associated with the process ID and loads it.

For more information, see “debug Command” on page 270 and “attach
Command” on page 252.

If dbx is not running, start dbx by typing:

After you have attached dbx to a program, the program stops executing. You can

examine it as you would any program loaded into dbx . You can use any event

management or process control command to debug it.

You can use runtime checking on an attached process with certain exceptions. See

“Using Runtime Checking on an Attached Process” on page 118.

Detaching dbx From a Process

When you have finished debugging the program, use the detach command to

detach dbx from the program. The program then resumes running independently of

dbx .

To detach a process from running under the control of dbx :

For more information, see “detach Command” on page 274.

(dbx) debug program_name process_id

(dbx) attach process_id

% dbx program_name process_id

(dbx) detach
Chapter 5 Controlling Program Execution 55

Stepping Through a Program

dbx supports two basic single-step commands: next and step , plus two variants of

step , called step up and step to . Both the next command and the step
command let the program execute one source line before stopping again.

If the line executed contains a function call, the next command allows the call to be

executed and stops at the following line (“steps over” the call). The step command

stops at the first line in a called function (“steps into” the call).

The step up command returns the program to the caller function after you have

stepped into a function.

The step to command attempts to step into a specified function in the current

source line, or if no function is specified, into the last function called as determined

by the assembly code for the current source line. The function call may not occur

due to a conditional branch, or there may be no function called in the current source

line. In these cases, step to steps over the current source line.

Single Stepping

To single step a specified number of lines of code, use the dbx commands next or

step followed by the number of lines [n] of code you want executed.

or

The step_granularity environment variable determines the unit by which the

step command and next command step through your code (see “Setting dbx
Environment Variables” on page 30). The unit can be either statement or line.

For more information on the commands, see “next Command” on page 300 and

“step Command” on page 317.

(dbx) next n

(dbx) step n
56 Debugging a Program With dbx • May 2002

Continuing Execution of a Program

To continue a program, use the cont command.

The cont command has a variant, cont at line_number, which lets you specify a

line other than the current program location line at which to resume program

execution. This allows you to skip over one or more lines of code that you know are

causing problems, without having to recompile.

To continue a program at a specified line, type:

The line number is evaluated relative to the file in which the program is stopped; the

line number given must be within the scope of the current function.

Using cont at line_number with assign , you can avoid executing a line of code

that contains a call to a function that might be incorrectly computing the value of

some variable.

To resume program execution at a specific line:

1. Use assign to give the variable a correct value.

2. Use cont at line_number to skip the line that contains the function call that would
have computed the value incorrectly.

Assume that a program is stopped at line 123. Line 123 calls a function,

how_fast() , that computes incorrectly a variable, speed . You know what the value

of speed should be, so you assign a value to speed . Then you continue program

execution at line 124, skipping the call to how_fast() .

For more information, see “cont Command” on page 267.

If you use the cont command with a when breakpoint command, the program skips

the call to how_fast() each time the program attempts to execute line 123.

(dbx) cont

(dbx) cont at 124

(dbx) assign speed = 180; cont at 124;

(dbx) when at 123 { assign speed = 180; cont at 124;}
Chapter 5 Controlling Program Execution 57

For more information on the when command, see:

■ “Setting a stop Breakpoint at a Line of Source Code” on page 62

■ “Setting Breakpoints in Member Functions of Different Classes” on page 64

■ “Setting Breakpoints in Member Functions of the Same Class” on page 65

■ “Setting Multiple Breakpoints in Nonmember Functions” on page 65

■ “when Command” on page 339

Calling a Function

When a program is stopped, you can call a function using the dbx call command,

which accepts values for the parameters that must be passed to the called function.

To call a procedure, type the name of the function and supply its parameters. For

example:

While the parameters are optional, you must type the parentheses after the

function_name. For example:

You can call a function explicitly, using the call command, or implicitly, by

evaluating an expression containing function calls or using a conditional modifier

such as stop in glyph -if animate() .

A C++ virtual function can be called like any other function using the print
command or call command (see “print Command” on page 304 or “call
Command” on page 254), or any other command that executes a function call.

If the source file in which the function is defined was compiled with the –g option,

or if the prototype declaration is visible at the current scope, dbx checks the number

and type of arguments and issues an error message if there is a mismatch.

Otherwise, dbx does not check the number of parameters and proceeds with the call.

By default, after every call command, dbx automatically calls fflush(stdout) to

ensure that any information stored in the I/O buffer is printed. To turn off automatic

flushing, set the dbx environment variable output_autoflush to off .

For C++, dbx handles the implicit this pointer, default arguments, and function

overloading. The C++ overloaded functions are resolved automatically if possible. If

any ambiguity remains (for example, functions not compiled with -g), dbx displays

a list of the overloaded names.

(dbx) call change_glyph(1,3)

(dbx) call type_vehicle()
58 Debugging a Program With dbx • May 2002

When you use the call command, dbx behaves as though you used the next
command, returning from the called function. However, if the program encounters a

breakpoint in the called function, dbx stops the program at the breakpoint and

issues a message. If you now type a where command, the stack trace shows that the

call originated from dbx command level.

If you continue execution, the call returns normally. If you attempt to kill, run, rerun,

or debug, the command aborts as dbx tries to recover from the nesting. You can then

re-issue the command. Alternatively, you can use the command pop -c to pop all

frames up to the most recent call.

Using Ctrl+C to Stop a Process

You can stop a process running in dbx by pressing Ctrl+C (^C). When you stop a

process using ^C, dbx ignores the ^C, but the child process accepts it as a SIGINT
and stops. You can then inspect the process as if it had been stopped by a

breakpoint.

To resume execution after stopping a program with ^C, use the cont command. You

do not need to use the cont optional modifier, sig signal_name, to resume

execution. The cont command resumes the child process after cancelling the

pending signal.
Chapter 5 Controlling Program Execution 59

60 Debugging a Program With dbx • May 2002

CHAPTER 6

Setting Breakpoints and Traces

When an event occurs, dbx allows you to stop a process, execute arbitrary

commands, or print information. The simplest example of an event is a breakpoint.

Examples of other events are faults, signals, system calls, calls to dlopen() , and

data changes.

A trace displays information about an event in your program, such as a change in

the value of a variable. Although a trace’s behavior is different from that of a

breakpoint, traces and breakpoints share similar event handlers (see “Event

Handlers” on page 229).

This chapter describes how to set, clear, and list breakpoints and traces. For

complete information on the event specifications you can use in setting breakpoints

and traces, see “Setting Event Specifications” on page 231.

The chapter is organized into the following sections:

■ Setting Breakpoints

■ Setting Filters on Breakpoints

■ Tracing Execution

■ Setting a when Breakpoint at a Line

■ Setting a Breakpoint in a Shared Library

■ Listing and Clearing Breakpoints

■ Enabling and Disabling Breakpoints

■ Efficiency Considerations

Setting Breakpoints

In dbx , you can use three commands to set breakpoints:

■ stop breakpoints–If the program arrives at a breakpoint created with a stop
command, the program halts. The program cannot resume until you issue another

debugging command, such as cont , step , or next .
61

■ when breakpoints–If the program arrives at a breakpoint created with a when
command, the program halts and dbx executes one or more debugging

commands, then the program continues (unless one of the executed commands is

stop).

■ trace breakpoints–If a program arrives at a breakpoint created with a trace
command, the program halts and an event-specific trace information line is

emitted, then the program continues.

The stop , when, and trace commands all take as an argument an event

specification, which describes the event on which the breakpoint is based. Event

specifications are discussed in detail in “Setting Event Specifications” on page 231.

To set machine-level breakpoints, use the stopi , wheni , and tracei commands

(see Chapter 17).

Note – When debugging an application that is a mixture of Java™ code and C JNI

(Java™ Native Interface) code or C++ JNI code, you may want to set breakpoints in

code that has not yet been loaded. For information on setting breakpoints on such

code, see “Setting Breakpoints on Code That Has Not Yet Been Loaded by the JVM

Software” on page 191.

Setting a stop Breakpoint at a Line of Source

Code

You can set a breakpoint at a line number, using the stop at command, where n is

a source code line number and filename is an optional program file name qualifier.

For example:

If the line specified is not an executable line of source code, dbx sets the breakpoint

at the next executable line. If there is no executable line, dbx issues an error.

(dbx) stop at filename: n

(dbx) stop at main.cc:3
62 Debugging a Program With dbx • May 2002

You can determine the line at which you wish to stop by using the file command

to set the current file and the list command to list the function in which you wish

to stop. Then use the stop at command to set the breakpoint on the source line:

For more information on specifying at an location event, see “at [filename:] lineno”

on page 232.

Setting a stop Breakpoint in a Function

You can set a breakpoint in a function, using the stop in command:

An In Function breakpoint suspends program execution at the beginning of the first

source line in a procedure or function.

dbx should be able to determine which variable or function you are referring to

except when:

■ You reference an overloaded function by name only.

■ You reference a function or variable with a leading `.

Consider the following set of declarations:

(dbx) file t.c
(dbx) list main
10 main(int argc, char *argv[])
11 {
12 char *msg = "hello world\n";
13 printit(msg);
14 }
(dbx) stop at 13

(dbx) stop in function

int foo(double);
int foo(int);
int bar();
class x {

int bar();
};
Chapter 6 Setting Breakpoints and Traces 63

When you stop at a non-member function, you can type:

to set a breakpoint at the global foo(int) .

To set a breakpoint at the member function you can use the command:

If you type:

dbx cannot determine whether you mean the global function foo(int) or the

global function foo(double) and may be forced to display an overloaded menu for

clarification.

If you type:

dbx cannot determine whether you mean the global function bar() or the member

function bar() and displays an overload menu.

For more information on specifying an in function event, see “in function” on

page 232.

Setting Multiple Breaks in C++ Programs

You can check for problems related to calls to members of different classes, calls to

any members of a given class, or calls to overloaded top-level functions. You can use

a keyword—inmember , inclass , infunction , or inobject —with a stop , when,

or trace command to set multiple breaks in C++ code.

Setting Breakpoints in Member Functions of Different Classes

To set a breakpoint in each of the object-specific variants of a particular member

function (same member function name, different classes), use stop inmember .

stop in foo(int)

stop in x::bar()

stop in foo

stop in `bar
64 Debugging a Program With dbx • May 2002

For example, if the function draw is defined in several different classes, then to place

a breakpoint in each function, type:

For more information on specifying an inmember or inmethod event, see

“inmember function inmethod function” on page 232.

Setting Breakpoints in Member Functions of the Same Class

To set a breakpoint in all member functions of a specific class, use the stop
inclass command.

By default, breakpoints are inserted only in the class member functions defined in

the class, not those that it might inherit from base classes. To insert breakpoints in

the functions that inherit from the base classes also, specify the -recurse option

To set a breakpoint in all member functions defined in the class shape , type:

To set a breakpoint in all member functions defined in the class shape, and also in

functions that inherit from the class, type:

For more information on specifying an inclass event, see “inclass classname [-
recurse | -norecurse] ” on page 233 and “stop Command” on page 319.

Due to the large number of breakpoints that may be inserted by stop inclass and

other breakpoint selections, you should be sure to set the dbx environment variable

step_events to on to speed up the step and next commands (see “Efficiency

Considerations” on page 74).

Setting Multiple Breakpoints in Nonmember Functions

To set multiple breakpoints in nonmember functions with overloaded names (same

name, different type or number of arguments), use the stop infunction
command.

(dbx) stop inmember draw

(dbx) stop inclass shape

(dbx) stop inclass shape -recurse
Chapter 6 Setting Breakpoints and Traces 65

For example, if a C++ program has defined two versions of a function named

sort() (one that passes an int type argument and the other a float) then, to place

a breakpoint in both functions, type:

For more information on specifying an infunction event, see “infunction
function” on page 232.

Setting Breakpoints in Objects

Set an In Object breakpoint to check the operations applied to a specific object

instance.

By default, an In Object breakpoint suspends program execution in all nonstatic

member functions of the object’s class, including inherited ones, when called from

the object. To set a breakpoint to suspend program execution in only nonstatic

member functions defined in the object’s class and not inherited classes, specify the

-norecurse option.

To set a breakpoint in all nonstatic member functions defined in the base class of

object foo , and in all nonstatic member functions defined in inherited classes of

object foo , type:

To set a breakpoint in all nonstatic member functions defined in the class of object

foo, but not those defined in inherited classes of object foo , type:

For more information on specifying an inobject event, see “inobject object-

expression [-recurse | -norecurse] ” on page 233 and “stop Command” on

page 319

Setting Data Change Breakpoints

You can use data change breakpoints in dbx to note when the value of a variable or

expression has changed.

(dbx) stop infunction sort [command;]

(dbx) stop inobject &foo

(dbx) stop inobject &foo -norecurse
66 Debugging a Program With dbx • May 2002

Stopping Execution When an Address Is Accessed

To stop execution when a memory address has been accessed, type:

mode specifies how the memory was accessed. It can be composed of one or all of the

letters:

mode can also contain either of the following:

In both cases the program counter will point at the offending instruction. The

“before” and “after” refer to the side effect.

address-expression is any expression that can be evaluated to produce an address. If

you give a symbolic expression, the size of the region to be watched is automatically

deduced; you can override it by specifying byte-size-expression. You can also use

nonsymbolic, typeless address expressions; in which case, the size is mandatory.

In the following example, execution will stop execution after the memory address

0x4762 has been read:

In this example, execution will stop before the variable speed has be written to:

Keep these points in mind when using the stop access command:

■ The event occurs when a variable is written to even if it is the same value.

(dbx) stop access mode address-expression [, byte-size-expression]

r The memory at the specified address has been read.

w The memory has been written to.

x The memory has been executed.

a Stops the process after the access (default).

b Stops the process before the access.

(dbx) stop access r 0x4762

(dbx) stop access wb &speed
Chapter 6 Setting Breakpoints and Traces 67

■ By default, the event occurs after execution of the instruction that wrote to the

variable. You can indicate that you want the event to occur before the instruction

is executed by specifying the mode as b.

For more information on specifying an access event, see “access mode address-

expression [, byte-size-expression]” on page 233 and “stop Command” on page 319.

Stopping Execution When Variables Change

To stop program execution if the value of a specified variable has changed, type:

Keep these points in mind when using the stop change command:

■ dbx stops the program at the line after the line that caused a change in the value

of the specified variable.

■ If variable is local to a function, the variable is considered to have changed when

the function is first entered and storage for variable is allocated. The same is true

with respect to parameters.

■ The command does not work with multithreaded applications.

For more information on specifying a change event, see “change variable” on

page 234 and “stop Command” on page 319.

dbx implements stop change by causing automatic single stepping together with

a check on the value at each step. Stepping skips over library calls if the library was

not compiled with the -g option. So, if control flows in the following manner, dbx
does not trace the nested user_routine2 because tracing skips the library call and

the nested call to user_routine2 .

The change in the value of variable appears to have occurred after the return from the

library call, not in the middle of user_routine2 .

dbx cannot set a breakpoint for a change in a block local variable—a variable nested

in {}. If you try to set a breakpoint or trace in a block local “nested” variable, dbx
issues an error informing you that it cannot perform this operation.

(dbx) stop change variable

 user_routine calls
 library_routine, which calls
 user_routine2, which changes variable
68 Debugging a Program With dbx • May 2002

Note – It is faster to watch data changes using the access event than the change
event. Instead of automatically single-stepping the program, the access event uses

a page protection scheme that is much faster.

Stopping Execution on a Condition

To stop program execution if a conditional statement evaluates to true, type:

The program stops executing when the condition occurs.

Keep these points in mind when using the stop cond command:

■ dbx stops the program at the line after the line that caused the condition to

evaluate to true.

■ The command does not work with multithreaded applications.

For more information on specifying a condition event, see “cond condition-

expression” on page 234 and “stop Command” on page 319.

Setting Filters on Breakpoints

In dbx , most of the event management commands also support an optional event
filter modifier. The simplest filter instructs dbx to test for a condition after the

program arrives at a breakpoint or trace handler, or after a watch condition occurs.

If this filter condition evaluates to true (non 0), the event command applies and

program execution stops at the breakpoint. If the condition evaluates to false (0),

dbx continues program execution as if the event had never happened.

To set a breakpoint that includes a filter at a line or in a function, add an optional

-if condition modifier statement to the end of a stop or trace command.

The condition can be any valid expression, including function calls, returning

Boolean or integer in the language current at the time the command is entered.

With a location-based breakpoint like in or at , the scope is that of the breakpoint

location. Otherwise, the scope of the condition is the scope at the time of entry, not

at the time of the event. You might have to use the backquote operator (see

“Backquote Operator” on page 42) to specify the scope precisely.

(dbx) stop cond condition
Chapter 6 Setting Breakpoints and Traces 69

For example, these two filters are not the same:

The former breaks at foo and tests the condition. The latter automatically

single-steps and tests for the condition.

You can use the return value of a function call as a breakpoint filter. In this example,

if the value in the string str is abcde , then execution stops in function foo() :

Variable scope can be used in setting a breakpoint filter. In this example, the current

scope is in function foo() and local is a local variable defined in main() :

New users sometimes confuse setting a conditional event command (a watch-type

command) with using filters. Conceptually, “watching” creates a precondition that

must be checked before each line of code executes (within the scope of the watch).

But even a breakpoint command with a conditional trigger can also have a filter

attached to it.

Consider this example:

This command instructs dbx to monitor the variable, speed; if the variable speed is

written to (the “watch” part), then the -if filter goes into effect. dbx checks whether

the new value of speed is equal to fast_enough . If it is not, the program continues,

“ignoring” the stop .

In dbx syntax, the filter is represented in the form of an [-if condition] statement at

the end of the command.

For detailed information on event modifiers, see “Event Specification Modifiers” on

page 241.

stop in foo -if a>5
stop cond a>5

(dbx) stop in foo -if !strcmp(“abcde”,str)

(dbx) stop access w &main‘local -if pr(main‘local) -in main

(dbx) stop access w &speed -if speed==fast_enough

stop in function [-if condition]
70 Debugging a Program With dbx • May 2002

Tracing Execution

Tracing collects information about what is happening in your program and displays

it. If a program arrives at a breakpoint created with a trace command, the program

halts and an event-specific trace information line is emitted, then the program

continues.

A trace displays each line of source code as it is about to be executed. In all but the

simplest programs, this trace produces volumes of output.

A more useful trace applies a filter to display information about events in your

program. For example, you can trace each call to a function, every member function

of a given name, every function in a class, or each exit from a function. You can also

trace changes to a variable.

Setting a Trace

Set a trace by typing a trace command at the command line. The basic syntax of

the trace command is:

For the complete syntax of the trace command, see “trace Command” on page 329.

The information a trace provides depends on the type of event associated with it (see

“Setting Event Specifications” on page 231).

Controlling the Speed of a Trace

Often trace output goes by too quickly. The dbx environment variable trace_speed
lets you control the delay after each trace is printed. The default delay is 0.5
seconds.

To set the interval between execution of each line of code during a trace, type:

trace event-specification [modifier]

dbxenv trace_speed number
Chapter 6 Setting Breakpoints and Traces 71

Directing Trace Output to a File

You can direct the output of a trace to a file using the -file filename option. For

example, the following command direct trace output to the file trace1 :

To revert trace output to standard output use - for filename. Trace output is always

appended to filename. It is flushed whenever dbx prompts and when the application

has exited. The filename is always re-opened on a new run or resumption after an

attach.

Setting a when Breakpoint at a Line

A when breakpoint command accepts other dbx commands such as list , letting

you write your own version of trace .

The when command operates with an implied cont command. In the example

above, after listing the source code at the current line, the program continues

executing. If you included a stop command after the list command, the program

would not continue executing.

For the complete syntax of the when command, see “when Command” on page 339.

For detailed information on event modifiers, see “Event Specification Modifiers” on

page 241.

Setting a Breakpoint in a Shared Library

dbx provides full debugging support for code that uses the programmatic interface

to the run-time linker: code that calls dlopen() , dlclose() and their associated

functions. The run-time linker binds and unbinds shared libraries during program

execution. Debugging support for dlopen() and dlclose() lets you step into a

function or set a breakpoint in functions in a dynamically shared library just as you

can in a library linked when the program is started.

(dbx) trace -file trace1

(dbx) when at 123 {list $lineno;}
72 Debugging a Program With dbx • May 2002

However, there are exceptions. dbx is unable to place breakpoints in loadobjects that

have not been loaded (by, for example, using dlopen() :

■ You cannot set a breakpoint in a library loaded by dlopen() before that library is

loaded by dlopen() .

■ You cannot set a breakpoint in a filter library loaded by dlopen() until the first

function in it is called.

You can put the names of such loadobjects on the preload list with the loadobject
command (see “loadobject Command” on page 292).

dbx does not forget about a loadobject that was loaded using dlopen() . For

example, a breakpoint set in a freshly loaded loadobject remains until the next run

command, or even if the loadobject is unloaded with dlclose() and then

subsequently loaded with dlopen() again.

Listing and Clearing Breakpoints

Often, you set more than one breakpoint or trace handler during a debugging

session. dbx supports commands for listing and clearing them.

Listing Breakpoints and Traces

To display a list of all active breakpoints, use the status command to display ID

numbers in parentheses, which can then be used by other commands.

dbx reports multiple breakpoints set with the inmember , inclass , and

infunction keywords as a single set of breakpoints with one status ID number.

Deleting Specific Breakpoints Using Handler ID

Numbers

When you list breakpoints using the status command, dbx displays the ID number

assigned to each breakpoint when it was created. Using the delete command, you

can remove breakpoints by ID number, or use the keyword all to remove all

breakpoints currently set anywhere in the program.
Chapter 6 Setting Breakpoints and Traces 73

To delete breakpoints by ID number (in this case 3 and 5), type:

To delete all breakpoints set in the program currently loaded in dbx , type:

For more information, see “delete Command” on page 273.

Enabling and Disabling Breakpoints

Each event management command (stop , trace , when) that you use to set a

breakpoint creates an event handler (see “Event Handlers” on page 229). Each of

these commands returns a number known as the handler ID (hid). You can use the

handler ID as an argument to the handler command (see “handler Command” on

page 283) to enable or disable the breakpoint.

Efficiency Considerations

Various events have different degrees of overhead in respect to the execution time of

the program being debugged. Some events, like the simplest breakpoints, have

practically no overhead. Events based on a single breakpoint have minimal

overhead.

Multiple breakpoints such as inclass , that might result in hundreds of breakpoints,

have an overhead only during creation time. This is because dbx uses permanent

breakpoints; the breakpoints are retained in the process at all times and are not taken

out on every stoppage and put in on every cont .

Note – In the case of step and next , by default all breakpoints are taken out before

the process is resumed and reinserted once the step completes. If you are using

many breakpoints or multiple breakpoints on prolific classes, the speed of step and

next slows down considerably. Use the dbx step_events environment variable to

control whether breakpoints are taken out and reinserted after each step or next .

(dbx) delete 3 5

(dbx) delete all
74 Debugging a Program With dbx • May 2002

The slowest events are those that utilize automatic single stepping. This might be

explicit and obvious as in the trace step command, which single steps through

every source line. Other events, like the stop change expression or trace cond
variable not only single step automatically but also have to evaluate an expression or

a variable at each step.

These events are very slow, but you can often overcome the slowness by bounding

the event with a function using the -in modifier. For example:

Do not use trace -in main because the trace is effective in the functions called

by main as well. Do use it in the cases where you suspect that the lookup()
function is clobbering your variable.

trace next -in mumble
stop change clobbered_variable -in lookup
Chapter 6 Setting Breakpoints and Traces 75

76 Debugging a Program With dbx • May 2002

CHAPTER 7

Using the Call Stack

This chapter discusses how dbx uses the call stack, and how to use the where , hide ,

unhide , and pop commands when working with the call stack.

The call stack represents all currently active routines—routines that have been called

but have not yet returned to their respective caller. A stack frame is a section to the

call stack allocated for use by a single function.

Because the call stack grows from higher memory (larger addresses) to lower

memory, up means going toward the caller’s frame (and eventually main()) and

down means going toward the frame of the called function (and eventually the

current function). The frame for the routine executing when the program stopped at

a breakpoint, after a single-step, or when a fault occurs and produces a core file, is in

lower memory. A caller routine, such as main() , is located in higher memory.

This chapter is organized into the following sections:

■ Finding Your Place on the Stack

■ Walking the Stack and Returning Home

■ Moving Up and Down the Stack

■ Popping the Call Stack

■ Hiding Stack Frames

■ Displaying and Reading a Stack Trace

Finding Your Place on the Stack

Use the where command to find your current location on the stack.

where [-f] [-h] [l] [-q] [-v] number_id
77

When debugging an application that is a mixture of Java™ code and C JNI (Java™

Native Interface) code or C++ JNI code, the syntax of the where command is:

The where command is also useful for learning about the state of a program that has

crashed and produced a core file. When this occurs, you can load the core file into

dbx (see “Debugging a Core File” on page 14)

For more information on the where command, see “where Command” on page 341.

Walking the Stack and Returning Home

Moving up or down the stack is referred to as “walking the stack.” When you visit a

function by moving up or down the stack, dbx displays the current function and the

source line. The location from which you start, home, is the point where the program

stopped executing. From home, you can move up or down the stack using the up ,

down, or frame commands.

The dbx commands up and down both accept a number argument that instructs dbx
to move a number of frames up or down the stack from the current frame. If number
is not specified, the default is 1. The -h option includes all hidden frames in the

count.

Moving Up and Down the Stack

You can examine the local variables in functions other than the current one.

Moving Up the Stack

To move up the call stack (toward main) number levels:

where [-f] [-q] [-v] [thread_id] number_id

up [-h] [number]
78 Debugging a Program With dbx • May 2002

If you do not specify number, the default is one level. For more information, see “up
Command” on page 336.

Moving Down the Stack

To move down the call stack (toward the current stopping point) number levels:

If you do not specify number, the default is one level. For more information, see

“down Command” on page 276.

Moving to a Specific Frame

The frame command is similar to the up and down commands. It lets you go

directly to the frame as given by numbers displayed by the where command.

The frame command without an argument displays the current frame number. With

number, the command lets you go directly to the frame indicated by the number. By

including a + (plus sign) or - (minus sign), the command lets you move an increment

of one level up (+) or down (-). If you include a plus or minus sign with a number,
you can move up or down the specified number of levels. The -h option includes

any hidden frames in the count.

You can also move to a specific frame using the pop command (see “Popping the

Call Stack” on page 79).

Popping the Call Stack

You can remove the stopped in function from the call stack, making the calling

function the new stopped in function.

down [-h] [number]

frame
frame -h
frame [-h] number
frame [-h] +[number]
frame [-h] -[number]
Chapter 7 Using the Call Stack 79

Unlike moving up or down the call stack, popping the stack changes the execution

of your program. When the stopped in function is removed from the stack, it returns

your program to its previous state, except for changes to global or static variables,

external files, shared members, and similar global states.

The pop command removes one or more frames from the call stack. For example, to

pop five frames from the stack, type:

You can also pop to a specific frame. To pop to frame 5, type:

For more information, see “pop Command” on page 304.

Hiding Stack Frames

Use the hide command to list the stack frame filters currently in effect.

To hide or delete all stack frames matching a regular expression, type:

The regular_expression matches either the function name, or the name of the

loadobject, and uses sh or ksh syntax for file matching.

Use unhide to delete all stack frame filters.

Because the hide command lists the filters with numbers, you can also use the

unhide command with the filter number.

pop 5

pop -f 5

hide [regular_expression]

unhide 0

unhide [number | regular_expression]
80 Debugging a Program With dbx • May 2002

Displaying and Reading a Stack Trace

A stack trace shows where in the program flow execution stopped and how

execution reached this point. It provides the most concise description of your

program’s state.

To display a stack trace, use the where command.

For functions that were compiled with the -g option, the names and types of the

arguments are known so accurate values are displayed. For functions without

debugging information hexadecimal numbers are displayed for the arguments.

These numbers are not necessarily meaningful. When a function call is made

through function pointer 0, the function value is shown as a low hexadecimal

number instead of a symbolic name.

You can stop in a function that was not compiled with the -g option. When you stop

in such a function dbx searches down the stack for the first frame whose function is

compiled with the -g option and sets the current scope (see “Scope” on page 38) to

it. This is denoted by the arrow symbol (=>).

In the following example, main() was compiled with the -g option, so the symbolic

names as well as the values of the arguments are displayed The library functions

called by main() were not compiled with -g , so the symbolic names of the

functions are displayed but the hexadecimal contents of the SPARC input registers

$i0 through $i5 are shown for the arguments:

(dbx) where
 [1] _libc_poll(0xffbef3b0, 0x1, 0xffffffff, 0x0, 0x10,
0xffbef604), at 0xfef9437c
 [2] _select(0xffbef3b8, 0xffbef580, 0xffbef500, 0xffbef584,
0xffbef504, 0x4), at 0xfef4e3dc

[3] _XtWaitForSomething(0x5a418, 0x0, 0x0, 0xf4240, 0x0, 0x1),
at 0xff0bdb6c

[4] XtAppNextEvent(0x5a418, 0x2, 0x2, 0x0, 0xffbef708, 0x1), at
0xff0bd5ec
 [5] XtAppMainLoop(0x5a418, 0x0, 0x1, 0x5532d, 0x3, 0x1), at
0xff0bd424
=>[6] main(argc = 1, argv = 0xffbef83c), line 48 in "main.cc"
Chapter 7 Using the Call Stack 81

In this example, the program has crashed with a segmentation fault. Again only

main() has been compiled with the -g option, so the arguments to the library

functions are displayed as hexadecimal without symbolic names. The cause of the

crash is most likely the null arguments to strlen() in SPARC input registers $i0
and $i1

For more examples of stack traces, see “Looking at the Call Stack” on page 9 and

“Tracing Calls” on page 172.

(dbx) run
Running: Cdlib
(process id 6723)

CD Library Statistics:

 Titles: 1

 Total time: 0:00:00
 Average time: 0:00:00

signal SEGV (no mapping at the fault address) in strlen at
0xff2b6c5c
0xff2b6c5c: strlen+0x0080:ld [%o1], %o2
Current function is main
(dbx) where
 [1] strlen(0x0, 0x0, 0x11795, 0x7efefeff, 0x81010100,
0xff339323), at 0xff2b6c5c

[2] _doprnt(0x11799, 0x0, 0x0, 0x0, 0x0, 0xff00), at 0xff2fec18
 [3] printf(0x11784, 0xff336264, 0xff336274, 0xff339b94,
0xff331f98, 0xff00), at 0xff300780
=>[4] main(argc = 1, argv = 0xffbef894), line 133 in "Cdlib.c"
(dbx)
82 Debugging a Program With dbx • May 2002

CHAPTER 8

Evaluating and Displaying Data

In dbx , you can perform two types of data checking:

■ Evaluate data (print) – Spot-checks the value of an expression

■ Display data (display) – Monitors the value of an expression each time the

program stops

This chapter is organized into the following sections:

■ Evaluating Variables and Expressions

■ Assigning a Value to a Variable

■ Evaluating Arrays

Evaluating Variables and Expressions

This section discusses how to use dbx to evaluate variables and expressions.

Verifying Which Variable dbx Uses

If you are not sure which variable dbx is evaluating, use the which command to see

the fully qualified name dbx is using.

To see other functions and files in which a variable name is defined, use the

whereis command.

For information on the commands, see “which Command” on page 343 and

“whereis Command” on page 342.
83

Variables Outside the Scope of the Current

Function

When you want to evaluate or monitor a variable outside the scope of the current

function:

■ Qualify the name of the function. See “Qualifying Symbols With Scope Resolution

Operators” on page 42.

or

■ Visit the function by changing the current function. See “Navigating Through

Code” on page 39.

Printing the Value of a Variable, Expression, or

Identifier

An expression should follow current language syntax, with the exception of the

meta syntax that dbx introduces to deal with scope and arrays.

To evaluate a variable or expression in native code, type:

You can use the print command to evaluate an expression, local variable, or

parameter in Java code.

For more information, see “print Command” on page 304.

Note – dbx supports the C++ dynamic_cast and typeid operators. When

evaluating expressions with these two operators, dbx makes calls to certain rtti

functions made available by the compiler. If the source doesn’t explicitly use the

operators, those functions might not have been generated by the compiler, and dbx
fails to evaluate the expression.

Printing C++

In C++ an object pointer has two types, its static type (what is defined in the source

code) and its dynamic type (what an object was before any casts were made to it). dbx
can sometimes provide you with the information about the dynamic type of an

object.

print expression
84 Debugging a Program With dbx • May 2002

In general, when an object has a virtual function table (a vtable) in it, dbx can use

the information in the vtable to correctly determine an object’s type.

You can use the print or display command with the -r (recursive) option. dbx
displays all the data members directly defined by a class and those inherited from a

base class.

These commands also take a -d or +d option that toggles the default behavior of the

dbx environment variable output_derived_type .

Using the -d flag or setting the dbx environment variable output_dynamic_type
to on when there is no process running generates a “program is not active” error

message because it is not possible to access dynamic information when there is no

process. An “illegal cast on class pointers” error message is generated if you try to

find a dynamic type through a virtual inheritance. (Casting from a virtual base class

to a derived class is not legal in C++.)

Evaluating Unnamed Arguments in C++ Programs

C++ lets you define functions with unnamed arguments. For example:

Though you cannot use unnamed arguments elsewhere in a program, the compiler

encodes unnamed arguments in a form that lets you evaluate them. The form is as

follows, where the compiler assigns an integer to %n:

To obtain the name assigned by the compiler, type the whatis command with the

function name as its target.

void tester(int)
{
};
main(int, char **)
{
 tester(1);
};

_ARG%n

(dbx) whatis tester
void tester(int _ARG1);
(dbx) whatis main
int main(int _ARG1, char **_ARG2);
Chapter 8 Evaluating and Displaying Data 85

For more information, see “whatis Command” on page 337.

To evaluate (or display) an unnamed function argument, type:

Dereferencing Pointers

When you dereference a pointer, you ask for the contents of the container to which

the pointer points.

To dereference a pointer, dbx displays the evaluation in the command pane; in this

case, the value pointed to by t :

Monitoring Expressions

Monitoring the value of an expression each time the program stops is an effective

technique for learning how and when a particular expression or variable changes.

The display command instructs dbx to monitor one or more specified expressions

or variables. Monitoring continues until you turn it off with the undisplay
command.

To display the value of a variable or expression each time the program stops, type:

You can monitor more than one variable at a time. The display command used

with no options prints a list of all expressions being displayed.

For more information, see “display Command” on page 275.

(dbx) print _ARG1
_ARG1 = 4

(dbx) print * t
*t = {
a = 4
}

display expression, ...
86 Debugging a Program With dbx • May 2002

Turning Off Display (Undisplaying)

dbx continues to display the value of a variable you are monitoring until you turn

off display with the undisplay command. You can turn off the display of a

specified expression or turn off the display of all expressions currently being

monitored.

To turn off the display of a particular variable or expression, type:

To turn off the display of all currently monitored variables, type:

For more information, see “undisplay Command” on page 334.

Assigning a Value to a Variable

To assign a value to a variable, type:

Evaluating Arrays

You evaluate arrays the same way you evaluate other types of variables.

Here is a sample Fortran array:

undisplay expression

undisplay 0

assign variable = expression

integer*4 arr(1:6, 4:7)
Chapter 8 Evaluating and Displaying Data 87

To evaluate the array, use the print command. For example:

The dbx print command lets you evaluate part of a large array. Array evaluation

includes:

■ Array Slicing – Prints any rectangular, n-dimensional box of a multidimensional

array.

■ Array Striding – Prints certain elements only, in a fixed pattern, within the

specified slice (which may be an entire array).

You can slice an array, with or without striding. (The default stride value is 1, which

means print each element.)

Array Slicing

Array slicing is supported in the print and display commands for C, C++, and

Fortran.

Array Slicing Syntax for C and C++

For each dimension of an array, the full syntax of the print command to slice the

array is:

where:

The first, last, and stride expressions are optional expressions that should evaluate to

integers.

(dbx) print arr(2,4)

print array-expression [first-expression .. last-expression : stride-expression]

array-expression Expression that should evaluate to an array or pointer type.

first-expression First element to be printed. Defaults to 0.

last-expression Last element to be printed. Defaults to upper bound.

stride-expression Length of the stride (the number of elements skipped is

stride-expression-1). Defaults to 1.
88 Debugging a Program With dbx • May 2002

For example:

Array Slicing Syntax for Fortran

For each dimension of an array, the full syntax of the print command to slice the

array is:

where:

The first, last, and stride expressions are optional expressions that should evaluate to

integers. For an n-dimensional slice, separate the definition of each slice with a

comma.

(dbx) print arr[2..4]
arr[2..4] =
[2] = 2
[3] = 3
[4] = 4
(dbx) print arr[..2]
arr[0..2] =
[0] = 0
[1] = 1
[2] = 2

(dbx) print arr[2..6:2]
arr[2..6:2] =
[2] = 2
[4] = 4
[6] = 6

print array-expression (first-expression : last-expression : stride-expression)

array-expression Expression that should evaluate to an array type.

first-expression First element in a range, also first element to be printed.

Defaults to lower bound.

last-expression Last element in a range, but might not be the last element to be

printed if stride is not equal to 1. Defaults to upper bound.

stride-expression Length of the stride. Defaults to 1.
Chapter 8 Evaluating and Displaying Data 89

For example:

To specify rows and columns, type:

(dbx) print arr(2:6)
arr(2:6) =
(2) 2
(3) 3
(4) 4
(5) 5
(6) 6

(dbx) print arr(2:6:2)
arr(2:6:2) =
(2) 2
(4) 4
(6) 6

demo% f77 -g -silent ShoSli.f
demo% dbx a.out
Reading symbolic information for a.out
(dbx) list 1,12

1 INTEGER*4 a(3,4), col, row
2 DO row = 1,3
3 DO col = 1,4
4 a(row,col) = (row*10) + col
5 END DO
6 END DO
7 DO row = 1, 3
8 WRITE(*,'(4I3)') (a(row,col),col=1,4)
9 END DO
10 END

(dbx) stop at 7
(1) stop at "ShoSli.f":7
(dbx) run
Running: a.out
stopped in MAIN at line 7 in file "ShoSli.f"

7 DO row = 1, 3
90 Debugging a Program With dbx • May 2002

To print row 3, type:

To print column 4, type:

Slices

Here is an example of a two-dimensional, rectangular slice, with the default stride of

1 omitted.

This command prints a block of elements in a large array. Note that the command

omits stride-expression, using the default stride value of 1.

FIGURE 8-1 Example of a Two-dimensional, Rectangular Slice With a Stride of 1

(dbx) print a(3:3,1:4)
'ShoSli'MAIN'a(3:3, 1:4) =
 (3,1) 31
 (3,2) 32
 (3,3) 33
 (3,4) 34
(dbx)

(dbx) print a(1:3,4:4)
'ShoSli'MAIN'a(1:3, 1:4) =
 (1,4) 14
 (2,4) 24
 (3,4) 34
(dbx)

print arr(201:203, 101:105)
Chapter 8 Evaluating and Displaying Data 91

As illustrated in FIGURE 8-1, the first two expressions (201:203) specify a slice in the

first dimension of this two-dimensional array (the three-row column). The slice

starts with row 201 and ends with 203 . The second set of expressions, separated by

a comma from the first, defines the slice for the second dimension. The slice begins

with column 101 and ends with column 105 .

Strides

When you instruct print to stride across a slice of an array, dbx evaluates certain

elements in the slice only, skipping over a fixed number of elements between each

one it evaluates.

The third expression in the array slicing syntax, stride-expression, specifies the length

of the stride. The value of stride-expression specifies the elements to print. The default

stride value is 1, meaning: evaluate all of the elements in the specified slices.

Here is the same array used in the previous example of a slice. This time the print

command includes a stride of 2 for the slice in the second dimension.

As shown in FIGURE 8-2, a stride of 2 prints every second element, skipping every

other element.

FIGURE 8-2 Example of a Two-dimensional, Rectangular Slice with a Stride of 2

For any expression you omit, print takes a default value equal to the declared size of

the array. Here are examples showing how to use the shorthand syntax.

print arr(201:203, 101:105:2)
92 Debugging a Program With dbx • May 2002

For a one-dimensional array, use the following commands:

For a two-dimensional array, the following command prints the entire array.

To print every third element in the second dimension of a two-dimensional array,

type:

print arr Prints the entire array with default boundaries.

print arr(:) Prints the entire array with default boundaries and

default stride of 1.

print arr(:: stride-expression) Prints the entire array with a stride of stride-expression.

print arr

print arr (:,::3)
Chapter 8 Evaluating and Displaying Data 93

94 Debugging a Program With dbx • May 2002

CHAPTER 9

Using Runtime Checking

Runtime checking (RTC) lets you automatically detect runtime errors, such as

memory access errors and memory leak, in a native code application during the

development phase. It also lets you monitor memory usage. You cannot use runtime

checking on Java code.

The following topics are covered in this chapter:

■ Capabilities of Runtime Checking

■ Using Runtime Checking

■ Using Access Checking (SPARC Only)

■ Using Memory Leak Checking

■ Using Memory Use Checking

■ Suppressing Errors

■ Using Runtime Checking on a Child Process

■ Using Runtime Checking on an Attached Process

■ Using Fix and Continue With Runtime Checking

■ Runtime Checking Application Programming Interface

■ Using Runtime Checking in Batch Mode

■ Troubleshooting Tips

Note – Access checking is available only on SPARC systems.

Capabilities of Runtime Checking

Because runtime checking is an integral debugging feature, you can perform all

debugging operations while using runtime checking except collecting performance

data using the Collector.

Runtime checking:
95

■ Detects memory access errors

■ Detects memory leaks

■ Collects data on memory use

■ Works with all languages

■ Works with multithreaded code

■ Requires no recompiling, relinking, or makefile changes

Compiling with the -g flag provides source line number correlation in the runtime

checking error messages. Runtime checking can also check programs compiled with

the optimization -O flag. There are some special considerations with programs not

compiled with the -g option.

You can use runtime checking by using the check command.

When to Use Runtime Checking

One way to avoid seeing a large number of errors at once is to use runtime checking

earlier in the development cycle—as you are developing the individual modules that

make up your program. Write a unit test to drive each module and use runtime

checking incrementally to check one module at a time. That way, you deal with a

smaller number of errors at a time. When you integrate all of the modules into the

full program, you are likely to encounter few new errors. When you reduce the

number of errors to zero, you need to run runtime checking again only when you

make changes to a module.

Runtime Checking Requirements

To use runtime checking, you must fulfill the following requirements:

■ Programs compiled using a Sun compiler.

■ Dynamic linking with libc.

■ Use of the standard libc malloc , free , and realloc functions or allocators

based on those functions. Runtime checking provides an application

programming interface (API) to handle other allocators. See “Runtime Checking

Application Programming Interface” on page 121.

■ Programs that are not fully stripped; programs stripped with strip -x are

acceptable.
96 Debugging a Program With dbx • May 2002

Limitations

Runtime checking does not handle program text areas and data areas larger than 8

megabytes on hardware that is not based on UltraSPARC™ processors. For more

information, see “Runtime Checking’s 8 Megabyte Limit” on page 123.

A possible solution is to insert special files in the executable image to handle

program text areas and data areas larger than 8 megabytes.

Using Runtime Checking

To use runtime checking, enable the type of checking you want to use before you run

the program.

Turning On Memory Use and Memory Leak

Checking

To turn on memory use and memory leak checking, type:

When memory use checking or memory leak checking is turned on, the showblock
command shows the details about the heap block at a given address. The details

include the location of the block’s allocation and its size. For more information, see

“showblock Command” on page 314.

Turning On Memory Access Checking

To turn on memory access checking only, type:

(dbx) check -memuse

(dbx) check -access
Chapter 9 Using Runtime Checking 97

Turning On All Runtime Checking

To turn on memory leak, memory use, and memory access checking, type:

For more information, see “check Command” on page 256.

Turning Off Runtime Checking

To turn off runtime checking entirely, type:

For detailed information, see “uncheck Command” on page 333.

Running Your Program

After turning on the types of runtime checking you want, run the program being

tested, with or without breakpoints.

The program runs normally, but slowly because each memory access is checked for

validity just before it occurs. If dbx detects invalid access, it displays the type and

location of the error. Control returns to you (unless the dbx environment variable

rtc_auto_continue is set to on (see “Setting dbx Environment Variables” on

page 30.))

You can then issue dbx commands, such as where to get the current stack trace or

print to examine variables. If the error is not a fatal error, you can continue

execution of the program with the cont command. The program continues to the

next error or breakpoint, whichever is detected first. For detailed information, see

“cont Command” on page 267.

If rtc_auto_continue is set to on , runtime checking continues to find errors, and

keeps running automatically. It redirects errors to the file named by the dbx
environment variable rtc_error_log_file_name. (See “Setting dbx
Environment Variables” on page 30.) The default log file name is /tmp/
dbx.errlog. uniqueid.

You can limit the reporting of runtime checking errors using the suppress
command. For detailed information, see “suppress Command” on page 324.

(dbx) check -all

(dbx) uncheck -all
98 Debugging a Program With dbx • May 2002

Below is a simple example showing how to turn on memory access and memory use

checking for a program called hello.c. .

% cat -n hello.c
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4
 5 char *hello1, *hello2;
 6
 7 void
 8 memory_use()
 9 {
10 hello1 = (char *)malloc(32);
11 strcpy(hello1, "hello world");
12 hello2 = (char *)malloc(strlen(hello1)+1);
13 strcpy(hello2, hello1);
14 }
15
16 void
17 memory_leak()
18 {
19 char *local;
20 local = (char *)malloc(32);
21 strcpy(local, "hello world");
22 }
23
24 void
25 access_error()
26 {
27 int i,j;
28
29 i = j;
30 }
31
32 int
33 main()
34 {
35 memory_use();
36 access_error();
37 memory_leak();
38 printf("%s\n", hello2);
39 return 0;
40 }

% cc -g -o hello hello.c
Chapter 9 Using Runtime Checking 99

The function access_error() reads variable j before it is initialized. Runtime

checking reports this access error as a Read from uninitialized (rui).

The function memory_leak() does not free the variable local before it returns.

When memory_leak() returns, this variable goes out of scope and the block

allocated at line 20 becomes a leak.

% dbx -C hello
Reading ld.so.1
Reading librtc.so
Reading libc.so.1
Reading libdl.so.1

(dbx) check -access
access checking - ON
(dbx) check -memuse
memuse checking - ON
(dbx) run Running: hello
(process id 18306)
Enabling Error Checking... done
Read from uninitialized (rui):
Attempting to read 4 bytes at address 0xeffff068

 which is 96 bytes above the current stack pointer
Variable is 'j'
Current function is access_error

29 i = j;
(dbx) cont
hello world
Checking for memory leaks...
Actual leaks report (actual leaks: 1 total size: 32 bytes)

Total Num of Leaked Allocation call stack
Size Blocks Block

Address
====== ====== ========== =======================================

32 1 0x21aa8 memory_leak < main

Possible leaks report (possible leaks: 0 total size: 0 bytes)

Checking for memory use...
Blocks in use report (blocks in use: 2 total size: 44 bytes

Total % of Num of Avg Allocation call stack
Size All Blocks Size

======= ==== ====== ====== =======================================
 32 72% 1 32 memory_use < main
 12 27% 1 12 memory_use < main

execution completed, exit code is 0
100 Debugging a Program With dbx • May 2002

The program uses global variables hello1 and hello2, which are in scope all the

time. They both point to dynamically allocated memory, which is reported as Blocks

in use (biu).

Using Access Checking (SPARC Only)

Access checking checks whether your program accesses memory correctly by

monitoring each read, write, and memory free operation.

Programs might incorrectly read or write memory in a variety of ways; these are

called memory access errors. For example, the program may reference a block of

memory that has been deallocated through a free() call for a heap block. Or a

function might return a pointer to a local variable, and when that pointer is accessed

an error would result. Access errors might result in wild pointers in the program

and can cause incorrect program behavior, including wrong outputs and

segmentation violations. Some kinds of memory access errors can be very hard to

track down.

Runtime checking maintains a table that tracks the state of each block of memory

being used by the program. Runtime checking checks each memory operation

against the state of the block of memory it involves and then determines whether the

operation is valid. The possible memory states are:

■ Unallocated, initial state – Memory has not been allocated. It is illegal to read,

write, or free this memory because it is not owned by the program.

■ Allocated, but uninitialized – Memory has been allocated to the program but not

initialized. It is legal to write to or free this memory, but is illegal to read it

because it is uninitialized. For example, upon entering a function, stack memory

for local variables is allocated, but uninitialized.

■ Read-only – It is legal to read, but not write or free, read-only memory.

■ Allocated and initialized – It is legal to read, write, or free allocated and

initialized memory.

Using runtime checking to find memory access errors is not unlike using a compiler

to find syntax errors in your program. In both cases, a list of errors is produced, with

each error message giving the cause of the error and the location in the program

where the error occurred. In both cases, you should fix the errors in your program

starting at the top of the error list and working your way down. One error can cause

other errors in a chain reaction. The first error in the chain is, therefore, the “first

cause,” and fixing that error might also fix some subsequent errors.

For example, a read from an uninitialized section of memory can create an incorrect

pointer, which when dereferenced can cause another invalid read or write, which

can in turn lead to yet another error.
Chapter 9 Using Runtime Checking 101

Understanding the Memory Access Error Report

Runtime checking prints the following information for memory access errors:

The following example shows a typical access error.

Memory Access Errors

Runtime checking detects the following memory access errors:

■ rui (see “Read From Uninitialized Memory (rui) Error” on page 127)

■ rua (see “Read From Unallocated Memory (rua) Error” on page 127)

■ wua (see “Write to Unallocated Memory (wua) Error” on page 128)

■ wro (see “Write to Read-Only Memory (wro) Error” on page 128)

■ mar (see “Misaligned Read (mar) Error” on page 126)

■ maw(see “Misaligned Write (maw) Error” on page 127)

■ duf (see “Duplicate Free (duf) Error” on page 126)

Error Information

type Type of error.

access Type of access attempted (read or write).

size Size of attempted access.

addr Address of attempted access.

detail More detailed information about addr . For example, if addr is in the

vicinity of the stack, then its position relative to the current stack pointer

is given. If addr is in the heap, then the address, size, and relative

position of the nearest heap block is given.

stack Call stack at time of error (with batch mode).

allocation If addr is in the heap, then the allocation trace of the nearest heap block

are given.

location Where the error occurred. If line number information is available, this

information includes line number and function. If line numbers are not

available, runtime checking provides function and address.

Read from uninitialized (rui):
Attempting to read 4 bytes at address 0xefffee50

which is 96 bytes above the current stack pointer
Variable is ‘j’
Current function is rui
 12 i = j;
102 Debugging a Program With dbx • May 2002

■ baf (see “Bad Free (baf) Error” on page 125)

■ maf (see “Misaligned Free (maf) Error” on page 126)

■ oom (see “Out of Memory (oom) Error” on page 127)

Note – Runtime checking does not perform array bounds checking and, therefore,

does not report array bound violations as access errors.

Using Memory Leak Checking

A memory leak is a dynamically allocated block of memory that has no pointers

pointing to it anywhere in the data space of the program. Such blocks are orphaned

memory. Because there are no pointers pointing to the blocks, programs cannot

reference them, much less free them. Runtime checking finds and reports such

blocks.

Memory leaks result in increased virtual memory consumption and generally result

in memory fragmentation. This might slow down the performance of your program

and the whole system.

Typically, memory leaks occur because allocated memory is not freed and you lose a

pointer to the allocated block. Here are some examples of memory leaks:

void
foo()
{
 char *s;
 s = (char *) malloc(32);

 strcpy(s, "hello world");

return; /* no free of s. Once foo returns, there is no */
/* pointer pointing to the malloc'ed block, */
/* so that block is leaked. */

}

Chapter 9 Using Runtime Checking 103

A leak can result from incorrect use of an API.

You can avoid memory leaks by always freeing memory when it is no longer needed

and paying close attention to library functions that return allocated memory. If you

use such functions, remember to free up the memory appropriately.

Sometimes the term memory leak is used to refer to any block that has not been freed.

This is a much less useful definition of a memory leak, because it is a common

programming practice not to free memory if the program will terminate shortly.

Runtime checking does not report a block as a leak, if the program still retains one or

more pointers to it.

Detecting Memory Leak Errors

Runtime checking detects the following memory leak errors:

■ mel (see “Memory Leak (mel) Error” on page 129)

■ air (see “Address in Register (air) Error” on page 129)

■ aib (see “Address in Block (aib) Error” on page 128)

Note – Runtime checking only finds leaks of malloc memory. If your program does

not use malloc , runtime checking cannot find memory leaks.

Possible Leaks

There are two cases where runtime checking can report a “possible” leak. The first

case is when no pointers are found pointing to the beginning of the block, but a

pointer is found pointing to the interior of the block. This case is reported as an

“Address in Block (aib)” error. If it was a stray pointer that pointed into the block,

this would be a real memory leak. However, some programs deliberately move the

void
printcwd()
{

 printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN));

return; /* libc function getcwd() returns a pointer to */
/* malloc'ed area when the first argument is NULL, */
/* program should remember to free this. In this */
/* case the block is not freed and results in leak.*/

}

104 Debugging a Program With dbx • May 2002

only pointer to an array back and forth as needed to access its entries. In this case, it

would not be a memory leak. Because runtime checking cannot distinguish between

these two cases, it reports both of them as possible leaks, letting you determine

which are real memory leaks.

The second type of possible leak occurs when no pointers to a block are found in the

data space, but a pointer is found in a register. This case is reported as an “Address

in Register (air)” error. If the register points to the block accidentally, or if it is an

old copy of a memory pointer that has since been lost, then this is a real leak.

However, the compiler can optimize references and place the only pointer to a block

in a register without ever writing the pointer to memory. Such a case would not be a

real leak. Hence, if the program has been optimized and the report was the result of

the showleaks command, it is likely not to be a real leak. In all other cases, it is

likely to be a real leak. For more information, see “showleaks Command” on

page 314.

Note – Runtime leak checking requires the use of the standard libc malloc/
free/realloc functions or allocators based on those functions. For other

allocators, see “Runtime Checking Application Programming Interface” on page 121.

Checking for Leaks

If memory leak checking is turned on, a scan for memory leaks is automatically

performed just before the program being tested exits. Any detected leaks are

reported. The program should not be killed with the kill command. Here is a

typical memory leak error message:

A UNIX program has a main procedure (called MAIN in f77) that is the top-level user

function for the program. Normally, a program terminates either by calling exit(3)
or by returning from main . In the latter case, all variables local to main go out of

scope after the return, and any heap blocks they pointed to are reported as leaks

(unless global variables point to those same blocks).

It is a common programming practice not to free heap blocks allocated to local

variables in main , because the program is about to terminate and return from main
without calling exit() . To prevent runtime checking from reporting such blocks as

memory leaks, stop the program just before main returns by setting a breakpoint on

Memory leak (mel):
Found leaked block of size 6 at address 0x21718
At time of allocation, the call stack was:
 [1] foo() at line 63 in test.c
 [2] main() at line 47 in test.c
Chapter 9 Using Runtime Checking 105

the last executable source line in main . When the program halts there, use the

showleaks command to report all the true leaks, omitting the leaks that would

result merely from variables in main going out of scope.

For more information, see “showleaks Command” on page 314.

Understanding the Memory Leak Report

With leak checking turned on, you receive an automatic leak report when the

program exits. All possible leaks are reported—provided the program has not been

killed using the kill command. The level of detail in the report is controlled by the

dbx environment variable rtc_mel_at_exit (see “Setting dbx Environment

Variables” on page 30). By default, a nonverbose leak report is generated.

Reports are sorted according to the combined size of the leaks. Actual memory leaks

are reported first, followed by possible leaks. The verbose report contains detailed

stack trace information, including line numbers and source files whenever they are

available.

Both reports include the following information for memory leak errors:

Information Description

location Location where leaked block was allocated.

addr Address of leaked block.

size Size of leaked block.

stack Call stack at time of allocation, as constrained by check -frames.
106 Debugging a Program With dbx • May 2002

Here is the corresponding nonverbose memory leak report.

Following is a typical verbose leak report.

Actual leaks report (actual leaks: 3 total size: 2427 bytes)

 Total Num of Leaked Allocation call stack
 Size Blocks Block
 Address
====== ====== ========== =======================================
 1852 2 - true_leak < true_leak
 575 1 0x22150 true_leak < main

Possible leaks report (possible leaks: 1 total size: 8
bytes)

 Total Num of Leaked Allocation call stack
 Size Blocks Block
 Address
====== ====== ========== =======================================
 8 1 0x219b0 in_block < main

Actual leaks report (actual leaks: 3 total size:
2427 bytes)

Memory Leak (mel):
Found 2 leaked blocks with total size 1852 bytes
At time of each allocation, the call stack was:

[1] true_leak() at line 220 in "leaks.c"
[2] true_leak() at line 224 in "leaks.c"

Memory Leak (mel):
Found leaked block of size 575 bytes at address 0x22150
At time of allocation, the call stack was:

[1] true_leak() at line 220 in "leaks.c"
[2] main() at line 87 in "leaks.c"

Possible leaks report (possible leaks: 1 total size:
8 bytes)

Possible memory leak -- address in block (aib):
Found leaked block of size 8 bytes at address 0x219b0
At time of allocation, the call stack was:

[1] in_block() at line 177 in "leaks.c"
[2] main() at line 100 in "leaks.c"
Chapter 9 Using Runtime Checking 107

Generating a Leak Report

You can ask for a leak report at any time using the showleaks command, which

reports new memory leaks since the last showleaks command. For more

information, see “showleaks Command” on page 314.

Combining Leaks

Because the number of individual leaks can be very large, runtime checking

automatically combines leaks allocated at the same place into a single combined leak

report. The decision to combine leaks, or report them individually, is controlled by

the number-of-frames-to-match parameter specified by the -match m option

on a check -leaks or the -m option of the showleaks command. If the call stack

at the time of allocation for two or more leaks matches to m frames to the exact

program counter level, these leaks are reported in a single combined leak report.

Consider the following three call sequences:

If all of these blocks lead to memory leaks, the value of m determines whether the

leaks are reported as separate leaks or as one repeated leak. If m is 2, Blocks 1 and 2

are reported as one repeated leak because the 2 stack frames above malloc() are

common to both call sequences. Block 3 will be reported as a separate leak because

the trace for c() does not match the other blocks. For m greater than 2, runtime

checking reports all leaks as separate leaks. (The malloc is not shown on the leak

report.)

In general, the smaller the value of m, the fewer individual leak reports and the more

combined leak reports are generated. The greater the value of m, the fewer combined

leak reports and the more individual leak reports are generated.

Fixing Memory Leaks

Once you have obtained a memory leak report, follow these guidelines for fixing the

memory leaks.

Block 1 Block 2 Block 3

[1] malloc [1] malloc [1] malloc

[2] d() at 0x20000 [2] d() at 0x20000 [2] d() at 0x20000

[3] c() at 0x30000 [3] c() at 0x30000 [3] c() at 0x31000

[4] b() at 0x40000 [4] b() at 0x41000 [4] b() at 0x40000

[5] a() at 0x50000 [5] a() at 0x50000 [5] a() at 0x50000
108 Debugging a Program With dbx • May 2002

■ Most importantly, determine where the leak is. The leak report tells you the

allocation trace of the leaked block, the place where the leaked block was

allocated.

■ You can then look at the execution flow of your program and see how the block

was used. If it is obvious where the pointer was lost, the job is easy; otherwise

you can use showleaks to narrow your leak window. By default the showleaks
command gives you the new leaks created only since the last showleaks
command. You can run showleaks repeatedly while stepping through your

program to narrow the window where the block was leaked.

For more information, see “showleaks Command” on page 314.

Using Memory Use Checking

Memory use checking lets you see all the heap memory in use. You can use this

information to get a sense of where memory is allocated in your program or which

program sections are using the most dynamic memory. This information can also be

useful in reducing the dynamic memory consumption of your program and might

help in performance tuning

Memory use checking is useful during performance tuning or to control virtual

memory use. When the program exits, a memory use report can be generated.

Memory usage information can also be obtained at any time during program

execution with the showmemuse command, which causes memory usage to be

displayed. For information, see “showmemuse Command” on page 315.

Turning on memory use checking also turns on leak checking. In addition to a leak

report at the program exit, you also get a blocks in use (biu) report. By default, a

nonverbose blocks in use report is generated at program exit. The level of detail in

the memory use report is controlled by the dbx environment variable

rtc_biu_at_exit (see “Setting dbx Environment Variables” on page 30).

The following is a typical nonverbose memory use report.

Blocks in use report (blocks in use: 5 total size: 40 bytes)

 Total % of Num of Avg Allocation call stack
 Size All Blocks Size
======= ==== ====== ====== =====================================
 16 40% 2 8 nonleak < nonleak
 8 20% 1 8 nonleak < main
 8 20% 1 8 cyclic_leaks < main
 8 20% 1 8 cyclic_leaks < main
Chapter 9 Using Runtime Checking 109

The following is the corresponding verbose memory use report:

You can ask for a memory use report any time with the showmemuse command.

Suppressing Errors

Runtime checking provides a powerful error suppression facility that allows great

flexibility in limiting the number and types of errors reported. If an error occurs that

you have suppressed, then no report is given, and the program continues as if no

error had occurred.

You can suppress errors using the suppress command (see “suppress Command”

on page 324)..

You can undo error suppression using the unsuppress command (see

“unsuppress Command” on page 336).

Blocks in use report (blocks in use: 5 total size: 40 bytes)

Block in use (biu):
Found 2 blocks totaling 16 bytes (40.00% of total; avg block size
8)
At time of each allocation, the call stack was:
 [1] nonleak() at line 182 in "memuse.c"
 [2] nonleak() at line 185 in "memuse.c"

Block in use (biu):
Found block of size 8 bytes at address 0x21898 (20.00% of total)
At time of allocation, the call stack was:
 [1] nonleak() at line 182 in "memuse.c"
 [2] main() at line 74 in "memuse.c"

Block in use (biu):
Found block of size 8 bytes at address 0x21958 (20.00% of total)
At time of allocation, the call stack was:
 [1] cyclic_leaks() at line 154 in "memuse.c"
 [2] main() at line 118 in "memuse.c"

Block in use (biu):
Found block of size 8 bytes at address 0x21978 (20.00% of total)
At time of allocation, the call stack was:
 [1] cyclic_leaks() at line 155 in "memuse.c"
 [2] main() at line 118 in "memuse.c"
110 Debugging a Program With dbx • May 2002

Suppression is persistent across run commands within the same debug session, but

not across debug commands.

Types of Suppression

The following types of suppression are available:

Suppression by Scope and Type

You must specify which type of error to suppress. You can specify which parts of the

program to suppress. The options are:

Suppression of Last Error

By default, runtime checking suppresses the most recent error to prevent repeated

reports of the same error. This is controlled by the dbx environment variable

rtc_auto_suppress . When rtc_auto_suppress is set to on (the default), a

particular access error at a particular location is reported only the first time it is

encountered and suppressed thereafter. This is useful, for example, for preventing

multiple copies of the same error report when an error occurs in a loop that is

executed many times.

Option Description

Global The default; applies to the whole program.

Load Object Applies to an entire load object, such as a shared library, or the main

program.

File Applies to all functions in a particular file.

Function Applies to a particular function.

Line Applies to a particular source line.

Address Applies to a particular instruction at an address.
Chapter 9 Using Runtime Checking 111

Limiting the Number of Errors Reported

You can use the dbx environment variable rtc_error_limit to limit the number

of errors that will be reported. The error limit is used separately for access errors and

leak errors. For example, if the error limit is set to 5, then a maximum of five access

errors and five memory leaks are shown in both the leak report at the end of the run

and for each showleaks command you issue. The default is 1000.

Suppressing Error Examples

In the following examples, main.cc is a file name, foo and bar are functions, and

a.out is the name of an executable.

Do not report memory leaks whose allocation occurs in function foo .

Suppress reporting blocks in use allocated from libc.so.1.

Suppress read from uninitialized in all functions in a.out .

Do not report read from unallocated in file main.cc .

Suppress duplicate free at line 10 of main.cc .

Suppress reporting of all errors in function bar .

For more information, see “suppress Command” on page 324.

suppress mel in foo

suppress biu in libc.so.1

suppress rui in a.out

suppress rua in main.cc

suppress duf at main.cc:10

suppress all in bar
112 Debugging a Program With dbx • May 2002

Default Suppressions

To detect all errors, runtime checking does not require the program be compiled

using the -g option (symbolic). However, symbolic information is sometimes needed

to guarantee the correctness of certain errors, mostly rui errors. For this reason

certain errors, rui for a.out and rui , aib , and air for shared libraries, are

suppressed by default if no symbolic information is available. This behavior can be

changed using the -d option of the suppress and unsuppress commands.

The following command causes runtime checking to no longer suppress read from

uninitialized memory (rui) in code that does not have symbolic information

(compiled without -g):

For more information, see “unsuppress Command” on page 336.

Using Suppression to Manage Errors

For the initial run on a large program, the large number of errors might be

overwhelming. It might be better to take a phased approach. You can do so using the

suppress command to reduce the reported errors to a manageable number, fixing

just those errors, and repeating the cycle; suppressing fewer and fewer errors with

each iteration.

For example, you could focus on a few error types at one time. The most common

error types typically encountered are rui , rua , and wua, usually in that order. rui
errors are less serious (although they can cause more serious errors to happen later).

Often a program might still work correctly with these errors. rua and wua errors are

more serious because they are accesses to or from invalid memory addresses and

always indicate a coding error.

You can start by suppressing rui and rua errors. After fixing all the wua errors that

occur, run the program again, this time suppressing only rui errors. After fixing all

the rua errors that occur, run the program again, this time with no errors

suppressed. Fix all the rui errors. Lastly, run the program a final time to ensure no

errors are left.

If you want to suppress the last reported error, use suppress -last .

unsuppress -d rui
Chapter 9 Using Runtime Checking 113

Using Runtime Checking on a Child
Process

To use runtime checking on a child process, you must have the dbx environment

variable rtc_inherit set to on . By default, it is set to off . (See “Setting dbx
Environment Variables” on page 30.)

dbx supports runtime checking of a child process if runtime checking is enabled for

the parent and the dbx environment variable follow_fork_mode is set to child
(see “Setting dbx Environment Variables” on page 30).

When a fork happens, dbx automatically performs runtime checking on the child. If

the program calls exec() , the runtime checking settings of the program calling

exec() are passed on to the program.

At any given time, only one process can be under runtime checking control. The

following is an example.

% cat -n program1.c
 1 #include <sys/types.h>
 2 #include <unistd.h>
 3 #include <stdio.h>
 4
 5 int
 6 main()
 7 {
 8 pid_t child_pid;
 9 int parent_i, parent_j;
10
11 parent_i = parent_j;
12
13 child_pid = fork();
14
15 if (child_pid == -1) {
16 printf("parent: Fork failed\n");
17 return 1;
18 } else if (child_pid == 0) {
19 int child_i, child_j;
20
21 printf("child: In child\n");
22 child_i = child_j;
23 if (execl("./program2", NULL) == -1) {
114 Debugging a Program With dbx • May 2002

24 printf("child: exec of program2 failed\n");
25 exit(1);
26 }
27 } else {
28 printf("parent: child's pid = %d\n", child_pid);
29 }
30 return 0;
31 }

 % cat -n program2.c
 1
 2 #include <stdio.h>
 3
 4 main()
 5 {
 6 int program2_i, program2_j;
 7
 8 printf ("program2: pid = %d\n", getpid());
 9 program2_i = program2_j;
 10
 11 malloc(8);
 12
 13 return 0;
 14 }
%

Chapter 9 Using Runtime Checking 115

 % cc -g -o program1 program1.c
 % cc -g -o program2 program2.c
 % dbx -C program1
 Reading symbolic information for program1
 Reading symbolic information for rtld /usr/lib/ld.so.1
 Reading symbolic information for librtc.so
 Reading symbolic information for libc.so.1
 Reading symbolic information for libdl.so.1
 Reading symbolic information for libc_psr.so.1
 (dbx) check -all
 access checking - ON
 memuse checking - ON
 (dbx) dbxenv follow_fork_mode child
 (dbx) run
 Running: program1
 (process id 3885)
 Enabling Error Checking... done
RTC reports first error in the parent, program1
 Read from uninitialized (rui):
 Attempting to read 4 bytes at address 0xeffff110
 which is 104 bytes above the current stack pointer
 Variable is 'parent_j'
 Current function is main
 11 parent_i = parent_j;
116 Debugging a Program With dbx • May 2002

 (dbx) cont
dbx: warning: Fork occurred; error checking disabled in parent

 detaching from process 3885
 Attached to process 3886
Because follow_fork_mode is set to child , when the fork occurs error checking is
switched from the parent to the child process
 stopped in _fork at 0xef6b6040
 0xef6b6040: _fork+0x0008:bgeu _fork+0x30
 Current function is main
 13 child_pid = fork();
 parent: child's pid = 3886
 (dbx) cont
 child: In child
 Read from uninitialized (rui):
 Attempting to read 4 bytes at address 0xeffff108
 which is 96 bytes above the current stack pointer
RTC reports an error in the child
 Variable is 'child_j'
 Current function is main
 22 child_i = child_j;
 (dbx) cont
 dbx: process 3886 about to exec("./program2")
 dbx: program "./program2" just exec'ed
 dbx: to go back to the original program use "debug $oprog"
 Reading symbolic information for program2
 Skipping ld.so.1, already read
 Skipping librtc.so, already read
 Skipping libc.so.1, already read
 Skipping libdl.so.1, already read
 Skipping libc_psr.so.1, already read
When the exec of program2 occurs, the RTC settings are inherited by program2 so access
and memory use checking are enabled for that process
 Enabling Error Checking... done
 stopped in main at line 8 in file "program2.c"
 8 printf ("program2: pid = %d\n", getpid());
(dbx) cont
 program2: pid = 3886
 Read from uninitialized (rui):
 Attempting to read 4 bytes at address 0xeffff13c
 which is 100 bytes above the current stack pointer
RTC reports an access error in the executed program, program2
 Variable is 'program2_j'
 Current function is main
 9 program2_i = program2_j;
 (dbx) cont
 Checking for memory leaks...
Chapter 9 Using Runtime Checking 117

Using Runtime Checking on an Attached
Process

Runtime checking works on an attached process with the exception that RUI cannot

be detected if the affected memory has already been allocated. However, the process

must have librtc.so preloaded when it starts. If the process to which you are

attaching is a 64-bit SPARC V9 process, use the sparcv9 librtc.so . If the product is

installed in /opt , librtc.so is at:

/opt/SUNWspro/lib/v9/librtc.so for sparc v9

/opt/SUNWspro/lib for all other SPARC platforms

To preload librtc.so :

Set LD_PRELOADto preload librtc.so only when needed; do not keep it loaded all

the time. For example:

Once you attach to the process, you can enable runtime checking.

RTC prints a memory use and memory leak report for the process that exited while under
RTC control, program2
Actual leaks report (actual leaks: 1 total size: 8
 bytes)

 Total Num of Leaked Allocation call stack
 Size Blocks Block
 Address
====== ====== ========== ====================================

 8 1 0x20c50 main

 Possible leaks report (possible leaks: 0 total size: 0
 bytes)

 execution completed, exit code is 0

% setenv LD_PRELOAD path-to-librtc/librtc.so

% setenv LD_PRELOAD...
% start-your-application
% unsetenv LD_PRELOAD
118 Debugging a Program With dbx • May 2002

If the program you want to attach to is forked or executed from some other program,

you need to set LD_PRELOADfor the main program (which will fork). The setting of

LD_PRELOADis inherited across forks and execution.

Using Fix and Continue With Runtime
Checking

You can use runtime checking along with fix and continue to isolate and fix

programming errors rapidly. Fix and continue provides a powerful combination that

can save you a lot of debugging time. Here is an example:.

% cat -n bug.c

 1 #include stdio.h

 2 char *s = NULL;

 3

 4 void

 5 problem()

 6 {

 7 *s = 'c';

 8 }

 9

 10 main()

 11 {

 12 problem();

 13 return 0;

 14 }

% cat -n bug-fixed.c

 1 #include stdio.h

 2 char *s = NULL;

 3

 4 void

 5 problem()

 6 {

 7

 8 s = (char *)malloc(1);

 9 *s = 'c';

 10 }

11

 12 main()

 13 {
Chapter 9 Using Runtime Checking 119

For more information on using fix and continue, see Chapter 10.

 14 problem();

 15 return 0;

 16 }

yourmachine46: cc -g bug.c

yourmachine47: dbx -C a.out

Reading symbolic information for a.out

Reading symbolic information for rtld /usr/lib/ld.so.1

Reading symbolic information for librtc.so

Reading symbolic information for libc.so.1

Reading symbolic information for libintl.so.1

Reading symbolic information for libdl.so.1

Reading symbolic information for libw.so.1

(dbx) check -access

access checking - ON

(dbx) run

Running: a.out

(process id 15052)

Enabling Error Checking... done

Write to unallocated (wua):

Attempting to write 1 byte through NULL pointer

Current function is problem

 7 *s = 'c';

(dbx) pop

stopped in main at line 12 in file "bug.c"

 12 problem();

(dbx) #at this time we would edit the file; in this example just
copy the correct version

(dbx) cp bug-fixed.c bug.c

(dbx) fix

fixing "bug.c"

pc moved to "bug.c":14

stopped in main at line 14 in file "bug.c"

 14 problem();

(dbx) cont

execution completed, exit code is 0

(dbx) quit

The following modules in `a.out' have been changed (fixed):

bug.c

Remember to remake program.
120 Debugging a Program With dbx • May 2002

Runtime Checking Application
Programming Interface

Both leak detection and access checking require that the standard heap management

routines in the shared library libc.so be used so that runtime checking can keep

track of all the allocations and deallocations in the program. Many applications write

their own memory management routines either on top of the malloc() or free()
function or stand-alone. When you use your own allocators (referred to as private
allocators), runtime checking cannot automatically track them; thus you do not learn

of leak and memory access errors resulting from their improper use.

However, runtime checking provides an API for the use of private allocators. This

API allows the private allocators the same treatment as the standard heap allocators.

The API itself is provided in the header file rtc_api.h and is distributed as a part

of Forte Developer. The man page rtc_api (3x) details the runtime checking API

entry points.

Some minor differences might exist with runtime checking access error reporting

when private allocators do not use the program heap. The error report will not

include the allocation item.

Using Runtime Checking in Batch Mode

The bcheck utility is a convenient batch interface to the runtime checking feature of

dbx . It runs a program under dbx and by default, places the runtime checking error

output in the default file program.errs .

The bcheck utility can perform memory leak checking, memory access checking,

memory use checking, or all three. Its default action is to perform only leak

checking. See the bcheck (1) man page for more details on its use.

bcheck Syntax

The syntax for bcheck is:

bcheck [-V] [-access | -all | -leaks | -memuse] [-o logfile] [-q]
[-s script] program [args]
Chapter 9 Using Runtime Checking 121

Use the -o logfile option to specify a different name for the logfile. Use the -s script
option before executing the program to read in the dbx commands contained in the

file script. The script file typically contains commands like suppress and dbxenv to

tailor the error output of the bcheck utility.

The -q option makes the bcheck utility completely quiet, returning with the same

status as the program. This option is useful when you want to use the bcheck utility

in scripts or makefiles.

bcheck Examples

To perform only leak checking on hello , type:

To perform only access checking on mach with the argument 5, type:

To perform memory use checking on cc quietly and exit with normal exit status,

type:

The program does not stop when runtime errors are detected in batch mode. All

error output is redirected to your error log file logfile . The program stops when

breakpoints are encountered or if the program is interrupted.

In batch mode, the complete stack backtrace is generated and redirected to the error

log file. The number of stack frames can be controlled using the dbx environment

variable stack_max_size .

If the file logfile already exists, bcheck erases the contents of that file before it

redirects the batch output to it.

Enabling Batch Mode Directly From dbx

You can also enable a batch-like mode directly from dbx by setting the dbx
environment variables rtc_auto_continue and rtc_error_log_file_name
(see “Setting dbx Environment Variables” on page 30).

bcheck hello

bcheck -access mach 5

bcheck -memuse -q cc -c prog.c
122 Debugging a Program With dbx • May 2002

If rtc_auto_continue is set to on , runtime checking continues to find errors and

keeps running automatically. It redirects errors to the file named by the dbx
environment variable rtc_error_log_file_name. (See “Setting dbx
Environment Variables” on page 30.) The default log file name is /tmp/
dbx.errlog. uniqueid. To redirect all errors to the terminal, set the

rtc_error_log_file_name environment variable to /dev/tty .

By default, rtc_auto_continue is set to off.

Troubleshooting Tips

After error checking has been enabled for a program and the program is run, one of

the following errors may be detected:

librtc.so and dbx version mismatch; Error checking disabled

This error can occur if you are using runtime checking on an attached process and

have set LD_PRELOADto a version of librtc.so other than the one shipped with

your Forte Developer dbx image. To fix this, change the setting of LD_PRELOAD.

patch area too far (8mb limitation); Access checking disabled

Runtime checking was unable to find patch space close enough to a loadobject for

access checking to be enabled. See “Runtime Checking’s 8 Megabyte Limit” next.

Runtime Checking’s 8 Megabyte Limit

The 8 megabyte limit described below no longer applies on hardware based on

UltraSPARC™ processors, on which dbx has the ability to invoke a trap handler

instead of using a branch. The transfer of control to a trap handler is up to 10 times

slower but does not suffer from the 8 megabyte limit. Traps are used automatically,

as necessary, as long as the hardware is based on UltraSPARC processors. You can

check your hardware by using the system command isalist and checking that the

result contains the string sparcv8plus . The rtc -showmap command (see “rtc -
showmap Command” on page 311) displays a map of instrument types sorted by

address.
Chapter 9 Using Runtime Checking 123

When access checking is enabled, dbx replaces each load and store instruction with

a branch instruction that branches to a patch area. This branch instruction has an 8

megabyte range. This means that if the debugged program has used up all the

address space within 8 megabytes of the particular load or store instruction being

replaced, no place exists to put the patch area.

If runtime checking cannot intercept all loads and stores to memory, it cannot

provide accurate information and so disables access checking completely. Leak

checking is unaffected.

dbx internally applies some strategies when it runs into this limitation and

continues if it can rectify this problem. In some cases dbx cannot proceed; when this

happens, it turns off access checking after printing an error message.

If you encounter this 8 megabyte limit, try the following workarounds.

1. Try using 32-bit SPARC-V8 instead of 64-bit SPARC-V9

If you encounter the 8 megabyte problem with an application that is compiled

with the -xarch=v9 option, try doing your memory testing on a 32-bit version of

the application. Because the 64-bit addresses require longer patch instruction

sequences, using 32-bit addresses can alleviate the 8 megabyte problem. If this is

not a good workaround, the following methods can be used on both 32-bit and

64-bit programs.

2. Try adding patch area object files.

You can use the rtc_patch_area shell script to create special .o files that can be

linked into the middle of a large executable or shared library to provide more

patch space. See the rtc_patch_area (1) man page.

When dbx reaches the 8 megabyte limit, it tells you which load object was too

large (the main program, or a shared library) and it prints out the total patch

space needed for that load object.

For the best results, the special patch object files should be evenly spaced

throughout the executable or shared library, and the default size (8 megabytes) or

smaller should be used. Also, do not add more than 10-20% more patch space

than dbx says it requires. For example, if dbx says that it needs 31 megabytes for

a.out , then add four object files created with the rtc_patch_area script, each

one 8 megabytes in size, and space them approximately evenly throughout the

executable.

When dbx finds explicit patch areas in an executable, it prints the address ranges

spanned by the patch areas, which can help you to place them correctly on the

link line.

3. Try dividing the large load object into smaller load objects.
124 Debugging a Program With dbx • May 2002

Split up the object files in your executable or your large library into smaller

groups of object files. Then link them into smaller parts. If the large file is the

executable, then split it up into a smaller executable and a series of shared

libraries. If the large file is a shared library, then rearrange it into a set of smaller

libraries.

This technique allows dbx to find space for patch code in between the different

shared objects.

4. Try adding a “pad” .so file.

This should only be necessary if you are attaching to a process after it has started

up.

The runtime linker might place libraries so close together that patch space cannot

be created in the gaps between the libraries. When dbx starts up the executable

with runtime checking turned on, it asks the runtime linker to place an extra gap

between the shared libraries, but when attaching to a process that was not started

by dbx with runtime checking enabled, the libraries might be too close together.

If this is occurs, (and if it is not possible to start the program using dbx) then you

can try creating a shared library using the rtc_patch_area script and linking it

into your program between the other shared libraries. See the

rtc_patch_area (1) man page for more details.

Runtime Checking Errors

Errors reported by runtime checking generally fall in two categories. Access errors

and leaks.

Access Errors

When access checking is turned on, runtime checking detects and reports the

following types of errors.

Bad Free (baf) Error

Problem: Attempt to free memory that has never been allocated.

Possible causes: Passing a non-heap data pointer to free() or realloc() .

Example:

char a[4];
Chapter 9 Using Runtime Checking 125

char *b = &a[0];

free(b); /* Bad free (baf) */

Duplicate Free (duf) Error

Problem: Attempt to free a heap block that has already been freed.

Possible causes: Calling free() more than once with the same pointer. In C++,

using the delete operator more than once on the same pointer.

Example:

char *a = (char *)malloc(1);

free(a);

free(a); /* Duplicate free (duf) */

Misaligned Free (maf) Error

Problem: Attempt to free a misaligned heap block.

Possible causes: Passing an improperly aligned pointer to free() or realloc() ;

changing the pointer returned by malloc .

Example:

char *ptr = (char *)malloc(4);

ptr++;

free(ptr); /* Misaligned free */

Misaligned Read (mar) Error

Problem: Attempt to read data from an address without proper alignment.

Possible causes: Reading 2, 4, or 8 bytes from an address that is not

half-word-aligned, word-aligned, or double-word-aligned, respectively.

Example:

char *s = “hello world”;

int *i = (int *)&s[1];

int j;

j = *i; /* Misaligned read (mar) */
126 Debugging a Program With dbx • May 2002

Misaligned Write (maw) Error

Problem: Attempt to write data to an address without proper alignment.

Possible causes: Writing 2, 4, or 8 bytes to an address that is not half-word-aligned,

word-aligned, or double-word-aligned, respectively.

Example:

char *s = “hello world”;

int *i = (int *)&s[1];

i = 0; / Misaligned write (maw) */

Out of Memory (oom) Error

Problem: Attempt to allocate memory beyond physical memory available.

Cause: Program cannot obtain more memory from the system. Useful in locating

problems that occur when the return value from malloc() is not checked for NULL,

which is a common programming mistake.

Example:

char *ptr = (char *)malloc(0x7fffffff);

/* Out of Memory (oom), ptr == NULL */

Read From Unallocated Memory (rua) Error

Problem: Attempt to read from nonexistent, unallocated, or unmapped memory.

Possible causes: A stray pointer, overflowing the bounds of a heap block or accessing

a heap block that has already been freed.

Example:

char c, *a = (char *)malloc(1);

c = a[1]; /* Read from unallocated memory (rua) */

Read From Uninitialized Memory (rui) Error

Problem: Attempt to read from uninitialized memory.

Possible causes: Reading local or heap data that has not been initialized.

Example:
Chapter 9 Using Runtime Checking 127

foo()

{ int i, j;

j = i; /* Read from uninitialized memory (rui) */

}

Write to Read-Only Memory (wro) Error

Problem: Attempt to write to read-only memory.

Possible causes: Writing to a text address, writing to a read-only data section

(.rodata), or writing to a page that mmaphas made read-only.

Example:

foo()

{ int *foop = (int *) foo;

foop = 0; / Write to read-only memory (wro) */

}

Write to Unallocated Memory (wua) Error

Problem: Attempt to write to nonexistent, unallocated, or unmapped memory.

Possible causes: A stray pointer, overflowing the bounds of a heap block, or

accessing a heap block that has already been freed.

Example:

char *a = (char *)malloc(1);

a[1] = ‘\0’; /* Write to unallocated memory (wua) */

Memory Leak Errors

With leak checking turned on, runtime checking reports the following types of

errors.

Address in Block (aib) Error

Problem: A possible memory leak. There is no reference to the start of an allocated

block, but there is at least one reference to an address within the block.

Possible causes: The only pointer to the start of the block is incremented.
128 Debugging a Program With dbx • May 2002

Example;

char *ptr;

main()

{

ptr = (char *)malloc(4);

ptr++; /* Address in Block */

}

Address in Register (air) Error

Problem: A possible memory leak. An allocated block has not been freed, and no

reference to the block exists anywhere in program memory, but a reference exists in

a register.

Possible causes: This can occur legitimately if the compiler keeps a program variable

only in a register instead of in memory. The compiler often does this for local

variables and function parameters when optimization is turned on. If this error

occurs when optimization has not been turned on, it is likely to be an actual memory

leak. This can occur if the only pointer to an allocated block goes out of scope before

the block is freed.

Example:

if (i == 0) {

char *ptr = (char *)malloc(4);

/* ptr is going out of scope */

}

/* Memory Leak or Address in Register */

Memory Leak (mel) Error

Problem: An allocated block has not been freed, and no reference to the block exists

anywhere in the program.

Possible causes: Program failed to free a block no longer used.

Example:

char *ptr;

 ptr = (char *)malloc(1);

 ptr = 0;

/* Memory leak (mel) */
Chapter 9 Using Runtime Checking 129

130 Debugging a Program With dbx • May 2002

CHAPTER 10

Fixing and Continuing

Using the fix command lets you recompile edited native source code quickly

without stopping the debugging process. You cannot use the fix command to

recompile Java code.

This chapter is organized into the following sections:

■ Using Fix and Continue

■ Fixing Your Program

■ Changing Variables After Fixing

■ Modifying a Header File

■ Fixing C++ Template Definitions

Using Fix and Continue

The fix and continue feature lets you modify and recompile a native source file and

continue executing without rebuilding the entire program. By updating the .o files

and splicing them into your program, you don’t need to relink.

The advantages of using fix and continue are:

■ You do not have to relink the program.

■ You do not have to reload the program for debugging.

■ You can resume running the program from the fix location.

Note – Do not use the fix command if a build is in process.
131

How Fix and Continue Operates

Before using the fix command you must edit the source in the editor window. (See

“Modifying Source Using Fix and Continue” on page 132 for the ways you can

modify your code). After saving changes, type fix . For information on the fix
command, see “fix Command” on page 279.

Once you have invoked the fix command, dbx calls the compiler with the

appropriate compiler options. The modified files are compiled and shared object

(.so) files are created. Semantic tests are done by comparing the old and new files.

The new object file is linked to your running process using the runtime linker. If the

function on top of the stack is being fixed, the new stopped in function is the

beginning of the same line in the new function. All the breakpoints in the old file are

moved to the new file.

You can use fix and continue on files that have been compiled with or without

debugging information, but there are some limitations in the functionality of the fix
command and the cont command for files originally compiled without debugging

information. See the -g option description in “fix Command” on page 279 for more

information.

You can fix shared objects (.so) files, but they must be opened in a special mode.

You can use either RTLD_NOW|RTLD_GLOBALor RTLD_LAZY|RTLD_GLOBALin the

call to the dlopen function.

Modifying Source Using Fix and Continue

You can modify source code in the following ways when using fix and continue:

■ Add, delete, or change lines of code in functions

■ Add or delete functions

■ Add or delete global and static variables

Problems can occur when functions are mapped from the old file to the new file. To

minimize such problems when editing a source file:

■ Do not change the name of a function.

■ Do not add, delete, or change the type of arguments to a function.

■ Do not add, delete, or change the type of local variables in functions currently

active on the stack.

■ Do not make changes to the declaration of a template or to template instances.

Only the body of a C++ template function definition can be modified.

If you make any of the above changes, rebuild your entire program rather than using

fix and continue.
132 Debugging a Program With dbx • May 2002

Fixing Your Program

You can use the fix command to relink source files after you make changes, without

recompiling the entire program. You can then continue execution of the program.

To fix your file:

1. Save the changes to your source.

2. Type fix at the dbx prompt.

Although you can do an unlimited number of fixes, if you have done several fixes in

a row, consider rebuilding your program. The fix command changes the program

image in memory, but not on the disk. As you do more fixes, the memory image gets

out of sync with what is on the disk.

The fix command does not make the changes within your executable file, but only

changes the .o files and the memory image. Once you have finished debugging a

program, you must rebuild your program to merge the changes into the executable.

When you quit debugging, a message reminds you to rebuild your program.

If you invoke the fix command with an option other than -a and without a file

name argument, only the current modified source file is fixed.

When fix is invoked, the current working directory of the file that was current at

the time of compilation is searched before executing the compilation line. There

might be problems locating the correct directory due to a change in the file system

structure from compilation time to debugging time. To avoid this problem, use the

command pathmap , which creates a mapping from one path name to another.

Mapping is applied to source paths and object file paths.

Continuing After Fixing

You can continue executing using the cont command (see “cont Command” on

page 267).

Before resuming program execution, be aware of the following conditions that

determine the effect of your changes.

Changing an Executed Function

If you made changes in a function that has already executed, the changes have no

effect until:
Chapter 10 Fixing and Continuing 133

■ You run the program again

■ That function is called the next time

If your modifications involve more than simple changes to variables, use the fix
command, then the run command. Using the run command is faster because it does

not relink the program.

Changing a Function Not Yet Called

If you have made changes in a function not yet called, the changes will be in effect

when that function is called.

Changing a Function Currently Being Executed

If you have made changes to the function currently being executed, the impact of the

fix command depends on where the change is relative to the stopped in function:

■ If the change is in code that has already been executed, the code is not re-

executed. Execute the code by popping the current function off the stack (see

“pop Command” on page 304) and continuing from where the changed function

is called. You need to know your code well enough to determine whether the

function has side effects that can't be undone (for example, opening a file).

■ If the change is in code that is yet to be executed, the new code is run.

Changing a Function Presently on the Stack

If you have made changes to a function presently on the stack, but not to the

stopped in function, the changed code is not used for the present call of that

function. When the stopped in function returns, the old versions of the function on

the stack are executed.

There are several ways to solve this problem:

■ Use the pop command to pop the stack until all changed functions are removed

from the stack. You need to know your code to be sure that no problems are

created.

■ Use the cont at line_number command to continue from another line.

■ Manually repair data structures (use the assign command) before continuing.

■ Rerun the program using the run command.

If there are breakpoints in modified functions on the stack, the breakpoints are

moved to the new versions of the functions. If the old versions are executed, the

program does not stop in those functions.
134 Debugging a Program With dbx • May 2002

Changing Variables After Fixing

Changes made to global variables are not undone by the pop command or the fix
command. To reassign correct values to global variables manually, use the assign
command. (See “assign Command” on page 251.)

The following example shows how a simple bug can be fixed. The application gets a

segmentation violation in line 6 when trying to dereference a NULL pointer.

Change line 14 to copy to buf instead of 0 and save the file, then do a fix:

dbx[1] list 1,$
1#include <stdio.h>
2
3char *from = “ships”;
4void copy(char *to)
5{
6 while ((*to++ = *from++) != ’\0’);
7 *to = ’\0’;
8}
9
10main()
11{
12 char buf[100];
13
14 copy(0);
15 printf("%s\n", buf);
16 return 0;
17}

(dbx) run
Running: testfix
(process id 4842)
signal SEGV (no mapping at the fault address) in copy at line 6
in file “testfix.cc”

6 while ((*to++ = *from++) != ’\0’);

14 copy(buf); <=== modified line
(dbx) fix
fixing “testfix.cc”
pc moved to “testfix.cc”:6
stopped in copy at line 6 in file “testfix.cc”

6 while ((*to++ = *from++) != ’\0’)
Chapter 10 Fixing and Continuing 135

If the program is continued from here, it still gets a segmentation fault because the

zero-pointer is still pushed on the stack. Use the pop command to pop one frame of

the stack:

If the program is continued from here, it runs, but does not print the correct value

because the global variable from has already been incremented by one. The program

would print hip s and not ships . Use the assign command to restore the global

variable and then use the cont command . Now the program prints the correct string:

Modifying a Header File

Sometimes it may be necessary to modify a header (.h) file as well as a source file.

To be sure that the modified header file is accessed by all source files in the program

that include it, you must give as an argument to the fix command a list of all the

source files that include that header file. If you do not include the list of source files,

only the primary source file is recompiled and only it includes the modified version

of the header file. Other source files in the program continue to include the original

version of that header file.

Fixing C++ Template Definitions

C++ template definitions can be fixed directly. Fix the files with the template

instances instead. You can use the -f option to overwrite the date-checking if the

template definition file has not changed. dbx looks for template definition .o files in

the default repository directory SunWS_cache. The -ptr compiler option is not

supported by the fix command in dbx .

(dbx) pop
stopped in main at line 14 in file “testfix.cc”
 14 copy(buf);

(dbx) assign from = from-1
(dbx) cont
ships
136 Debugging a Program With dbx • May 2002

CHAPTER 11

Debugging Multithreaded
Applications

dbx can debug multithreaded applications that use either Solaris threads or POSIX

threads. With dbx , you can examine stack traces of each thread, resume all threads,

step or next a specific thread, and navigate between threads.

dbx recognizes a multithreaded program by detecting whether it utilizes

libthread.so. The program will use libthread.so either by explicitly being

compiled with -lthread or -mt , or implicitly by being compiled with -lpthread.

This chapter describes how to find information about and debug threads using the

dbx thread commands.

This chapter is organized into the following sections:

■ Understanding Multithreaded Debugging

■ Understanding LWP Information

Understanding Multithreaded
Debugging

When it detects a multithreaded program, dbx tries to load libthread_db.so , a

special system library for thread debugging located in /usr/lib .

dbx is synchronous; when any thread or lightweight process (LWP) stops, all other

threads and LWPs sympathetically stop. This behavior is sometimes referred to as

the “stop the world” model.

Note – For information on multithreaded programming and LWPs, see the Solaris

Multithreaded Programming Guide.
137

Thread Information

The following thread information is available in dbx :

For native code, each line of information is composed of the following:

■ The * (asterisk) indicates that an event requiring user attention has occurred in

this thread. Usually this is a breakpoint.

An 'o' instead of an asterisk indicates that a dbx internal event has occurred.

■ The > (arrow) denotes the current thread.

■ t@number, the thread id, refers to a particular thread. The number is the thread_t
value passed back by thr_create .

■ b l@number or a l@number means the thread is bound to or active on the

designated LWP, meaning the thread is actually runnable by the operating

system.

■ The “Start function” of the thread as passed to thr_create . A ?() means that

the start function is not known.

■ The thread state (See TABLE 11-1 for descriptions of the thread states.)

■ The function that the thread is currently executing.

For Java code, each line of information is composed of the following:

■ t@number, a dbx -style thread ID

■ The thread state (See TABLE 11-1 for descriptions of the thread states.)

■ The thread name in single quotation marks

(dbx) threads
t@1 a l@1 ?() running in main()
t@2 ?() asleep on 0xef751450 in_swtch()
t@3 b l@2 ?() running in sigwait()
t@4 consumer() asleep on 0x22bb0 in _lwp_sema_wait()

*>t@5 b l@4 consumer() breakpoint in Queue_dequeue()
t@6 b l@5 producer() running in _thread_start()

(dbx)
138 Debugging a Program With dbx • May 2002

■ A number indicating the thread priority

TABLE 11-1 Thread and LWP States

Thread and LWP States Description

suspended The thread has been explicitly suspended.

runnable The thread is runnable and is waiting for an LWP as a

computational resource.

zombie When a detached thread exits (thr_exit)) , it is in a zombie

state until it has rejoined through the use of thr_join().
THR_DETACHEDis a flag specified at thread creation time

(thr_create()) . A non-detached thread that exits is in a

zombie state until it has been reaped.

asleep on syncobj Thread is blocked on the given synchronization object.

Depending on what level of support libthread and

libthread_db provide, syncobj might be as simple as a

hexadecimal address or something with more information

content.

active The thread is active on an LWP, but dbx cannot access the LWP.

unknown dbx cannot determine the state.

lwpstate A bound or active thread state has the state of the LWP

associated with it.

running LWP was running but was stopped in synchrony with some

other LWP.

syscall num LWP stopped on an entry into the given system call #.

syscall return num LWP stopped on an exit from the given system call #.

job control LWP stopped due to job control.

LWP suspended LWP is blocked in the kernel.

single stepped LWP has just completed a single step.

breakpoint LWP has just hit a breakpoint.

fault num LWP has incurred the given fault #.

signal name LWP has incurred the given signal.

process sync The process to which this LWP belongs has just started

executing.

LWP death LWP is in the process of exiting.
Chapter 11 Debugging Multithreaded Applications 139

Viewing the Context of Another Thread

To switch the viewing context to another thread, use the thread command. The

syntax is:

To display the current thread, type:

To switch to thread thread_id, type:

For more information on the thread command, see “thread Command” on

page 326.

Viewing the Threads List

To view the threads list, use the threads command The syntax is:

To print the list of all known threads, type:

To print threads normally not printed (zombies), type:

For an explanation of the threads list, see “Thread Information” on page 138.

For more information on the threads command, see “threads Command” on

page 327.

thread [-blocks] [-blockedby] [-info] [-hide] [-unhide] [-
suspend] [-resume] thread_id

thread

thread thread_id

threads [-all} [-mode [all|filter] [auto|manual]]

threads

threads -all
140 Debugging a Program With dbx • May 2002

Resuming Execution

Use the cont command to resume program execution. Currently, threads use

synchronous breakpoints, so all threads resume execution.

Understanding LWP Information

Normally, you need not be aware of LWPs. There are times, however, when thread

level queries cannot be completed. In these cases, use the lwps command to show

information about LWPs.

Each line of the LWP list contains the following:

■ The * (asterisk) indicates that an event requiring user attention has occurred in

this LWP.

■ The arrow denotes the current LWP.

■ l@number refers to a particular LWP.

■ The next item represents the LWP state.

■ in function_name() identifies the function that the LWP is currently executing.

(dbx) lwps
l@1 running in main()
l@2 running in sigwait()
l@3 running in _lwp_sema_wait()

*>l@4 breakpoint in Queue_dequeue()
l@5 running in _thread_start()

(dbx)
Chapter 11 Debugging Multithreaded Applications 141

142 Debugging a Program With dbx • May 2002

CHAPTER 12

Debugging Child Processes

This chapter describes how to debug a child process. dbx has several facilities to

help you debug processes that create children using the fork (2) and exec (2)

functions.

This chapter is organized into the following sections:

■ Attaching to Child Processes

■ Following the exec Function

■ Following the fork Function

■ Interacting With Events

Attaching to Child Processes

You can attach to a running child process in one of the following ways.

■ When starting dbx :

■ From the command line:

You can substitute program_name with the name - (minus sign), so that dbx finds the

executable associated with the given process ID (process_id). After using a - , a

subsequent run command or rerun command does not work because dbx does not

know the full path name of the executable.

$ dbx program_name process_id

(dbx) debug program_name process_id
143

You can also attach to a running child process using the Sun WorkShop Debugging

window. (See “Attaching to a Running Process” in the Using the Debugging window

section of the Sun WorkShop online help.)

Following the exec Function

If a child process executes a new program using the exec(2) function or one of its

variations, the process id does not change, but the process image does. dbx
automatically takes note of a call to the exec() function and does an implicit reload

of the newly executed program.

The original name of the executable is saved in $oprog . To return to it, use debug
$oprog .

Following the fork Function

If a child process calls the vfork() , fork(1) , or fork(2) function, the process id

changes, but the process image stays the same. Depending on how the dbx
environment variable follow_fork_mode is set, dbx does one of the following.

Parent In the traditional behavior, dbx ignores the fork and follows the parent.

Child dbx automatically switches to the forked child using the new process ID. All

connection to and awareness of the original parent is lost.

Both This mode is available only when using dbx through Sun WorkShop.

Ask You are prompted to choose parent , child , both , or stop to
investigate whenever dbx detects a fork. If you choose stop , you can

examine the state of the program, then type cont to continue; you will be

prompted to select which way to proceed.
144 Debugging a Program With dbx • May 2002

Interacting With Events

All breakpoints and other events are deleted for any exec() or fork() process.

You can override the deletion for forked processes by setting the dbx environment

variable follow_fork_inherit to on , or make the events permanent using the

-perm eventspec modifier. For more information on using event specification

modifiers, see Appendix B.
Chapter 12 Debugging Child Processes 145

146 Debugging a Program With dbx • May 2002

CHAPTER 13

Working With Signals

This chapter describes how to use dbx to work with signals. dbx supports the

catch command, which instructs dbx to stop a program when dbx detects any of

the signals appearing on the catch list.

The dbx commands cont , step , and next support the -sig signal_name option,

which lets you resume execution of a program with the program behaving as if it

had received the signal specified in the cont -sig command.

This chapter is organized into the following sections.

■ Understanding Signal Events

■ Catching Signals

■ Sending a Signal in a Program

■ Automatically Handling Signals

Understanding Signal Events

When a signal is to be delivered to a process that is being debugged, the signal is

redirected to dbx by the kernel. When this happens, you usually receive a prompt.

You then have two choices:

■ “Cancel” the signal when the program is resumed—the default behavior of the

cont command—facilitating easy interruption and resumption with SIGINT
(Control-C) as shown in FIGURE 13-1.
147

FIGURE 13-1 Intercepting and Cancelling the SIGINT Signal

■ “Forward” the signal to the process using:

signal can be either a signal name or a signal number.

In addition, if a certain signal is received frequently, you can arrange for dbx to

forward automatically the signal because you do not want it displayed:

However, the signal is still forwarded to the process. A default set of signals is

automatically forwarded in this manner (see “ignore Command” on page 284).

cont -sig signal

ignore signal # “ignore”

kernel program

SIGINT

sig event

interception

SIGINT

Normal case

^C

^C

While debugging

kernel program

dbx
148 Debugging a Program With dbx • May 2002

Catching Signals

By default, the catch list contains many of the more than 33 detectable signals. (The

numbers depend upon the operating system and version.) You can change the

default catch list by adding signals to or removing them from the default catch list.

To see the list of signals currently being trapped, type catch with no signal
argument.

To see a list of the signals currently being ignored by dbx when the program detects

them, type ignore with no signal argument.

Changing the Default Signal Lists

You control which signals cause the program to stop by moving the signal names

from one list to the other. To move signal names, supply a signal name that currently

appears on one list as an argument to the other list.

For example, to move the QUIT and ABRTsignals from the catch list to the ignore

list:

Trapping the FPE Signal

Often programmers working with code that requires floating point calculations want

to debug exceptions generated in a program. When a floating point exception like

overflow or divide by zero occurs, the system returns a reasonable answer as the

result for the operation that caused the exception. Returning a reasonable answer

lets the program continue executing quietly. Solaris implements the IEEE Standard

for Binary Floating Point Arithmetic definitions of reasonable answers for

exceptions.

(dbx) catch

(dbx) ignore

(dbx) ignore QUIT ABRT
Chapter 13 Working With Signals 149

Because a reasonable answer for floating point exceptions is returned, exceptions do

not automatically trigger the signal SIGFPE. Some integer exceptions, such as

dividing an integer by zero and integer overflow do, by default, trigger the signal

SIGFPE.

To find the cause of an exception, you need to set up a trap handler in the program

so that the exception triggers the signal SIGFPE. (See ieee_handler (3m) man page

for an example of a trap handler.)

You can enable a trap using:

■ ieee_handler

■ fpsetmask (see the fpsetmask (3c) man page)

■ -ftrap compiler flag (for Fortran 95, see the f95 (1) man page)

When you set up a trap handler using the ieee_handler command, the trap enable

mask in the hardware floating point status register is set. This trap enable mask

causes the exception to raise the SIGFPE signal at run time.

Once you have compiled the program with the trap handler, load the program into

dbx . Before you can catch the SIGFPE signal, you must add FPE to the dbx signal

catch list.

By default, FPE is on the ignore list.

Determining Where the Exception Occurred

After adding FPE to the catch list, run the program in dbx . When the exception you

are trapping occurs, the SIGFPE signal is raised and dbx stops the program. Then

you can trace the call stack using the dbx where command to help find the specific

line number of the program where the exception occurs (see “where Command” on

page 341).

Determining the Cause of the Exception

To determine the cause of the exception, use the regs -f command to display the

floating point state register (FSR). Look at the accrued exception (aexc) and current

exception (cexc) fields of the register, which contain bits for the following

floating-point exception conditions:

■ Invalid operand

■ Overflow

■ Underflow

(dbx) catch FPE
150 Debugging a Program With dbx • May 2002

■ Division by zero

■ Inexact result

For more information on the floating-point state register, see Version 8 (for V8) or

Version 9 (for V9) of The SPARC Architecture Manual. For more discussion and

examples, see the Numerical Computation Guide.

Sending a Signal in a Program

The dbx cont command supports the -sig signal option, which lets you resume

execution of a program with the program behaving as if it had received the system

signal signal.

For example, if a program has an interrupt handler for SIGINT (^C), you can type

^C to stop the application and return control to dbx . If you issue a cont command

by itself to continue program execution, the interrupt handler never executes. To

execute the interrupt handler, send the signal, SIGINT , to the program:

The step , next , and detach commands accept -sig as well.

Automatically Handling Signals

The event management commands can also deal with signals as events. These two

commands have the same effect.

Having the signal event is more useful if you need to associate some pre-

programmed action.

(dbx) cont -sig int

(dbx) stop sig signal
(dbx) catch signal

(dbx) when sig SIGCLD {echo Got $sig $signame;}
Chapter 13 Working With Signals 151

In this case, make sure to first move SIGCLD to the ignore list.

(dbx) ignore SIGCLD
152 Debugging a Program With dbx • May 2002

CHAPTER 14

Debugging C++

This chapter describes how dbx handles C++ exceptions and debugging C++

templates, including a summary of commands used when completing these tasks

and examples with code samples.

This chapter is organized into the following sections:

■ Using dbx With C++

■ Exception Handling in dbx
■ Debugging With C++ Templates

For information on compiling C++ programs, see “Debugging Optimized Code” on

page 21.

Using dbx With C++

Although this chapter concentrates on two specific aspects of debugging C++, dbx
allows you full functionality when debugging your C++ programs. You can:

■ Find out about class and type definitions (see “Looking Up Definitions of Types

and Classes” on page 48)

■ Print or display inherited data members (see “Printing C++” on page 84)

■ Find out dynamic information about an object pointer (see “Printing C++” on

page 84)

■ Debug virtual functions (see “Calling a Function” on page 58)

■ Using runtime type information (see “Printing the Value of a Variable, Expression,

or Identifier” on page 84)

■ Set breakpoints on all member functions of a class (see “Setting Breakpoints in

Member Functions of the Same Class” on page 65)
153

■ Set breakpoints on all overloaded member functions (see “Setting Breakpoints in

Member Functions of Different Classes” on page 64)

■ Set breakpoints on all overloaded nonmember functions (see “Setting Multiple

Breakpoints in Nonmember Functions” on page 65)

■ Set breakpoints on all member functions of a particular object (see “Setting

Breakpoints in Objects” on page 66)

■ Deal with overloaded functions or data members (see “Setting a stop Breakpoint

in a Function” on page 63)

Exception Handling in dbx
A program stops running if an exception occurs. Exceptions signal programming

anomalies, such as division by zero or array overflow. You can set up blocks to catch

exceptions raised by expressions elsewhere in the code.

While debugging a program, dbx enables you to:

■ Catch unhandled exceptions before stack unwinding

■ Catch unexpected exceptions

■ Catch specific exceptions whether handled or not before stack unwinding

■ Determine where a specific exception would be caught if it occurred at a

particular point in the program

If you give a step command after stopping at a point where an exception is thrown,

control is returned at the start of the first destructor executed during stack

unwinding. If you step out of a destructor executed during stack unwinding,

control is returned at the start of the next destructor. When all destructors have been

executed, a step command brings you to the catch block handling the throwing of

the exception

Commands for Handling Exceptions

exception [-d | +d] Command

Use the exception command to display an exception’s type at any time during

debugging. If you use the exception command without an option, the type shown

is determined by the setting of the dbx environment variable

output_dynamic_type:
154 Debugging a Program With dbx • May 2002

■ If it is set to on , the derived type is shown.

■ If it is set to off (the default), the static type is shown.

Specifying the -d or +d option overrides the setting of the environment variable:

■ If you specify -d , the derived type is shown.

■ If you specify +d, the static type is shown.

For more information, see “exception Command” on page 277.

intercept [-a] [-x] [typename] Command

You can intercept, or catch, exceptions of a specific type before the stack has been

unwound. Use the intercept command with no arguments to list the types that

are being intercepted. Use -a to intercept all exceptions. Use typename to add a type

to the intercept list. Use -x to exclude a particular type from being intercepted.

For example, to intercept all types except int , you could type:

For more information, see “intercept Command” on page 285.

unintercept [-a] [-x] [typename] Command

Use the unintercept command to remove exception types from the intercept list.

Use the command with no arguments to list the types that are being intercepted

(same as the intercept command). Use -a to remove all intercepted types from

the list. Use typename to remove a type from the intercept list. Use -x to stop

excluding a particular type from being intercepted.

For more information, see “unintercept Command” on page 335.

whocatches typename Command

The whocatches command reports where an exception of typename would be

caught if thrown at the current point of execution. Use this command to find out

what would happen if an exception were thrown from the top frame of the stack.

The line number, function name, and frame number of the catch clause that would

catch typename are displayed. The command returns “ type is unhandled” if the

catch point is in the same function that is doing the throw.

(dbx) intercept -a
(dbx) intercept -x int
Chapter 14 Debugging C++ 155

For more information, see “whocatches Command” on page 343.

Examples of Exception Handling

This example demonstrates how exception handling is done in dbx using a sample

program containing exceptions. An exception of type int is thrown in the function

bar and is caught in the following catch block.

The following transcript from the example program shows the exception handling

features in dbx .

1 #include <stdio.h>

2

3 class c {

4 int x;

5 public:

6 c(int i) { x = i; }

7 ~c() {

8 printf("destructor for c(%d)\n", x);

9 }

10 };

11

12 void bar() {

13 c c1(3);

14 throw(99);

15 }

16

17 int main() {

18 try {

19 c c2(5);

20 bar();

21 return 0;

22 }

23 catch (int i) {

24 printf("caught exception %d\n", i);

25 }

26 }

(dbx) intercept

-unhandled -unexpected

(dbx) intercept int

<dbx> intercept
156 Debugging a Program With dbx • May 2002

-unhandled -unexpected int

(dbx) stop in bar

(2) stop in bar()

(dbx) run

Running: a.out

(process id 304)

Stopped in bar at line 13 in file “foo.cc”

 13 c c1(3);

(dbx) whocatches int

int is caught at line 24, in function main (frame number 2)

(dbx) whocatches c

dbx: no runtime type info for class c (never thrown or caught)

(dbx) cont

Exception of type int is caught at line 24, in function main (frame
number 4)

stopped in _exdbg_notify_of_throw at 0xef731494

0xef731494: _exdbg_notify_of_throw : jmp %o7 + 0x8

Current function is bar

 14 throw(99);

(dbx) step

stopped in c::~c at line 8 in file "foo.cc"

 8 printf("destructor for c(%d)\n", x);

(dbx) step

destructor for c(3)

stopped in c::~c at line 9 in file "foo.cc"

 9 }

(dbx) step

stopped in c::~c at line 8 in file "foo.cc"

 8 printf("destructor for c(%d)\n", x);

(dbx) step

destructor for c(5)

stopped in c::~c at line 9 in file "foo.cc"

 9)

(dbx) step

stopped in main at line 24 in file "foo.cc"

 24 printf("caught exception %d\n", i);

(dbx) step

caught exception 99

stopped in main at line 26 in file "foo.cc"

 26 }
Chapter 14 Debugging C++ 157

Debugging With C++ Templates

dbx supports C++ templates. You can load programs containing class and function

templates into dbx and invoke any of the dbx commands on a template that you

would use on a class or function, such as:

■ Setting breakpoints at class or function template instantiations (see “stop
inclass classname Command” on page 162, “stop infunction name

Command” on page 163, and “stop in function Command” on page 163)

■ Printing a list of all class and function template instantiations (see “whereis
name Command” on page 160)

■ Displaying the definitions of templates and instances (see “whatis name

Command” on page 161)

■ Calling member template functions and function template instantiations (see

“call function_name (parameters) Command” on page 163)

■ Printing values of function template instantiations (“print Expressions” on

page 164)

■ Displaying the source code for function template instantiations (see “list
Expressions” on page 164)

Template Example

The following code example shows the class template Array and its instantiations

and the function template square and its instantiations.

 1 template<class C> void square(C num, C *result)

 2 {

 3 *result = num * num;

 4 }

 5

 6 template<class T> class Array

 7 {

 8 public:

 9 int getlength(void)

10 {

11 return length;

12 }

13

14 T & operator[](int i)
158 Debugging a Program With dbx • May 2002

In the example:

15 {

16 return array[i];

17 }

18

19 Array(int l)

20 {

21 length = l;

22 array = new T[length];

23 }

24

25 ~Array(void)

26 {

27 delete [] array;

28 }

29

30 private:

31 int length;

32 T *array;

33 };

34

35 int main(void)

36 {

37 int i, j = 3;

38 square(j, &i);

39

40 double d, e = 4.1;

41 square(e, &d);

42

43 Array<int> iarray(5);

44 for (i = 0; i < iarray.getlength(); ++i)

45 {

46 iarray[i] = i;

47 }

48

49 Array<double> darray(5);

50 for (i = 0; i < darray.getlength(); ++i)

51 {

52 darray[i] = i * 2.1;

53 }

54

55 return 0;

56 }
Chapter 14 Debugging C++ 159

■ Array is a class template

■ square is a function template

■ Array<int> is a class template instantiation (template class)

■ Array<int>::getlength is a member function of a template class

■ square(int, int*) and square(double, double*) are function template

instantiations (template functions)

Commands for C++ Templates

Use these commands on templates and template instantiations. Once you know the

class or type definitions, you can print values, display source listings, or set

breakpoints.

whereis name Command

Use the whereis command to print a list of all occurrences of function or class

instantiations for a function or class template.

For a class template:

For a function template:

The __type_0 parameter refers to the 0th template parameter. A __type_1 would

refer to the next template parameter.

For more information, see “whereis Command” on page 342.

(dbx) whereis Array
member function: ‘Array<int>::Array(int)
member function: ‘Array<double>::Array(int)
class template instance: ‘Array<int>
class template instance: ‘Array<double>
class template: ‘a.out‘template_doc_2.cc‘Array

(dbx) whereis square
function template instance: ‘square<int>(__type_0,__type_0*)
function template instance: ‘square<double>(__type_0,__type_0*)
160 Debugging a Program With dbx • May 2002

whatis name Command

Use the whatis command to print the definitions of function and class templates

and instantiated functions and classes.

For a class template:

For the class template’s constructors:

For a function template:

(dbx) whatis -t Array
template<class T> class Array
To get the full template declaration, try ‘whatis -t Array<int>’;

(dbx) whatis Array
More than one identifier ’Array’.
Select one of the following:

0) Cancel
1) Array<int>::Array(int)
2) Array<double>::Array(int>

> 1
Array<int>::Array(int 1);

(dbx) whatis square
More than one identifier ’square’.
Select one of the following:
 0) Cancel
 1) square<int(__type_0,__type_0*)
 2) square<double>(__type_0,__type_0*)
> 2
void square<double>(double num, double *result);
Chapter 14 Debugging C++ 161

For a class template instantiation:

For a function template instantiation:

For more information, see “whatis Command” on page 337.

stop inclass classname Command

To stop in all member functions of a template class:

Use the stop inclass command to set breakpoints at all member functions of a

particular template class:

For more information, see “stop Command” on page 319 and “inclass classname

[-recurse | -norecurse] ” on page 233.

(dbx) whatis -t Array<double>
class Array<double>; {
public:
 int Array<double>::getlength()
 double &Array<double>::operator [](int i);
 Array<double>::Array<double>(int l);
 Array<double>::~Array<double>();
private:
 int length;
 double *array;
};

(dbx) whatis square(int, int*)
void square(int num, int *result);

(dbx) stop inclass Array
(2) stop inclass Array

(dbx) stop inclass Array<int>
(2) stop inclass Array<int>
162 Debugging a Program With dbx • May 2002

stop infunction name Command

Use the stop infunction command to set breakpoints at all instances of the

specified function template:

For more information, see “stop Command” on page 319 and “infunction
function” on page 232.

stop in function Command

Use the stop in command to set a breakpoint at a member function of a template

class or at a template function.

For a member of a class template instantiation:

For a function instantiation:

For more information, “stop Command” on page 319 and “in function” on

page 232.

call function_name (parameters) Command

Use the call command to explicitly call a function instantiation or a member

function of a class template when you are stopped in scope. If dbx is unable to

choose the correct instance, a menu lets you choose it.

For more information, see “call Command” on page 254.

(dbx) stop infunction square
(9) stop infunction square

(dbx) stop in Array<int>::Array(int l)
(2) stop in Array<int>::Array(int)

(dbx) stop in square(double, double*)
(6) stop in square(double, double*)

(dbx) call square(j,&i)
Chapter 14 Debugging C++ 163

print Expressions

Use the print command to evaluate a function instantiation or a member function

of a class template:.

Use print to evaluate the this pointer.

For more information, see “print Command” on page 304.

list Expressions

Use the list command to print the source listing for the specified function

instantiation.

For more information, see “list Command” on page 290.

(dbx) print iarray.getlength()
iarray.getlength() = 5

(dbx) whatis this
class Array<int> *this;
(dbx) print *this
*this = {
 length = 5
 array = 0x21608
}

(dbx) list square(int, int*)
164 Debugging a Program With dbx • May 2002

CHAPTER 15

Debugging Fortran Using dbx

This chapter introduces dbx features you might use with Fortran. Sample requests to

dbx are also included to provide you with assistance when debugging Fortran code

using dbx .

This chapter includes the following topics:

■ Debugging Fortran

■ Debugging Segmentation Faults

■ Locating Exceptions

■ Tracing Calls

■ Working With Arrays

■ Showing Intrinsic Functions

■ Showing Complex Expressions

■ Showing Logical Operators

■ Viewing Fortran 95 Derived Types

■ Pointer to Fortran 95 Derived Type

Debugging Fortran

The following tips and general concepts are provided to help you while debugging

Fortran programs.

Current Procedure and File

During a debug session, dbx defines a procedure and a source file as current.

Requests to set breakpoints and to print or set variables are interpreted relative to

the current function and file. Thus, stop at 5 sets different breakpoints, depending

on which file is current.
165

Uppercase Letters

If your program has uppercase letters in any identifiers, dbx recognizes them. You

need not provide case-sensitive or case-insensitive commands, as in some earlier

versions.

Fortran 95 and dbx must be in the same case-sensitive or case-insensitive mode:

■ Compile and debug in case-insensitive mode without the -U option. The default

value of the dbx input_case_sensitive environment variable is then false .

If the source has a variable named LAST, then in dbx , both the print LAST or

print last commands work. Fortran 95 and dbx consider LAST and last to be

the same, as requested.

■ Compile and debug in case-sensitive mode using -U . The default value of the dbx
input_case_sensitive environment variable is then true .

If the source has a variable named LAST and one named last , then in dbx ,

print LAST works, but print last does not work. Fortran 95 and dbx
distinguish between LAST and last , as requested.

Note – File or directory names are always case-sensitive in dbx , even if you have set

the dbx input_case_sensitive environment variable to false .

Sample dbx Session

The following examples use a sample program called my_program .

Main program for debugging, a1.f :

PARAMETER (n=2)
REAL twobytwo(2,2) / 4 *-1 /
CALL mkidentity(twobytwo, n)
PRINT *, determinant(twobytwo)
END
166 Debugging a Program With dbx • May 2002

Subroutine for debugging, a2.f :

Function for debugging, a3.f :

1. Compile and link with the -g option.

You can do this in one or two steps.

Compile and link in one step, with -g :

Or, compile and link in separate steps:

2. Start dbx on the executable named my_program .

SUBROUTINE mkidentity (array, m)
REAL array(m,m)
DO 90 i = 1, m
DO 20 j = 1, m
 IF (i .EQ. j) THEN

array(i,j) = 1.
 ELSE

array(i,j) = 0.
 END IF

20 CONTINUE
90 CONTINUE

RETURN
END

REAL FUNCTION determinant (a)
REAL a(2,2)
determinant = a(1,1) * a(2,2) - a(1,2) / a(2,1)
RETURN
END

 demo% f95 -o my_program -g a1.f a2.f a3.f

 demo% f95 -c -g a1.f a2.f a3.f
 demo% f95 -o my_program a1.o a2.o a3.o

 demo% dbx my_program
 Reading symbolic information…
Chapter 15 Debugging Fortran Using dbx 167

3. Set a simple breakpoint by typing stop in subnam, where subnam names a
subroutine, function, or block data subprogram.

To stop at the first executable statement in a main program.

Although MAIN must be all uppercase, subnam can be uppercase or lowercase.

4. Type the run command, which runs the program in the executable files named
when you started dbx .

When the breakpoint is reached, dbx displays a message showing where it

stopped—in this case, at line 3 of the a1.f file.

 (dbx) stop in MAIN
 (2) stop in MAIN

 (dbx) run
 Running: my_program
 stopped in MAIN at line 3 in file "a1.f"

3 call mkidentity(twobytwo, n)
168 Debugging a Program With dbx • May 2002

5. To print a value, type the print command.

Print value of n:

Print the matrix twobytwo ; the format might vary:

Print the matrix array :

The print fails because array is not defined here—only in mkidentity .

 (dbx) print n
 n = 2

 (dbx) print twobytwo
 twobytwo =
 (1,1) -1.0
 (2,1) -1.0
 (1,2) -1.0
 (2,2) -1.0

(dbx) print array
dbx: "array" is not defined in the current scope
(dbx)
Chapter 15 Debugging Fortran Using dbx 169

6. To advance execution to the next line, type the next command.

Advance execution to the next line:

The next command executes the current source line and stops at the next line. It

counts subprogram calls as single statements.

Compare the next command with the step command. The step command

executes the next source line or the next step into a subprogram. If the next

executable source statement is a subroutine or function call, then:

■ The step command sets a breakpoint at the first source statement of the

subprogram.

■ The next command sets the breakpoint at the first source statement after the call,

but still in the calling program.

7. To quit dbx , type the quit command.

Debugging Segmentation Faults

If a program gets a segmentation fault (SIGSEGV), it references a memory address

outside of the memory available to it.

The most frequent causes for a segmentation fault are:

■ An array index is outside the declared range.

■ The name of an array index is misspelled.

(dbx) next
stopped in MAIN at line 4 in file "a1.f"
 4 print *, determinant(twobytwo)
(dbx) print twobytwo
twobytwo =
 (1,1) 1.0
 (2,1) 0.0
 (1,2) 0.0
 (2,2) 1.0
(dbx) quit
demo%

(dbx) quit
demo%
170 Debugging a Program With dbx • May 2002

■ The calling routine has a REALargument, which the called routine has as

INTEGER.

■ An array index is miscalculated.

■ The calling routine has fewer arguments than required.

■ A pointer is used before it has been defined.

Using dbx to Locate Problems

Use dbx to find the source code line where a segmentation fault has occurred.

Use a program to generate a segmentation fault:

Use dbx to find the line number of a dbx segmentation fault:

demo% cat WhereSEGV.f
INTEGER a(5)
j = 2000000
DO 9 i = 1,5
a(j) = (i * 10)

9 CONTINUE
PRINT *, a
END

demo%

demo% f95 -g -silent WhereSEGV.f
demo% a.out
Segmentation fault
demo% dbx a.out
Reading symbolic information for a.out
program terminated by signal SEGV (segmentation violation)
(dbx) run
Running: a.out
signal SEGV (no mapping at the fault address)

in MAIN at line 4 in file "WhereSEGV.f"
 4 a(j) = (i * 10)
(dbx)
Chapter 15 Debugging Fortran Using dbx 171

Locating Exceptions

If a program gets an exception, there are many possible causes. One approach to

locating the problem is to find the line number in the source program where the

exception occurred, and then look for clues there.

Compiling with -ftrap=common forces trapping on all common exceptions.

To find where an exception occurred:

Tracing Calls

Sometimes a program stops with a core dump, and you need to know the sequence

of calls that led it there. This sequence is called a stack trace.

The where command shows where in the program flow execution stopped and how

execution reached this point—a stack trace of the called routines.

ShowTrace.f is a program contrived to get a core dump a few levels deep in the

call sequence—to show a stack trace.

demo% cat wh.f
 call joe(r, s)
 print *, r/s
 end
 subroutine joe(r,s)
 r = 12.
 s = 0.
 return
 end
demo% f95 -g -o wh -ftrap=common wh.f
demo% dbx wh
Reading symbolic information for wh
(dbx) catch FPE
(dbx) run
Running: wh
(process id 17970)
signal FPE (floating point divide by zero) in MAIN at line 2 in
file “wh.f”
 2 print *, r/s
(dbx)
172 Debugging a Program With dbx • May 2002

Show the sequence of calls, starting at where the execution stopped:

Note the reverse order:
demo% f77 -silent -g ShowTrace.f
demo% a.out
MAIN called calc , calc called calcb .
*** TERMINATING a.out
*** Received signal 11 (SIGSEGV)
Segmentation Fault (core dumped)
quil 174% dbx a.out
Execution stopped, line 23
Reading symbolic information for a.out
...
(dbx) run
calcB called from calc , line 9
Running: a.out
(process id 1089)
calc called from MAIN, line 3
signal SEGV (no mapping at the fault address) in calcb at
line 23 in file "ShowTrace.f"
 23 v(j) = (i * 10)
(dbx) where -V
=>[1] calcb(v = ARRAY , m = 2), line 23 in "ShowTrace.f"

[2] calc(a = ARRAY , m = 2, d = 0), line 9 in "ShowTrace.f"
 [3] MAIN(), line 3 in "ShowTrace.f"
(dbx)
Chapter 15 Debugging Fortran Using dbx 173

Working With Arrays

dbx recognizes arrays and can print them.

demo% dbx a.out
Reading symbolic information…
(dbx) list 1,25
 1 DIMENSION IARR(4,4)
 2 DO 90 I = 1,4
 3 DO 20 J = 1,4
 4 IARR(I,J) = (I*10) + J
 5 20 CONTINUE
 6 90 CONTINUE
 7 END
(dbx) stop at 7
(1) stop at "Arraysdbx.f":7
(dbx) run
Running: a.out

stopped in MAIN at line 7 in file "Arraysdbx.f"
 7 END
(dbx) print IARR
iarr =

(1,1) 11
(2,1) 21
(3,1) 31
(4,1) 41
(1,2) 12
(2,2) 22
(3,2) 32
(4,2) 42
(1,3) 13
(2,3) 23
(3,3) 33
(4,3) 43
(1,4) 14
(2,4) 24
(3,4) 34
(4,4) 44

(dbx) print IARR(2,3)
iarr(2, 3) = 23 - Order of user-specified subscripts ok

(dbx) quit
174 Debugging a Program With dbx • May 2002

For information on array slicing in Fortran, see “Array Slicing Syntax for Fortran” on

page 89.

Fortran 95 Allocatable Arrays

The following example shows how to work with allocated arrays in dbx .

 demo% f95 -g Alloc.f95
 demo% dbx a.out
 (dbx) list 1,99
 1 PROGRAM TestAllocate
 2 INTEGER n, status
 3 INTEGER, ALLOCATABLE :: buffer(:)
 4 PRINT *, 'Size?'
 5 READ *, n
 6 ALLOCATE(buffer(n), STAT=status)

7 IF (status /= 0) STOP 'cannot allocate buffer'
 8 buffer(n) = n
 9 PRINT *, buffer(n)
 10 DEALLOCATE(buffer, STAT=status)
 11 END
Chapter 15 Debugging Fortran Using dbx 175

Showing Intrinsic Functions

dbx recognizes Fortran intrinsic functions (SPARC™ platforms only).

 (dbx) stop at 6
 (2) stop at "alloc.f95":6
 (dbx) stop at 9
 (3) stop at "alloc.f95":9
 (dbx) run
 Running: a.out
 (process id 10749)
 Size?
 1000
Unknown size at line 6
 stopped in main at line 6 in file "alloc.f95"
 6 ALLOCATE(buffer(n), STAT=status)
 (dbx) whatis buffer
 integer*4 , allocatable::buffer(:)
 (dbx) next
 continuing
 stopped in main at line 7 in file "alloc.f95"

7 IF (status / = 0) STOP 'cannot allocate buffer'
 (dbx) whatis buffer
 integer*4 buffer(1:1000)
Known size at line 9
 (dbx) cont
 stopped in main at line 9 in file "alloc.f95"
 9 PRINT *, buffer(n)
 (dbx) print n
buffer(1000) holds 1000
 n = 1000
 (dbx) print buffer(n)
 buffer(n) = 1000
176 Debugging a Program With dbx • May 2002

To show an intrinsic function in dbx , type:

Showing Complex Expressions

dbx also recognizes Fortran complex expressions.

demo% cat ShowIntrinsic.f
 INTEGER i
 i = -2
 END
(dbx) stop in MAIN
(2) stop in MAIN
(dbx) run
Running: shi
(process id 18019)
stopped in MAIN at line 2 in file "shi.f"
 2 i = -2
(dbx) whatis abs
Generic intrinsic function: "abs"
(dbx) print i
i = 0
(dbx) step
stopped in MAIN at line 3 in file "shi.f"
 3 end
(dbx) print i
i = -2
(dbx) print abs(1)
abs(i) = 2
(dbx)
Chapter 15 Debugging Fortran Using dbx 177

To show a complex expression in dbx , type:

demo% cat ShowComplex.f
 COMPLEX z
 z = (2.0, 3.0)
 END
demo% f95 -g ShowComplex.f
demo% dbx a.out
(dbx) stop in MAIN
(dbx) run
Running: a.out
(process id 10953)
stopped in MAIN at line 2 in file "ShowComplex.f"
 2 z = (2.0, 3.0)
(dbx) whatis z
complex*8 z
(dbx) print z
z = (0.0,0.0)
(dbx) next
stopped in MAIN at line 3 in file "ShowComplex.f"
 3 END
(dbx) print z
z = (2.0,3.0)
(dbx) print z+(1.0,1.0)
z+(1,1) = (3.0,4.0)
(dbx) quit
demo%
178 Debugging a Program With dbx • May 2002

Showing Interval Expressions

To show an interval expression in dbx , type:

Showing Logical Operators

dbx can locate Fortran logical operators and print them.

demo% cat ShowInterval.f95
 INTERVAL v
 v = [37.1, 38.6]
 END
demo% f95 -g -xia ShowInterval.f95
demo% dbx a.out
(dbx) stop in MAIN
(2) stop in MAIN
(dbx) run
Running: a.out
(process id 5217)
stopped in MAIN at line 2 in file "ShowInterval.f95"
 2 v = [37.1, 38.6]
(dbx) whatis v
INTERVAL*16 v
(dbx) print v
v = [0.0,0.0]
(dbx) next
stopped in MAIN at line 3 in file "ShowInterval.f95"
 3 END
(dbx) print v
v = [37.1,38.6]
(dbx) print v+[0.99,1.01]
v+[0.99,1.01] = [38.09,39.61]
(dbx) quit
demo%
Chapter 15 Debugging Fortran Using dbx 179

To show logical operators in dbx , type:

Viewing Fortran 95 Derived Types

You can show structures—Fortran 95 derived types—with dbx .

demo% cat ShowLogical.f
 LOGICAL a, b, y, z
 a = .true.
 b = .false.
 y = .true.
 z = .false.
 END
demo% f95 -g ShowLogical.f
demo% dbx a.out
(dbx) list 1,9
 1 LOGICAL a, b, y, z
 2 a = .true.
 3 b = .false.
 4 y = .true.
 5 z = .false.
 6 END
(dbx) stop at 5
(2) stop at "ShowLogical.f":5
(dbx) run
Running: a.out
(process id 15394)
stopped in MAIN at line 5 in file "ShowLogical.f"
 5 z = .false.
(dbx) whatis y
logical*4 y
(dbx) print a .or. y
a.OR.y = true
(dbx) assign z = a .or. y
(dbx) print z
z = true
(dbx) quit
demo%

demo% f95 -g DebStruc.f95
demo% dbx a.out
(dbx) list 1,99
180 Debugging a Program With dbx • May 2002

1 PROGRAM Struct ! Debug a Structure
2 TYPE product
3 INTEGER id
4 CHARACTER*16 name
5 CHARACTER*8 model
6 REAL cost
7 REAL price
8 END TYPE product
9

10 TYPE(product) :: prod1
11
12 prod1%id = 82
13 prod1%name = "Coffee Cup"
14 prod1%model = "XL"
15 prod1%cost = 24.0
16 prod1%price = 104.0
17 WRITE (*, *) prod1%name
18 END

(dbx) stop at 17
(2) stop at "Struct.f95":17
(dbx) run
Running: a.out
(process id 12326)
stopped in main at line 17 in file "Struct.f95"

17 WRITE (*, *) prod1%name
(dbx) whatis prod1
product prod1
(dbx) whatis -t product
type product

integer*4 id
character*16 name
character*8 model
real*4 cost
real*4 price

end type product
(dbx) n
(dbx) print prod1

prod1 = (
id = 82
name = 'Coffee Cup'
model = 'XL'
cost = 24.0
price = 104.0

)

Chapter 15 Debugging Fortran Using dbx 181

Pointer to Fortran 95 Derived Type

You can show structures—Fortran 95 derived types—and pointers with dbx .

 demo% f95 -o debstr -g DebStruc.f95
 demo% dbx debstr
 (dbx) stop in main
 (2) stop in main
 (dbx) list 1,99
1 PROGRAM DebStruPtr! Debug structures & pointers
Declare a derived type.
 2 TYPE product
 3 INTEGER id
 4 CHARACTER*16 name
 5 CHARACTER*8 model
 6 REAL cost
 7 REAL price
 8 END TYPE product
 9
Declare prod1 and prod2 targets.
 10 TYPE(product), TARGET :: prod1, prod2
Declare curr and prior pointers.
 11 TYPE(product), POINTER :: curr, prior
 12
Make curr point to prod2 .

13 curr => prod2
Make prior point to prod1 .
 14 prior => prod1
Initialize prior .
 15 prior%id = 82
 16 prior%name = "Coffee Cup"
 17 prior%model = "XL"
 18 prior%cost = 24.0
 19 prior%price = 104.0
Set curr to prior .
 20 curr = prior
Print name from curr and prior .
 21 WRITE (*, *) curr%name, " ", prior%name
 22 END PROGRAM DebStruPtr
 (dbx) stop at 21
 (1) stop at "DebStruc.f95":21
 (dbx) run
 Running: debstr
182 Debugging a Program With dbx • May 2002

Above, dbx displays all fields of the derived type, including field names.

You can use structures—inquire about an item of an Fortran 95 derived type.

To print a pointer, type:

(process id 10972)
stopped in main at line 21 in file "DebStruc.f95"
 21 WRITE (*, *) curr%name, " ", prior%name
(dbx) print prod1
 prod1 = (

id = 82
name = "Coffee Cup"
model = "XL"
cost = 24.0
price = 104.0

)

Ask about the variable
(dbx) whatis prod1
 product prod1
Ask about the type (-t)
 (dbx) whatis -t product
 type product
 integer*4 id
 character*16 name
 character*8 model
 real cost
 real price
 end type product

dbx displays the contents of a pointer, which is an address. This address can be different with
every run.
(dbx) print prior
 prior = (
 id = 82
 name = ’Coffee Cup’
 model = ’XL’
 cost = 24.0
 price = 104.0
)
Chapter 15 Debugging Fortran Using dbx 183

184 Debugging a Program With dbx • May 2002

CHAPTER 16

Debugging a Java Application With
dbx

This chapter describes how you can use dbx to debug an application that is a

mixture of Java™ code and C JNI (Java™ Native Interface) code or C++ JNI code.

The chapter is organized into the following sections:

■ Using dbx With Java Code

■ Environment Variables for Java Debugging

■ Starting to Debug a Java Application

■ Customizing Startup of the JVM Software

■ dbx Modes for Debugging Java Code

■ Using dbx Commands in Java Mode

Using dbx With Java Code

You can use the Forte Developer dbx to debug mixed code (Java code and C code or

C++ code) running under the Solaris™ operating environment.

Capabilities of dbx With Java Code

You can debug several types of Java applications with dbx (see “Starting to Debug a

Java Application” on page 187). Most dbx commands operate similarly on native

code and Java code.

Limitations of dbx With Java Code

dbx has the following limitations when debugging Java code:
185

■ dbx cannot tell you the state of a Java application from a core file as it can with

native code.

■ dbx cannot tell you the state of a Java application if the application is hung for

some reason and dbx is not able to make procedure calls.

■ Fix and continue, runtime checking, and performance data collection do not apply

to Java applications.

Environment Variables for Java
Debugging

The following environment variables are specific to debugging a Java application

with dbx . You can set the JAVASRCPATH, CLASSPATHX, and jvm_invocation
environment variables at a shell prompt before starting dbx. The setting of the

jdbx_mode environment variable changes as you are debugging your application.

You can change its setting with the jon command (“jon Command” on page 287)

and the joff command (see “joff Command” on page 287).

jdbx_mode The jdbx_mode environment variable can have the following

settings: java , jni, or native . For descriptions of the Java, JNI,

and native modes, and how and when the mode changes, see “dbx
Modes for Debugging Java Code” on page 196. Default: java .

JAVASRCPATH You can use the JAVASRCPATHenvironment variable to specify the

directories in which dbx should look for Java source files. This

variable is useful when the Java sources files are not in the same

directory as the .class or .jar files. See “Specifying the Location

of Your Java Source Files” on page 190 for more information.

CLASSPATHX The CLASSPATHXenvironment variable lets you specify to dbx a

path for Java class files that are loaded by custom class loaders. For

more information, see “Specifying a Path for Class Files That Use

Custom Class Loaders” on page 191.

jvm_invocation The jvm_invocation environment variable lets you customize the

way the JVM™ software is started. (The terms “Java virtual

machine” and “JVM” mean a virtual machine for the Java™

platform.) For more information, see See “Customizing Startup of

the JVM Software” on page 192.
186 Debugging a Program With dbx • May 2002

Starting to Debug a Java Application

You can use dbx to debug the following types of Java applications:

■ A file with a file name that ends in .class

■ A file with a file name that ends in .jar

■ A Java application that is started using a wrapper

■ A running Java application that was started in debug mode to which you attach

dbx

■ A C application or C++ application that embeds a Java application using the

JNI_CreateJavaVM interface

dbx recognizes that it is debugging a Java application in all of these cases.

Debugging a Class File

You can debug a file that uses the .class file name extension using dbx as in the

following example.

If the class that defines the application is defined in a package, you need to include

the package path just as when running the application under the JVM software, as in

the following example.

You can also use a full path name for the class file. dbx automatically determines the

package portion of the class path by looking in the .class file and adds the

remaining portion of the full path name to the class path. For example, given the

following path name, dbx determines that pkg/Toy.class is the main class name

and adds /home/user/java to the class path.

(dbx) debug myclass.class

(dbx) debug java.pkg.Toy.class

(dbx) debug /home/user/java/pkg/Toy.class
Chapter 16 Debugging a Java Application With dbx 187

Debugging a JAR File

A Java application can be bundled in a JAR (Java Archive) file. You can debug a JAR

file using dbx as in the following example.

When you start debugging a file that has a file name ending in .jar , dbx uses the

Main_Class attribute specified in the manifest of this JAR file to determine the

main class. (The main class is the class within the JAR file that is your application’s

entry point. If you use a full path name or relative path name to specify the JAR file,

dbx uses the directory name and prefixes it to the class path in the Main-Class
attribute.

If you debug a JAR file that does not have the Main-Class attribute, you can use

the JAR URL syntax jar:<url>!/{entry} that is specified in the class

JarURLConnection of the Java™ 2 Platform, Standard Edition to specify the name

of the main class, as in the following examples.

For each of these examples dbx would do the following:

■ Treat the class path specified after the ! character as the main class (for example,

/myclass.class or /x/y/z.class)

■ Add the name of the JAR file ./myjar.jar , /a/b/c/d/e.jar, or

/a/b/c/d.jar to the class pat

■ Begin debugging the main class

Note – If you have specified a custom startup of the JVM software using the

jvm_invocation environment variable (see “Customizing Startup of the JVM

Software” on page 192, the file name of the JAR file is not automatically added to the

class path In this case, you must add the file name of the JAR file to the class path

when you start debugging.

(dbx) debug myjar.jar

(dbx) debug jar:myjar.jar!/myclass.class
(dbx) debug jar:/a/b/c/d/e.jar!/x/y/z.class
(dbx) debug jar:file:/a/b/c/d.jar!/myclass.class
188 Debugging a Program With dbx • May 2002

Debugging a Java Application That Has a

Wrapper

A Java application usually has a wrapper to set environment variables. If your Java

application has a wrapper, you need to tell dbx that a wrapper script is being used

by setting the jvm_invocation environment variable (see “Customizing Startup of

the JVM Software” on page 192).

Attaching dbx to a Running Java Application

You can attach dbx to a running Java application if you specified the options shown in

the following example when you started the application. After starting the application,

you would use the dbx command (see “dbx Command” on page 268) with the process

ID of the running process to start debugging.

For the JVM software to locate libdbx_agent.so , you need to add

installation_directory/SUNWspro/lib to LD_LIBRARY_PATHbefore running the Java

application, where install_directory is the location where dbx was installed. If you are

using the 64-bit version of the JVM software, you need to add

installation_directory/SUNWspro/lib/v9 to LD_LIBRARY_PATH.

When you attach dbx to the running application, dbx starts debugging the

application in Java mode.

If your Java application requires 64-bit object libraries, include the -d64 option when

you start the application. Then when you attach dbx to the application, dbx will use

the 64-bit JVM software on which the application is running.

$ java -Djava.compiler=NONE -Xdebug -Xnoagent -Xrundbx_agent
myclass.class
$ dbx - 2345

$ java -Djava.compiler=NONE -Xdebug -Xnoagent -Xrundbx_agent -d64
myclass.class
$ dbx - 2345
Chapter 16 Debugging a Java Application With dbx 189

Debugging a C Application or C++ Application

That Embeds a Java Application

You can debug a C application or C++ application that embeds a Java application

using the JNI_CreateJavaVM interface. The C application or C++ application must

start the Java application by specifying the following options to the JVM software:

For the JVM software to locate libdbx_agent.so , you need to add

install_directory/current/lib to LD_LIBRARY_PATHbefore running the Java

application, where install_directory is the location where dbx was installed. If you are

using the 64-bit version of the JVM software, you need to add

install_directory/current/lib/v9 to LD_LIBRARY_PATH.

Passing Arguments to the JVM Software

When you use the run command in Java mode, the arguments you give are passed

to the application and not to the JVM software. To pass arguments to the JVM

software, see “Customizing Startup of the JVM Software” on page 192.

Specifying the Location of Your Java Source Files

Sometimes your Java source files are not in the same directory as the .class or

.jar files. You can use the $JAVASRCPATHenvironment variable to specify the

directories in which dbx should look for Java source files. For example

JAVASRCPATH=.:/mydir/mysrc:/mydir/mylibsrc:/mydir/myutils causes

dbx to look in the listed directories for source files that correspond to the class files

being debugged.

Specifying the Location of Your C Source Files or

C++ Source Files

dbx might not be able to find your C source files or C++ source files in the following

circumstances:

■ If your source files are not in the same location as they were when you compiled

them

-Xdebug -Xnoagent -Xrundbx_agent
190 Debugging a Program With dbx • May 2002

■ If you compiled your source files on a different system than the one on which you

are running dbx and the compile directory does not have the same path name

In such cases, use the pathmap command (see “pathmap Command” on page 302)

to map one path name to another so that dbx can find your files.

Specifying a Path for Class Files That Use Custom

Class Loaders

An application can have custom class loaders that load class files from locations that

might not be part of the regular class path. In such situations dbx cannot locate the

class files. The CLASSPATHXenvironment variable lets you specify to dbx a path for

the class files that are loaded by their custom class loaders. For example,

CLASSPATHX=.:/myloader/myclass:/mydir/mycustom causes dbx to look in

the listed directories when it is trying to locate a class file.

Setting Breakpoints on Code That Has Not Yet

Been Loaded by the JVM Software

To set a stop breakpoint on a Java method in a class file that has not been loaded by

the JVM software, use the full name of the class with a stop in command, or the

class name with a stop inmethod command. See the following example.

To set a stop breakpoint on a C function or C++ function in a shared library that has

not been loaded by the JVM software, preload the symbol table of the shared library

before setting the breakpoint. For example, if you have a library named

mylibrary.so that contains a function named myfunc , you could preload the

library and set a breakpoint on the function as follows:

You can also load the symbol tables of all dynamically loaded shared objects by

running your application once before beginning to debug it with dbx .

(dbx) stop in Java.Pkg.Toy.myclass.class.mymethod
(dbx) stop inmethod myclass.class.mymethod

(dbx) loadobject -load fullpathto/mylibrary.so
(dbx> stop in myfunc
Chapter 16 Debugging a Java Application With dbx 191

Customizing Startup of the JVM
Software

You might need to customize startup of the JVM software from dbx to do the

following:

■ Specify a path name for the JVM software (see “Specifying a Path Name for the

JVM Software” on page 193)

■ Pass some run arguments to the JVM software (see “Passing Run Arguments to

the JVM Software” on page 193)

■ Specify a custom wrapper instead of the default Java wrapper for running Java

applications (see “Specifying a Custom Wrapper for Your Java Application” on

page 193)

■ Specify 64-bit JVM software (see “Specifying 64-bit JVM Software” on page 196)

You can customize startup of the JVM software using the jvm_invocation
environment variable. By default, when the jvm_invocation environment variable

is not defined, dbx starts the JVM software as follows:

When the jvm_invocation environment variable is defined, dbx uses the value of

the variable to start the JVM software.

You must include the -Xdebug option in the definition of the jvm_invocation
environment variable. dbx expands -Xdebug into the internal options -Xdebug
-Xnoagent -Xrundbxagent::sync .

If you do not include the -Xdebug option in the definition, as in the following

example, dbx issues an error message.

java -Xdebug -Xnoagent -Xrundbx_agent:syncpid

jvm_invocation="/set/java/javasoft/sparc-S2/jdk1.2/bin/java"

dbx: Value of ‘$jvm_invocation’ must include an option to invoke
the VM in debug mode
192 Debugging a Program With dbx • May 2002

Specifying a Path Name for the JVM Software

To specify a path name for the JVM software, set the jvm_invocation environment

variable to the appropriate path name, as in the following example.

This causes dbx to start the JVM software as follows:

Passing Run Arguments to the JVM Software

To pass run arguments to the JVM software, set the jvm_invocation environment

variable to start the JVM software with those arguments, as in the following

example.

This causes dbx to start the JVM software as follows:

Specifying a Custom Wrapper for Your Java

Application

A Java application can use a custom wrapper for startup. If your application uses a

custom wrapper, you can use the jvm_invocation environment variable to specify

the wrapper to be used, as in the following example.

jvm_invocation="/myjava/java -Xdebug"

/myjava/java -Djava.compiler=NONE -Xdebug -Xnoagent -
Xrundbx_agent:sync

jvm_invocation="java -Xdebug -Xms512 -Xmx1024 -Xcheck:jni"

java -Djava.compiler=NONE -Xdebug -Xnoagent -Xrundbx_agent:sync=
-Xms512 -Xmx1024 -Xcheck:jni

jvm_invocation="/export/siva-a/forte4j/bin/forte4j.sh -J-Xdebug"
Chapter 16 Debugging a Java Application With dbx 193

This causes dbx to start the JVM software as follows:

Using a Custom Wrapper That Accepts Command-Line
Options

The following wrapper script (xyz) sets a few environment variables and accepts

command line options:

This script accepts some command line options for the JVM software and the user

application. For wrapper scripts of this form, you would set the jvm_invocation
environment variable and start dbx as follows:

/export/siva-a/forte4j/bin/forte4j.sh - -J-Xdebug -J-Xnoagent -J-
Xrundbxagent:sync= process_id

#!/bin/sh
CPATH=/mydir/myclass:/mydir/myjar.jar; export CPATH
JARGS="-verbose:gc -verbose:jni -DXYZ=/mydir/xyz"
ARGS=
while [$# -gt 0] ; do

case "$1" in
-userdir) shift; if [$# -gt 0]

; then userdir=$1; fi;;
-J*) jopt=‘expr $1 : ’-J‹.*›’‘

; JARGS="$JARGS '$jopt'";;
*) ARGS="$ARGS '$1'" ;;

esac
shift

done
java $JARGS -cp $CPATH $ARGS

% jvm_invocation="xyz -J-Xdebug -J any other java options"
% dbx myclass.class -Dide=visual
194 Debugging a Program With dbx • May 2002

Using a Custom Wrapper That Does Not Accept Command-
Line Options

The following wrapper script (xyz) sets a few environment variables and starts the

JVM software, but does not accept any command line options or a class name:

You could use such a script to debug a wrapper using dbx in one of two ways:

■ You could modify the script to start dbx from inside the wrapper script itself by

adding the definition of the jvm_invocation variable to the script and starting

dbx :

Once you have made this modification, you could start the debugging session by

running the script.

■ You could modify the script slightly to accept some command line options as

follows:

Once you made this modification, you would set the jvm_invocation
environment variable and start dbx as follows:

#!/bin/sh
CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH
ABC=/mydir/abc; export ABC
java <options> myclass

#!/bin/sh
CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH
ABC=/mydir/abc; export ABC
jvm_invocation="java -Xdebug <options>"; export jvm_invocation
dbx myclass.class

#!/bin/sh
CLASSPATH=/mydir/myclass:/mydir/myjar.jar; export CLASSPATH
ABC=/mydir/abc; export ABC
JAVA_OPTIONS="$1 <options>"
java $JAVA_OPTIONS $2

% jvm_invocation="xyz -Xdebug"; export jvm_invocation
% dbx myclass.class
Chapter 16 Debugging a Java Application With dbx 195

Specifying 64-bit JVM Software

If you want dbx to start 64-bit JVM software to debug an application that requires

64-bit object libraries, include the -d64 option when you set the jvm_invocation
environment variable:

dbx Modes for Debugging Java Code

When debugging a Java application, dbx is in one of three modes:

■ Java mode

■ JNI mode

■ Native mode

When dbx is Java mode or JNI (Java Native Interface) mode, you can inspect the

state of your Java application, including JNI code, and control execution of the code.

When dbx is in native mode, you can inspect the state of your C or C++ JNI code.

The current mode (java , jni , native) is stored in the environment variable

jdbx_mode .

In Java mode, you interact with dbx using Java syntax and dbx uses Java syntax to

present information to you. This mode is used for debugging pure Java code, or the

Java code in an application that is a mixture of Java code and C JNI code or C++ JNI

code.

In JNI mode, dbx commands use native syntax and affect native code, but the output

of commands shows Java-related status as well as native status, so JNI mode is a

“mixed” mode. This mode is used for debugging the native parts of an application

that is a mixture of Java code and C JNI code or C++ JNI code.

In native mode, dbx commands affect only a native program, and all Java-related

features are disabled. This mode is used for debugging non-Java related programs.

As you execute your Java application, dbx switches automatically between Java

mode and JNI mode as appropriate. For example, when it encounters a Java

breakpoint, dbx switches into Java mode, and when you step from Java code into

JNI code, it switches into JNI mode.

jvm_invocation="/myjava/java -Xdebug -d64"
196 Debugging a Program With dbx • May 2002

Switching from Java or JNI Mode to Native Mode

dbx does not switch automatically into native mode. You can switch explicitly from

Java or JNI Mode to native mode with the joff command, and from native mode to

Java mode with the jon command.

Switching Modes When You Interrupt Execution

If you interrupt execution of your Java application (for example, with a control-C),

dbx tries to set the mode automatically to Java/JNI mode by bringing the

application to a safe state and suspending all threads.

If dbx cannot suspend the application and switch to Java/JNI mode, dbx switches to

native mode. You can then use the jon command to switch to Java mode so that you

inspect the state of the program.

Using dbx Commands in Java Mode

When you are using dbx to debug a mixture of Java and native code, dbx commands

fall into several categories:

■ Commands that accept the same arguments and operate the same way in Java

mode or JNI mode as in native mode (see “Commands With Identical Syntax and

Functionality in Java Mode and Native Mode” on page 199).

■ Commands have arguments that are valid only in Java mode or JNI mode, as well

as arguments that are valid only in native mode (see “Commands With Different

Syntax in Java Mode” on page 200).

■ Commands that are valid only in Java mode or JNI mode (see “Commands Valid

Only in Java Mode” on page 201).

Any commands not included in one of these categories work only in native mode.

The Java Expression Evaluation in dbx
Commands

The Java expression evaluator used in most dbx commands supports the following

constructs:

■ All literals
Chapter 16 Debugging a Java Application With dbx 197

■ All names and field accesses

■ this and super
■ Array accesses

■ Casts

■ Conditional binary operations

■ Method calls

■ Other unary/binary operations

■ Assignment to variables or fields

■ instanceof operator

■ Array length operator

The Java expression evaluator does not support the following constructs:

■ Qualified this , for example, <ClassName>.this
■ Class instance creation expressions

■ Array creation expressions

■ String concatenation operator

■ Conditional operator ? :

■ Compound assignment operators, for example, x += 3

A particularly useful way of inspecting the state of your Java application is using the

display facility in the dbx Debugger.

Depending on precise value semantics in expressions that do more than just inspect

data is not recommended.

Static and Dynamic Information Used by dbx
Commands

Much of the information about a Java application is normally available only after the

JVM software has started, and is unavailable after the Java application has finished

executing. However, when you debug a Java application with dbx , dbx gleans some

of the information it needs from class files and JAR files that are part of the system

class path and user class path before it starts the JVM software. This allows dbx to

do better error checking on breakpoints before you run the application.

Some Java classes and their attributes might not be accessible through the class path.

dbx can inspect and step through these classes, and the expression parser can access

them, once they are loaded. However, the information it gathers is temporary and is

no longer available after the JVM software terminates.

Some information that dbx needs to debug your Java application is not recorded

anywhere so dbx skims Java source files to derive this information as it is debugging

your code.
198 Debugging a Program With dbx • May 2002

Commands With Identical Syntax and

Functionality in Java Mode and Native Mode

The following dbx commands have the same syntax and perform the same

operations in Java mode as in native mode.

Command Functionality

attach Attaches dbx to a running process, stopping execution and putting

the program under debugging control

cont Causes the process to continue execution

dbxenv List or set dbx environment variables

delete Deletes breakpoints and other events

down Moves down the call stack (away from main)

dump Prints all variables local to a procedure or method

file Lists or changes the current file

frame Lists or changes the current stack frame number

handler Modifies event handlers (breakpoints)

import Import commands from a dbx command library

line Lists or changes the current line number

list Lists or changes the current line number

next Steps one source line (steps over calls)

pathmap Maps one path name to another for finding source files, etc.

proc Displays the status of the current process

prog Manages programs being debugged and their attributes

quit Exits dbx

rerun Runs the program with no arguments

runargs Changes the arguments of the target process

status Lists the event handlers (breakpoints)

step up Steps up and out of the current function or method

stepi Steps one machine instruction (steps into calls)

up Moves up the call stack (toward main)

whereami Displays the current source line
Chapter 16 Debugging a Java Application With dbx 199

Commands With Different Syntax in Java Mode

The following dbx commands have different syntax for Java debugging than for

native code debugging, and operate differently in Java mode than in native mode.

Command Native Mode Functionality Java Mode Functionality

assign Assigns a new value to a program

variable

Assigns a new value to a local

variable or parameter

call Calls a procedure Calls a method

dbx Starts dbx Starts dbx

debug Loads the specified application

and begins debugging the

application

Loads the specified Java
application, checks for the
existence of the class file, and
begins debugging the
application

detach Releases the target process from

dbx ’s control

Releases the target process from

dbx ’s control

display Evaluates and prints expressions

at every stopping point.

Evaluates and prints expressions,

local variables, or parameters at

every stopping point

files Lists file names that match a

regular expression

Lists all of the Java source files

known to dbx

func Lists or changes the current

function

Lists or changes the current

method

next Steps one source line (stepping

over calls)

Steps one source line (stepping

over calls)

print Prints the value of an expression Prints the value of an expression,

local variable, or parameter.

run Runs the program with arguments Runs the program with arguments

step Steps one source line or statement

(stepping into calls)

Steps one source line or statement

(stepping into calls)

stop Sets a source-level breakpoint Sets a source-level breakpoint

thread Lists or changes the current thread Lists or changes the current thread

threads Lists all threads Lists all threads

trace Shows executed source lines,

function calls, or variable changes

Shows executed source lines,

function calls, or variable changes

undisplay Undoes display commands Undoes display commands
200 Debugging a Program With dbx • May 2002

Commands Valid Only in Java Mode

The following dbx commands are valid only in Java mode or JNI mode.

whatis Prints the type of expression or

declaration of type

Prints the declaration of an

identifier

when Executes commands when a

specified event occurs

Executes commands when a

specified event occurs

where Prints the call stack Prints the call stack

Command Functionality

java Used when dbx is in JNI mode to indicate that the Java version of a

specified command is to be executed

javastack Dumps the current Java operand stack

javaclasses Prints the names of all Java classes known to dbx when you give the

command

joff Switches dbx from Java mode or JNI mode to native mode

jon Switches dbx from native mode to Java mode

jpkgs Prints the names of all Java packages known to dbx when you give

the command

native Used when dbx is in Java mode to indicate that the native version of

a specified command is to be executed

Command Native Mode Functionality Java Mode Functionality
Chapter 16 Debugging a Java Application With dbx 201

202 Debugging a Program With dbx • May 2002

CHAPTER 17

Debugging at the
Machine-Instruction Level

This chapter describes how to use event management and process control

commands at the machine-instruction level, how to display the contents of memory

at specified addresses, and how to display source lines along with their

corresponding machine instructions. The next , step , stop and trace commands

each support a machine-instruction level variant: nexti , stepi , stopi , and

tracei . Use the regs command to print out the contents of machine registers or the

print command to print out individual registers.

This chapter is organized into the following sections:

■ Examining the Contents of Memory

■ Stepping and Tracing at Machine-Instruction Level

■ Setting Breakpoints at the Machine-Instruction Level

■ Using the adb Command

■ Using the regs Command

Examining the Contents of Memory

Using addresses and the examine or x command, you can examine the content of

memory locations as well as print the assembly language instruction at each address.

Using a command derived from adb (1), the assembly language debugger, you can

query for:

■ The address, using the = (equal sign) character, or,

■ The contents stored at an address, using the / (slash) character.

You can print the assembly commands using the dis and listi commands. (See

“Using the dis Command” on page 207 and “Using the listi Command” on

page 207.)
203

Using the examine or x Command

Use the examine command, or its alias x , to display memory contents or addresses.

Use the following syntax to display the contents of memory starting at address for

count items in format format. The default address is the next one after the last address

previously displayed. The default count is 1. The default format is the same as was

used in the previous examine command, or X if this is the first command given.

The syntax for the examine command is:

To display the contents of memory from address1 through address2 inclusive, in

format format, type:

Display the address, instead of the contents of the address in the given format by

typing:

To print the value stored at the next address after the one last displayed by

examine , type:

To print the value of an expression, enter the expression as an address:

Addresses

The address is any expression resulting in or usable as an address. The address may be

replaced with a + (plus sign), which displays the contents of the next address in the

default format.

examine [address] [/ [count] [format]]

examine address1, address2 [/ [format]]

examine address = [format]

examine +/ i

examine address=format
examine address=
204 Debugging a Program With dbx • May 2002

For example, the following are valid addresses.:

Symbolic addresses used to display memory are specified by preceding a name with

an ampersand (&). Function names can be used without the ampersand; &main is

equal to main . Registers are denoted by preceding a name with a dollar sign ($).

Formats

The format is the address display format in which dbx displays the results of a query.

The output produced depends on the current display format. To change the display

format, supply a different format code.

The default format set at the start of each dbx session is X, which displays an

address or value as a 32-bit word in hexadecimal. The following memory display

formats are legal.

0xff99 An absolute address

main Address of a function

main+20 Offset from a function address

&errno Address of a variable

str A pointer-value variable pointing to a string

i Display as an assembly instruction.

d Display as 16 bits (2 bytes) in decimal.

D Display as 32 bits (4 bytes) in decimal.

o Display as 16 bits (2 bytes) in octal.

O Display as 32 bits (4 bytes) in octal.

x Display as 16 bits (2 bytes) in hexadecimal.

X Display as 32 bits (4 bytes) in hexadecimal. (default format)

b Display as a byte in octal.

c Display as a character.

w Display as a wide character.

s Display as a string of characters terminated by a null byte.

W Display as a wide character.

f Display as a single-precision floating point number.

F, g Display as a double-precision floating point number.
Chapter 17 Debugging at the Machine-Instruction Level 205

Count

The count is a repetition count in decimal. The increment size depends on the

memory display format.

Examples of Using an Address

The following examples show how to use an address with count and format options

to display five successive disassembled instructions starting from the current

stopping point.

For SPARC:

For Intel:

E Display as an extended-precision floating point number.

ld, lD Display 32 bits (4 bytes) in decimal (same as D).

lo, lO Display 32 bits (4 bytes) in octal (same as O).

lx, LX Display 32 bits (4 bytes) in hexadecimal (same as X).

Ld, LD Display 64 bits (8 bytes) in decimal.

Lo, LO Display 64 bits (8 bytes) in octal.

Lx, LX Display 64 bits (8 bytes) in hexadecimal.

(dbx) stepi
stopped in main at 0x108bc
0x000108bc: main+0x000c: st %l0, [%fp - 0x14]
(dbx) x 0x108bc/5i
0x000108bc: main+0x000c: st %l0, [%fp - 0x14]
0x000108c0: main+0x0010: mov 0x1,%l0
0x000108c4: main+0x0014: or %l0,%g0, %o0
0x000108c8: main+0x0018: call 0x00020b90 [unresolved PLT 8:
malloc]
0x000108cc: main+0x001c: nop

(dbx) x &main/5i
0x08048988: main : pushl %ebp
0x08048989: main+0x0001: movl %esp,%ebp
0x0804898b: main+0x0003: subl $0x28,%esp
0x0804898e: main+0x0006: movl 0x8048ac0,%eax
0x08048993: main+0x000b: movl %eax,-8(%ebp)
206 Debugging a Program With dbx • May 2002

Using the dis Command

The dis command is equivalent to the examine command with i as the default

display format.

Here is the syntax for the dis command.

The dis command:

■ Without arguments displays 10 instructions starting at +.

■ With the address argument only, disassembles 10 instructions starting at address.

■ With the address1 and address2 arguments, disassembles instructions from address1
through address2.

■ With only a count, displays count instructions starting at +.

Using the listi Command

To display source lines with their corresponding assembly instructions, use the

listi command, which is equivalent to the command list -i . See the discussion

of list -i in “Printing a Source Listing” on page 41.

For SPARC:

dis [address] [address1, address2] [/ count]

(dbx) listi 13, 14
 13 i = atoi(argv[1]);
0x0001083c: main+0x0014: ld [%fp + 0x48], %l0
0x00010840: main+0x0018: add %l0, 0x4, %l0
0x00010844: main+0x001c: ld [%l0], %l0
0x00010848: main+0x0020: or %l0, %g0, %o0
0x0001084c: main+0x0024: call 0x000209e8 [unresolved PLT 7:
atoi]
0x00010850: main+0x0028: nop
0x00010854: main+0x002c: or %o0, %g0, %l0
0x00010858: main+0x0030: st %l0, [%fp - 0x8]
 14 j = foo(i);
0x0001085c: main+0x0034: ld [%fp - 0x8], %l0
0x00010860: main+0x0038: or %l0, %g0, %o0
0x00010864: main+0x003c: call foo
0x00010868: main+0x0040: nop
0x0001086c: main+0x0044: or %o0, %g0, %l0
0x00010870: main+0x0048: st %l0, [%fp - 0xc]
Chapter 17 Debugging at the Machine-Instruction Level 207

For Intel:

Stepping and Tracing at Machine-
Instruction Level

Machine-instruction level commands behave the same as their source level

counterparts except that they operate at the level of single instructions instead of

source lines.

Single Stepping at the Machine-Instruction Level

To single step from one machine instruction to the next machine instruction, use the

nexti command or the stepi command

The nexti command and the stepi command behave the same as their source-

code level counterparts: the nexti command steps over functions, the stepi
command steps into a function called by the next instruction (stopping at the first

instruction in the called function). The command forms are also the same. See “next
Command” on page 300 and “step Command” on page 317 for a description.

The output from the nexti command and the stepi command differs from the

corresponding source level commands in two ways:

■ The output includes the address of the instruction at which the program is stopped

(instead of the source code line number).

(dbx) listi 13, 14
 13 i = atoi(argv[1]);
0x080488fd: main+0x000d: movl 12(%ebp),%eax
0x08048900: main+0x0010: movl 4(%eax),%eax
0x08048903: main+0x0013: pushl %eax
0x08048904: main+0x0014: call atoi <0x8048798>
0x08048909: main+0x0019: addl $4,%esp
0x0804890c: main+0x001c: movl %eax,-8(%ebp)
 14 j = foo(i);
0x0804890f: main+0x001f: movl -8(%ebp),%eax
0x08048912: main+0x0022: pushl %eax
0x08048913: main+0x0023: call foo <0x80488c0>
0x08048918: main+0x0028: addl $4,%esp
0x0804891b: main+0x002b: movl %eax,-12(%ebp)
208 Debugging a Program With dbx • May 2002

■ The default output contains the disassembled instruction instead of the source code

line.

For example:

For more information, see “nexti Command” on page 301 and “stepi Command”

on page 318.

Tracing at the Machine-Instruction Level

Tracing techniques at the machine-instruction level work the same as at the source

code level, except you use the tracei command For the tracei command, dbx
executes a single instruction only after each check of the address being executed or

the value of the variable being traced. The tracei command produces automatic

stepi -like behavior: the program advances one instruction at a time, stepping into

function calls.

When you use the tracei command, it causes the program to stop for a moment

after each instruction while dbx checks for the address execution or the value of the

variable or expression being traced. Using the tracei command can slow execution

considerably.

For more information on trace and its event specifications and modifiers, see

“Tracing Execution” on page 71 and “tracei Command” on page 332.

Here is the general syntax for tracei :

Commonly used forms of tracei are:

(dbx) func
hand::ungrasp
(dbx) nexti
ungrasp +0x18: call support
(dbx)

tracei event-specification [modifier]

tracei step Trace each instruction.

tracei next Trace each instruction, but skip over calls.

tracei at address Trace the given code address.
Chapter 17 Debugging at the Machine-Instruction Level 209

For more information, see “tracei Command” on page 332.

For SPARC:

Setting Breakpoints at the Machine-
Instruction Level

To set a breakpoint at the machine-instruction level, use the stopi command. The

command accepts any event specification, using the syntax:

Commonly used forms of the stopi command are:

For more information, see “stopi Command” on page 323.

(dbx) tracei next -in main
(dbx) cont
0x00010814: main+0x0004: clr % l0
0x00010818: main+0x0008: st %l0, [%fp - 0x8]
0x0001081c: main+0x000c: call foo
0x00010820: main+0x0010: nop
0x00010824: main+0x0014: clr %l0
....
....
(dbx) (dbx) tracei step -in foo -if glob == 0
(dbx) cont
0x000107dc: foo+0x0004: mov 0x2, %l1
0x000107e0: foo+0x0008: sethi %hi(0x20800), %l0
0x000107e4: foo+0x000c: or %l0, 0x1f4, %l0 ! glob
0x000107e8: foo+0x0010: st %l1, [%l0]
0x000107ec: foo+0x0014: ba foo+0x1c
....
....

stopi event-specification [modifier]

stopi [at address] [-if cond]
stopi in function [-if cond]
210 Debugging a Program With dbx • May 2002

Setting a Breakpoint at an Address

To set a breakpoint at a specific address, type:

For example:

Using the adb Command

The adb command lets you enter commands in an adb (1) syntax. You can also enter

adb mode which interprets every command as adb syntax. Most adb commands are

supported.

For more information, see “adb Command” on page 251.

Using the regs Command

The regs command lets you print the value of all the registers.

Here is the syntax for the regs command:

-f includes floating point registers (single precision). -F includes floating point

registers (double precision). These are SPARC-only options.

For more information, see “regs Command” on page 308.

(dbx) stopi at address

(dbx) nexti
stopped in hand::ungrasp at 0x12638
(dbx) stopi at &hand::ungrasp
(3) stopi at &hand::ungrasp
(dbx)

regs [-f][-F]
Chapter 17 Debugging at the Machine-Instruction Level 211

For SPARC:

Platform-Specific Registers

The following tables list platform-specific register names for SPARC and Intel that

can be used in expressions.

SPARC Register Information

The following register information is for SPARC systems.

dbx[13] regs -F
current thread: t@1
current frame: [1]
g0-g3 0x00000000 0x0011d000 0x00000000 0x00000000
g4-g7 0x00000000 0x00000000 0x00000000 0x00020c38
o0-o3 0x00000003 0x00000014 0xef7562b4 0xeffff420
o4-o7 0xef752f80 0x00000003 0xeffff3d8 0x000109b8
l0-l3 0x00000014 0x0000000a 0x0000000a 0x00010a88
l4-l7 0xeffff438 0x00000001 0x00000007 0xef74df54
i0-i3 0x00000001 0xeffff4a4 0xeffff4ac 0x00020c00
i4-i7 0x00000001 0x00000000 0xeffff440 0x000108c4
y 0x00000000
psr 0x40400086
pc 0x000109c0:main+0x4 mov 0x5, %l0
npc 0x000109c4:main+0x8 st %l0, [%fp - 0x8]
f0f1 +0.00000000000000e+00
f2f3 +0.00000000000000e+00
f4f5 +0.00000000000000e+00
f6f7 +0.00000000000000e+00
...

Register Description

$g0 through $g7 Global registers

$o0 through $o7 “out” registers

$l0 through $l7 “local” registers

$i0 through $i7 “in” registers

$fp Frame pointer, equivalent to register $i6

$sp Stack pointer, equivalent to register $o6
212 Debugging a Program With dbx • May 2002

The $f0f1 $f2f3 ... $f30f31 pairs of floating-point registers are treated as having

C “double” type (normally $fN registers are treated as C “float” type). These pairs

can also be referred to as $d0 ... $d30 .

The following additional registers are available on SPARC V9 and V8+ hardware:

See the SPARC Architecture Reference Manual and the SPARC Assembly Language
Reference Manual for more information on SPARC registers and addressing.

Intel Register Information

The following register information is for Intel systems.

$y Y register

$psr Processor state register

$wim Window invalid mask register

$tbr Trap base register

$pc Program counter

$npc Next program counter

$f0 through $f31 FPU “f” registers

$fsr FPU status register

$fq FPU queue

$g0g1 through $g6g7
$o0o1 through $o6o7
$xfsr $tstate $gsr
$f32f33 $f34f35 through $f62f63 ($d32 ... $$d62)

Register Description

$gs Alternate data segment register

$fs Alternate data segment register

$es Alternate data segment register

$ds Data segment register

$edi Destination index register

$esi Source index register

Register Description
Chapter 17 Debugging at the Machine-Instruction Level 213

Commonly used registers are also aliased to their machine independent names.

Registers for the 80386 lower halves (16 bits) are:

$ebp Frame pointer

$esp Stack pointer

$ebx General register

$edx General register

$ecx General register

$eax General register

$trapno Exception vector number

$err Error code for exception

$eip Instruction pointer

$cs Code segment register

$eflags Flags

$uesp User stack pointer

$ss Stack segment register

Register Description

$SP Stack pointer; equivalent of $uesp

$pc Program counter; equivalent of $eip

$fp Frame pointer; equivalent of $ebp

Register Description

$ax General register

$cx General register

$dx General register

$bx General register

$si Source index register

$di Destination index register

$ip Instruction pointer, lower 16 bits

$flags Flags, lower 16 bits

Register Description
214 Debugging a Program With dbx • May 2002

The first four 80386 16-bit registers can be split into 8-bit parts:

Registers for the 80387 are:

Register Description

$al Lower (right) half of register $ax

$ah Higher (left) half of register $ax

$cl Lower (right) half of register $cx

$ch Higher (left) half of register $cx

$dl Lower (right) half of register $dx

$dh Higher (left) half of register $dx

$bl Lower (right) half of register $bx

$bh Higher (left) half of register $bx

register Description

$fctrl Control register

$fstat Status register

$ftag Tag register

$fip Instruction pointer offset

$fcs Code segment selector

$fopoff Operand pointer offset

$fopsel Operand pointer selector

$st0 through
$st7

Data registers
Chapter 17 Debugging at the Machine-Instruction Level 215

216 Debugging a Program With dbx • May 2002

CHAPTER 18

Using dbx With the Korn Shell

The dbx command language is based on the syntax of the Korn Shell (ksh 88),

including I/O redirection, loops, built-in arithmetic, history, and command-line

editing. This chapter lists the differences between ksh-88 and dbx command

language.

If no dbx initialization file is located on startup, dbx assumes ksh mode.

This chapter is organized into the following sections:

■ ksh-88 Features Not Implemented

■ Extensions to ksh-88

■ Renamed Commands

ksh-88 Features Not Implemented

The following features of ksh-88 are not implemented in dbx :

■ set -A name for assigning values to array name

■ set -o particular options: allexport bgnice gmacs markdirs noclobber
nolog privileged protected viraw

■ typeset -l -u -L -R -H attributes

■ backquote (`…`) for command substitution (use $(...) instead)

■ [[expression]] compound command for expression evaluation

■ @(pattern[|pattern] …) extended pattern matching

■ co-processes (command or pipeline running in the background that

communicates with your program)
217

Extensions to ksh-88

dbx adds the following features as extensions:

■ $[p –> flags] language expression

■ typeset -q enables special quoting for user-defined functions

■ csh-like history and alias arguments

■ set +o path disables path searching

■ 0xabcd C syntax for octal and hexadecimal numbers

■ bind to change Emacs-mode bindings

■ set -o hashall
■ set -o ignore suspend
■ print -e and read -e (opposite of -r , raw)

■ built-in dbx commands

Renamed Commands

Particular dbx commands have been renamed to avoid conflicts with ksh

commands.

■ The dbx print command retains the name print ; the ksh print command has

been renamed kprint .

■ The ksh kill command has been merged with the dbx kill command.

■ The alias command is the ksh alias , unless in dbx compatibility mode.

■ address/ format is now examine address/ format.

■ / pattern is now search pattern.

■ ?pattern is now bsearch pattern.
218 Debugging a Program With dbx • May 2002

Rebinding of Editing Functions

The bind command allows rebinding of editing functions. You can use the

command to display or modify the key bindings for EMacs-style editors and vi-style

editors. The syntax of the bind command is:

where:

key is the name of a key.

definition is the definition of the macro to be bound to the key.

The following are some of the more important default key bindings for EMacs-style

editors:

bind Display the current editing key bindings

bind key=definition Bind key to definition

bind key Display the current definition for key

bind key= Remove binding of key

bind -m key=definition Define key to be a macro with definition

bind -m Same as bind

^A = beginning-of-line ^B = backward-char

^D = eot-or-delete ^E = end-of-line

^F = forward-char ^G = abort

^K = kill-to-eo ^L = redraw

^N = down-history ^P = up-history

^R = search-history ^^ = quote

^? = delete-char-backward ^H = delete-char-backward

^[b = backward-word ^[d = delete-word-forward

^[f = forward-word ^[^H = delete-word-backward

^[^[= complete ^[? = list-command
Chapter 18 Using dbx With the Korn Shell 219

The following are some of the more important default key bindings for vi-style

editors::

In insert mode, the following keystrokes are special:

a = append A = append at EOL

c = change d = delete

G = go to line h = backward character

i = insert I = insert at BOL

j = next line k = previous line

l = forward line n = next match

N = prev match p = put after

P = put before r = repeat

R = replace s = substitute

u = undo x = delete character

X = delete previous character y = yank

~ = transpose case _ = last argument

* = expand = = list expansion

- = previous line + = next line

sp = forward char # = comment out command

? = search history from beginning

/ = search history from current

^? = delete character ^H = delete character

^U = kill line ^W = delete word
220 Debugging a Program With dbx • May 2002

CHAPTER 19

Debugging Shared Libraries

dbx provides full debugging support for programs that use dynamically-linked,

shared libraries, provided that the libraries are compiled using the -g option.

This chapter is organized into the following sections:

■ Dynamic Linker

■ Fix and Continue

■ Setting Breakpoints in Shared Libraries

■ Setting a Breakpoint in a Explicitly Loaded Library

Dynamic Linker

The dynamic linker, also known as rtld , Runtime ld , or ld.so , arranges to bring

shared objects (load objects) into an executing application. There are two primary

areas where rtld is active:

■ Program startup – At program startup, rtld runs first and dynamically loads all

shared objects specified at link time. These are preloaded shared objects and may

include libc.so , libC.so , or libX.so . Use ldd (1) to find out which shared

objects a program will load.

■ Application requests – The application uses the function calls dlopen (3) and

dlclose (3) to dynamically load and unload shared objects or executables.

dbx uses the term loadobject to refer to a shared object (.so) or executable (a.out).

You can use the loadobject command (see “loadobject Command” on page 292) to

list and manage symbolic information from loadobjects.
221

Link Map

The dynamic linker maintains a list of all loaded objects in a list called a link map,

which is maintained in the memory of the program being debugged, and is

indirectly accessed through librtld_db.so , a special system library for use by

debuggers.

Startup Sequence and .init Sections

A .init section is a piece of code belonging to a shared object that is executed when

the shared object is loaded. For example, the .init section is used by the C++

runtime system to call all static initializers in a .so .

The dynamic linker first maps in all the shared objects, putting them on the link

map. Then, the dynamic linker traverses the link map and executes the .init section

for each shared object. The syncrtld event (see “syncrtld ” on page 240) occurs

between these two phases.

Procedure Linkage Tables

Procedure linkage tables (PLTs) are structures used by the rtld to facilitate calls

across shared object boundaries. For instance, calls to printf go through this

indirect table. The details of how this is done can be found in the generic and

processor specific SVR4 ABI reference manuals.

For dbx to handle step and next commands across PLTs, it has to keep track of the

PLT table of each load object. The table information is acquired at the same time as

the rtld handshake.

Fix and Continue

Using fix and continue with shared objects loaded with dlopen() requires a change

in how they are opened for fix and continue to work correctly. Use mode

RTLD_NOW|RTLD_GLOBALor RTLD_LAZY|RTLD_GLOBAL.
222 Debugging a Program With dbx • May 2002

Setting Breakpoints in Shared Libraries

To set a breakpoint in a shared library, dbx needs to know that a program will use

that library when it runs, and dbx needs to load the symbol table for the library. To

determine which libraries a newly-loaded program will use when it runs, dbx
executes the program just long enough for the runtime linker to load all of the

starting libraries. dbx then reads the list of loaded libraries and kills the process. The

libraries remain loaded and you can set breakpoints in them before rerunning the

program for debugging.

dbx follows the same procedure for loading the libraries whether the program is

loaded from the command line with the dbx command, from the dbx prompt with

the debug command, or from the dbx Debugger in the IDE.

Setting a Breakpoint in a Explicitly
Loaded Library

dbx automatically detects that a dlopen() or a dlclose() has occurred and loads

the symbol table of the loaded object. Once a shared object has been loaded with

dlopen() you can place breakpoints in it and debug it as you would any part of

your program.

If a shared object is unloaded using dlclose() , dbx remembers the breakpoints

placed in it and replaces them if the shared object is again loaded with dlopen() ,

even if the application is run again.

However, you do not need to wait for the loading of a shared object with dlopen()
to place a breakpoint in it, or to navigate its functions and source code. If you know

the name of the shared object that the program being debugged will be loading with

dlopen() , you can request that dbx preload its symbol table by using the

loadobject -load command:

You can now navigate the modules and functions in this loadobject and place

breakpoints in it before it has been loaded with dlopen() . Once the loadobject is

loaded by your program, dbx automatically places the breakpoints.

loadobject -load /usr/java1.1/lib/libjava_g.so
Chapter 19 Debugging Shared Libraries 223

Setting a breakpoint in a dynamically linked library is subject to the following

limitations:

■ You cannot set a breakpoint in a “filter” library loaded with dlopen() until the

first function in it is called.

■ When a library is loaded by dlopen() , an initialization routine named _init()
is called. This routine might call other routines in the library. dbx cannot place

breakpoints in the loaded library until after this initialization is completed. In

specific terms, this means you cannot have dbx stop at _init() in a library

loaded by dlopen() .
224 Debugging a Program With dbx • May 2002

APPENDIX A

Modifying a Program State

This appendix focuses on dbx usage and commands that change your program or

change the behavior of your program when you run it under dbx , as compared to

running it without dbx . It is important to understand which commands might make

modifications to your program.

The chapter is divided into the following sections:

■ Impacts of Running a Program Under dbx
■ Commands That Alter the State of the Program

Impacts of Running a Program Under
dbx
Your application might behave differently when run under dbx . Although dbx
strives to minimize its impact on the program being debugged, you should be aware

of the following:

■ You might have forgotten to take out a -C or disable RTC. Having the RTC

support library librtc.so loaded into a program can cause the program to

behave differently.

■ Your dbx initialization scripts might have some environment variables set that

you've forgotten about. The stack base starts at a different address when running

under dbx . This is also different based on your environment and the contents of

argv[] , forcing local variables to be allocated differently. If they're not

initialized, they will get different random numbers. This problem can be detected

using runtime checking.

■ The program does not initialize memory allocated with malloc() before use; a

situation similar to the previous one. This problem can be detected using runtime

checking.
225

■ dbx has to catch LWP creation and dlopen events, which might affect

timing-sensitive multithreaded applications.

■ dbx does context switching on signals, so if your application makes heavy use of

signals, things might work differently.

■ Your program might be expecting that mmap() always returns the same base

address for mapped segments. Running under dbx perturbs the address space

sufficiently to make it unlikely that mmap() returns the same address as when the

program is run without dbx . To determine if this is a problem, look at all uses of

mmap() and ensure that the address returned is used by the program, rather than

a hard-coded address.

■ If the program is multithreaded, it might contain data races or be otherwise

dependent upon thread scheduling. Running under dbx perturbs thread

scheduling and may cause the program to execute threads in a different order

than normal. To detect such conditions, use lock_lint .

Otherwise, determine whether running with adb or truss causes the same

problems.

To minimize perturbations imposed by dbx , try attaching to the application while it

is running in its natural environment.

Commands That Alter the State of the
Program

assign Command

The assign command assigns a value of the expression to variable. Using it in dbx
permanently alters the value of variable.

assign variable = expression
226 Debugging a Program With dbx • May 2002

pop Command

The pop command pops a frame or frames from the stack:

Any calls popped are re-executed upon resumption, which might result in unwanted

program changes. pop also calls destructors for objects local to the popped

functions.

For more information, see “pop Command” on page 304.

call Command

When you use the call command in dbx , you call a procedure and the procedure

performs as specified:

The procedure could modify something in your program. dbx is making the call as

if you had written it into your program source.

For more information, see “call Command” on page 254.

print Command

To print the value of the expression(s), type:

If an expression has a function call, the same considerations apply as with the call
command. With C++, you should also be careful of unexpected side effects caused

by overloaded operators.

For more information, see “print Command” on page 304.

pop Pop current frame.

pop number Pop number frames.

pop -f number Pop frames until specified frame number.

call proc([params])

print expression, ...
Appendix A Modifying a Program State 227

when Command

The when command has a general syntax as follows:

When the event occurs, the commands are executed.

When you get to a line or to a procedure, a command is performed. Depending upon

which command is issued, this could alter your program state.

For more information, see “when Command” on page 339.

fix Command

You can use the fix command to make immediate changes to your program:

Although is a very useful tool, the fix command recompiles modified source files

and dynamically links the modified functions into the application.

Make sure to check the restrictions for fix and continue. See Chapter 10.

For more information, see “fix Command” on page 279.

cont at Command

The cont at command alters the order in which the program runs. Execution is

continued at line line. id is required if the program is multithreaded.

This could change the outcome of the program.

when event- specification [modifier] { command ... ;}

fix

cont at line id
228 Debugging a Program With dbx • May 2002

APPENDIX B

Event Management

Event management refers to the capability of dbx to perform actions when events

take place in the program being debugged. When an event occurs, dbx allows you to

stop a process, execute arbitrary commands, or print information. The simplest

example of an event is a breakpoint (see Chapter 6). Examples of other events are

faults, signals, system calls, calls to dlopen() , and data changes (see “Setting Data

Change Breakpoints” on page 66).

This chapter is organized into the following sections:

■ Event Handlers

■ Creating Event Handlers

■ Manipulating Event Handlers

■ Using Event Counters

■ Setting Event Specifications

■ Event Specification Modifiers

■ Parsing and Ambiguity

■ Using Predefined Variables

■ Setting Event Handler Examples

Event Handlers

Event management is based on the concept of a handler. The name comes from an

analogy with hardware interrupt handlers. Each event management command

typically creates a handler, which consists of an event specification and a series of

side-effect actions. (See “Setting Event Specifications” on page 231.) The event

specification specifies the event that will trigger the handler.
229

When the event occurs and the handler is triggered, the handler evaluates the event

according to any modifiers included in the event specification. (See “Event

Specification Modifiers” on page 241.) If the event meets the conditions imposed by

the modifiers, the handler’s side-effect actions are performed (that is, the handler

“fires”).

An example of the association of a program event with a dbx action is setting a

breakpoint on a particular line.

The most generic form of creating a handler is by using the when command.

Examples in this chapter show how you can write a command (like stop , step , or

ignore) in terms of when. These examples are meant to illustrate the flexibility of

when and the underlying handler mechanism, but they are not always exact

replacements.

Creating Event Handlers

Use the commands when, stop , and trace to create event handlers. (For detailed

information, see “when Command” on page 339, “stop Command” on page 319,

and “trace Command” on page 329.)

stop is shorthand for a common when idiom.

An event-specification is used by the event management commands stop , when, and

trace to specify an event of interest. (see “Setting Event Specifications” on

page 231).

Most of the trace commands can be handcrafted using the when command, ksh
functionality, and event variables. This is especially useful if you want stylized

tracing output.

Every command returns a number known as a handler id (hid). You can access this

number using the predefined variable $newhandlerid .

when event-specification { action; ... }

when event-specification { stop -update; whereami; }
230 Debugging a Program With dbx • May 2002

Manipulating Event Handlers

You can use the following commands to manipulate event handlers. For more

information on each command, see the cited section.

■ status – lists handlers (see “status Command” on page 316).

■ delete – deletes all handlers including temporary handlers (see “delete
Command” on page 273).

■ clear – deletes handlers based on breakpoint position (see “clear Command”

on page 259).

■ handler -enable – enables handlers (see “handler Command” on page 283).

■ handler -disable – disables handlers.

■ cancel – cancels signals and lets the process continue (see “cancel Command”

on page 255).

Using Event Counters

An event handler has a trip counter, which has a count limit. Whenever the specified

event occurs, the counter is incremented. The action associated with the handler is

performed only if the count reaches the limit, at which point the counter is

automatically reset to 0. The default limit is 1. Whenever a process is rerun, all event

counters are reset.

You can set the count limit using the -count modifier with a stop , when, or trace
command (see “-count n -count infinity ” on page 242). Otherwise, use the

handler command to individually manipulate event handlers:.

Setting Event Specifications

Event specifications are used by the stop, when , and trace commands to denote

event types and parameters. The format consists of a keyword representing the

event type and optional parameters.

handler [-count | -reset] hid new-count new-count-limit
Appendix B Event Management 231

Breakpoint Event Specifications

A breakpoint is a location where an action occurs, at which point the program stops

executing. The following are event specifications for breakpoint events.

in function

The function has been entered, and the first line is about to be executed. This may be

a line where a local variable is being initialized. In the case of C++ constructors,

execution stops after all base class constructors have executed. If the -instr
modifier is used (see “-instr ” on page 242), it is the first instruction of the function

about to be executed. The functin specification can take a formal parameter signature

to help with overloaded function names or template instance specification. For

example:

Note – Do not confuse in function with the -in function modifier.

at [filename:] lineno

The designated line is about to be executed. If you specify filename, then the

designated line in the specified file is about to be executed. The file name can be the

name of a source file or an object file. Although quotation marks are not required,

they may be necessary if the file name contains special characters. If the designated

line is in template code, a breakpoint is placed on all instances of that template.

infunction function

Equivalent to in function for all overloaded functions named function or all template

instantiations thereof.

inmember function
inmethod function

Equivalent to in function for the member function named function for every class.

 stop in mumble(int, float, struct Node *)
232 Debugging a Program With dbx • May 2002

inclass classname [-recurse | -norecurse]

Equivalent to in function for all member functions that are members of classname,

but not any of the bases of classname. -norecurse is the default. If -recurse is

specified, the base classes are included.

inobject object-expression [-recurse | -norecurse]

A member function called on the specific object at the address denoted by object-
expression has been called.stop inobject ox is roughly equivalent to the following,

but unlike inclass , bases of the dynamic type of ox are included. -recurse is the

default. If -norecurse is specified, the base classes are not included.

Data Change Event Specifications

The following are event specifications for events that involve access or change to the

contents of a memory address.

access mode address-expression [, byte-size-expression]

The memory specified by address-expression has been accessed.

mode specifies how the memory was accessed. It can be composed of one or all of the

letters:

mode can also contain either of the following:

stop inclass dynamic_type(ox) -if this== ox

r The memory at the specified address has been read.

w The memory has been written to.

x The memory has been executed.

a Stops the process after the access (default).

b Stops the process before the access.
Appendix B Event Management 233

In both cases the program counter will point at the offending instruction. The

“before” and “after” refer to the side effect.

address-expression is any expression that can be evaluated to produce an address. If

you give a symbolic expression, the size of the region to be watched is automatically

deduced; you can override it by specifying byte-size-expression. You can also use

nonsymbolic, typeless address expressions; in which case, the size is mandatory. For

example:

The access command has the limitation that no two matched regions may overlap.

Note – The access event specification is a replacement for the modify event

specification. While both syntaxes work on Solaris 2.6, Solaris 7, and Solaris 8, on all

of these operating environments except Solaris 2.6, access suffers the same

limitations as modify and accepts only a mode of wa.

change variable

The value of variable has changed. The change event is roughly equivalent to:

cond condition-expression

The condition denoted by condition-expression evaluates to true. You can specify any

expression for condition-expression, but it must evaluate to an integral type. The cond

event is roughly equivalent to:

stop step -if conditional_expression

System Event Specifications

The following are event specifications for system events.

stop access w 0x5678, sizeof(Complex)

when step { if [$last_value !=$[variable]] then
stop

else
last_value=$[variable]

}

234 Debugging a Program With dbx • May 2002

dlopen [lib-path] | dlclose [lib-path]

These events occur after a dlopen () or a dlclose () call succeeds. A dlopen () or

dlclose () call can cause more than one library to be loaded. The list of these

libraries is always available in the predefined variable $dllist . The first shell word

in $dllist is a “+” or a “-”, indicating whether the list of libraries is being added or

deleted.

lib-path is the name of a shared library. If it is specified, the event occurs only if the

given library was loaded or unloaded. In that case, $dlobj contains the name of the

library. $dllist is still available.

If lib-path begins with a / , a full string match is performed. Otherwise, only the tails

of the paths are compared.

If lib-path is not specified, then the events always occur whenever there is any

dl -activity. In this case, $dlobj is empty but $dllist is valid.

fault fault

The fault event occurs when the specified fault is encountered. The faults are

architecture-dependent. The following set of faults known to dbx is defined in the

proc (4) man page.

Fault Description

FLTILL Illegal instruction

FLTPRIV Privileged instruction

FLTBPT* Breakpoint trap

FLTTRACE* Trace trap (single step)

FLTACCESS Memory access (such as alignment)

FLTBOUNDS Memory bounds (invalid address)

FLTIOVF Integer overflow

FLTIZDIV Integer zero divide

FLTPE Floating-point exception

FLTSTACK Irrecoverable stack fault

FLTPAGE Recoverable page fault

FLTWATCH* Watchpoint trap

FLTCPCOVF CPU performance counter overflow
Appendix B Event Management 235

Note – BPT, TRACE, and BOUNDSare used by dbx to implement breakpoints and

single-stepping. Handling them might interfere with how dbx works.

These faults are taken from /sys/fault.h . fault can be any of those listed above, in

uppercase or lowercase, with or without the FLT- prefix, or the actual numerical

code.

lwp_exit

The lwp_exit event occurs when lwp has been exited. $lwp contains the id of the

exited LWP (lightweight process).

sig signal

The sig signal event occurs when the signal is first delivered to the program being

debugged. signal can be either a decimal number or the signal name in uppercase or

lowercase; the prefix is optional. This is completely independent of the catch and

ignore commands, although the catch command can be implemented as follows:

Note – When the sig event is received, the process has not seen it yet. Only if you

continue the process with the specified signal is the signal forwarded to it.

sig signal sub-code

When the specified signal with the specified sub-code is first delivered to the child,

the sig signal sub-code event occurs. As with signals, you can type the sub-code as a

decimal number, in uppercase or lowercase; the prefix is optional.

function simple_catch {
when sig $1 {

stop;
echo Stopped due to $sigstr $sig
whereami

}
}

236 Debugging a Program With dbx • May 2002

sysin code | name

The specified system call has just been initiated, and the process has entered kernel

mode.

The concept of system call supported by dbx is that provided by traps into the

kernel as enumerated in /usr/include/sys/syscall.h .

This is not the same as the ABI notion of system calls. Some ABI system calls are

partially implemented in user mode and use non-ABI kernel traps. However, most of

the generic system calls (the main exception being signal handling) are the same

between syscall.h and the ABI.

sysout code | name

The specified system call is finished, and the process is about to return to user mode.

sysin | sysout

Without arguments, all system calls are traced. Certain dbx features, for example,

the modify event and runtime checking, cause the child to execute system calls for

its own purposes and show up if traced.

Execution Progress Event Specifications

The following are event specifications for events pertaining to execution progress.

next

The next event is similar to the step event except that functions are not stepped

into.

returns

The returns event is a breakpoint at the return point of the current visited function.

The visited function is used so that you can use the returns event specification

after giving a number of step up commands. The returns event is always -temp
and can only be created in the presence of a live process.
Appendix B Event Management 237

returns function

The returns function event executes each time the given function returns to its call

site. This is not a temporary event. The return value is not provided, but you can

find integral return values by accessing the following registers:

The event is roughly equivalent to:

step

The step event occurs when the first instruction of a source line is executed. For

example, you can get simple tracing with:

When enabling a step event, you instruct dbx to single-step automatically next time

the cont command is used. The step (and next) events do not occur upon the

termination of the common step command. Rather, the step command is

implemented roughly as follows:

Other Event Specifications

The following are event specifications for other types of events.

attach

dbx has successfully attached to a process.

Sparc $o0

Intel $eax

when in func { stop returns; }

when step { echo $lineno: $line; }; cont

alias step="when step -temp { whereami; stop; }; cont"
238 Debugging a Program With dbx • May 2002

detach

dbx has successfully detached from the program being debugged.

lastrites

The process being debugged is about to expire. This can happen for the following

reasons:

■ The _exit (2) system call has been called. (This happens either through an

explicit call or when main () returns.)

■ A terminating signal is about to be delivered.

■ The process is being killed by the kill command.

This is your last opportunity to examine the state of the process. Resuming execution

after this event terminates the process.

proc_gone

The proc_gone event occurs when dbx is no longer associated with a debugged

process. The predefined variable $reason may be signal , exit , kill , or detach .

prog_new

The prog_new event occurs when a new program has been loaded as a result of

follow exec .

Note – Handlers for this event are always permanent.

stop

The process has stopped. The stop event occurs whenever the process stops such

that the user receives a prompt, particularly in response to a stop handler. For

example, the following commands are equivalent:

display x
when stop {print x;}
Appendix B Event Management 239

sync

The process being debugged has just been executed with exec (). All memory

specified in a.out is valid and present, but preloaded shared libraries have not been

loaded. For example, printf , although available to dbx , has not been mapped into

memory.

A stop on this event is ineffective; however, you can use the sync event with the

when command.

syncrtld

The syncrtld event occurs after a sync (or attach if the process being debugged

has not yet processed shared libraries). It executes after the dynamic linker startup

code has executed and the symbol tables of all preloaded shared libraries have been

loaded, but before any code in the .init section has run.

A stop on this event is ineffective; however, you can use the syncrtld event with

the when command.

throw

The throw event occurs whenever any exception that is not unhandled or

unexpected is thrown by the application.

throw type

If an exception type is specified with the throw event, only exceptions of that type

cause the throw event to occur.

throw -unhandled

-unhandled is a special exception type signifying an exception that is thrown but

for which there is no handler.

throw -unexpected

-unexpected is a special exception type signifying an exception that does not

satisfy the exception specification of the function that threw it.
240 Debugging a Program With dbx • May 2002

timer seconds

The timer event occurs when the program being debugged has been running for

seconds. The timer used with this event is shared with collector command. The

resolution is in milliseconds, so a floating point value for seconds, for example

0.001 , is acceptable.

Event Specification Modifiers

An event specification modifier sets additional attributes of a handler, the most

common kind being event filters. Modifiers must appear after the keyword portion

of an event specification. A modifier begins with a dash (-). The following are the

valid event specification modifiers.

-if condition

The condition is evaluated when the event specified by the event specification

occurs. The side effect of the handler is allowed only if the condition evaluates to

nonzero.

If the -if modifier is used with an event that has an associated singular source

location, such as in or at , condition is evaluated in the scope corresponding to that

location. Otherwise, qualify it with the desired scope.

-in function

The handler is active only while within the given function or any function called

from function. The number of times the function is entered is reference counted to

properly deal with recursion.

-disable

The -disable modifier creates the handler in the disabled state.
Appendix B Event Management 241

-count n
-count infinity

The -count n and -count infinity modifiers have the handler count from 0 (see

“Using Event Counters” on page 231). Each time the event occurs, the count is

incremented until it reaches n. Once that happens, the handler fires and the counter

is reset to zero.

Counts of all enabled handlers are reset when a program is run or rerun. More

specifically, they are reset when the sync event occurs.

-temp

Creates a temporary handler. Once the event has occurred it is automatically deleted.

By default, handlers are not temporary. If the handler is a counting handler, it is

automatically deleted only when the count reaches 0 (zero).

Use the delete -temp command to delete all temporary handlers.

-instr

Makes the handler act at an instruction level. This event replaces the traditional 'i '

suffix of most commands. It usually modifies two aspects of the event handler:

■ Any message prints assembly-level rather than source-level information.

■ The granularity of the event becomes instruction level. For instance, step
-instr implies instruction-level stepping.

-thread thread_id

The action is executed only if the thread that caused the event matches thread_id. The

specific thread you have in mind might be assigned a different thread_id from one

execution of the program to the next.

-lwp lwp_id

The action is executed only if the thread that caused the event matches lwp_id. The

action is executed only if the thread that caused the event matches lwp_id. The

specific thread you have in mind might be assigned a different lwp_id from one

execution of the program to the next.
242 Debugging a Program With dbx • May 2002

-hidden

Hides the handler in a regular status command. Use status -h to see hidden

handlers.

-perm

Normally all handlers are thrown away when a new program is loaded. Using the

-perm modifier retains the handler across debuggings. A plain delete command

does not delete a permanent handler. Use delete -p to delete a permanent

handler.

Parsing and Ambiguity

The syntax for event specifications and modifiers is:

■ Keyword driven

■ Based on ksh conventions; everything is split into words delimited by spaces

Expressions can have spaces embedded in them, causing ambiguous situations. For

example, consider the following two commands:

In the first example, even though the application might have a variable named temp,

the dbx parser resolves the event specification in favor of -temp being a modifier. In

the second example, a-temp is collectively passed to a language-specific expression

parser. There must be variables named a and temp or an error occurs. Use

parentheses to force parsing.

when a -temp
when a-temp
Appendix B Event Management 243

Using Predefined Variables

Certain read-only ksh predefined variables are provided. The following variables

are always valid:

Variable Definition

$ins Disassembly of the current instruction.

$lineno Current line number in decimal.

$vlineno Current “visiting” line number in decimal.

$line Contents of the current line.

$func Name of the current function.

$vfunc Name of the current “visiting” function.

$class Name of the class to which $func belongs.

$vclass Name of the class to which $vfunc belongs.

$file Name of the current file.

$vfile Name of the current file being visited.

$loadobj Name of the current loadable object.

$vloadobj Name of the current loadable object being visited.

$scope Scope of the current PC in back-quote notation.

$vscope Scope of the visited PC in back-quote notation.

$funcaddr Address of $func in hex.

$caller Name of the function calling $func.

$dllist After a dlopen or dlclose event, contains the list of load objects

just loaded or unloaded. The first word of dllist is a “+” or a “-”

depending on whether a dlopen or a dlclose has occurred.

$newhandlerid ID of the most recently created handler

$firedhandlers List of handler ids that caused the most recent stoppage. The

handlers on the list are marked with “*” in the output of the

status command.

$proc Process ID of the current process being debugged.

$lwp Lwp ID of the current LWP.

$thread Thread ID of the current thread.
244 Debugging a Program With dbx • May 2002

As an example, consider that whereami can be implemented as:

Variables Valid for when Command

The following variables are valid only within the body of a when command.

$handlerid

During the execution of the body, $handlerid is the id of the when command to

which the body belongs. These commands are equivalent:

$booting

$booting is set to true if the event occurs during the boot process. Whenever a

new program is debugged, it is first run without the user’s knowledge so that the

list and location of shared libraries can be ascertained. The process is then killed.

This sequence is termed booting.

While booting is occurring, all events are still available. Use this variable to

distinguish the sync and the syncrtld events occurring during a debug and the

ones occurring during a normal run .

$prog Full path name of the program being debugged.

$oprog Old, or original value of $prog . This is used to get back to what

you were debugging following an exec() .

$exitcode Exit status from the last run of the program. The value is an empty

string if the process has not exited.

function whereami {
echo Stopped in $func at line $lineno in file $(basename $file)

 echo "$lineno\t$line"
}

when X -temp { do_stuff; }
when X { do_stuff; delete $handlerid; }

Variable Definition
Appendix B Event Management 245

Variables Valid for Specific Events

Certain variables are valid only for specific events as shown in the following tables.

TABLE B-1 Variables Valid for sig Event

Variable Description

$sig Signal number that caused the event

$sigstr Name of $sig

$sigcode Subcode of $sig if applicable

$sigcodestr Name of $sigcode

$sigsender Process ID of sender of the signal, if appropriate

TABLE B-2 Variable Valid for exit Event

Variable Description

$exitcode Value of the argument passed to _exit(2) or exit(3) or the

return value of main

TABLE B-3 Variable Valid for dlopen and dlclose Events

Variable Description

$dlobj Pathname of the load object dlopened or dlclosed

TABLE B-4 Variables Valid for sysin and sysout Events

Variable Description

$syscode System call number

$sysname System call name

TABLE B-5 Variable Valid for proc_gone Events

Variable Description

$reason One of signal, exit, kill, or detach
246 Debugging a Program With dbx • May 2002

Setting Event Handler Examples

The following are some examples of setting event handlers.

Setting a Breakpoint for Store to an Array

Member

To set a breakpoint on array[99] , type:

Implementing a Simple Trace

To implement a simple trace, type:

Enabling a Handler While Within a Function (in
function)

To enable a handler while within a function, type:

(dbx) stop access w &array[99]
(2) stop access w &array[99], 4
(dbx) run
Running: watch.x2
watchpoint array[99] (0x2ca88[4]) at line 22 in file "watch.c"
 22array[i] = i;

(dbx) when step { echo at line $lineno; }

<dbx> trace step -in foo
Appendix B Event Management 247

This is equivalent to:

Determining the Number of Lines Executed

To see how many lines have been executed in a small program, type:

The program never stops—the program terminates. The number of lines executed is

133. This process is very slow. It is most useful with breakpoints on functions that

are called many times.

Determining the Number of Instructions Executed

by a Source Line

To count how many instructions a line of code executes, type:

 # create handler in disabled state
 when step -disable { echo Stepped to $line; }
 t=$newhandlerid # remember handler id
 when in foo {
 # when entered foo enable the trace
 handler -enable "$t"
 # arrange so that upon returning from foo,
 # the trace is disabled.
 when returns { handler -disable "$t"; };
 }

(dbx) stop step -count infinity # step and stop when count=inf
(2) stop step -count 0/infinity
(dbx) run
...
(dbx) status
(2) stop step -count 133/infinity

(dbx) ... # get to the line in question
(dbx) stop step -instr -count infinity
(dbx) step ...
(dbx) status
(3) stop step -count 48/infinity # 48 instructions were executed
248 Debugging a Program With dbx • May 2002

If the line you are stepping over makes a function call, the lines in the function are

counted as well. You can use the next event instead of step to count instructions,

excluding called functions.

Enabling a Breakpoint After an Event Occurs

Enable a breakpoint only after another event has occurred. For example, if your

program begins to execute incorrectly in function hash , but only after the 1300'th

symbol lookup, you would type:

Note – $newhandlerid is referring to the just executed stop in command.

Resetting Application Files for replay

If your application processes files that need to be reset during a replay , you can

write a handler to do that each time you run the program:

Checking Program Status

To see quickly where the program is while it is running, type:

(dbx) when in lookup -count 1300 {
stop in hash
hash_bpt=$newhandlerid
when proc_gone -temp { delete $hash_bpt; }

}

(dbx) when sync { sh regen ./database; }
(dbx) run < ./database...# during which database gets clobbered
(dbx) save
... # implies a RUN, which implies the SYNC event which
(dbx) restore # causes regen to run

(dbx) ignore sigint
(dbx) when sig sigint { where; cancel; }
Appendix B Event Management 249

Then type ^C to see a stack trace of the program without stopping it.

This is basically what the collector hand sample mode does (and more). Use

SIGQUIT (^\) to interrupt the program because ^C is now used up.

Catch Floating Point Exceptions

To catch only specific floating point exceptions, for example, IEEE underflow, type:

(dbx) ignore FPE # turn off default handler
(dbx) help signals | grep FPE # can't remember the subcode name
...
(dbx) stop sig fpe FPE_FLTUND
...
250 Debugging a Program With dbx • May 2002

APPENDIX C

Command Reference

This appendix gives detailed syntax and functional descriptions of all of the dbx

commands.

adb Command

The adb command executes an adb-style command or sets adb mode. It is valid only

in native mode.

Syntax

assign Command

In native mode, the assign command assigns a new value to a program variable. In

Java mode, the assign command assigns a new value to a local variable or

parameter.

adb adb-command Executes an adb-style command.

adb Sets adb mode; use $q to exit adb mode.
251

Native Mode Syntax

assign variable = expression

where:

expression is the value to be assigned to variable.

Java Mode Syntax

assign identifier = expression

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

expression is a valid Java expression.

field_name is the name of a field in the class.

identifier is a local variable or parameter, including this , the current class

instance variable (object_name.field_name) or a class (static) variable

(class_name.field_name).

object_name is the name of a Java object.

attach Command

The attach command attaches dbx to a running process, stopping execution and

putting the program under debugging control. It has identical syntax and identical

functionality in native mode and Java mode.
252 Debugging a Program With dbx • May 2002

Syntax

where:

process_id is the process ID of a running process.

program_name is the path name of the running program.

To attach to a running Java process:

1. Ensure that the JVM™ software can find libdbxagent.so by adding
libdbxagent.so to your LD_LIBRARY_PATH. libdbxagent .so is located in your
installation directory at:

installation_directory/SUNWspro/lib for 32-bit applications

installation_directory/SUNWspro/lib/v9 for 64-bit applications.

2. Start your Java application by typing:

java -Djava.compiler=NONE -Xdebug -Xnoagent -Xrundbx_agent
myclass.class

3. Then you can attach to the process by starting dbx with the process id:

dbx - process_id

bsearch Command

The bsearch command searches backward in the current source file. It is valid only

in native mode.

attach process_id Begin debugging the program with process ID process_id.

dbx finds the program using /proc .

attach -p process_id
program_name

Begin debugging program with process ID process_id.

attach program_name
process_id

Begin debugging program with process ID process_id.

program may be - ; dbx finds it using /proc.

attach -r ... The -r option causes dbx to retain all display , trace ,

when, and stop commands. With no -r option, an implicit

delete all and undisplay 0 are performed.
Appendix C Command Reference 253

Syntax

where:

string is a character string.

call Command

In native mode, the call command calls a procedure. In Java mode, the call
command calls a method.

Native Mode Syntax

call procedure([parameters])

where:

procedure is the name of the procedure.

parameters are the procedure’s parameters.

You can also use the call command to call a function; to see the return value use

the print command (see “print Command” on page 304).

Occasionally the called function hits a breakpoint. You can choose to continue using

the cont command (see “cont Command” on page 267), or abort the call by using

pop -c (see “pop Command” on page 304). The latter is useful also if the called

function causes a segmentation fault.

Java Mode Syntax

call [class_name.| object_name.] method_name([parameters])

bsearch string Search backward for string in the current file.

bsearch Repeat search, using the last search string.
254 Debugging a Program With dbx • May 2002

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

object_name is the name of a Java object.

method_name is the name of a Java method.

parameters are the method’s parameters.

Occasionally the called method hits a breakpoint. You can choose to continue using

the cont command (see “cont Command” on page 267), or abort the call by using

pop -c (see “pop Command” on page 304). The latter is useful also if the called

method causes a segmentation fault.

cancel Command

The cancel command cancels the current signal. It is primarily used within the

body of a when command (see “when Command” on page 339). It is valid only in

native mode.

Signals are normally cancelled when dbx stops because of a signal. If a when

command is attached to a signal event, the signal is not automatically cancelled. The

cancel command can be used to explicitly cancel the signal.

Syntax

cancel

catch Command

The catch command catches the given signal(s). It is valid only in native mode.

Catching a given signal causes dbx to stop the program when the process receives

that signal. If you continue the program at that point, the signal is not processed by

the program.
Appendix C Command Reference 255

Syntax

where:

number is the number of a signal.

signal is the name of a signal.

check Command

The check command enables checking of memory access, leaks, or usage, and prints

the current status of runtime checking (RTC). It is valid only in native mode.

The features of runtime checking that are enabled by this command are reset to their

initial state by the debug command.

catch Print a list of the caught signals.

catch number number... Catch signal(s) numbered number.

catch signal signal... Catch signal(s) named by signal. SIGKILL cannot be caught

or ignored.

catch $(ignore) Catch all signals.
256 Debugging a Program With dbx • May 2002

Syntax

check -access

Turn on access checking. RTC reports the following errors:

The default behavior is to stop the process after detecting each access error, which

can be changed using the rtc_auto_continue dbx environment variable. When

set to on access errors are logged to a file (the file name is controlled by the dbx
environment variable rtc_error_log_file_name). See “dbxenv Command”

on page 270.

By default each unique access error is only reported the first time it happens.

Change this behavior using the dbx environment variable rtc_auto_suppress
(the default setting of this variable is on). See “dbxenv Command” on page 270.

check -leaks [-frames n] [-match m]

Turn on leak checking. RTC reports the following errors:

With leak checking turned on, you get an automatic leak report when the

program exits. All leaks including possible leaks are reported at that time. By

default, a non-verbose report is generated (controlled by the dbx environment

variable rtc_mel_at_exit). However, you can ask for a leak report at any time

(see “showleaks Command” on page 314).

-frames n implies that up to n distinct stack frames are displayed when

reporting leaks. -match m is used for combining leaks; if the call stack at the

time of allocation for two or more leaks matches n frames, then these leaks are

reported in a single combined leak report.

The default value of n is 8 or the value of m (whichever is larger). Maximum

value of n is 16. The default value of m is 3 for C++, and 2 otherwise.

baf Bad free

duf Duplicate free

maf Misaligned free

mar Misaligned read

maw Misaligned write

oom Out of memory

rua Read from unallocated memory

rui Read from uninitialized memory

wro Write to read-only memory

wua Write to unallocated memory

aib Possible memory leak - only pointer points in the middle of the block

air Possible memory leak - pointer to the block exists only in register

mel Memory leak - no pointers to the block
Appendix C Command Reference 257

check -memuse [-frames n] [-match m]

Turn on memory use (memuse) checking. check -memuse also implies check -

leaks. In addition to a leak report at program exit, you also get a blocks in use

(biu) report. By default a non-verbose blocks in use report is generated (controlled

by the dbx environment variable rtc_biu_at_exit) At any time during

program execution you can see where the memory in your program has been

allocated (see “showmemuse Command” on page 315).

-frames n implies that up to n distinct stack frames will be displayed while

reporting memory use and leaks. -match m is used for combining these reports;

if the call stack at the time of allocation for two or more leaks matches m frames,

then these are reported in a single combined memory leak report.

The default value of n is 8 or the value of m (whichever is larger). Maximum

value of n is 16. The default value of m is 3 for C++, and 2 otherwise. See check
-leaks as well.

check -all [-frames n] [-match m]

Equivalent to check -access or check -memuse [-frames n] [-match
m] '

The value of the dbx environment variable rtc_biu_at_exit is not changed

with check -all , so by default no memory use report is generated at exit. See

“dbx Command” on page 268 for the description of the rtc_biu_at_exit
environment variable.

check [functions] [files] [loadobjects]

Equivalent to check -all or suppress all or unsuppress all in functions,

files, and loadobjects

where:

functions is one or more function names.

files is one or more file names.

loadobjects is one or more loadobject names

You can use this to focus runtime checking on places of interest.

Note – To detect all errors, RTC does not require the program be compiled -g .

However, symbolic (-g) information is sometimes needed to guarantee the

correctness of certain errors (mostly read from uninitialized memory). For this

reason certain errors (rui for a.out and rui + aib + air for shared libraries)

are suppressed if no symbolic information is available. This behavior can be changed

by using suppress and unsuppress .
258 Debugging a Program With dbx • May 2002

clear Command

The clear command clears breakpoints. It is valid only in native mode.

Event handlers created using the stop, trace , or when command with the

inclass , inmethod , or infunction argument create sets of breakpoints. If the line
you specify in the clear command matches one of these breakpoints, only that

breakpoint is cleared. Once cleared in this manner an individual breakpoint

belonging to a set cannot be enabled again. However, disabling and then enabling

the relevant event handler will reestablish all the breakpoints.

Syntax

where:

line is the number of a source code line.

filename is the name of a source code file.

collector Command

The collector command collects performance data for analysis by the

Performance Analyzer. It is valid only in native mode.

clear Clear all breakpoints at the current stopping point.

clear line Clear all breakpoints at line.

clear filename: line Clear all breakpoints at line in filename.
Appendix C Command Reference 259

Syntax

where:

options are the settings that can be specified with each command.

To start collecting data, type either collector enable .

To turn off data collection, type collector disable

collector dbxsample Command

The collector dbxsample command specifies whether or not to record a sample

when the process is stopped by dbx .

collector command_list Specify one or more of the collector commands

disable Stop data collection and close the current experiment

(see “collector disable Command” on page 261).

enable Enable the collector and open a new experiment (see

“collector enable Command” on page 261).

hwprofile Specify hardware counter profiling settings (see

“collector hwprofile Command” on page 262).

pause Stop collecting performance data but leave

experiment open (see “collector pause
Command” on page 263).

profile options Specify settings for collecting callstack profiling data

(see “collector profile Command” on page 263).

resume Start performance data collection after pause (see

“collector resume Command” on page 263).

sample options Specify sampling settings (see “collector sample
Command” on page 264).

show options Show current collector settings (see “collector
show Command” on page 264).

status Inquire status about current experiment (see

“collector status Command” on page 265).

store options Experiment file control and settings (see “collector
store Command” on page 265).

synctrace options Specify settings for collecting thread synchronization

wait tracing data (see “collector synctrace
Command” on page 266).
260 Debugging a Program With dbx • May 2002

Syntax

collector disable Command

The collector disable command causes the data collection to stop and the

current experiment to be closed.

Syntax

collector disable

collector enable Command

The collector enable command enables the collector and opens a new

experiment.

Syntax

collector enable

collector heaptrace Command

The collector heaptrace command specifies options for collecting heap tracing

(memory allocation) data.

collector dbxsample
on|off

By default, a sample is collected when the process is

stopped by dbx . To not collect a sample at this time,

specify off .
Appendix C Command Reference 261

Syntax

collector hwprofile Command

The collector hwprofile command specifies options for collecting hardware-

counter overflow profiling data.

Syntax

where:

name is the name of a hardware counter.

interval is the collection interval in milliseconds.

name2 is the name of a second hardware counter.

Hardware counters are system-specific, so the choice of counters available to you

depends on the system you are using. Many systems do not support hardware-

counter overflow profiling. On these machines, the feature is disabled.

collector limit Command

The collector limit command specifies the experiment file size limit.

Syntax

where:

collector heaptrace
on|off

By default, heap tracing data is not collected. To collect

this data, specify on .

collector hwprofile
on|off

By default, hardware-counter overflow profile data is not

collected. To collect this data, specify on .

collector hwprofile list Print out the list of available counters.

collector hwprofile
counter name interval name2

Specify hardware counter name(s) and interval.

collector limit
262 Debugging a Program With dbx • May 2002

collector mpitrace Command

The collector heaptrace command specifies options for collecting MPI tracing

data.

Syntax

collector pause Command

The collector pause command causes the data collection to stop but leaves the

current experiment open. Data collection can be resumed with the collector
resume command (see “collector resume Command” on page 263).

Syntax

collector pause

collector profile Command

The collector profile command specifies options for collecting profile data.

Syntax

collector resume Command

The collector resume command causes the data collection to resume after a

pause created by the collector pause command (see “collector pause
Command” on page 263).

collector mpitrace
on|off

By default, MPI tracing data is not collected. To collect

this data, specify on .

collector profile on|off Specify profile data collection mode

collector profile timer
milliseconds

Specify profile timer period
Appendix C Command Reference 263

Syntax

collector resume

collector sample Command

The collector sample command specifies the sampling mode and the sampling

interval.

Syntax

where:

seconds is the length of the sampling interval.

name is the name of the sample.

collector show Command

The collector show command shows the settings of one or more categories of

options.

collector sample
periodic|manual

Specify sampling mode.

collector sample period
seconds

Specify sampling interval in seconds.

collector sample record
[name]

Record a sample with an optional name.
264 Debugging a Program With dbx • May 2002

Syntax

collector status Command

The collector status command inquires about the status of the current

experiment.

Syntax

collector store Command

The collector store command specifies the directory and file name where an

experiment is stored.

collector show all Show all settings.

collector show profile Show callstack profiling settings.

collector show synctrace Show thread synchronization wait tracing settings.

collector show hwprofile Show hardware counter data settings.

collector show heaptrace Show heap tracing data settings.

collector show limit Show experiment size limits.

collector show mpitrace Show MPI trace data settings.

collector show
sample

Show sample settings.

collector showstore Show store settings.

collector status
Appendix C Command Reference 265

Syntax

where:

pathname is the pathname of the directory where an experiment is to be stored.

filename is the name of the experiment file

string is the name of an experiment group.

collector synctrace Command

The collector synctrace command specifies options for collecting

synchronization wait tracing data.

Syntax

where:

microseconds is the threshold below which synchronization wait events are

discarded.

collector store
directory pathname

Specify directory where experiment is stored.

collector store filename
filename

Specify experiment file name.

collector store group string Specify experiment group name

collector synctrace on|off By default, thread synchronization wait tracing data is not

collected. To collect this data, specify on.

collector threshold
microseconds

Specify threshold in microseconds. The default value is

1000.

collector threshold
calibrate

Threshold value will be automatically calculated
266 Debugging a Program With dbx • May 2002

cont Command

The cont command causes the process to continue execution. It has identical syntax
and identical functionality in native mode and Java mode.

Syntax

dalias Command

The dalias command defines a dbx-style (csh-style) alias. It is valid only in native

mode.

Syntax

where:

name is the name of an alias

definition is the definition of an alias.

cont Continue execution. In an MT process all threads are

resumed. Use Control-C to stop executing the program.

cont ... -sig signal Continue execution with signal signal.

cont ... id The id specifies which thread or LWP to continue.

cont at line [id] Continue execution at line line. id is required if the application

is multi-threaded.

cont ... -follow
parent|child|both

If the dbx follow_fork_mode environment variable is set to

ask, and you have chosen stop , use this option to choose

which process to follow. both is only applicable under the dbx

Debugger.

dalias (dbx alias) List all currently defined aliases

dalias name List the definition, if any, of alias name.

dalias name definition Define name to be an alias for definition. definition may

contain white space. A semicolon or newline terminates the

definition.
Appendix C Command Reference 267

dbx accepts the following csh history substitution meta-syntax, which is commonly

used in aliases:

!:<n>

!-<n>

!^

!$

!*

The ! usually needs to be preceded by a backslash. For example:

dalias goto "stop at \!:1; cont; clear"

For more information, see the csh (1) man page.

dbx Command

The dbx command starts dbx .

Native Mode Syntax

where:

program_name is the name of the program to be debugged.

process_id is the process ID of a running process.

arguments are the arguments to be passed to the program.

options are the options listed in “Options” on page 269.

dbx options program_name Debug program_name.

dbx options program_name coreDebug program_name with corefile core.

dbx options program_name
process_id

Debug program_name with process ID process_id.

dbx options - process_id Debug process ID process_id; dbx finds the program via /

proc.

dbx options - core Debug using corefile core; see also “debug Command” on

page 270.

dbx options -r program_name
arguments

Run program_name with arguments arguments; if abnormal

termination, start debugging program_name, else just exit.
268 Debugging a Program With dbx • May 2002

Java Mode Syntax

where:

program_name is the name of the program to be debugged.

process_id is the process ID of a running process.

arguments are the arguments to be passed to the program (not to the JVM

software).

options are the options listed in “Options” on page 269.

Options

For both native mode and Java mode, options are the following options:

dbx options
program_name{.class |
.jar}

Debug program_name.

dbx options
program_name{.class |
.jar} process_id

Debug program_name with process ID process_id.

dbx options - process_id Debug process ID process_id; dbx finds the program using /
proc .

dbx options -r
program_name{.class |
.jar} arguments

Run program_name with arguments arguments; if abnormal

termination, start debugging program_name, else just exit.

-c commands Execute commands before prompting for input.

-C Preload the Runtime Checking library (see “check Command” on page 256).

-d Used with -s , removes file after reading.

-e Echo input commands.

-f Force loading of core file, even if it doesn't match.

-h Print the usage help on dbx .

-I dir Add dir to pathmap set (see “pathmap Command” on page 302).

-k Save and restore keyboard translation state.

-q Suppress messages about reading stabs.

-r Run program; if program exits normally, exit.

-R Print the readme file on dbx.

-s file Use file instead of .dbxrc .

-S Suppress reading of site-specific initialization file.

-V Print the version of dbx .

-w n Skip n frames on where command.

-x exec32 Suppress using the 64-bit dbx binary that runs on systems that support

SPARC-V9 binaries. Use the SPARC-V8 32-bit binary instead.
Appendix C Command Reference 269

dbxenv Command

The dbxenv command is used to list or set dbx environment variables. It has

identical syntax and identical functionality in native mode and Java mode.

Syntax

where:

environment_variable is a dbx environment variable.

setting is a valid setting for that variable.

debug Command

The debug command lists or changes the program being debugged. In native mode,

it loads the specified application and begins debugging the application. In Java

mode, it loads the specified Java application, checks for the existence of the class file,

and begins debugging the application.

-- Marks the end of the option list; use this if the program name starts with a

dash.

dbxenv Display the current settings of the dbx environment variables.

dbxenv environment_variable
setting

Set environment_variable to setting.
270 Debugging a Program With dbx • May 2002

Native Mode Syntax

where:

core is the name of a core file.

options are the options listed in“Options” on page 273.

pid is the process ID of a running process.

program_name is the path name of the program.

Leaks checking and access checking are turned off when a program is loaded with

the debug command. You can enable them with the check command (see “check
Command” on page 256).

debug Print the name and arguments of the program being

debugged.

debug program_name Begin debugging program_name with no process or core.

debug -c core program_name Begin debugging program_name with core file core.

debug -p process_id
program_name

Begin debugging program_name with process ID process_id.

debug program_name core Begin debugging program with core file core. program_name
may be - . dbx will attempt to extract the name of the

executable from the core file. For details, see “Debugging a

Core File” on page 14.

debug program_name process_idBegin debugging program_name with process ID process_id.

program_name may be - ; dbx finds it using /proc

debug -f ... Force loading of a core file, even if it doesn't match.

debug -r ... The -r option causes dbx to retain all display , trace ,

when, and stop commands. With no -r option, an implicit

delete all and undisplay 0 are performed.

debug -clone ... The -clone option causes another dbx process to begin

execution, permitting debugging of more than one process at

a time. Valid only if running under the dbx Debugger.

debug -clone Starts another dbx process debugging nothing. Valid only if

running under the dbx Debugger.

debug [options] --
program_name

Start debugging program, even if program_name begins with a

dash.
Appendix C Command Reference 271

Java Mode Syntax

where:

file_name is the name of a file.

options are the options listed in“Options” on page 273.

process_id is the process ID of a running process.

program_name is the path name of the program.

debug Print the name and arguments of the program being

debugged.

debug program_name{.class
| .jar}

Begin debugging program_name with no process.

debug -p process_id
program_name{.class |
.jar}

Begin debugging program_name with process ID process_id.

debug program_name{.class
| .jar} process_id

Begin debugging program_name with process ID process_id.

program_name may be - ; dbx finds it using /proc

debug -r ... The -r option causes dbx to retain all display , trace ,

when, and stop commands. With no -r option, an implicit

delete all and undisplay 0 are performed.

debug -clone ... The -clone option causes another dbx process to begin

execution, permitting debugging of more than one process

at a time. Valid only if running in the dbx Debugger

window.

debug -clone Starts another dbx process debugging nothing. Valid only if

if running in the dbx Debugger window.

debug [options] --
program_name{.class |
.jar}

Start debugging program_name, even if program_name begins

with a dash.
272 Debugging a Program With dbx • May 2002

Options

delete Command

The delete command deletes breakpoints and other events. It has identical syntax

and identical functionality in native mode and Java mode.

Syntax

where:

handler_id is the identifier of a handler.

-c commands Execute commands before prompting for input.

-d Used with -s , removes file_name after reading.

-e Echo input commands.

-h Print the usage help on dbx .

-I directory_name Add directory_name to pathmap set (see “pathmap
Command” on page 302).

-k Save and restore keyboard translation state.

-q Suppress messages about reading stabs.

-r Run program; if program exits normally, exit.

-R Print the readme file on dbx.

-s file_name Use file_name instead of .dbxrc or .dbxinit .

-S Suppress reading of site-specific initialization file.

-V Print the version of dbx .

-w n Skip n frames on where command.

-- Marks the end of the option list; use this if the program

name starts with a dash.

delete [-h] handler_id ... Remove trace commands, when commands, or stop
commands of given handler_id(s). To remove hidden handlers,

you must give the -h option.

delete [-h] 0 | all | -
all

Remove all trace commands, when commands, and stop
commands excluding permanent and hidden handlers.

Specifying -h removes hidden handlers as well.

delete -temp Remove all temporary handlers

delete
$firedhandlers

Delete all the handlers that caused the latest stoppage.
Appendix C Command Reference 273

detach Command

The detach command releases the target process from dbx ’s control.

Native Mode Syntax

where:

signal is the name of a signal.

Java Mode Syntax

dis Command

The dis command disassembles machine instructions. It is valid only in native

mode.

Syntax

where:

address is the address at which to start disassembling.

address1 is the address at which to start disassembling.

address2 is the address at which to stop disassembling.

count is the number of instructions to disassemble.

detach Detach dbx from the target, and cancel any pending signals.

detach -sig signal Detach while forwarding the given signal.

detach Detach dbx from the target, and cancel any pending signals.

dis address [/ count] Disassemble count instructions (default is 10), starting at

address address.

dis address1, address2 Disassemble instructions from address1 through address2.

dis Disassemble 10 instructions, starting at the value of + (see

“examine Command” on page 277).

dis / count Disassemble count instructions, starting at +.
274 Debugging a Program With dbx • May 2002

display Command

In native mode, the display command evaluates and prints expressions at every

stopping point. In Java mode, the display command evaluates and prints

expressions, local variables, or parameters at every stopping point. Object references

are expanded to one level and arrays are printed itemwise.

Native Mode Syntax

where:

expression is a valid expression.

Java Mode Syntax

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

expression is a valid Java expression.

field_name is the name of a field in the class.

identifier is a local variable or parameter, including this , the current class

instance variable (object_name.field_name) or a class (static) variable

(class_name.field_name).

display Print the list of expressions being displayed.

display expression, ... Display the value of expressions expression, ... at every

stopping point.

display [-r|+r|-d|+d|
-p|+p|-f format|-F format|
--] expression,...$ newline

See the “print Command” on page 304 for the meaning of

these flags.

display Print the list of variables and parameters being displayed.

display expression | identifier,
...

Display the value of variables and parameters identifier, ... at

every stopping point.

display [-r|+r|-d|+d|
-p|+p|-L|-f format|-F format|
--] expression |
identifier,...$ newline

See the “print Command” on page 304 for the meaning of

these flags.
Appendix C Command Reference 275

object_name is the name of a Java object.

down Command

The down command moves down the call stack (away from main). It has identical

syntax and identical functionality in native mode and Java mode.

Syntax

where:

number is a number of call stack levels.

dump Command

The dump command prints all variables local to a procedure. It has identical syntax

and identical functionality in native mode and Java mode.

Syntax

where:

procedure is the name of a procedure.

edit Command

The edit command invokes $EDITOR on a source file. It is valid only in native

mode.

down Move down the call stack one level.

down number Move down the call stack number levels.

down -h [number] Move down the call stack, but don't skip hidden frames.

dump Print all variables local to the current procedure.

dump procedure Print all variables local to procedure.
276 Debugging a Program With dbx • May 2002

The edit command uses $EDITOR if dbx is not running under the dbx Debugger

Otherwise, it sends a message to the dbx Debugger to display the appropriate file..

Syntax

where:

filename if the name of a file.

procedure is the name of a function or procedure.

examine Command

The examine command shows memory contents. It is valid only in native mode.

Syntax

exception Command

The exception command prints the value of the current C++ exception. It is valid

only in native mode.

edit Edit the current file

edit filename Edit the specified file filename.

edit procedure Edit the file containing function or procedure procedure.

examine [address]
[/ [count] [format]]

Display the contents of memory starting at address for count
items in format format.

examine address1 , address2
[/ [format]
]

Display the contents of memory from address1 through

address2 inclusive, in format format.

examine address = [format
]

Display the address (instead of the contents of the address)

in the given format.

The address may be +, which indicates the address just after

the last one previously displayed (the same as omitting it).

x is a predefined alias for examine .
Appendix C Command Reference 277

Syntax

See the “print Command” on page 304 for the meaning of the -d flag.

exists Command

The exists command checks for the existence of a symbol name. It is valid only in

native mode.

Syntax

where:

name is the name of a symbol.

file Command

The file command lists or changes the current file. It has identical syntax and

identical functionality in native mode and in Java mode.

Syntax

where:

filename is the name of a file.

exception [-d | +d] Prints the value of the current C++ exception, if any.

exists name Returns 0 if name is found in the current program, 1 if name is not found.

file Print the name of the current file.

file filename Change the current file.
278 Debugging a Program With dbx • May 2002

files Command

In native mode, the files command lists file names that match a regular

expression. In Java mode, the files command lists all of the Java source files

known to dbx . If your Java source files are not in the same directory as the .class or

.jar files, dbx might not find them unless you have set the CLASSPATHenvironment

variable (see “Specifying the Location of Your Java Source Files” on page 190).

Native Mode Syntax

where:

regular_expression is a regular expression.

For example:

(dbx) files ^r
myprog:
retregs.cc
reg_sorts.cc
reg_errmsgs.cc
rhosts.cc

Java Mode Syntax

fix Command

The fix command recompiles modified source files and dynamically links the

modified functions into the application. It is valid only in native mode.

files List the names of all files that contributed debugging information

to the current program (those that were compiled with -g).

files regular_expression List the names of all files compiled with -g that match the given

regular expression.

files List the names of all of the Java source files known to dbx.
Appendix C Command Reference 279

Syntax

fixed Command

The fixed command lists the names of all fixed files. It is valid only in native mode.

Syntax

fixed

frame Command

The frame command lists or changes the current stack frame number. It has

identical syntax and identical functionality in native mode and in Java mode.

fix Fix the current file.

fix filename filename ... Fix filename.

fix -f Force fixing the file, even if source hasn't been modified.

fix -a Fix all modified files.

fix -g Strip -O flags and add -g flag.

fix -c Print compilation line (may include some options added

internally for use by dbx).

fix -n Do not execute compile/link commands (use with -v).

fix -v Verbose mode (overrides dbx fix_verbose environment

variable setting).

fix +v Non-verbose mode (overrides dbx fix_verbose
environment variable setting).
280 Debugging a Program With dbx • May 2002

Syntax

where:

number is the number of a frame in the call stack.

func Command

In native mode, the func command lists or changes the current function. In Java

mode, the func command lists or changes the current method.

Native Mode Syntax

where:

procedure is the name of a function or procedure.

Java Mode Syntax

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

method_name is the name of a Java method.

parameters are the method’s parameters.

frame Display the frame number of the current frame.

frame [-h] number Set the current frame to frame number.

frame [-h] +[number] Go number frames up the stack; default is 1.

frame [-h] -[number] Go number frames down the stack; default is 1.

-h Go to frame, even if frame is hidden.

func Print the name of the current function.

func procedure Change the current function to the function or procedure

procedure.

func Print the name of the current method.

func [class_name.] method_name
[(parameters)]

Change the current function to the method method_name.
Appendix C Command Reference 281

funcs Command

The funcs command lists all function names that match a regular expression. It is

valid only in native mode.

Syntax

where:

filename is the name of the file for which you wish to list all the functions.

regular_expression is the regular expression for which you wish to list all the

matching functions.

For example:

gdb Command

The gdb command supports the gdb command set. It is valid only in native mode.

funcs List all functions in the current program.

funcs [-f filename] [-g]
[regular_expression]

If -f filename is specified, list all functions in the file. If -g is

specified, list all functions with debugging information. If

regular_expression is specified, list all functions that match

the regular expression.

(dbx) funcs [vs]print
‘libc.so.1‘isprint
‘libc.so.1‘wsprintf
‘libc.so.1‘sprintf
‘libc.so.1‘vprintf
‘libc.so.1‘vsprintf
282 Debugging a Program With dbx • May 2002

Syntax

The following gdb commands are not supported in this release:

■ commands
■ define
■ handle
■ hbreak
■ interrupt
■ maintenance
■ printf
■ rbreak
■ return
■ signal
■ tcatch
■ until

handler Command

The handler command modifies event handlers (enable, disable, etc.). It has

identical syntax and identical functionality in native mode and in Java mode.

A handler is created for each event that needs to be managed in a debugging

session. The commands trace , stop , and when create handlers. Each of these

commands returns a number known as the handler ID (handler_id). The handler ,

status , and delete commands manipulate or provide information about handlers

in a generic fashion.

gdb on | off Use gdb on to enter the gdb command mode under which

dbx understands and accepts gdb commands. To exit the

gdb command mode and return to the dbx command mode,

enter gdb off . dbx commands are not accepted while in

gdb command mode and vice versa. All debugging settings

such as breakpoints are preserved across different command

modes.
Appendix C Command Reference 283

Syntax

where:

handler_id is the identifier of a handler.

hide Command

The hide command hides stack frames that match a regular expression. It is valid

only in native mode.

Syntax

where:

regular_expression is a regular expression.

ignore Command

The ignore command tells the dbx process not to catch the given signal(s). It is

valid only in native mode.

Ignoring a signal causes dbx not to stop when the process receives that kind of

signal.

handler -enable handler_id
...

Enable given handlers, specify handler_id as all for all

handlers.

handler -disable handler_id
...

Disable given handlers, specify handler_id as all for all

handlers. Use $firedhandlers instead of handler_id to

disable the handlers that caused the most recent stoppage.

handler -count handler_id Print value of trip counter for given handler.

handler -count handler_id
newlimit

Set new count limit for given event.

handler -reset handler_id Reset trip counter counter for given handler.

hide List the stack frame filters currently in effect.

hide regular_expression Hide stack frames matching regular_expression. The regular

expression matches either the function name, or the name of

the loadobject, and is a sh or ksh file matching style regular

expression.
284 Debugging a Program With dbx • May 2002

Syntax

where:

number is the number of a signal.

signal is the name of a signal.

import Command

The import command imports commands from a dbx command library. It has

identical syntax and identical functionality in native mode and in Java mode.

Syntax

where:

pathname is the pathname of a dbx command library.

intercept Command

The intercept command throws (C++ exceptions) of the given type (C++ only). It

is valid only in native mode.

A thrown exception for which there is no matching catch is called an “unhandled”

throw. A thrown exception that doesn't match the exception specification of the

function it is thrown from is called an “unexpected” throw.

Unhandled and unexpected throws are intercepted by default.

ignore Print a list of the ignored signals.

ignore number... Ignore signal(s) numbered number.

ignore signal... Ignore signal(s) named by signal. SIGKILL cannot be caught

or ignored.

ignore $(catch) Ignore all signals.

import pathname Import commands from the dbx command library pathname.
Appendix C Command Reference 285

Syntax

where:

typename may be either -unhandled or -unexpected.

java Command

The java command is used when dbx is in JNI mode to indicate that the Java

version of a specified command is to be executed. It causes the specified command

to use the Java expression evaluator, and when relevant, to display Java threads and

stack frames.

Syntax

java command

where:

command is the command name and arguments of the command to be executed.

javastack Command

The javastack command dumps the current Java operand stack. It is valid only in

Java mode.

Dumping this stack is useful in bytecode-level debugging (single-stepping through

Java bytecode). This command works only on the SPARC™ architecture.

Syntax

javastack

intercept typename Intercept throws of type typename.

intercept -a Intercept all throws.

intercept -x typename Do not intercept typename.

intercept -a -x typename Intercept all types except typename.

intercept List intercepted types.
286 Debugging a Program With dbx • May 2002

jclasses Command

The jclasses command prints the names of all Java classes known to dbx when

you give the command. It is valid only in Java mode.

Classes in your program that have not yet been loaded are not printed.

Syntax

joff Command

The joff command switches dbx from Java mode or JNI mode to native mode.

Syntax

joff

jon Command

The jon command switches dbx from native mode to Java mode.

Syntax

jon

jjclasses Print the names of all Java classes known to dbx

jclasses -a Print system classes as well as other known Java classes.
Appendix C Command Reference 287

jpkgs Command

The jpkgs command prints the names of all Java packages known to dbx when you

give the command. It is valid only in Java mode.

Packages in your program that have not yet been loaded are not printed.

Syntax

jpkgs

kill Command

The kill command sends a signal to a process and kills the target process. It is

valid only in native mode.

Syntax

where:

job may be a process ID or may be specified in any of the following ways:

signal is the name of a signal.

kill -l List all known signal numbers, names, and descriptions.

kill Kill the controlled process.

kill job... Send the SIGTERM signal to the listed jobs.

kill - signal job... Send the given signal to the listed jobs.

%+ Kill the current job.

%- Kill the previous job.

%number Kill job number number.

%string Kill the job which begins with string.

%?string Kill the job which contains string.
288 Debugging a Program With dbx • May 2002

language Command

The language command lists or changes the current source language. It is valid

only in native mode.

Syntax

where:

language is c, ansic, c++, fortran, or fortran90.

Note – c is an alias for ansic.

line Command

The line command lists or change the current line number. It has identical syntax

and identical functionality in native mode and in Java mode.

Syntax

where:

filename is the name of the file in which to change the line number. The ““ around

the filename is optional.

number is the number of a line in the file.

language Print the name of the current language used for parsing and

evaluating expressions.

language language Set current language to language

line Display the current line number.

line number Set the current line number to number .

line " filename" Set current line number to line 1 in filename.

line " filename": number Set current line number to line number in filename.
Appendix C Command Reference 289

Examples

line 100

line "/root/test/test.cc":100

list Command

The list command displays lines of a source file. It has identical syntax and

identical functionality in native mode and in Java mode.

The default number of lines listed, N, is controlled by the dbx output_list_size
environment variable.
290 Debugging a Program With dbx • May 2002

Syntax

where:

filename is the file name of a source code file.

function is the name of a function to display.

number is the number of a line in the source file.

n is a number of lines to display.

n1 is the number of the first line to display.

n2 is the number of the last line to display.

Options

Examples

list // list N lines starting at current line

list +5 // list next 5 lines starting at current line

list List N lines.

list number List line number number.

list + List next N lines.

list + n List next n lines.

list - List previous N lines.

list - n List previous n lines.

list n1, n2 List lines from n1 to n2.

list n1,+ List from n1 to n1 + N.

list n1,+ n2 List from n1 to n1 + n2.

list n1,- List from n1-N to n1.

list n1,- n2 List from n1-n2 to n1

list function List the start of the source for function. list function
changes the current scope. See “Scope” on page 38 for more

information.

list filename List the start of the file filename.

list filename: n List file filename from line n. Where appropriate, the line

number may be ‘$' which denotes the last line of the file.

Comma is optional.

-i or -instr Intermix source lines and assembly code

-w or -w n List N (or n) lines (window) around line or function. This

option is not allowed in combination with the ‘+' or ‘-'

syntax or when two line numbers are specified.
Appendix C Command Reference 291

list - // list previous N lines

list -20 // list previous 20 lines

list 1000 // list line 1000

list 1000,$ // list from line 1000 to last line

list 2737 +24 // list line 2737 and next 24 lines

list 1000 -20 // list line 980 to 1000

list "test.cc":33 // list source line 33 in file "test.cc"

list -w // list N lines around current line

list -w8 ‘test.cc‘func1 // list 8 lines around function func1

list -i 500 +10 // list source and assembly code for line
500 to line 510

listi Command

The listi command displays source and disassembled instructions. It is valid only

in native mode.

See “list Command” on page 290 for details.

loadobject Command

The loadobject command lists and manages symbolic information from

loadobjects. It is valid only in native mode.
292 Debugging a Program With dbx • May 2002

Syntax

where:

regexp is a regular expression. It is optional, and if it is not specified the command

applies to all loadobjects.

ex-regexp is not optional, it must be specified.

This command has a default alias lo .

loadobject -dumpelf Command

The loadobject -dumpelf command unloads specified loadobjects. It is valid

only in native mode.

Syntax

where:

regexp is optional, and if it is not specified the command applies to all loadobjects.

loadobject command_list

-list regexp Show currently loaded loadobjects (see “loadobject -
list Command” on page 295)

-load loadobject Load symbols for specified loadobject (see “loadobject
-load Command” on page 295)

-unload regexp Unload specified loadobjects (see “loadobject -
unload Command” on page 296)

-hide regexp Remove loadobject from dbx’s search algorithm (see

“loadobject -hide Command” on page 294)

-use regexp Add loadobject to dbx’s search algorithm (see

“loadobject -use Command” on page 296)

-dumpelf regexp Show various ELF details of the loadobject (see

“loadobject -dumpelf Command” on page 293)

-exclude ex-regexp Don’t automatically load loadobjects matching ex-regexp
(see “loadobject -exclude Command” on page 294)

-exclude Show list of exclude patterns (see “loadobject -
exclude Command” on page 294)

-exclude -clear Clear the ’exclude’ list of patterns (see “loadobject -
exclude Command” on page 294)

loadobject -dumpelf regexp
Appendix C Command Reference 293

This command dumps out information related to the ELF structure of the loadobject

file on disk. The details of this output are highly subject to change. If you want to

parse this output, use the Solaris operating environment commands dump or

elfdump.

loadobject -exclude Command

The loadobject -exclude command tells dbx not to automatically load

loadobjects matching the specified regular expression.

Syntax

where:

ex-regexp is a regular expression.

This command prevents dbx from automatically loading symbols for loadobjects

that match the specified regular expression. Unlike regexp in other loadobject
subcommands, if ex- regexp is not specified, it does not default to all. If you do not

specify ex- regexp, the command lists the excluded patterns that have been specified

by previous loadobject -exclude commands.

If you specify -clear , the list of excluded patterns is deleted.

Currently this functionality cannot be used to prevent loading of the main program,

or the runtime linker. Also, using it to prevent loading of C++ runtime libraries

could cause C++ functionality.

This option should not be used with runtime checking (RTC).

loadobject -hide Command

The loadobject -hide command removes loadobjects from dbx ’s search

algorithm.

Syntax

where:

regexp is a regular expression.

loadobject -exclude [ex-regexp] [-clear]

loadobject -hide regexp
294 Debugging a Program With dbx • May 2002

This command removes a loadobject from the program scope, and hides its functions

and symbols from dbx . This command also resets the ’preload’ bit

loadobject -list Command

The loadobject -list command shows currently loaded loadobjects. It is valid

only in native mode.

Syntax

The full path name for each loadobject is shown along with letters in the margin to

show status.

For example:

(dbx) lo -list libm
/usr/lib/64/libm.so.1
/usr/lib/64/libmp.so.2
(dbx) lo -list ld.so
h /usr/lib/sparcv9/ld.so.1 (rtld)

This last example shows that the symbols for the runtime linker are hidden by

default. To use those symbols in dbx commands, see the ‘lo -use’ command below.

loadobject -load Command

The loadobject -load command loads symbols for specified loadobjects. It is

valid only in native mode.

loadobject -list regexp

h This means “hidden” (the symbols will not be found by symbolic queries like

whatis or stop in).

u If there is an active process, u means “unmapped”.

p This letter indicates an LO that is preloaded, that is, the result of a ‘loadobject -
load ’ command or a dlopen event in the program. (See ‘help loadobject

preloading’)
Appendix C Command Reference 295

Syntax

where:

loadobject can be a full path name or a library in /usr/lib or

/usr/lib/sparcv9 . If there is a program being debugged, then only the proper

ABI library directory will be searched.

loadobject -unload Command

The loadobject -unload command unloads specified loadobjects. It is valid only

in native mode.

Syntax

where:

regexp is optional, and if it is not specified the command applies to all loadobjects.

This command unloads the symbols for any loadobjects matching the regexp
supplied on the command line. The main program loaded with the debug command

cannot be unloaded. dbx may also refuse to unload other loadobjects that might be

currently in use, or critical to the proper functioning of dbx .

loadobject -use Command

The loadobject -use command adds loadobjects from dbx’s search algorithm. It

is valid only in native mode.

Syntax

where:

regexp is a regular expression.

loadobject -load loadobject ...

loadobject -unload regexp

loadobject -use regexp
296 Debugging a Program With dbx • May 2002

lwp Command

The lwp command lists or changes the current LWP (lightweight process). It is valid

only in native mode.

Syntax

where:

lwp_id is the identifier of a lightweight process.

lwps Command

The lwps command lists all LWPs (lightweight processes) in the process. It is valid

only in native mode.

Syntax

mmapfile Command

The mmapfile command views the contents of memory mapped files that are

missing from a core dump. It is valid only in native mode.

Solaris core files do not contain any memory segments that are read-only. Executable

read-only segments (that is, text) are dealt with automatically and dbx resolves

memory accesses against these by looking into the executable and the relevant

shared objects.

lwp Display current LWP.

lwp lwp_id Switch to LWP lwp_id.

lwp -info Displays the name, home, and masked signals of the current

lwp.

lwps List all LWPs in the current process
Appendix C Command Reference 297

Syntax

where:

mmapped_file is the file name of a file that was memory mapped during a core

dump.

address is the starting address of the address space of the process.

length is length in bytes of the address space to be viewed.

offset is the offset in bytes to the starting address in mmapped_file.

module Command

The module command reads debugging information for one or more modules. It is

valid only in native mode.

Syntax

where:

name is the name of a module for which to read debugging information.

-a specifies all modules.

-f forces reading of debugging information, even if the file is newer than the

executable (use with caution!).

-v specifies verbose mode, which prints language, file names, etc.

-q specifies quiet mode.

Example

Read-only data segments typically occur when an application memory maps a

database. For example:

mmapfile mmapped_file address
offset length

View contents of memory mapped files missing from core

dump.

module [-v] Print the name of the current module.

module [-f] [-v] [-q]
name

Read in debugging information for the module called name.

module [-f] [-v] [-q] -a Read in debugging information for all modules.
298 Debugging a Program With dbx • May 2002

caddr_t vaddr = NULL;
off_t offset = 0;
size_t = 10 * 1024;
int fd;
fd = open("../DATABASE", ...)
vaddr = mmap(vaddr, size, PROT_READ, MAP_SHARED, fd, offset);
index = (DBIndex *) vaddr;

To be able to access the database through the debugger as memory you would type:

mmapfile ../DATABASE $[vaddr] $[offset] $[size]

Then you could look at your database contents in a structured way by typing:

print *index

modules Command

The modules command lists module names. It is valid only in native mode.

Syntax

where:

-v specifies verbose mode, which prints language, file names, etc.

native Command

The native command is used when dbx is in Java mode to indicate that the native

version of a specified command is to be executed. Preceding a command with

“native” results in dbx executing the command in native mode. This means that

expressions are interpreted and displayed as C expressions or C++ expressions, and

certain other commands produce different output than they do in Java mode.

This command is useful when you are debugging Java code but you want to

examine the native environment.

modules [-v] List all modules

modules [-v] -debug List all modules containing debugging information.

modules [-v] -read List names of modules containing debugging information

that have been read in already.
Appendix C Command Reference 299

Syntax

native command

where:

command is the command name and arguments of the command to be executed.

next Command

The next command steps one source line (stepping over calls).

The dbx step_events environment variable (see “Setting dbx Environment

Variables” on page 30) controls whether breakpoints are enabled during a step.

Native Mode Syntax

where:

n is the number of lines to step.

signal is the name of a signal.

thread_id is a thread ID.

lwp_id is an LWP ID.

When an explicit thread_id or lwp_id is given, the deadlock avoidance measure of the

generic next command is defeated.

See also “nexti Command” on page 301 for machine-level stepping over calls.

Note – For information on lightweight processes (LWPs), see the Solaris

Multithreaded Programming Guide.

next Step one line (step over calls). With multithreaded programs

when a function call is stepped over, all LWPs (lightweight

processes) are implicitly resumed for the duration of that

function call in order to avoid deadlock. Non-active threads

cannot be stepped.

next n Step n lines (step over calls).

next ... -sig signal Deliver the given signal while stepping.

next ... thread_id Step the given thread.

next ... lwp_id Step the given LWP. Will not implicitly resume all LWPs

when stepping over a function.
300 Debugging a Program With dbx • May 2002

Java Mode Syntax

where:

n is the number of lines to step.

thread_id is a thread identifier.

lwpid is an LWP identifier.

When an explicit thread_id or lwpid is given, the deadlock avoidance measure of the

generic next command is defeated.

Note – For information on lightweight processes (LWPs), see the Solaris

Multithreaded Programming Guide.threaded Programming Guide.

nexti Command

The nexti command steps one machine instruction (stepping over calls). It is valid

only in native mode.

next Step one line (step over calls). With multithreaded programs

when a function call is stepped over, all LWPs (lightweight

processes) are implicitly resumed for the duration of that

function call in order to avoid deadlock. Non-active threads

cannot be stepped.

next n Step n lines (step over calls).

next ... thread_id Step the given thread.

next ... lwpid Step the given LWP. Will not implicitly resume all

LWPs when stepping over a function.
Appendix C Command Reference 301

Syntax

where:

n is the number of instructions to step.

signal is the name of a signal.

thread_id is a thread ID.

lwp_id is an LWP ID.

pathmap Command

The pathmap command maps one path name to another for finding source files, etc.

The mapping is applied to source paths, object file paths and the current working

directory (if you specify -c). The pathmap command has identical syntax and

identical functionality in native mode and in Java mode.

The pathmap command is useful for dealing with automounted and explicit NFS

mounted filesystems with different paths on differing hosts. Specify -c when you

are trying to correct problems arising due to the automounter since CWD's are

inaccurate on automounted filesystems as well. The pathmap command is also

useful if source or build trees are moved.

pathmap /tmp_mnt / exists by default.

The pathmap command is used to find load objects for core files when the dbx
environment variable core_lo_pathmap is set to on. Other than this case, the

pathmap command has no effect on finding load objects (shared libraries). See

“Debugging a Mismatched Core File” on page 15.

nexti Step one machine instruction (step over calls).

nexti n Step n machine instructions (step over calls).

nexti -sig signal Deliver the given signal while stepping.

nexti ... lwp_id Step the given LWP.

nexti ... thread_id Step the LWP on which the given thread is active. Will not

implicitly resume all LWPs when stepping over a function.
302 Debugging a Program With dbx • May 2002

Syntax

where:

from and to are filepath prefixes. from refers to the filepath compiled into the

executable or objectfile and to refers to the filepath at debug time.

from1 is filepath of the first mapping to be deleted.

from2 is filepath of the last mapping to be deleted.

index specifies the index with which the mapping is to be inserted in the list. If

you do not specify an index, the mapping is added to the end of the list.

index1 is the index of the first mapping to be deleted.

index2 is the index of the last mapping to be deleted.

If you specify -c , the mapping is applied to the current working directory as well.

If you specify -s , the existing mappings are listed in an output format that dbx
can read.

If you specify -d , the specified mappings are deleted.

Examples

(dbx) pathmap /export/home/work1 /net/mmm/export/home/work2

maps /export/home/work1/abc/test.c to /net/mmm/export/home/work2/
abc/test.c

(dbx) pathmap /export/home/newproject

 # maps /export/home/work1/abc/test.c to /export/home/newproject/
test.c

(dbx) pathmap

(1) -c /tmp_mnt /

(2) /export/home/work1 /net/mmm/export/home/work2

(3) /export/home/newproject

pathmap [-c] [- index]
from to

Establish a new mapping from from to to.

pathmap [-c] [- index]
to

Map all paths to to.

pathmap List all existing path mappings (by index)

pathmap -s The same, but the output can be read by dbx .

pathmap -d from1 from2... Delete the given mapping(s) by path.

pathmap -d index1 index2
...

Delete the given mapping(s) by index.
Appendix C Command Reference 303

pop Command

The pop command removes one or more frames from the call stack. It is valid only

in native mode.

You can pop only to a frame for a function that was compiled with -g . The program

counter is reset to the beginning of the source line at the callsite. You cannot pop

past a function call made by the debugger; use pop -c .

Normally a pop command calls all the C++ destructors associated with the popped

frames; you can override this behavior by setting the dbx pop_auto_destruct
environment variable to off (see “Setting dbx Environment Variables” on page 30).

Syntax

where:

number is the number of frames to pop from the stack.

print Command

In native mode, the print command prints the value of an expression. In Java

mode, the print command prints the value of an expression, local variable, or

parameter.

pop Pop current top frame from stack

pop number Pop number frames from stack

pop -f number Pop frames from stack until specified frame number

pop -c Pop the last call made from the debugger.
304 Debugging a Program With dbx • May 2002

Native Mode Syntax

where:

expression is the expression whose value you want to print.

format is the output format you want used to print the expression.

print expression, ... Print the value of the expression(s) expression,

print -r expression Print the value of the expression expression including its

inherited members (C++ only).

print +r expression Don't print inherited members when the dbx
output_inherited_members environment variable is on

(C++ only).

print -d [-r]

expression
Show dynamic type of expression expression instead of static

type (C++ only).

print +d [-r]

expression
Don't use dynamic type of expression expression when the

dbx output_dynamic_type environment variable is on

(C++ only).

print -p expression Call the prettyprint Function.

print +p expression Do not call the prettyprint Function when the dbx
output_pretty_print environment variable is on.

print -L expression If the printing object expression is larger than 4K, enforce the

printing.

print -l expression (‘Literal') Do not print the left side. If the expression is a

string (char *), do not print the address, just print the raw

characters of the string, without quotes.

print -f format expression Use format as the format for integers, strings, or floating-point

expressions.

print -F format expression Use the given format but do not print the left hand side (the

variable name or expression)).

print -o expression Print the value of expression, which must be an enumeration

as an ordinal value. You may also use a format string here (-
f format). This option is ignored for non-enumeration

expressions.

print -- expression ‘--' signals the end of flag arguments. This is useful if

expression may start with a plus or minus (see

“Scope” on page 38 for scope resolution rules.
Appendix C Command Reference 305

Java Mode Syntax

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

expression is the Java expression whose value you want to print.

field_name is the name of a field in the class.

identifier is a local variable or parameter, including this , the current class

instance variable (object_name.field_name) or a class (static) variable

(class_name.field_name).

object_name is the name of a Java object.

proc Command

The proc command displays the status of the current process. It has identical syntax

and identical functionality in native mode and in Java mode.

print expression, ... |
identifier, ...

Print the value(s) of the expression(s) expression, ... or

identifier(s) identifier,

print -r expression | identifier Print the value of expression or identifier including its

inherited members.

print +r expression | identifier Don't print inherited members when the dbx
output_inherited_members environment variable is on.

print -d [-r]

expression | identifier
Show dynamic type of expression or identifier instead of static

type.

print +d [-r]

expression | identifier
Don't use dynamic type of expression or identifier when the

dbx output_dynamic_type environment variable is on.

print -- expression | identifier ‘--' signals the end of flag arguments. This is useful if

expression may start with a plus or minus (see

“Scope” in Debugging a Program With dbx for scope

resolution rules.
306 Debugging a Program With dbx • May 2002

Syntax

prog Command

The prog command manages programs being debugged and their attributes. It has

identical syntax and identical functionality in native mode and Java mode.

Syntax

quit Command

The quit command exits dbx . It has identical syntax and identical functionality in

native mode and Java mode.

If dbx is attached to a process, the process is detached from before exiting. If there

are pending signals, they are cancelled. Use the detach command (see “detach
Command” on page 274) for fine control.

proc -map Show the list of loadobjects with addresses

proc -pid Show current process ID (pid)

prog -readsyms Read symbolic information which was postponed by having

set the dbx run_quick environment variable to on.

prog -executable Prints the full path of the executable, - if the program was

attached to using - .

prog -argv Prints the whole argv , including argv[0] .

prog -args Prints the argv , excluding argv[0] .

prog -stdin Prints < filename or empty if stdin is used.

prog -stdout Prints > filename or >> filename or empty if stdout is used.

The outputs of -args , -stdin , -stdout are designed so

that the strings can be combined and reused with the run
command (see “run Command” on page 311).
Appendix C Command Reference 307

Syntax

where:

n is a return code.

regs Command

The regs command prints the current value of registers. It is valid only in native

mode.

Syntax

regs [-f] [-F]

where:

-f includes floating-point registers (single precision) (SPARC platform only)

-F includes floating-point registers (double precision) (SPARC platform only)

Example (SPARC platform)

dbx[13] regs -F

current thread: t@1

current frame: [1]

g0-g3 0x00000000 0x0011d000 0x00000000 0x00000000

g4-g7 0x00000000 0x00000000 0x00000000 0x00020c38

o0-o3 0x00000003 0x00000014 0xef7562b4 0xeffff420

o4-o7 0xef752f80 0x00000003 0xeffff3d8 0x000109b8

l0-l3 0x00000014 0x0000000a 0x0000000a 0x00010a88

l4-l7 0xeffff438 0x00000001 0x00000007 0xef74df54

i0-i3 0x00000001 0xeffff4a4 0xeffff4ac 0x00020c00

i4-i7 0x00000001 0x00000000 0xeffff440 0x000108c4

y 0x00000000

psr 0x40400086

pc 0x000109c0:main+0x4mov 0x5, %l0

quit Exit dbx with return code 0. Same as exit.

quit n Exit with return code n. Same as exit n.
308 Debugging a Program With dbx • May 2002

npc 0x000109c4:main+0x8st %l0, [%fp - 0x8]

f0f1 +0.00000000000000e+00

f2f3 +0.00000000000000e+00

f4f5 +0.00000000000000e+00

f6f7 +0.00000000000000e+00

replay Command

The replay command replays debugging commands since the last run , rerun , or

debug command. It is valid only in native mode.

Syntax

where:

number is the number of commands not to replay.

rerun Command

The rerun command runs the program with no arguments. It has identical syntax

and identical functionality in native mode and Java mode.

replay [- number] Replay all or all minus number commands since last run
command, rerun command, or debug command.
Appendix C Command Reference 309

Syntax

restore Command

The restore command restores dbx to a previously saved state. It is valid only in

native mode.

Syntax

where:

filename is the name of the file to which the dbx commands executed since the last

run , rerun , or debug command were saved.

rprint Command

The rprint command prints an expression using shell quoting rules. It is valid only

in native mode.

Syntax

where:

expression is the expression whose value you want to print.

format is the output format you want used to print the expression.

rerun Begin executing the program with no arguments

rerun arguments Begin executing the program with new arguments by the save
command (see “save Command” on page 313).

restore [filename] Restore dbx to the state it was in when it was saved.

rprint [-r|+r|-d|+d|
-p|+p|-L|-l|-f format|
-F format|--] expression

Print the value of the expression. No special quoting rules

apply, so rprin t a > b puts the value of a (if it exists)

into file b (see “print Command” on page 304 for the

meanings of the flags).
310 Debugging a Program With dbx • May 2002

rtc -showmap Command

The rtc -showmap command reports the address range of program text

categorized by instrumentation type. It is valid only in native mode.

Syntax

This command is intended for expert users, and internal debugging of dbx . Runtime

checking instruments program text for access checking. The instrumentation type

can be a branch or a trap instruction based on available resources. The rtc -
showmap command reports the address range of program text categorized by

instrumentation type. This map can be used to find an optimal location for adding

patch area object files, and to avoid the automatic use of traps. See “Runtime

Checking’s 8 Megabyte Limit” on page 123 for details.

run Command

The run command runs the program with arguments.

Use Control-C to stop executing the program.

Native Mode Syntax

where:

arguments are the arguments to be used in running the target process.

input_file is the file name of the file from which input is to be redirected.

output_file is the file name of the file to which output is to be redirected.

showmap Show address range of branches and traps (RTC)

run Begin executing the program with the current arguments

run arguments Begin executing the program with new arguments.

run ... >|>> input_file Set the output redirection.

run ... < output_file Set the input redirection.
Appendix C Command Reference 311

Note – There is currently no way to redirect stderr using the run or runargs
command.

Java Mode Syntax

where:

arguments are the arguments to be used in running the target process. They are

passed to the Java application, not to the JVM software. Do not include the main

class name as an argument.

You cannot redirect the input or output of a Java application with the run command.

Breakpoints you set in one run persist in subsequent runs.

runargs Command

The runargs command changes the arguments of the target process. It has identical

syntax and identical functionality in native mode and Java mode.

Use the debug command (see “debug Command” on page 270) with no arguments

to inspect the current arguments of the target process.

Syntax

where:

arguments are the arguments to be used in running the target process.

file is the file to which output from the target process or input to the target process

is to be redirected.

run Begin executing the program with the current arguments

run arguments Begin executing the program with new arguments.

runargs arguments Set the current arguments, to be used by the run command

(see “run Command” on page 311).

runargs ... >|>> file Set the output redirection to be used by the run command.

runargs ... < file Set the input redirection to be used by the run command.

runargs Clear the current arguments.
312 Debugging a Program With dbx • May 2002

save Command

The save command saves commands to a file. It is valid only in native mode.

Syntax

where:

number is the number of commands not to save.

filename is the name of the file to save the dbx commands executed since the last

run , rerun , or debug command.

scopes Command

The scopes command prints a list of active scopes. It is valid only in native mode.

Syntax

scopes

search Command

The search command searches forward in the current source file. It is valid only in

native mode

save [- number]
[filename]

Save all or all minus number commands since last run command,

rerun command, or debug command to the default file or

filename.
Appendix C Command Reference 313

Syntax

where:

string is the character string for which you wish to search.

showblock Command

The showblock command shows where the particular heap block was allocated

from runtime checking. It is valid only in native mode.

When memory use checking or memory leak checking is turned on, the showblock
command shows the details about the heap block at the specified address. The

details include the location of the blocks' allocation and its size. See “check
Command” on page 256.

Syntax

where:

address is the address of a heap block.

showleaks Command

The showleaks command reports new memory leaks since last showleaks
command. It is valid only in native mode.

In the default non-verbose case, a one line report per leak record is printed. Actual

leaks are reported followed by the possible leaks. Reports are sorted according to the

combined size of the leaks.

search string Search forward for string in the current file.

search Repeat search, using last search string

showblock -a address
314 Debugging a Program With dbx • May 2002

Syntax

where:

-a shows all the leaks generated so far (not just the leaks since the last

showleaks command).

-m m combines leaks; if the call stack at the time of allocation for two or more

leaks matches m frames, then these leaks are reported in a single combined leak

report. If the -m option is given, it overrides the global value of m specified with

the check command (see “check Command” on page 256)..

-n number shows up to number records in the report. The default is to show all

records.

-v Generate verbose output. The default is to show non-verbose output.

showmemuseCommand

The showmemusecommand shows memory used since last showmemusecommand.

It is valid only in native mode.

A one line report per “block in use” record is printed. The commands sorts the

reports according to the combined size of the blocks. Any leaked blocks since the last

showleaks command (see “showleaks Command” on page 314) are also included

in the report.

Syntax

where:

-a shows all the blocks in use (not just the blocks since the last showmemuse

command).

-m m combines the blocks in use reports. The default value of m is 2 or the global

value last given with the check command (see “check Command” on page 256).

If the call stack at the time of allocation for two or more blocks matches m frames

then these blocks are reported in a single combined report. If the -m option is

given, it overrides the global value of m.

-n number shows up to number records in the report. The default is 20.-v
generates verbose output. The default is to show non-verbose output.

showleaks [-a] [-m m] [-n number] [-v]

showmemuse [-a] [-m <m>] [-n number] [-v]
Appendix C Command Reference 315

source Command

The source command executes commands from a given file. It is valid only in native

mode.

Syntax

status Command

The status command lists event handlers (breakpoints, etc.). It has identical syntax

and identical functionality in native mode and Java mode.

Syntax

where:

handler_id is the identifier of an event handler.

Example

(dbx) status -s > bpts

...

(dbx) source bpts

source filename Execute commands from file filename. $PATH is not

searched.

status Print trace, when, and stop breakpoints in effect.

status handler_id Print status for handler handler_id.

status -h Print trace, when, and stop breakpoints in effect including #

the hidden ones.

status -s The same, but the output can be read by dbx.
316 Debugging a Program With dbx • May 2002

step Command

The step command steps one source line or statement (stepping into calls).

The dbx step_events environment variable controls whether breakpoints are

enabled during a step.

Native Mode Syntax

where:

n is the number of lines to step.

signal is the name of a signal.

thread_id is a thread ID.

lwp_id is an LWP ID.

function is a function name.

When an explicit thread_id or lwp_id is given, the deadlock avoidance measure of the

generic step command is defeated.

When executing the step to command, while an attempt is made to step into the

last assemble call instruction or step into a function (if specified) in the current

source code line, the call may not be taken due to a conditional branch. In a case

where the call is not taken or there is no function call in the current source code line,

the step to command steps over the current source code line. Take special

consideration on user-defined operators when using the step to command.

step Single step one line (step into calls). With multithreaded

programs when a function call is stepped over, all LWPs

(lightweight processes) are implicitly resumed for the

duration of that function call in order to avoid deadlock.

Non-active threads cannot be stepped.

step n Single step n lines (step into calls).

step up Step up and out of the current function.

step ... -sig signal Deliver the given signal while stepping.

step ... thread_id Step the given thread. Does not apply to step up .

step ... lwp_id Step the given LWP. Does not implicitly resume all LWPs

when stepping over a function.

step to [function] Attempts to step into func in the current source code line. If

func is not given, attempts to step into the last function

called as determined by the assembly code for the current

source code line.
Appendix C Command Reference 317

Java Mode Syntax

When executing the step to command, while an attempt is made to step into the

last assembler call instruction or step into a method (if specified) in the current

source code line, the call may not be taken due to a conditional branch. In a case

where the call is not taken or there is no method call in the current source code line,

the step to command steps over the current source code line. Take special

consideration on user-defined operators when using the step to command.

See also “stepi Command” on page 318 for machine-level stepping.

stepi Command

The stepi command steps one machine instruction (stepping into calls). It is valid

only in native mode.

step Single step one line (step into calls). With multithreaded

programs when a method call is stepped over, all LWPs

(lightweight processes) are implicitly resumed for the

duration of that method call in order to avoid deadlock.

Non-active threads cannot be stepped.

step n Single step n lines (step into calls).

step up Step up and out of the current method.

step ... tid Step the given thread. Does not apply to step up .

step ... lwpid Step the given LWP. Does not implicitly resume all LWPs

when stepping over a method.

step to [method] Attempts to step into method in the current source code line.

If method is not given, attempts to step into the last method

called as determined by the assembly code for the current

source code line.
318 Debugging a Program With dbx • May 2002

Syntax

where:

n is the number of instructions to step.

signal is the name of a signal.

lwp_id is an LWP ID.

thread_id is a thread ID.

stop Command

The stop command sets a source-level breakpoint.

Syntax

The stop command has the following general syntax:

stop event-specification [modifier]

When the specified event occurs, the process is stopped.

Native Mode Syntax

The following specific syntaxes are valid in native mode.

stepi Single step one machine instruction (step into calls).

stepi n Single step n machine instructions (step into calls).

stepi -sig signal Step and deliver the given signal.

stepi ... lwp_id Step the given LWP.

stepi ... thread_id Step the LWP on which the given thread is active.

stop [-update] Stop execution now. Only valid within the body of a

when command.

stop -noupdate Same as -update , but does not update dbx Debugger

views.

stop access mode
address_expression
[,byte_size_expression]

Stop execution when the memory specified by

address_expression has been accessed. See also “Stopping

Execution When an Address Is Accessed” on page 67.

stop at line_number Stop execution at line_number. See also “Setting a stop
Breakpoint at a Line of Source Code” on page 62.
Appendix C Command Reference 319

where:

line is the number of a source code line.

function is the name of a function.

class_name is the name of a C++ class, struct, union, or template class.

mode specifies how the memory was accessed. It can be composed of one or all of

the letters:

mode can also contain the following:

name is the name of a C++ function.

object_expression identifies a C++ object.

variable is the name of a variable.

stop change variable Stop execution when the value of variable has changed.

stop cond
condition_expression

Stop execution when the condition denoted by

condition_expression evaluates to true.

stop in function Stop execution when function is called. See also “Setting

a stop Breakpoint in a Function” on page 63.

stop inclass class_name
[-recurse |
-norecurse]

C++ only: Set breakpoints on all member functions of a

class, struct, union, or template class. -norecurese is

the default. If -recurse is specified, the base classes are

included. See also “Setting Breakpoints in Member

Functions of the Same Class” on page 65.

stop infunction name C++ only: Set breakpoints on all non-member functions

name.

stop inmember name C++ only: set breakpoints on all member functions name.
See “Setting Breakpoints in Member Functions of

Different Classes” on page 64.

stop inobject
object_expression [-
recurse |
-norecurse]

C++ only: set breakpoint on entry into any non-static

method of the class and all its base classes when called

from the object object_expression. -recurse is the

default. If -norecurse is specified, the base classes are

not included. See also “Setting Breakpoints in Objects”

on page 66.

r The memory at the specified address has been read.

w The memory has been written to.

x The memory has been executed.

a Stops the process after the access (default).

b Stops the process before the access.
320 Debugging a Program With dbx • May 2002

The following modifiers are valid in native mode.

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

-if
condition_expressio
n

The specified event occurs only when condition_expression evaluates to true.

-in function Execution stops only if the specified event occurs in function.

-count number Starting at 0, each time the event occurs, the counter is incremented. When

number is reached, execution stops and the counter is reset to 0.

-count
infinity

Starting at 0, each time the event occurs, the counter is incremented.

Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event occurs.

-disable Create the breakpoint in a disabled state.

-instr Do instruction level variation. For example, step becomes

instruction level stepping, and at takes a text address for an

argument instead of a line number.

-perm Make this event permanent across debug . Certain events (like

breakpoints) are not appropriate to be made permanent. delete
all will not delete permanent handlers, use delete hid.

-hidden Hide the event from the status command. Some import modules

may choose to use this. Use status -h to see them.

-lwp lwpid Execution stops only if the specified event occurs in the given LWP.

-thread tid Execution stops only if the specified event occurs in the given

thread.

stop access mode
class_name.field_name

Stop execution when the memory specified by

class_name.field_name has been accessed.

stop at line_number Stop execution at line_number.

stop at file_name: line_number Stop execution at line_number in file_name.

stop change
class_name.field_name

Stop execution when the value of field_name in class_name
has changed.

stop classload Stop execution when any class is loaded.

stop classload class_name Stop execution when class_name is loaded.

stop classunload Stop execution when any class is unloaded.

stop classunload class_name Stop execution when class_name is unloaded.

stop cond condition_expression Stop execution when the condition denoted by

condition_expression evaluates to true.
Appendix C Command Reference 321

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

condition_expression can be any expression, but it must evaluate to an integral

type.

field_name is the name of a field in the class.

file_name is the name of a file.

line_number is the number of a source code line.

method_name is the name of a Java method.

mode specifies how the memory was accessed. It can be composed of one or all of

the letters:

mode can also contain the following:

The program counter will point at the offending instruction.

parameters are the method’s parameters.

type is a type of Java exception. -unhandled or -unexpected can be used for

type.

stop in
class_name. method_name

Stop execution when class_name.method_name has been

entered, and the first line is about to be executed. If no

parameters are specified and the method is overloaded, a

list of methods is displayed.

stop in
class_name. method_name
([parameters])

Stop execution when class_name.method_name has been

entered, and the first line is about to be executed.

stop inmethod
class_name. method_name

Set breakpoints on all non-member methods

class_name. method_name.

stop inmethod
class_name. method_name
([parameters])

Set breakpoints on all non-member methods

class_name. method_name.

stop throw Stop execution when a Java exception has been thrown.

stop throw type Stop execution when a Java exception of type has been

thrown.

r The memory at the specified address has been read.

w The memory has been written to.

b Stops the process before the access.
322 Debugging a Program With dbx • May 2002

The following modifiers are valid in Java mode:

See also “stopi Command” on page 323 for setting a machine-level breakpoint.

For a list and the syntax of all events see “Setting Event Specifications” on page 231.

stopi Command

The stopi command sets a machine-level breakpoint. It is valid only in native

mode.

Syntax

The stopi command has the following general syntax:

stopi event-specification [modifier]

When the specified event occurs, the process is stopped.

The following specific syntaxes are valid:

where:

address is any expression resulting in or usable as an address.

function is the name of a function.

For a list and the syntax of all events see “Setting Event Specifications” on page 231.

-if condition_expression The specified event occurs only when condition_expression
evaluates to true.

-count number Starting at 0, each time the event occurs, the counter is

incremented. When number is reached, execution stops and the

counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is

incremented. Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event

occurs.

-disable Create the breakpoint in a disabled state.

stopi at address Stop execution at location address.

stopi in function Stop execution when function is called.
Appendix C Command Reference 323

suppress Command

The suppress command suppresses reporting of memory errors during runtime

checking. It is valid only in native mode.

If the dbx rtc_auto_suppress environment variable is on, the memory error at a

given location is reported only once.

Syntax

suppress History of suppress and unsuppress commands (not

including those specifying the -d and -reset options).

suppress -d List of errors being suppressed in functions not compiled for

debugging (default suppression). This list is per loadobject.

These errors can be unsuppressed only by using the

unsuppress with the -d option.

suppress -d errors Modify the default suppressions for all loadobjects by

further suppressing errors.

suppress -d e rrors in
loadobjects

Modify the default suppressions in the loadobjects by further

suppressing errors.

suppress -last At error location suppress present error.

suppress -reset Set the default suppression to the original value (startup

time)

suppress -r <id> ... Remove the unsuppress events as given by the id(s) (id(s)

can be obtained with unsuppress command (see

“unsuppress Command” on page 336).

suppress - r 0 | all | -
all

Remove all the unsuppress events as given by the

unsuppress command (see “unsuppress Command” on

page 336)

suppress e rrors Suppress errors everywhere

suppress errors in
[functions] [files]
[loadobjects]

Suppress errors in list of functions, list of files, and list of

loadobjects.

suppress errors at line Suppress errors at line.

suppress errors at
" file": line

Suppress errors at line in file.

suppress errors addr address Suppress errors at location address.
324 Debugging a Program With dbx • May 2002

where:

address is a memory address.

errors are blank separated and can be any combination of:

file is the name of a file.

files is the names of one or more files.

functions is one or more function names.

line is the number of a source code line.

loadobjects is one or more loadobject names.

See the “unsuppress Command” on page 336 for information on unsuppressing

errors.

sync Command

The sync command shows information about a given synchronization object. It is

valid only in native mode.

all All errors

aib Possible memory leak - address in block

air Possible memory leak - address in register

baf Bad free

duf Duplicate free

mel Memory leak

maf Misaligned free

mar Misaligned read

maw Misaligned write

oom Out of memory

rua Read from unallocated memory

rui Read from uninitialized memory

wro Write to read-only memory

wua Write to unallocated memory

biu Block in use (allocated memory). Though not an error, you can use biu just

like errors in the suppress commands.
Appendix C Command Reference 325

Syntax

where:

address is the address of the synchronization object.

syncs Command

The syncs command lists all synchronization objects (locks). It is valid only in

native mode.

Syntax

thread Command

The thread command lists or changes the current thread.

Native Mode Syntax

In the following variations, a missing thread_id implies the current thread.

sync -info address Show information about the synchronization object at

address.

syncs

thread Display current thread

thread thread_id Switch to thread thread_id.

thread -info [thread_id] Print everything known about the given thread.

thread -hide [thread_id] Hide the given (or current) thread. It will not show up in the

generic threads listing.

thread -unhide
[tid]

Unhide the given (or current) thread.

thread -unhide all Unhide all threads.

thread -suspend thread_id Keep the given thread from ever running. A suspended

thread shows up with an “S” in the threads list.

thread -resume thread_id Undo the effect of -suspend .
326 Debugging a Program With dbx • May 2002

where:

thread_id is a thread ID.

Java Mode Syntax

In the following variations, a missing thread_id implies the current thread.

where:

thread_id is a dbx -style thread ID of the form t@number or the Java thread name

specified for the thread.

threads Command

The threads command lists all threads.

thread -blocks
[thread_id]

List all locks held by the given thread blocking other

threads.

thread -blocked by
[thread_id]

Show which synchronization object the given thread is

blocked by, if any.

thread Display current thread

thread thread_id Switch to thread thread_id.

thread -info [thread_id] Print everything known about the given thread.

thread -hide [thread_id] Hide the given (or current) thread. It will not show up in the

generic threads listing.

thread -unhide
[thread_id]

Unhide the given (or current) thread.

thread -unhide all Unhide all threads.

thread -suspend thread_id Keep the given thread from ever running. A suspended

thread shows up with an S'in the threads list.

thread -resume thread_id Undo the effect of -suspend .

thread -blocks
[thread_id]

Lists the Java monitor owned by thread_id.

thread -blockedby
[thread_id]

Lists the Java monitor on which thread_id is blocked.
Appendix C Command Reference 327

Native Mode Syntax

Each line of information is composed of the following:

■ An * (asterisk) indicating that an event requiring user attention has occurred in

this thread. Usually this is a breakpoint.

An 'o' instead of an asterisk indicates that a dbx internal event has occurred.

■ An > (arrow) denoting the current thread.

■ t@num, the thread id, referring to a particular thread. The number is the thread_t
value passed back by thr_create .

■ b l@num or a l@num meaning the thread is bound to or active on the designated

LWP, meaning the thread is actually runnable by the operating system.

■ The “Start function” of the thread as passed to thr_create . A ?() means that

the start function is not known.

■ The thread state, which is one of the following:

■ monitor

■ running

■ sleeping

■ wait

■ unknown

■ zombie

■ The function that the thread is currently executing.

Java Mode Syntax

Each line of information in the listing is composed of the following:

■ An > (arrow) denoting the current thread

threads Print the list of all known threads.

threads -all Print threads normally not printed (zombies).

threads -mode all|filter Controls whether all threads are printed or threads are

filtered. The default is to filter threads.

threads -mode
auto|manual

Under the dbx Debugger, enables automatic updating of the

thread listing.

threads -mode Echo the current modes

threads Print the list of all known threads.

threads -all Print threads normally not printed (zombies).

threads -mode all|filter Controls whether all threads are printed or threads are

filtered. The default is to filter threads.

threads -mode
auto|manual

Under the dbx Debugger, enables automatic updating of the

thread listing.

threads -mode Echo the current modes
328 Debugging a Program With dbx • May 2002

■ t@number, a dbx -style thread ID

■ The thread state, which is one of the following:

■ monitor

■ running

■ sleeping

■ wait

■ unknown

■ zombie

■ The thread name in single quotation marks

■ A number indicating the thread priority

trace Command

The trace command shows executed source lines, function calls, or variable changes.

The speed of a trace is set using the dbx trace_speed environment variable.

If dbx is in Java mode and you want to set a trace breakpoint in native code, switch

to Native mode using the joff command (see “joff Command” on page 287) or

prefix the trace command with native (see “native Command” on page 299).

If dbx is in JNI mode and you want to set a trace breakpoint in Java code, prefix the

trace command with java (see “java Command” on page 286).

Syntax

The trace command has the following general syntax:

trace event-specification [modifier]

When the specified event occurs, a trace is printed.

Native Mode Syntax

The following specific syntaxes are valid in native mode:

trace -file file_name Direct all trace output to the given file_name. To revert trace

output to standard output use - for file_name. trace output is

always appended to file_name. It is flushed whenever dbx
prompts and when the application has exited. The filename is

always re-opened on a new run or resumption after an

attach.

trace step Trace each source line.
Appendix C Command Reference 329

where:

file_name is the name of the file to which you want trace output sent.

function is the name of a function.

line_number is the number of a source code line.

class is the name of a class.

variable is the name of a variable.

The following modifiers are valid in native mode.

trace next -in
function

Trace each source line while in the given function

trace at line_number Trace given source line.

trace in function Trace calls to and returns from the given function.

trace inmember
function

Trace calls to any member function named function.

trace infunction function Trace when any function named function is called.

trace inclass class Trace calls to any member function of class.

trace change variable Trace changes to the variable.

-if
condition_expression

The specified event occurs only when condition_expression evaluates to

true.

-in function Execution stops only if the specified event occurs in function.

-count number Starting at 0, each time the event occurs, the counter is incremented.

When number is reached, execution stops and the counter is reset to 0.

-count infinity Starting at 0, each time the event occurs, the counter is incremented.

Execution is not stopped.

-temp Create a temporary breakpoint that is deleted when the event occurs.

-disable Create the breakpoint in a disabled state.

-instr Do instruction level variation. For example, step becomes

instruction level stepping, and at takes a text address for an

argument instead of a line number.

-perm Make this event permanent across debug . Certain events (like

breakpoints) are not appropriate to be made permanent. delete
all will not delete permanent handlers, use delete hid.

-hidden Hide the event from the status command. Some import

modules may choose to use this. Use status -h to see them.

-lwp lwpid Execution stops only if the specified event occurs in the given

LWP.

-thread thread_idExecution stops only if the specified event occurs in the given

thread.
330 Debugging a Program With dbx • May 2002

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

where:

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier, for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers,

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

file_name is the name of a file.

line_number is the number of a source code line.

method_name is the name of a Java method.

parameters are the method’s parameters

trace -file file_name Direct all trace output to the given file_name. To revert trace

output to standard output use - for file_name. trace output is

always appended to file_name. It is flushed whenever dbx
prompts and when the application has exited. The file_name
is always re-opened on a new run or resumption after an

attach.

trace at line_number Trace line_number.

trace at
file_name. line_number

Trace given source file_name. line_number.

trace in
class_name. method_name

Trace calls to and returns from class_name. method_name.

trace in
class_name. method_name
([parameters])

Trace calls to and returns from

class_name. method_name([parameters]) .

trace inmethod
class_name. method_name

Trace calls to and returns from any method named

class_name. method_name is called.

trace inmethod
class_name. method_name
([parameters])

Trace calls to and returns from any method named

class_name. method_name([parameters]) is called.
Appendix C Command Reference 331

The following modifiers are valid in Java mode.

For a list and the syntax of all events see “Setting Event Specifications” on

page 231.

tracei Command

The tracei command shows machine instructions, function calls, or variable

changes. It is valid only in native mode.

tracei is really a shorthand for trace event-specification -instr where the

-instr modifier causes tracing to happen at instruction granularity instead of

source line granularity. When the event occurs, the printed information is in

disassembly format instead of source line format.

-if condition_expression The specified event occurs and the trace is printed only when

condition_expression evaluates to true.

-count number Starting at 0, each time the event occurs, the counter is

incremented. When number is reached, the trace is printed and

the counter is reset to 0.

-temp Create a temporary breakpoint that is deleted when the event

occurs and the trace is printed. If -temp is used with -count ,

the breakpoint is deleted only when the counter is reset to 0.

-disable Create the breakpoint in a disabled state.
332 Debugging a Program With dbx • May 2002

Syntax

where:

filename is the name of the file to which you want trace output sent.

function is the name of a function.

line is the number of a source code line.

class is the name of a class.

variable is the name of a variable.

See “trace Command” on page 329 for more information.

uncheck Command

The uncheck command disables checking of memory access, leaks, or usage. It is

valid only in native mode.

Syntax

tracei step Trace each machine instruction.

tracei next -in
function

Trace each instruction while in the given function.

tracei at address Trace the instruction at address.

tracei in function Trace calls to and returns from the given function.

tracei inmember function Trace calls to any member function named
function.

tracei infunction function Trace when any function named function is called.

tracei inclass class Trace calls to any member function of class.

tracei change variable Trace changes to the variable.

uncheck Print current status of checking.

uncheck -access Turn off access checking.

uncheck -leaks Turn off leak checking.

uncheck -memuse Turn off memuse checking (leak checking is turned off as

well).

uncheck -all Equivalent to uncheck -access ; uncheck -memuse .

uncheck [functions] [files]
[loadobjects]

Equivalent to suppress all in functions files loadobjects.
Appendix C Command Reference 333

where:

functions is one or more function names.

files is one or more file names.

loadobjects is one or more loadobject names

See “check Command” on page 256 for information to turn on checking.

See “suppress Command” on page 324 for information on suppressing of errors.

See “Capabilities of Runtime Checking” on page 95 for an introduction to runtime

checking.

undisplay Command

The undisplay command undoes display commands.

Native Mode Syntax

where:

expression is a valid expression.

Java Mode Syntax

where:

expression is a valid Java expression.

field_name is the name of a field in the class.

identifier is a local variable or parameter, including this , the current class

instance variable (object_name.field_name) or a class (static) variable

(class_name.field_name).

undisplay expression, ... Undo a display expression command.

undisplay n, ... Undo the display commands numbered n...

undisplay 0 Undo all display commands.

undisplay expression, ... |
identifier, ...

Undo a display expression, ... or display identifier,
... command.

undisplay n, ... Undo the display commands numbered n...

undisplay 0 Undo all display commands.
334 Debugging a Program With dbx • May 2002

unhide Command

The unhide command undoes hide commands. It is valid only in native mode.

Syntax

where:

regular_expression is a regular expression.

number is the number of a stack frame filter.

The hide command (see “hide Command” on page 284) lists the filters with

numbers.

unintercept Command

The unintercept command undoes intercept commands (C++ only). It is valid

only in native mode.

Syntax

where:

typename may be either -unhandled or -unexpected .

unhide 0 Delete all stack frame filters

unhide regular_expression Delete stack frame filter regular_expression.

unhide number Delete stack frame filter number number.

unintercept typename Delete typename from intercept list.

unintercept -a Delete all types from intercept list.

unintercept -x
typename

Delete typename from intercept -x list.

unintercept -x -a Delete all types from intercept -x list.

unintercept List intercepted types
Appendix C Command Reference 335

unsuppress Command

The unsuppress command undoes suppress commands. It is valid only in native

mode.

Syntax

up Command

The up command moves up the call stack (toward main). It has identical syntax and

identical functionality in native mode and in Java mode.

unsuppress History of suppress and unsuppress commands (not those

specifying the -d and -reset options)

unsuppress -d List of errors being unsuppressed in functions that are not

compiled for debugging. This list is per loadobject. Any

other errors can be suppressed only by using the suppress

command (see “suppress Command” on page 324) with

the -d option.

unsuppress -d errors Modify the default suppressions for all loadobjects by

further unsuppressing errors.

unsuppress -d errors in
loadobjects

Modify the default suppressions in the loadobjects by further

unsuppressing errors.

unsuppress -last At error location unsuppress present error.

unsuppress -reset Set the default suppression mask to the original value

(startup time).

unsuppress errors Unsuppress errors everywhere.

unsuppress errors in
[functions] [files]
[loadobjects]

Suppress errors in list of functions, list of files, and list of

loadobjects.

unsuppress errors at
line

Unsuppress errors at line.

unsuppress errors at
" file": line

Unsuppress errors at line in file.

unsuppress errors addr
address

Unsuppress errors at location address.
336 Debugging a Program With dbx • May 2002

Syntax

where:

number is a number of call stack levels.

use Command

The use command lists or changes the directory search path. It is valid only in

native mode.

This command is an anachronism and usage of this command is mapped to the

following pathmap commands:

use is equivalent to pathmap -s

use directory is equivalent to pathmap directory.

where:

array-expression is an expression that can be depicted graphically.

seconds is a number of seconds.

whatis Command

In native mode, the whatis command prints the type of expression or declaration of

type. In Java mode, the whatis command prints the declaration of an identifier. If

the identifier is a class, it prints method information for the class, including all

inherited methods.

up Move up the call stack one level.

up number Move up the call stack number levels.

up -h [number] Move up the call stack, but don't skip hidden frames.
Appendix C Command Reference 337

Native Mode Syntax

where:

name is the name of a non-type.

type is the name of a type.

expression is a valid expression.

-d shows dynamic type instead of static type (C++ only).

-e displays the type of an expression.

-n displays the declaration of a non-type. It is not necessary to specify -n ; this is

the default if you type the whatis command with no options.

-r prints information about base classes (C++ only).

-t displays the declaration of a type.

The whatis command, when run on a C++ class or structure, provides you with a

list of all the defined member functions (undefined member functions are not listed),

the static data members, the class friends, and the data members that are defined

explicitly within that class.

Specifying the -r (recursive) option adds information from the inherited classes.

The -d flag, when used with the -e flag, uses the dynamic type of the expression.

For C++, template-related identifiers are displayed as follows:

■ All template definitions are listed with whatis -t .

■ Function template instantiations are listed with whatis .

■ Class template instantiations are listed with whatis -t .

Java Mode Syntax

where:

identifier is a class, a method in the current class, a local variable in the current

frame, or a field in the current class.

whatis [-n] [-r] name Print the declaration of the non-type name.

whatis -t [-r] type Print the declaration of the type type

whatis -e [-r] [-d]
expression

Print the type of the expression expression.

whatis identifier Print the declaration of identifier.
338 Debugging a Program With dbx • May 2002

when Command

The when command executes commands when a specified event occurs.

If dbx is in Java mode and you want to set a when breakpoint in native code, switch

to Native mode using the joff command (see “joff Command” on page 287) or

prefix the when command with native (see “native Command” on page 299).

If dbx is in JNI mode and you want to set a when breakpoint in Java code, prefix the

when command with java (see “java Command” on page 286).

Syntax

The when command has the following general syntax:

when event-specification [modifier]{ command ... ; }

When the specified event occurs, the commands are executed.

Native Mode Syntax

The following specific syntaxes are valid in native mode:

where:

line_number is the number of a source code line.

command is the name of a command.

procedure is the name of a procedure.

when at line_number { command; } Execute command(s) when line_number is reached.

when in procedure { command; } Execute command(s) when procedure is called.
Appendix C Command Reference 339

Java Mode Syntax

The following specific syntaxes are valid in Java mode.

class_name is the name of a Java class, using either the package path (using period

(.) as a qualifier; for example, test1.extra.T1.Inner) or the full path name

(preceded by a pound sign (#) and using slash (/) and dollar sign ($) as qualifiers;

for example, #test1/extra/T1$Inner). Enclose class_name in quotation marks

if you use the $ qualifier.

file_name is the name of a file.

line_number is the number of a source code line.

method_name is the name of a Java method.

parameters are the method’s parameters.

For a list and the syntax of all events, see “Setting Event Specifications” on page 231.

See “wheni Command” on page 340 for executing commands on given low-level

event.

wheni Command

The wheni command executes commands when a given low-level event occurs. It is

valid only in native mode.

The wheni command has the following general syntax:

Syntax

wheni event-specification [modifier]{ command ... ; }

When the specified event occurs, the commands are executed.

when at line_number Execute command(s) when source line_number is reached.

when at file_name. line_numberExecute command(s) when file_name.line_number is reached.

when in
class_name. method_name

Execute command(s) when class_name.method_name is called.

when in
class_name. method_name
([parameters])

Execute command(s) when

class_name.method_name([parameters]) is called.
340 Debugging a Program With dbx • May 2002

The following specific syntax is valid:

where:

address is any expression resulting in or usable as an address.

command is the name of a command.

For a list and the syntax of all events see “Setting Event Specifications” on page 231.

where Command

The where command prints the call stack.

Native Mode Syntax

where:

number is a number of call stack frames.

Any of the above forms may be followed by a thread or LWP ID to obtain the

traceback for the specified entity.

wheni at address {
command; }

Execute command(s) when address is reached.

where Print a procedure traceback.

where number Print the number top frames in the traceback.

where -f number Start traceback from frame number.

where -h Include hidden frames.

where -l Include library name with function name

where -q Quick traceback (only function names).

where -v Verbose traceback (include function args and line info).
Appendix C Command Reference 341

Java Mode Syntax

where:

number is a number of call stack frames.

thread_id is a dbx -style thread ID or the Java thread name specified for the thread.

whereami Command

The whereami command displays the current source line. It is valid only in native

mode.

Syntax

whereis Command

The whereis command prints all uses of a given name, or symbolic name of an

address. It is valid only in native mode.

where [thread_id] Print a method traceback.

where [thread_id] number Print the number top frames in the traceback.

where -f [thread_id] number Start traceback from frame number.

where -q [thread_id] Quick trace back (only method names).

where -v [thread_id] Verbose traceback (include method arguments and line

information).

whereami Display the source line corresponding to the current location (top

of the stack), and the source line corresponding to the current

frame, if different.

whereami -instr Same as above, except that the current disassembled instruction

is printed instead of the source line.
342 Debugging a Program With dbx • May 2002

Syntax

where:

name is the name of a loadable object that is in scope; for example, a variable,

function, class template, or function template.

address is any expression resulting in or usable as an address.

which Command

The which command prints the full qualification of a given name. It is valid only in

native mode.

Syntax

where:

name is the name of something that is in scope; for example, a variable, function,

class template, or function template.

type is the name of a type.

-n displays the full qualification of a non-type. It is not necessary to specify -n ;

this is the default if you type the which command with no options.

-t displays the full qualification of a type.

whocatches Command

The whocatches command tells where a C++ exception would be caught. It is valid

only in native mode.

whereis name Print all declarations of name.

whereis -a address Print location of an address expression.

which [-n] name Print full qualification of name.

which -t type Print full qualification of type.
Appendix C Command Reference 343

Syntax

where:

type is the type of an exception.

whocatches type Tell where (if at all) an exception of type type would be

caught if thrown at the current point of execution. Assume

the next statement to be executed is a throw x where x is of

type type, and display the line number, function name, and

frame number of the catch clause that would catch it.

Will return " type is unhandled" if the catch point is in

the same function that is doing the throw.
344 Debugging a Program With dbx • May 2002

Index
SYMBOLS
:: (double-colon) C++ operator, 42

A
access checking, 101

access event, 233

accessible documentation, xxxi

adb command, 211, 251

adb mode, 211

address

display format, 205

examining contents at, 203

adjusting default dbx settings, 29

alias command, 21

array_bounds_check environment variable, 31

arrays

bounds, exceeding, 170

evaluating, 87

Fortran, 174

Fortran 95 allocatable, 175

slicing, 88, 91

syntax for C and C++, 88

syntax for Fortran, 89

striding, 88, 92

syntax for slicing, striding, 88

assembly language debugging, 203

assign command, 87, 135, 136, 226, 251

assigning a value to a variable, 87, 226

at event, 232

attach command, 55, 252

attach event, 238

attached process, using runtime checking on, 118

attaching

dbx to a running child process, 143

dbx to a running process, 18, 54

when dbx is not already running, 55

Auto-Read facility

and .o files, 50

and archive files, 50

and executable file, 51

default behavior, 50

B
backquote operator, 42

bcheck command, 121

examples, 122

syntax, 121

bind command, 219

block local operator, 43

breakpoints

clearing, 73

defined, 7, 61

deleting, using handler ID, 73

disabling, 74

enabling, 74

enabling after event occurs, 249

event efficiency, 74

event specifications, 232

In Function, 63

In Object, 66
Index 345

listing, 73

multiple, setting in nonmember functions, 65

On Value Change, 68

overview, 61

restrictions on, 72

setting

at a line, 7, 62

at a member function of a template class or at

a template function, 163

at all instances of a function template, 163

at an address, 211

at class template instantiations, 158, 162

at function template instantiations, 158, 162

in a function, 7, 63

in a shared library, 72

in an explicitly loaded library, 223

in member functions of different classes, 64

in member functions of the same class, 65

in objects, 66

in shared libraries, 223

machine level, 210

multiple breaks in C++ code, 64

on code that has not yet been loaded by the

JVM software, 191

setting filters on, 69

stop type, 61

determining when to set, 39

trace type, 62

when type, 62

setting at a line, 72

bsearch command, 253

C
C application that embeds a Java application,

debugging, 190

C source files, specifying the location of, 190

C++

ambiguous or overloaded functions, 40

backquote operator, 42

class

declarations, looking up, 46

definition, looking up, 48

displaying all the data members directly de-

fined by, 85

displaying all the data members inherited

from, 85

printing the declaration of, 48

seeing inherited members, 49

viewing, 46

compiling with the -g option, 21

compiling with the -g0 option, 21

double-colon scope resolution operator, 42

exception handling, 154

function template instantiations, listing, 47

inherited members, 49

mangled names, 43

object pointer types, 84

printing, 84

setting multiple breakpoints, 64

template debugging, 158

template definitions

displaying, 47

fixing, 136

tracing member functions, 71

unnamed arguments, 85

using dbx with, 153

C++ application that embeds a Java application

debugging, 190

C++ source files, specifying the location of, 190

call command, 58, 163, 227, 254

call stack, 77

defined, 77

deleting

all frame filters, 80

frames, 80

finding your place on, 77

frame, defined, 77

hiding frames, 80

looking at, 9

moving

down, 79

to a specific frame in, 79

up, 78

popping, 79, 134, 227

one frame of, 136

removing the stopped in function from, 79

walking, 41, 78

calling

a function, 58

a function instantiation or a member function of

a class template, 163

a procedure, 227

member template functions, 158

cancel command, 255
Index 346 Debugging a Program With dbx • May 2002

case sensitivity, Fortran, 166

catch blocks, 154

catch command, 149, 150, 255

catch signal list, 149

catching exceptions of a specific type, 155

change event, 234

changing

a function not yet called, 134

an executed function, 133

default signal lists, 149

function currently being executed, 134

function presently on the stack, 134

variables after fixing, 135

check command, 11, 97, 98, 256

checkpoints, saving a series of debugging runs

as, 26

child process

attaching dbx to, 143

debugging, 143

interacting with events, 145

using runtime checking on, 114

choosing among multiple occurrences of a

symbol, 41

class template instantiations, printing a list of, 158,

160

classes

displaying all the data members directly defined

by, 85

displaying all the data members inherited

from, 85

looking up declarations of, 46

looking up definitions of, 48

printing the declarations of, 48

seeing inherited members, 49

viewing, 46

CLASSPATHX environment variable, 186

clear command, 259

clearing breakpoints, 73

code compiled without -g option, 22

collector command, 259

collector dbxsample command, 260

collector disable command, 261

collector enable command, 261

collector heaptrace command, 261

collector hw_profile command, 262

collector mpitrace command, 263

collector pause command, 263

collector profile command, 263

collector resume command, 263

collector sample command, 264

collector show command, 264

collector status command, 265

collector store command, 265

collector synctrace command, 266

commands

adb , 211, 251

alias , 21

assign , 87, 135, 136, 226, 251

attach , 55, 252

bcheck , 121

bind , 219

bsearch , 253

call , 58, 163, 227, 254

cancel , 255

catch , 149, 150, 255

check , 11, 97, 98, 256

clear , 259

collector , 259

collector dbxsample , 260

collector disable , 261

collector enable , 261

collector heaptrace , 261

collector hw_profile , 262

collector mpitrace , 263

collector pause , 263

collector profile , 263

collector resume , 263

collector sample , 264

collector show , 264

collector status , 265

collector store , 265

collector synctrace , 266

cont , 57, 98, 133, 134, 136, 141, 228, 267

limitations for files compiled without debug-

ging information, 132

dalias , 267

dbx , 13, 18, 268

dbxenv , 20, 31, 270

debug , 14, 55, 143, 270

delete , 273

detach , 23, 55, 274

dis , 207, 274

display , 86, 275

down, 79, 276
Index 347

dump, 276

edit , 276

entering in adb(1) syntax, 211

examine , 204, 277

exception , 154, 277

exists , 278

file , 40, 278

files , 279

fix , 132, 133, 228, 279

effects of, 133

limitations for files compiled without debug-

ging information, 132

fixed , 280

frame , 79, 280

func , 40, 281

funcs , 282

gdb , 282

handler , 231, 283

hide , 80, 284

ignore , 148, 149, 284

import , 285

intercept , 155, 285

java , 286

jclasses , 287

joff , 287

jon , 287

jpkgs , 288

jstack , 286

kill , 24, 105, 288

language , 289

line , 289

list , 41, 164, 290

listi , 207, 292

loadobject , 292

loadobject -dumpelf , 293

loadobject -exclude , 294

loadobject -hide , 294

loadobject -list , 295

loadobject -load , 295

loadobject -unload , 296

loadobject -use , 296

lwp , 297

lwps , 141, 297

mmapfile , 297

module , 51, 298

modules , 51, 52, 299

native , 299

next , 56, 300

nexti , 208, 301

pathmap , 20, 38, 133, 302

pop , 80, 136, 227, 304

print , 84, 86, 88, 89, 164, 227, 304

proc , 306

process control, 53

prog , 307

quit , 307

regs , 211, 308

replay , 24, 27, 309

rerun , 309

restore , 24, 27, 310

rtc -showmap , 311

run , 53, 311

runargs , 312

save , 24, 313

scopes , 313

search , 313

showblock , 97, 314

showleaks , 105, 108, 109, 112, 314

showmemuse, 109, 315

source , 316

status , 316

step , 56, 154, 317

step to , 56, 317

step up , 56, 317

stepi , 208, 318

stop , 162, 163, 319

stop change , 68

stop inclass , 65

stop inmember , 64

stopi , 210, 323

suppress , 98, 110, 113, 324

sync , 325

syncs , 326

that alter the state of your program, 226

thread , 140, 326

threads , 140, 327

trace , 71, 329

tracei , 209, 332

uncheck , 98, 333

undisplay , 87, 334

unhide , 80, 335

unintercept , 155, 335

unsuppress , 110, 113, 336

up , 78, 336

use , 337

whatis , 47, 48, 85, 161, 337

when, 72, 228, 230, 339

wheni , 340
Index 348 Debugging a Program With dbx • May 2002

where , 78, 172, 341

whereami , 342

whereis , 45, 83, 160, 342

which , 41, 45, 83, 343

whocatches , 155, 343

x , 204

compilers, accessing, xxviii

compiling

optimized code, 21

with the -g option, 21

with the -O option, 21

your code for debugging, 1

cond event, 234

cont command, 57, 98, 133, 134, 136, 141, 228, 267

limitations for files compiled without debugging

information, 132

continuing execution of a program, 57

after fixing, 133

at a specified line, 57, 228

controlling the speed of a trace, 71

core file

debugging, 6, 14

debugging mismatched, 15

examining, 5

core_lo_pathmap environment variable, 31

creating

a .dbxrc file , 30

event handlers, 230

current procedure and file, 165

customizing dbx , 29

D
dalias command, 267

data change event specifications, 233

data member, printing, 47

dbx command, 13, 18, 268

dbx commands

Java expression evaluation in, 197

static and dynamic information used by when

debugging Java code, 198

using in Java mode, 197

valid only in Java mode, 201

with different syntax in Java mode, 200

with identical syntax and functionality in Java

mode and native mode, 199

dbx environment variables, 31

and the Korn shell, 36

array_bounds_check , 31

CLASSPATHX, 186

core_lo_pathmap , 31

disassembler_version , 31

fix_verbose , 31

follow_fork_inherit , 31, 145

follow_fork_mode , 32, 114, 144

follow_fork_mode_inner , 32

for Java debugging, 186

input_case_sensitive , 32, 166

JAVASRCPATH, 186

jdbx_mode , 186

jvm_invocation , 186

language_mode , 32

mt_scalable , 32

output_auto_flush , 32

output_base , 33

output_derived_type , 85

output_dynamic_type , 33, 154

output_inherited_members , 33

output_list_size , 33

output_log_file_name , 33

output_max_string_length , 33

output_pretty_print , 33

output_short_file_name , 33

overload_function , 33

overload_operator , 33

pop_auto_destruct , 33

proc_exclusive_attach , 33

rtc_auto_continue , 33, 98, 122

rtc_auto_suppress , 33, 111

rtc_biu_at_exit , 34, 109

rtc_error_limit , 34, 112

rtc_error_log_file_name , 34, 98, 122

rtc_error_stack , 34

rtc_inherit , 34

rtc_mel_at_exit , 34

run_autostart , 34

run_io , 34

run_pty , 34

run_quick , 34

run_savetty , 35

run_setpgrp , 35

scope_global_enums , 35

scope_look_aside , 35, 39

session_log_file_name , 35

setting with the dbxenv command, 30
Index 349

stack_find_source , 35

stack_max_size , 35

stack_verbose , 35

step_events , 35, 74

step_granularity , 35, 56

suppress_startup_message , 36

symbol_info_compression , 36

trace_speed , 36, 71

dbx modes for debugging Java code, 196

dbx , starting, 13

with core file name, 14

with process ID only, 18

dbxenv command, 20, 31, 270

.dbxrc file, 29

creating, 30

sample, 30

debug command, 14, 55, 143, 270

debugging

assembly language, 203

child processes, 143

code compiled without -g option, 22

core file, 6, 14

machine-instruction level, 203, 208

mismatched core file, 15

multithreaded programs, 137

optimized code, 21

debugging information

for a module, reading in, 51

for all modules, reading in, 51

debugging run

saved

replaying, 27

restoring, 26

saving, 24

declarations, looking up (displaying), 46

delete command, 273

deleting

all call stack frame filters, 80

call stack frames, 80

specific breakpoints using handler IDs, 73

dereferencing a pointer, 86

detach command, 23, 55, 274

detach event, 239

detaching a process from dbx , 23, 55

determining

cause of floating point exception (FPE), 150

location of floating point exception (FPE), 150

number of instructions executed, 248

number of lines executed, 248

the granularity of source line stepping, 56

where your program is crashing, 5

which symbol dbx uses, 45

differences between Korn shell and dbx
commands, 217

dis command, 207, 274

disassembler_version environment

variable, 31

display command, 86, 275

displaying

a stack trace, 81

all the data members directly defined by a

class, 85

all the data members inherited from a base

class, 85

an unnamed function argument, 86

declarations, 46

definitions of templates and instances, 158

inherited members, 48

source code for function template

instantiations, 158

symbols, occurrences of, 45

template definitions, 47

the definitions of templates and instances, 161

type of an exception, 154

variable type, 47

variables and expressions, 86

dlopen event, 235

dlopen()
restrictions on breakpoints, 72

setting a breakpoint, 72

documentation index, xxx

documentation, accessing, xxx to xxxi

down command, 79, 276

dump command, 276

dynamic linker, 221

E
edit command, 276

enabling a breakpoint after an event occurs, 249
Index 350 Debugging a Program With dbx • May 2002

error suppression, 110, 111

default, 113

examples, 112

types, 111

establishing a new mapping from directory to

directory, 20, 38

evaluating

a function instantiation or a member function of

a class template, 164

an unnamed function argument, 86

arrays, 87

event counters, 231

event handlers

creating, 230

manipulating, 231

setting, examples, 247

event specifications, 210, 229, 230, 231

access, 233

at, 232

attach, 238

change, 234

cond, 234

detach, 239

dlopen, 235

fault, 235

for breakpoint events, 232

for data change events, 233

for execution progress events, 237

for other types of events, 238

for system events, 234

in, 232

inclass, 232

infunction, 232

inmember, 232

inobject, 232, 233

keywords, defined, 231

lastrites, 239

lwp_exit, 236

modifiers, 241

next, 237

prog_gone, 239

prog_new, 239

returns, 237

returns function, 238

setting, 231

sig, 236

step, 238

stop, 239

sync, 240

syncrtld, 240

sysin, 237

sysout, 237

throw, 240

timer, 241

using predefined variables, 244

events

ambiguity, 243

child process interaction with, 145

parsing, 243

event-specific variables, 245

examine command, 204, 277

examining the contents of memory, 203

exception command, 154, 277

exception handling, 154

examples, 156

exceptions

floating point, determining cause of, 150

floating point, determining location of, 150

in Fortran programs, locating, 172

of a specific type, catching, 155

removing types from intercept list, 155

reporting where type would be caught, 155

type of, displaying, 154

exec function, following, 144

execution progress event specifications, 237

exists command, 278

expressions

complex, Fortran, 177

displaying, 86

interval, Fortran, 179

monitoring changes, 86

monitoring the value of, 86

printing the value of, 84, 227

turning off the display of, 87

F
fault event, 235

fflush(stdout) , after dbx calls, 58

field type

displaying, 47

printing, 47

file command, 40, 278
Index 351

files

archive, and Auto-Read facility, 50

finding, 20

location of, 37

navigating through, 39

qualifying name, 42

files command, 279

finding

object files, 20

source files, 20

your place on the call stack, 77

fix and continue, 131

how it operates, 132

modifying source code using, 132

restrictions, 132

using with runtime checking, 119

using with shared objects, 222

fix command, 132, 133, 228, 279

effects of, 133

limitations for files compiled without debugging

information, 132

fix_verbose environment variable, 31

fixed command, 280

fixing

C++ template definitions, 136

shared objects, 132

your program, 133, 228

floating point exception (FPE)

catching, 250

determining cause of, 150

determining location of, 150

follow_fork_inherit environment

variable, 31, 145

follow_fork_mode environment variable, 32,

114, 144

follow_fork_mode_inner environment

variable, 32

following

the exec function, 144

the fork function, 144

fork function, following, 144

Fortran

allocatable arrays, 175

array slicing syntax for, 89

case sensitivity, 166

complex expressions, 177

derived types, 180

interval expressions, 179

intrinsic functions, 176

logical operators, 179

structures, 180

FPE signal, trapping, 149

frame command, 79, 280

frame, defined, 77

func command, 40, 281

funcs command, 282

function argument, unnamed

displaying, 86

evaluating, 86

function template instantiations

displaying the source code for, 158

printing a list of, 158, 160

printing the values of, 158

functions

ambiguous or overloaded, 40

calling, 58

currently being executed, changing, 134

executed, changing, 133

instantiation

calling, 163

evaluating, 164

printing source listing for, 164

intrinsic, Fortran, 176

looking up definitions of, 46

member of a class template, calling, 163

member of class template, evaluating, 164

navigating through, 40

not yet called, changing, 134

obtaining names assigned by the compiler, 85

presently on the stack, changing, 134

qualifying name, 42

setting breakpoints in, 63

setting breakpoints in C++ code, 65

G
-g compiler option, 21

gdb command, 282

H
handler command, 231, 283

handler id, defined, 230
Index 352 Debugging a Program With dbx • May 2002

handlers, 229

creating, 230

enabling while within a function, 247

header file, modifying, 136

hide command, 80, 284

hiding call stack frames, 80

I
ignore command, 148, 149, 284

ignore signal list, 149

import command, 285

in event, 232

In Function breakpoint, 63

In Object breakpoint, 66

inclass event, 232

infunction event, 232

inherited members

displaying, 48

seeing, 49

inmember event, 232

inobject event, 232, 233

input_case_sensitive environment

variable, 32, 166

instances, displaying the definitions of, 158, 161

Intel registers, 213

intercept command, 155, 285

J
JAR file, debugging, 188

Java applications

attaching dbx to, 189

specifying custom wrappers for, 193

starting to debug, 187

that require 64-bit libraries, 189

types you can debug with dbx , 187

with wrappers, debugging, 189

Java class file, debugging, 187

Java code

capabilities of dbx with, 185

dbx modes for debugging, 196

limitations of dbx with, 185

using dbx with, 185

java command, 286

Java debugging, environment variables for, 186

Java source files, specifying the location of, 190

JAVASRCPATH environment variable, 186

jclasses command, 287

jdbx_mode environment variable, 186

joff command, 287

jon command, 287

jpkgs command, 288

jstack command, 286

JVM software

customizing startup of, 192

passing run arguments to, 190, 193

specifying 64-bit, 196

specifying a path name for, 193

jvm_invocation environment variable, 186

K
key bindings for editors, displaying or

modifying, 219

kill command, 24, 105, 288

killing

program, 24

program only, 24

Korn shell

differences from dbx , 217

extensions, 218

features not implemented, 217

renamed commands, 218

L
language command, 289

language_mode environment variable, 32

lastrites event, 239

LD_PRELOAD, 119

libraries

dynamically linked, setting breakpoints in, 72

shared, compiling for dbx , 22

librtc.so , preloading, 118

librtld_db.so , 222

libthread.so , 137

libthread_db.so , 137
Index 353

line command, 289

link map, 222

linker names, 43

list command, 41, 164, 290

listi command, 207, 292

listing

all program modules that contain debugging

information, 52

breakpoints, 73

C++ function template instantiations, 47

debugging information for modules, 51

names of all program modules, 52

names of modules containing debugging

information that have already been read into

dbx, 52

signals currently being ignored, 149

signals currently being trapped, 149

traces, 73

loading your program, 2

loadobject command, 292

loadobject -dumpelf command, 293

loadobject -exclude command, 294

loadobject -hide command, 294

loadobject -list command, 295

loadobject -load command, 295

loadobject -unload command, 296

loadobject -use command, 296

loadobject, defined, 44, 221

locating

object files, 20

source files, 20

looking up

definitions of classes, 48

definitions of functions, 46

definitions of members, 46

definitions of types, 48

definitions of variables, 46

the this pointer, 48

lwp command, 297

lwp_exit event, 236

LWPs (lightweight processes), 137

information displayed for, 141

showing information about, 141

lwps command, 141, 297

M
machine-instruction level

address, setting breakpoint at, 211

debugging, 203

Intel registers, 213

printing the value of all the registers, 211

setting breakpoint at address, 210

single stepping, 208

SPARC registers, 212

tracing, 209

man pages, accessing, xxviii

manipulating event handlers, 231

MANPATH environment variable, setting, xxx

member functions

printing, 47

setting multiple breakpoints in, 64

tracing, 71

member template functions, 158

members

declarations, looking up, 46

looking up declarations of, 46

looking up definitions of, 46

viewing, 46

memory

address display formats, 205

display modes, 203

examining contents at address, 203

states, 101

memory access

checking, 101

turning on, 11, 97, 98

error report, 102

errors, 102, 125

memory leak

checking, 103, 105

turning on, 11, 97, 98

errors, 104, 128

fixing, 108

report, 106

memory use checking, 109

turning on, 11, 97, 98

mmapfile command, 297

modifying a header file, 136

module command, 51, 298
Index 354 Debugging a Program With dbx • May 2002

modules

all program, listing, 52

containing debugging information that have

already been read into dbx, listing, 52

current, printing the name of, 52

listing debugging information for, 51

that contain debugging information, listing, 52

modules command, 51, 52, 299

monitoring the value of an expression, 86

moving

down the call stack, 79

to a specific frame in the call stack, 79

up the call stack, 78

mt_scalable environment variable, 32

multithreaded programs, debugging, 137

N
native command, 299

navigating

through a file, 39

through functions, 40

through functions by walking the call stack, 41

next command, 56, 300

next event, 237

nexti command, 208, 301

O
object pointer types, 84

obtaining the function name assigned by the

compiler, 85

operators

backquote, 42

block local, 43

C++ double colon scope resolution, 42

optimized code

compiling, 21

debugging, 21

output_auto_flush environment variable, 32

output_base environment variable, 33

output_derived_type environment

variable, 85

output_dynamic_type environment

variable, 33, 154

output_inherited_members environment

variable, 33

output_list_size environment variable, 33

output_log_file_name environment

variable, 33

output_max_string_length environment

variable, 33

output_pretty_print environment

variable, 33

output_short_file_name environment

variable, 33

overload_function environment variable, 33

overload_operator environment variable, 33

P
PATH environment variable, setting, xxix

pathmap command, 20, 38, 133, 302

pointers

dereferencing, 86

printing, 183

pop command, 80, 136, 227, 304

pop_auto_destruct environment variable, 33

popping

one frame of the call stack, 136

the call stack, 79, 134, 227

predefined variables for event specification, 244

preloading librtc.so , 118

print command, 84, 86, 88, 89, 164, 227, 304

printing

a list of all class and function template

instantiations, 158, 160

a list of occurrences of a symbol, 45

a pointer, 183

a source listing, 41

arrays, 87

data member, 47

field type, 47

list of all known threads, 140

list of threads normally not printed

(zombies), 140

member functions, 47

the declaration of a type or C++ class, 48

the name of the current module, 52

the source listing for the specified function

instantiation, 164
Index 355

the value of a variable or expression, 84

the value of all the machine-level registers, 211

the value of an expression, 227

values of function template instantiations, 158

variable type, 47

proc command, 306

proc_exclusive_attach environment

variable, 33

proc_gone event, 239

procedure linkage tables, 222

procedure, calling, 227

process

attached, using runtime checking on, 118

child

attaching dbx to, 143

using runtime checking on, 114

detaching from dbx , 23, 55

running, attaching dbx to, 54, 55

stopping execution, 23

stopping with Ctrl+C, 59

process control commands, definition, 53

prog command, 307

prog_new event, 239

program

continuing execution of, 57

after fixing, 133

at a specified line, 228

fixing, 133, 228

killing, 24

multithreaded

debugging, 137

resuming execution of, 141

resuming execution of at a specific line, 57

running, 53

under dbx, impacts of, 225

with runtime checking turned on, 98

single stepping through, 56

status, checking, 249

stepping through, 56

stopping execution

if a conditional statement evaluates to true, 69

if the value of a specified variable has

changed, 68

stripped, 23

Q
qualifying symbol names, 42

quit command, 307

quitting a dbx session, 23

quitting dbx , 12

R
reading a stack trace, 81

reading in

debugging information for a module, 51

debugging information for all modules, 51

registers

Intel, 213

printing the value of, 211

SPARC, 212

regs command, 211, 308

removing

exception types from intercept list, 155

the stopped in function from the call stack, 79

replay command, 24, 27, 309

replaying a saved debugging run, 27

reporting where an exception type would be

caught, 155

rerun command, 309

resetting application files for replay, 249

restore command, 24, 27, 310

restoring a saved debugging run, 26

resuming

execution of a multithreaded program, 141

program execution at a specific line, 57

returns event, 237

returns function event, 238

rtc -showmap command, 311

rtc_auto_continue environment variable, 33,

98, 122

rtc_auto_suppress environment variable, 33,

111

rtc_biu_at_exit environment variable, 34

rtc_error_limit environment variable, 34, 112

rtc_error_log_file_name environment

variable, 34, 98, 122

rtc_error_stack environment variable, 34

rtc_inherit environment variable, 34
Index 356 Debugging a Program With dbx • May 2002

rtc_mel_at_exit environment variable, 34

rtld , 221

run command, 53, 311

run_autostart environment variable, 34

run_io environment variable, 34

run_pty environment variable, 34

run_quick environment variable, 34

run_savetty environment variable, 35

run_setpgrp environment variable, 35

runargs command, 312

running a program, 4, 53

in dbx without arguments, 5, 54

with runtime checking turned on, 98

runtime checking

8 megabyte limit on non-UltraSPARC

processors, 124

a child process, 114

access checking, 101

an attached process, 118

application programming interface, 121

error suppression, 110

errors, 125

fixing memory leaks, 108

limitations, 97

memory access

checking, 101

error report, 102

errors, 102, 125

memory leak

checking, 103, 105

error report, 106

errors, 104, 128

memory use checking, 109

possible leaks, 104

requirements, 96

suppressing errors, 110

default, 113

examples, 112

suppression of last error, 111

troubleshooting tips, 123

turning off, 98

types of error suppression, 111

using fix and continue with, 119

using in batch mode, 121

directly from dbx , 122

when to use, 96

S
sample .dbxrc file, 30

save command, 24, 313

saving

debugging run to a file, 24, 26

series of debugging runs as checkpoints, 26

scope

changing the current, 38

defined, 38

lookup rules, relaxing, 39

setting current, 39

scope resolution operators, 42

scope resolution search path, 44

scope_global_enums environment variable, 35

scope_look_aside environment variable, 35, 39

scopes command, 313

search command, 313

search order for symbols, 44

segmentation fault

finding line number of, 171

Fortran, causes, 170

generating, 171

selecting from a list of C++ ambiguous function

names, 40

session, dbx
quitting, 23

starting, 13

session_log_file_name environment

variable, 35

setting

a trace, 71

breakpoints

at a member function of a template class or at

a template function, 163

at all instances of a function template, 163

in member functions of different classes, 64

in member functions of the same class, 65

in objects, 66

on code that has not yet been loaded by the

JVM software, 191

dbx environment variables with the dbxenv
command, 30

filters on breakpoints, 69

multiple breakpoints in nonmember

functions, 65
Index 357

shared libraries

compiling for dbx , 22

setting breakpoints in, 223

shared objects

fixing, 132

using fix and continue with, 222

shell prompts, xxviii

showblock command, 97, 314

showleaks command, 105, 108, 109, 112, 314

showmemuse command, 109, 315

sig event, 236

signals

cancelling, 147

catching, 149

changing default lists, 149

forwarding, 148

FPE, trapping, 149

handling automatically, 151

ignoring, 149

listing those currently being ignored, 149

listing those currently being trapped, 149

sending in a program, 151

single stepping

at the machine-instruction level, 208

through a program, 56

slicing

arrays, 91

C and C++ arrays, 88

Fortran arrays, 89

source command, 316

source listing, printing, 41

SPARC registers, 212

specifying a path for class files that use custom class

loaders, 191

stack frame, defined, 77

stack trace, 172

displaying, 81

example, 81, 82

reading, 81

stack_find_source environment variable, 35

stack_max_size environment variable, 35

stack_verbose environment variable, 35

starting dbx , 2

status command, 316

step command, 56, 154, 317

step event, 238

step to command, 56, 317

step up command, 56, 317

step_events environment variable, 35, 74

step_granularity environment variable, 35, 56

stepi command, 208, 318

stepping through a program, 8, 56

stop at command, 62, 63

stop change command, 68

stop command, 162, 163, 319

stop event, 239

stop inclass command, 65

stop inmember command, 64

stopi command, 210, 323

stopping

a process with Ctrl+C, 59

in all member functions of a template class, 162

process execution, 23

program execution

if a conditional statement evaluates to true, 69

if the value of a specified variable has

changed, 68

striding across slices of arrays, 92

stripped programs, 23

suppress command, 98, 110, 113, 324

suppress_startup_message environment

variable, 36

suppression of last error, 111

symbol names, qualifying scope, 42

symbol_info_compression environment

variable, 36

symbols

choosing among multiple occurrences of, 41

determining which dbx uses, 45

printing a list of occurrences, 45

sync command, 325

sync event, 240

syncrtld event, 240

syncs command, 326

sysin event, 237

sysout event, 237

system event specifications, 234
Index 358 Debugging a Program With dbx • May 2002

T
templates

class, 158

stopping in all member functions of, 162

displaying the definitions of, 158, 161

function, 158

instantiations, 158

printing a list of, 158, 160

looking up declarations of, 48

thread command, 140, 326

threads

current, displaying, 140

information displayed for, 138

list, viewing, 140

other, switching viewing context to, 140

printing list of all known, 140

printing list of normally not printed

(zombies), 140

switching to by thread id, 140

threads command, 140, 327

throw event, 240

timer event, 241

trace command, 71, 329

trace output, directing to a file, 72

trace_speed environment variable, 36, 71

tracei command, 209, 332

traces

controlling speed of, 71

implementing, 247

listing, 73

setting, 71

tracing at the machine-instruction level, 209

trip counters, 231

troubleshooting tips, runtime checking, 123

turning off

runtime checking, 98

the display of a particular variable or

expression, 87

the display of all currently monitored

variables, 87

turning on

memory access checking, 11, 97, 98

memory leak checking, 98

memory use checking, 11, 97, 98

types

declarations, looking up, 46

derived, Fortran, 180

looking up declarations of, 46

looking up definitions of, 48

printing the declaration of, 48

viewing, 46

typographic conventions, xxvii

U
uncheck command, 98, 333

undisplay command, 87, 334

unhide command, 80, 335

unintercept command, 155, 335

unsuppress command, 110, 113, 336

up command, 78, 336

use command, 337

V
variable type, displaying, 47

variables

assigning values to, 87, 226

changing after fixing, 135

declarations, looking up, 46

determining which dbx is evaluating, 83

displaying functions and files in which

defined, 83

event specific, 245, 246

examining, 10

looking up declarations of, 46

looking up definitions of, 46

monitoring changes, 86

outside of scope, 84

printing the value of, 84

qualifying names, 42

turning off the display of, 87

viewing, 46

verifying which variable dbx is evaluating, 83
Index 359

viewing

classes, 46

members, 46

the context of another thread, 140

the threads list, 140

types, 46

variables, 46

W
walking the call stack, 41, 78

whatis command, 47, 48, 85, 161, 337

when breakpoint at a line, setting, 72

when command, 72, 228, 230, 339

wheni command, 340

where command, 78, 172, 341

whereami command, 342

whereis command, 45, 83, 160, 342

which command, 41, 45, 83, 343

whocatches command, 155, 343

X
x command, 204
Index 360 Debugging a Program With dbx • May 2002

	Debugging a Program With dbx
	Contents
	Tables
	Figures
	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Compilers and Tools
	Accessing Forte Developer Man Pages

	Accessing Forte Developer Documentation
	Product Documentation in Accessible Formats
	Related Forte Developer Documentation

	Accessing Related Solaris Documentation
	Sending Your Comments

	Getting Started With dbx
	Compiling Your Code for Debugging
	Starting dbx and Loading Your Program
	Running Your Program in dbx
	Debugging Your Program With dbx
	Examining a Core File
	Setting Breakpoints
	Stepping Through Your Program
	Looking at the Call Stack
	Examining Variables
	Finding Memory Access Problems and Memory Leaks

	Quitting dbx
	Accessing dbx Online Help

	Starting dbx
	Starting a Debugging Session
	Debugging a Core File
	Debugging a Core File in the Same Operating Environment
	If Your Core File is Truncated
	Debugging a Mismatched Core File
	Eliminating Shared Library Problems
	Things to Remember

	Using the Process ID
	The dbx Startup Sequence
	Setting Startup Properties
	Mapping the Compile-time Directory to the Debug-time Directory
	Setting dbx Environment Variables
	Creating Your Own dbx Commands

	Compiling a Program for Debugging
	Debugging Optimized Code
	Code Compiled Without the -g Option
	Shared Libraries Require the -g Option for Full dbx Support
	Completely Stripped Programs

	Quitting Debugging
	Stopping a Process Execution
	Detaching a Process From dbx
	Killing a Program Without Terminating the Session

	Saving and Restoring a Debugging Run
	Using the save Command
	Saving a Series of Debugging Runs as Checkpoints
	Restoring a Saved Run
	Prerequisites for an Exact Restoration of a Saved Run

	Saving and Restoring Using replay

	Customizing dbx
	Using the dbx Initialization File
	Creating a .dbxrc File
	Initialization File Sample

	Setting dbx Environment Variables
	The dbx Environment Variables and the Korn Shell

	Viewing and Navigating Through Code
	Mapping to the Location of the Code
	Scope
	Changing the Current Scope
	Relaxing the Scope Lookup Rules

	Navigating Through Code
	Navigating Through a File
	Navigating Through Functions
	Selecting From a List of C++ Ambiguous Function Names
	Choosing Among Multiple Occurrences

	Printing a Source Listing
	Walking the Call Stack to Navigate Through Code

	Qualifying Symbols With Scope Resolution Operators
	Backquote Operator
	C++ Double Colon Scope Resolution Operator
	Block Local Operator
	Linker Names
	Scope Resolution Search Path

	Locating Symbols
	Printing a List of Occurrences of a Symbol
	Determining Which Symbol dbx Uses

	Viewing Variables, Members, Types, and Classes
	Looking Up Definitions of Variables, Members, and Functions
	Looking Up Definitions of Types and Classes

	Using the Auto-Read Facility
	Debugging Without the Presence of .o Files
	Listing Debugging Information for Modules
	Listing Modules

	Controlling Program Execution
	Running a Program
	Attaching dbx to a Running Process
	Detaching dbx From a Process
	Stepping Through a Program
	Single Stepping
	Continuing Execution of a Program
	Calling a Function

	Using Ctrl+C to Stop a Process

	Setting Breakpoints and Traces
	Setting Breakpoints
	Setting a stop Breakpoint at a Line of Source Code
	Setting a stop Breakpoint in a Function
	Setting Multiple Breaks in C++ Programs
	Setting Breakpoints in Member Functions of Different Classes
	Setting Breakpoints in Member Functions of the Same Class
	Setting Multiple Breakpoints in Nonmember Functions
	Setting Breakpoints in Objects

	Setting Data Change Breakpoints
	Stopping Execution When an Address Is Accessed
	Stopping Execution When Variables Change
	Stopping Execution on a Condition

	Setting Filters on Breakpoints
	Tracing Execution
	Setting a Trace
	Controlling the Speed of a Trace
	Directing Trace Output to a File

	Setting a when Breakpoint at a Line
	Setting a Breakpoint in a Shared Library
	Listing and Clearing Breakpoints
	Listing Breakpoints and Traces
	Deleting Specific Breakpoints Using Handler ID Numbers

	Enabling and Disabling Breakpoints
	Efficiency Considerations

	Using the Call Stack
	Finding Your Place on the Stack
	Walking the Stack and Returning Home
	Moving Up and Down the Stack
	Moving Up the Stack
	Moving Down the Stack
	Moving to a Specific Frame

	Popping the Call Stack
	Hiding Stack Frames
	Displaying and Reading a Stack Trace

	Evaluating and Displaying Data
	Evaluating Variables and Expressions
	Verifying Which Variable dbx Uses
	Variables Outside the Scope of the Current Function
	Printing the Value of a Variable, Expression, or Identifier
	Printing C++
	Evaluating Unnamed Arguments in C++ Programs

	Dereferencing Pointers
	Monitoring Expressions
	Turning Off Display (Undisplaying)

	Assigning a Value to a Variable
	Evaluating Arrays
	Array Slicing
	Array Slicing Syntax for C and C++
	Array Slicing Syntax for Fortran

	Slices
	Strides

	Using Runtime Checking
	Capabilities of Runtime Checking
	When to Use Runtime Checking
	Runtime Checking Requirements
	Limitations

	Using Runtime Checking
	Turning On Memory Use and Memory Leak Checking
	Turning On Memory Access Checking
	Turning On All Runtime Checking
	Turning Off Runtime Checking
	Running Your Program

	Using Access Checking (SPARC Only)
	Understanding the Memory Access Error Report
	Memory Access Errors

	Using Memory Leak Checking
	Detecting Memory Leak Errors
	Possible Leaks
	Checking for Leaks
	Understanding the Memory Leak Report
	Generating a Leak Report
	Combining Leaks

	Fixing Memory Leaks

	Using Memory Use Checking
	Suppressing Errors
	Types of Suppression
	Suppression by Scope and Type
	Suppression of Last Error
	Limiting the Number of Errors Reported

	Suppressing Error Examples
	Default Suppressions
	Using Suppression to Manage Errors

	Using Runtime Checking on a Child Process
	Using Runtime Checking on an Attached Process
	Using Fix and Continue With Runtime Checking
	Runtime Checking Application Programming Interface
	Using Runtime Checking in Batch Mode
	bcheck Syntax
	bcheck Examples
	Enabling Batch Mode Directly From dbx

	Troubleshooting Tips
	Runtime Checking’s 8 Megabyte Limit
	Runtime Checking Errors
	Access Errors
	Bad Free (baf) Error
	Duplicate Free (duf) Error
	Misaligned Free (maf) Error
	Misaligned Read (mar) Error
	Misaligned Write (maw) Error
	Out of Memory (oom) Error
	Read From Unallocated Memory (rua) Error
	Read From Uninitialized Memory (rui) Error
	Write to Read-Only Memory (wro) Error
	Write to Unallocated Memory (wua) Error

	Memory Leak Errors
	Address in Block (aib) Error
	Address in Register (air) Error
	Memory Leak (mel) Error

	Fixing and Continuing
	Using Fix and Continue
	How Fix and Continue Operates
	Modifying Source Using Fix and Continue

	Fixing Your Program
	Continuing After Fixing
	Changing an Executed Function
	Changing a Function Not Yet Called
	Changing a Function Currently Being Executed
	Changing a Function Presently on the Stack

	Changing Variables After Fixing
	Modifying a Header File
	Fixing C++ Template Definitions

	Debugging Multithreaded Applications
	Understanding Multithreaded Debugging
	Thread Information
	Viewing the Context of Another Thread
	Viewing the Threads List
	Resuming Execution

	Understanding LWP Information

	Debugging Child Processes
	Attaching to Child Processes
	Following the exec Function
	Following the fork Function
	Interacting With Events

	Working With Signals
	Understanding Signal Events
	Catching Signals
	Changing the Default Signal Lists
	Trapping the FPE Signal
	Determining Where the Exception Occurred
	Determining the Cause of the Exception

	Sending a Signal in a Program
	Automatically Handling Signals

	Debugging C++
	Using dbx With C++
	Exception Handling in dbx
	Commands for Handling Exceptions
	exception [-d | +d] Command
	intercept [-a] [-x] [typename] Command
	unintercept [-a] [-x] [typename] Command
	whocatches typename Command

	Examples of Exception Handling

	Debugging With C++ Templates
	Template Example
	Commands for C++ Templates
	whereis name Command
	whatis name Command
	stop inclass classname Command
	stop infunction name Command
	stop in function Command
	call function_name (parameters) Command
	print Expressions
	list Expressions

	Debugging Fortran Using dbx
	Debugging Fortran
	Current Procedure and File
	Uppercase Letters
	Sample dbx Session

	Debugging Segmentation Faults
	Using dbx to Locate Problems

	Locating Exceptions
	Tracing Calls
	Working With Arrays
	Fortran 95 Allocatable Arrays

	Showing Intrinsic Functions
	Showing Complex Expressions
	Showing Interval Expressions
	Showing Logical Operators
	Viewing Fortran 95 Derived Types
	Pointer to Fortran 95 Derived Type

	Debugging a Java Application With dbx
	Using dbx With Java Code
	Capabilities of dbx With Java Code
	Limitations of dbx With Java Code

	Environment Variables for Java Debugging
	Starting to Debug a Java Application
	Debugging a Class File
	Debugging a JAR File
	Debugging a Java Application That Has a Wrapper
	Attaching dbx to a Running Java Application
	Debugging a C Application or C++ Application That Embeds a Java Application
	Passing Arguments to the JVM Software
	Specifying the Location of Your Java Source Files
	Specifying the Location of Your C Source Files or C++ Source Files
	Specifying a Path for Class Files That Use Custom Class Loaders
	Setting Breakpoints on Code That Has Not Yet Been Loaded by the JVM Software

	Customizing Startup of the JVM Software
	Specifying a Path Name for the JVM Software
	Passing Run Arguments to the JVM Software
	Specifying a Custom Wrapper for Your Java Application
	Using a Custom Wrapper That Accepts Command-Line Options
	Using a Custom Wrapper That Does Not Accept Command- Line Options

	Specifying 64-bit JVM Software

	dbx Modes for Debugging Java Code
	Switching from Java or JNI Mode to Native Mode
	Switching Modes When You Interrupt Execution

	Using dbx Commands in Java Mode
	The Java Expression Evaluation in dbx Commands
	Static and Dynamic Information Used by dbx Commands
	Commands With Identical Syntax and Functionality in Java Mode and Native Mode
	Commands With Different Syntax in Java Mode
	Commands Valid Only in Java Mode

	Debugging at the Machine�Instruction Level
	Examining the Contents of Memory
	Using the examine or x Command
	Addresses
	Formats
	Count
	Examples of Using an Address

	Using the dis Command
	Using the listi Command

	Stepping and Tracing at Machine- Instruction Level
	Single Stepping at the Machine-Instruction Level
	Tracing at the Machine-Instruction Level

	Setting Breakpoints at the Machine- Instruction Level
	Setting a Breakpoint at an Address

	Using the adb Command
	Using the regs Command
	Platform-Specific Registers
	SPARC Register Information

	Intel Register Information

	Using dbx With the Korn Shell
	ksh-88 Features Not Implemented
	Extensions to ksh-88
	Renamed Commands
	Rebinding of Editing Functions

	Debugging Shared Libraries
	Dynamic Linker
	Link Map
	Startup Sequence and .init Sections
	Procedure Linkage Tables

	Fix and Continue
	Setting Breakpoints in Shared Libraries
	Setting a Breakpoint in a Explicitly Loaded Library

	Modifying a Program State
	Impacts of Running a Program Under dbx
	Commands That Alter the State of the Program
	assign Command
	pop Command
	call Command
	print Command
	when Command
	fix Command
	cont at Command

	Event Management
	Event Handlers
	Creating Event Handlers
	Manipulating Event Handlers
	Using Event Counters
	Setting Event Specifications
	Breakpoint Event Specifications
	in function
	at [filename:]lineno
	infunction function
	inmember function inmethod function
	inclass classname [-recurse | -norecurse]
	inobject object-expression [-recurse | -norecurse]

	Data Change Event Specifications
	access mode address-expression [, byte-size-expression]
	change variable
	cond condition-expression

	System Event Specifications
	dlopen [lib-path] | dlclose [lib-path]
	fault fault
	lwp_exit
	sig signal
	sig signal sub-code
	sysin code | name
	sysout code | name
	sysin | sysout

	Execution Progress Event Specifications
	next
	returns
	returns function
	step

	Other Event Specifications
	attach
	detach
	lastrites
	proc_gone
	prog_new
	stop
	sync
	syncrtld
	throw
	throw type
	throw -unhandled
	throw -unexpected
	timer seconds

	Event Specification Modifiers
	-if condition
	-in function
	-disable
	-count n -count infinity
	-temp
	-instr
	-thread thread_id
	-lwp lwp_id
	-hidden
	-perm

	Parsing and Ambiguity
	Using Predefined Variables
	Variables Valid for when Command
	$handlerid
	$booting

	Variables Valid for Specific Events

	Setting Event Handler Examples
	Setting a Breakpoint for Store to an Array Member
	Implementing a Simple Trace
	Enabling a Handler While Within a Function (in function)
	Determining the Number of Lines Executed
	Determining the Number of Instructions Executed by a Source Line
	Enabling a Breakpoint After an Event Occurs
	Resetting Application Files for replay
	Checking Program Status
	Catch Floating Point Exceptions

	Command Reference
	adb Command
	Syntax

	assign Command
	Native Mode Syntax
	Java Mode Syntax

	attach Command
	Syntax

	bsearch Command
	Syntax

	call Command
	Native Mode Syntax
	Java Mode Syntax

	cancel Command
	Syntax

	catch Command
	Syntax

	check Command
	Syntax

	clear Command
	Syntax

	collector Command
	Syntax
	collector dbxsample Command
	Syntax

	collector disable Command
	Syntax

	collector enable Command
	Syntax

	collector heaptrace Command
	Syntax

	collector hwprofile Command
	Syntax

	collector limit Command
	Syntax

	collector mpitrace Command
	Syntax

	collector pause Command
	Syntax

	collector profile Command
	Syntax

	collector resume Command
	Syntax

	collector sample Command
	Syntax

	collector show Command
	Syntax

	collector status Command
	Syntax

	collector store Command
	Syntax

	collector synctrace Command
	Syntax

	cont Command
	The cont command causes the process to continue execution. It has identical syntax and identical ...
	Syntax

	dalias Command
	Syntax

	dbx Command
	Native Mode Syntax
	Java Mode Syntax
	Options

	dbxenv Command
	Syntax

	debug Command
	Native Mode Syntax
	Java Mode Syntax
	Options

	delete Command
	Syntax

	detach Command
	Native Mode Syntax
	Java Mode Syntax

	dis Command
	Syntax

	display Command
	Native Mode Syntax
	Java Mode Syntax

	down Command
	Syntax

	dump Command
	Syntax

	edit Command
	Syntax

	examine Command
	Syntax

	exception Command
	Syntax

	exists Command
	Syntax

	file Command
	Syntax

	files Command
	Native Mode Syntax
	Java Mode Syntax

	fix Command
	Syntax

	fixed Command
	Syntax

	frame Command
	Syntax

	func Command
	Native Mode Syntax
	Java Mode Syntax

	funcs Command
	Syntax

	gdb Command
	Syntax

	handler Command
	Syntax

	hide Command
	Syntax

	ignore Command
	Syntax

	import Command
	Syntax

	intercept Command
	Syntax

	java Command
	Syntax

	javastack Command
	Syntax

	jclasses Command
	Syntax

	joff Command
	Syntax

	jon Command
	Syntax

	jpkgs Command
	Syntax

	kill Command
	Syntax

	language Command
	Syntax

	line Command
	Syntax
	Examples

	list Command
	Syntax
	Options
	Examples

	listi Command
	loadobject Command
	Syntax
	loadobject -dumpelf Command
	Syntax

	loadobject -exclude Command
	Syntax

	loadobject -hide Command
	Syntax

	loadobject -list Command
	Syntax

	loadobject -load Command
	Syntax
	loadobject -unload Command
	Syntax

	loadobject -use Command
	Syntax

	lwp Command
	Syntax

	lwps Command
	Syntax

	mmapfile Command
	Syntax

	module Command
	Syntax
	Example

	modules Command
	Syntax

	native Command
	Syntax

	next Command
	Native Mode Syntax
	Java Mode Syntax

	nexti Command
	Syntax

	pathmap Command
	Syntax
	Examples

	pop Command
	Syntax

	print Command
	Native Mode Syntax
	Java Mode Syntax

	proc Command
	Syntax

	prog Command
	Syntax

	quit Command
	Syntax

	regs Command
	Syntax
	Example (SPARC platform)

	replay Command
	Syntax

	rerun Command
	Syntax

	restore Command
	Syntax

	rprint Command
	Syntax

	rtc -showmap Command
	Syntax

	run Command
	Native Mode Syntax
	Java Mode Syntax

	runargs Command
	Syntax

	save Command
	Syntax

	scopes Command
	Syntax

	search Command
	Syntax

	showblock Command
	Syntax

	showleaks Command
	Syntax

	showmemuse Command
	Syntax

	source Command
	Syntax

	status Command
	Syntax
	Example

	step Command
	Native Mode Syntax
	Java Mode Syntax

	stepi Command
	Syntax

	stop Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	stopi Command
	Syntax

	suppress Command
	Syntax

	sync Command
	Syntax

	syncs Command
	Syntax

	thread Command
	Native Mode Syntax
	Java Mode Syntax

	threads Command
	Native Mode Syntax
	Java Mode Syntax

	trace Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	tracei Command
	Syntax

	uncheck Command
	Syntax

	undisplay Command
	Native Mode Syntax
	Java Mode Syntax

	unhide Command
	Syntax

	unintercept Command
	Syntax

	unsuppress Command
	Syntax

	up Command
	Syntax

	use Command
	whatis Command
	Native Mode Syntax
	Java Mode Syntax

	when Command
	Syntax
	Native Mode Syntax
	Java Mode Syntax

	wheni Command
	Syntax

	where Command
	Native Mode Syntax
	Java Mode Syntax

	whereami Command
	Syntax

	whereis Command
	Syntax

	which Command
	Syntax

	whocatches Command
	Syntax

	Index

