
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

C User’s Guide

Forte Developer 7

Part No. 816-2454-10
May 2002, Revision A

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xxix

Typographic Conventions xxx

Shell Prompts xxxi

Accessing Forte Developer Development Tools and Man Pages xxxi

Accessing Forte Developer Compilers and Tools xxxi

Accessing Forte Developer Man Pages xxxii

Accessing Forte Developer Documentation xxxiii

Product Documentation in Accessible Formats xxxiv

Related Forte Developer Documentation xxxiv

Accessing Related Solaris Documentation xxxv

Sending Your Comments xxxv

1. Introduction to the C Compiler 1-1

1.1 Standards Conformance 1-1

1.2 Organization of the Compiler 1-1

1.3 C-Related Programming Tools 1-3

2. C-Compiler Information Specific to Sun’s Implementation 2-1

2.1 Environment Variables 2-1

2.1.1 OMP_DYNAMIC 2-1
iii

2.1.2 OMP_NESTED2-1

2.1.3 OMP_NUM_THREADS2-1

2.1.4 OMP_SCHEDULE2-2

2.1.5 PARALLEL 2-2

2.1.6 SUN_PROFDATA2-2

2.1.7 SUN_PROFDATA_DIR 2-2

2.1.8 SUNPRO_SB_INIT_FILE_NAME 2-2

2.1.9 SUNW_MP_THR_IDLE2-2

2.1.10 TMPDIR 2-3

2.2 Keywords 2-3

2.2.1 _ _asm Keyword 2-3

2.2.2 _Restrict Keyword 2-3

2.3 long long Data Type 2-4

2.3.1 Printing long long Data Types 2-4

2.3.2 Usual Arithmetic Conversions 2-4

2.4 Constants 2-5

2.4.1 Integral Constants 2-5

2.4.2 Character Constants 2-6

2.5 Include Files 2-6

2.5.1 Using the -I- Option to Change the Search Algorithm 2-8

2.6 Nonstandard Floating Point 2-10

2.7 Preprocessing Directives and Names 2-11

2.7.1 Assertions 2-11

2.7.2 Pragmas 2-12

2.7.3 Predefined Names 2-21

2.8 Labels as Values 2-22
iv C User’s Guide • May 2002

3. Parallelizing Sun C Code 3-1

3.1 Overview 3-1

3.1.1 Example of Use 3-1

3.2 Parallelizing for OpenMP 3-2

3.2.1 Handling OpenMP Runtime Warnings 3-2

3.3 Environment Variables 3-2

3.4 Data Dependence and Interference 3-5

3.4.1 Parallel Execution Model 3-7

3.4.2 Private Scalars and Private Arrays 3-8

3.4.3 Storeback 3-10

3.4.4 Reduction Variables 3-11

3.5 Speedups 3-12

3.5.1 Amdahl’s Law 3-12

3.6 Load Balance and Loop Scheduling 3-17

3.6.1 Static or Chunk Scheduling 3-17

3.6.2 Self Scheduling 3-17

3.6.3 Guided Self Scheduling 3-18

3.7 Loop Transformations 3-18

3.7.1 Loop Distribution 3-18

3.7.2 Loop Fusion 3-19

3.7.3 Loop Interchange 3-21

3.8 Aliasing and Parallelization 3-22

3.8.1 Array and Pointer References 3-22

3.8.2 Restricted Pointers 3-23

3.8.3 Explicit Parallelization and Pragmas 3-24

4. Incremental Link Editor (ild) 4-1

4.1 Introduction 4-1
Contents v

4.2 Overview of Incremental Linking 4-1

4.3 How to Use ild 4-2

4.4 How ild Works 4-4

4.5 What ild Cannot Do 4-5

4.6 Reasons for Full Relinks 4-6

4.6.1 ild Deferred-Link Messages 4-6

4.6.2 ild Relink Messages 4-6

4.6.3 Example 1: Internal Free Space Exhausted 4-7

4.6.4 Example 2: Running strip 4-7

4.6.5 Example 3: ild Version 4-8

4.6.6 Example 4: Too Many Files Changed 4-8

4.6.7 Example 5: Full Relink 4-8

4.6.8 Example 6: New Working Directory 4-9

4.7 ild Options 4-9

4.7.1 -a 4-9

4.7.2 -B dynamic | static 4-10

4.7.3 -d y |n 4-10

4.7.4 -e epsym 4-10

4.7.5 -g 4-10

4.7.6 -I name 4-10

4.7.7 -i 4-11

4.7.8 -L path 4-11

4.7.9 -l x 4-11

4.7.10 -m 4-11

4.7.11 -o outfile 4-11

4.7.12 -Q y |n 4-12

4.7.13 -R path 4-12
vi C User’s Guide • May 2002

4.7.14 -s 4-12

4.7.15 -t 4-12

4.7.16 -u symname 4-12

4.7.17 -V 4-12

4.7.18 -xildoff 4-13

4.7.19 -xildon 4-13

4.7.20 -YP, dirlist 4-13

4.7.21 -z allextract |defaultextract | weakextract 4-13

4.7.22 -z defs 4-13

4.7.23 -z i_dryrun 4-14

4.7.24 -z i_full 4-14

4.7.25 -z i_noincr 4-14

4.7.26 -z i_quiet 4-14

4.7.27 -z i_verbose 4-14

4.7.28 -z nodefs 4-14

4.8 Options Passed to ild From the Compilation System 4-14

4.8.1 -a 4-15

4.8.2 -e epsym 4-15

4.8.3 -I name 4-15

4.8.4 -m 4-15

4.8.5 -t 4-15

4.8.6 -u symname 4-15

4.8.7 Environment 4-16

4.9 ld Options not Supported by ild 4-18

4.9.1 -B symbolic 4-18

4.9.2 -b 4-18

4.9.3 -G 4-18
Contents vii

4.9.4 -h name 4-18

4.9.5 -z muldefs 4-19

4.9.6 -z text 4-19

4.10 Additional Unsupported Commands 4-19

4.10.1 -D token,token, ... 4-19

4.10.2 -F name 4-19

4.10.3 -M mapfile 4-19

4.10.4 -r 4-20

4.11 Files That ild Uses 4-20

5. lint Source Code Checker 5-1

5.1 Basic and Enhanced lint Modes 5-1

5.2 Using lint 5-2

5.3 The lint Options 5-4

5.3.1 -# 5-4

5.3.2 -### 5-4

5.3.3 -a 5-5

5.3.4 -b 5-5

5.3.5 -C filename 5-5

5.3.6 -c 5-5

5.3.7 -dirout= dir 5-5

5.3.8 -err=warn 5-5

5.3.9 -errchk= l(, l) 5-6

5.3.10 -errfmt= f 5-7

5.3.11 -errhdr= h 5-7

5.3.12 -erroff= tag(, tag) 5-8

5.3.13 -errtags= a 5-9

5.3.14 -errwarn= t 5-9
viii C User’s Guide • May 2002

5.3.15 -F 5-10

5.3.16 -fd 5-10

5.3.17 -flagsrc= file 5-10

5.3.18 -h 5-10

5.3.19 -I dir 5-10

5.3.20 -k 5-10

5.3.21 -L dir 5-10

5.3.22 -l x 5-11

5.3.23 -m 5-11

5.3.24 -Ncheck= c 5-11

5.3.25 -Nlevel= n 5-12

5.3.26 -n 5-13

5.3.27 -o x 5-13

5.3.28 -p 5-13

5.3.29 -R file 5-13

5.3.30 -s 5-13

5.3.31 -u 5-14

5.3.32 -V 5-14

5.3.33 -v 5-14

5.3.34 -Wfile 5-14

5.3.35 -x 5-14

5.3.36 -XCC=a 5-14

5.3.37 -Xalias_level[= l] 5-15

5.3.38 -Xarch=v9 5-15

5.3.39 -Xexplicitpar= a 5-15

5.3.40 -Xkeeptmp= a 5-15

5.3.41 -Xtemp= dir 5-15
Contents ix

5.3.42 -Xtime= a 5-16

5.3.43 -Xtransition= a 5-16

5.3.44 -y 5-16

5.4 lint Messages 5-16

5.4.1 Options to Suppress Messages 5-16

5.4.2 lint Message Formats 5-17

5.5 lint Directives 5-20

5.5.1 Predefined Values 5-20

5.5.2 Directives 5-20

5.6 lint Reference and Examples 5-24

5.6.1 Diagnostics Performed by lint 5-24

5.6.2 lint Libraries 5-29

5.6.3 lint Filters 5-30

6. Type-Based Alias Analysis 6-1

6.1 Introduction to Type-Based Analysis 6-1

6.2 Using Pragmas for Finer Control 6-2

6.3 Checking With lint 6-5

6.3.1 Struct Pointer Cast of Scalar Pointer 6-6

6.3.2 Struct Pointer Cast of Void Pointer 6-6

6.3.3 Cast of Struct Field to Structure Pointer 6-7

6.3.4 Explicit Aliasing Required 6-7

6.4 Examples of Memory Reference Constraints 6-8

7. Transitioning to ISO C 7-1

7.1 Basic Modes 7-1

7.1.1 -Xa 7-1

7.1.2 -Xc 7-1
x C User’s Guide • May 2002

7.1.3 -Xs 7-2

7.1.4 -Xt 7-2

7.2 A Mixture of Old- and New-Style Functions 7-2

7.2.1 Writing New Code 7-2

7.2.2 Updating Existing Code 7-3

7.2.3 Mixing Considerations 7-3

7.3 Functions With Varying Arguments 7-6

7.4 Promotions: Unsigned Versus Value Preserving 7-9

7.4.1 Background 7-9

7.4.2 Compilation Behavior 7-9

7.4.3 First Example: The Use of a Cast 7-10

7.4.4 Bit-fields 7-11

7.4.5 Second Example: Same Result 7-11

7.4.6 Integral Constants 7-11

7.4.7 Third Example: Integral Constants 7-12

7.5 Tokenization and Preprocessing 7-13

7.5.1 ISO C Translation Phases 7-13

7.5.2 Old C Translation Phases 7-14

7.5.3 Logical Source Lines 7-15

7.5.4 Macro Replacement 7-15

7.5.5 Using Strings 7-16

7.5.6 Token Pasting 7-17

7.6 const and volatile 7-17

7.6.1 Types, Only for lvalue 7-18

7.6.2 Type Qualifiers in Derived Types 7-18

7.6.3 const Means readonly 7-19

7.6.4 Examples of const Usage 7-20
Contents xi

7.6.5 volatile Means Exact Semantics 7-20

7.6.6 Examples of volatile Usage 7-20

7.7 Multibyte Characters and Wide Characters 7-21

7.7.1 Asian Languages Require Multibyte Characters 7-21

7.7.2 Encoding Variations 7-22

7.7.3 Wide Characters 7-22

7.7.4 Conversion Functions 7-23

7.7.5 C Language Features 7-23

7.8 Standard Headers and Reserved Names 7-24

7.8.1 Standard Headers 7-24

7.8.2 Names Reserved for Implementation Use 7-25

7.8.3 Names Reserved for Expansion 7-26

7.8.4 Names Safe to Use 7-26

7.9 Internationalization 7-27

7.9.1 Locales 7-27

7.9.2 The setlocale() Function 7-27

7.9.3 Changed Functions 7-28

7.9.4 New Functions 7-29

7.10 Grouping and Evaluation in Expressions 7-30

7.10.1 Definitions 7-30

7.10.2 The K&R C Rearrangement License 7-31

7.10.3 The ISO C Rules 7-32

7.10.4 The Parentheses 7-32

7.10.5 The As If Rule 7-32

7.11 Incomplete Types 7-33

7.11.1 Types 7-33

7.11.2 Completing Incomplete Types 7-34
xii C User’s Guide • May 2002

7.11.3 Declarations 7-34

7.11.4 Expressions 7-34

7.11.5 Justification 7-35

7.11.6 Examples 7-35

7.12 Compatible and Composite Types 7-36

7.12.1 Multiple Declarations 7-36

7.12.2 Separate Compilation Compatibility 7-36

7.12.3 Single Compilation Compatibility 7-37

7.12.4 Compatible Pointer Types 7-37

7.12.5 Compatible Array Types 7-37

7.12.6 Compatible Function Types 7-37

7.12.7 Special Cases 7-38

7.12.8 Composite Types 7-38

8. Converting Applications for a 64-Bit Environment 8-1

8.1 Overview of the Data Model Differences 8-1

8.2 Implementing Single Source Code 8-2

8.2.1 Derived Types 8-3

8.2.2 Tools 8-6

8.3 Converting to the LP64 Data Type Model 8-7

8.3.1 Integer and Pointer Size Change 8-7

8.3.2 Integer and Long Size Change 8-8

8.3.3 Sign Extension 8-8

8.3.4 Pointer Arithmetic Instead of Integers 8-10

8.3.5 Structures 8-10

8.3.6 Unions 8-11

8.3.6 Type Constants 8-12

8.3.7 Beware of Implicit Declarations 8-12
Contents xiii

8.3.8 sizeof() Is an Unsigned long 8-13

8.3.9 Use Casts to Show Your Intentions 8-13

8.3.10 Check Format String Conversion Operation 8-14

8.4 Other Considerations 8-15

8.4.1 Derived Types That Have Grown in Size 8-15

8.4.2 Check for Side Effects of Changes 8-15

8.4.3 Check Whether Literal Uses of long Still Make Sense 8-15

8.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes 8-16

8.4.5 Calling Convention Changes 8-16

8.4.6 Algorithm Changes 8-16

8.5 Checklist for Getting Started 8-16

9. cscope : Interactively Examining a C Program 9-1

9.1 The cscope Process 9-1

9.2 Basic Use 9-2

9.2.1 Step 1: Set Up the Environment 9-2

9.2.2 Step 2: Invoke the cscope Program 9-3

9.2.3 Step 3: Locate the Code 9-4

9.2.4 Step 4: Edit the Code 9-10

9.2.5 Command-Line Options 9-11

9.2.6 View Paths 9-14

9.2.7 cscope and Editor Call Stacks 9-15

9.2.8 Examples 9-15

9.2.9 Command-Line Syntax for Editors 9-19

9.3 Unknown Terminal Type Error 9-20

A. C Compiler Options A-1

A.1 Option Syntax A-1
xiv C User’s Guide • May 2002

A.2 Options Summary A-2

A.3 The cc Options A-8

A.3.1 -# A-9

A.3.2 -### A-9

A.3.3 -A name[(tokens)] A-9

A.3.4 -B [static |dynamic] A-9

A.3.5 -C A-10

A.3.6 -c A-10

A.3.7 -D name[=tokens] A-10

A.3.8 -d [y|n] A-11

A.3.9 -dalign A-11

A.3.10 -E A-11

A.3.11 -errfmt [=[no%]error] A-12

A.3.12 -erroff [=t] A-12

A.3.13 -errshort [=i] A-13

A.3.14 -errtags [=a] A-13

A.3.15 -errwarn [=t] A-13

A.3.16 -fast A-14

A.3.17 -fd A-16

A.3.18 -flags A-17

A.3.19 -fnonstd A-17

A.3.20 -fns [={no,yes }] A-17

A.3.21 -fprecision= p A-18

A.3.22 -fround= r A-18

A.3.23 -fsimple [=n] A-18

A.3.24 -fsingle A-19

A.3.25 -fstore A-19
Contents xv

A.3.26 -ftrap= t A-20

A.3.27 -G A-20

A.3.28 -g A-20

A.3.29 -H A-21

A.3.30 -h name A-22

A.3.31 -I [-| dir] A-22

A.3.32 -i A-22

A.3.33 -KPIC A-22

A.3.34 -Kpic A-23

A.3.35 -keeptmp A-23

A.3.36 -L dir A-23

A.3.37 -l name A-23

A.3.38 -mc A-23

A.3.39 -misalign A-23

A.3.40 -misalign2 A-24

A.3.41 -mr [, string] A-24

A.3.42 -mt A-24

A.3.43 -native A-24

A.3.44 -nofstore A-24

A.3.45 -O A-24

A.3.46 -o filename A-25

A.3.47 -P A-25

A.3.48 -p A-25

A.3.49 -Q[y|n] A-25

A.3.50 -qp A-25

A.3.51 -R dir[: dir] A-25

A.3.52 -S A-26
xvi C User’s Guide • May 2002

A.3.53 -s A-26

A.3.54 -U name A-26

A.3.55 -V A-27

A.3.56 -v A-27

A.3.57 -Wc, arg A-27

A.3.58 -w A-28

A.3.59 -X [c|a|t |s] A-28

A.3.60 -x386 A-29

A.3.61 -x486 A-29

A.3.62 -xa A-29

A.3.63 -xalias_level [=l] A-30

A.3.64 -xarch= isa A-32

A.3.65 -xautopar A-37

A.3.66 -xbuiltin [=(%all |%none)] A-38

A.3.67 -xCC A-39

A.3.68 -xc99 [=o] A-39

A.3.69 -xcache [=c] A-39

A.3.70 –xcg [89|92] A-40

A.3.71 -xchar [=o] A-41

A.3.72 -xchar_byte_order [=o] A-42

A.3.73 -xcheck [=o] A-42

A.3.74 -xchip [=c] A-43

A.3.75 -xcode [=v] A-44

A.3.76 -xcrossfile [=n] A-45

A.3.77 -xcsi A-46

A.3.78 -xdepend A-46

A.3.79 -xe A-46
Contents xvii

A.3.80 -xexplicitpar A-47

A.3.81 -xF A-47

A.3.82 -xhelp= f A-48

A.3.83 -xildoff A-48

A.3.84 -xildon A-48

A.3.85 -xinline= list A-48

A.3.86 -xipo [=a] A-50

A.3.87 -xlibmieee A-51

A.3.88 -xlibmil A-51

A.3.89 -xlic_lib=sunperf A-52

A.3.90 -xlicinfo A-52

A.3.91 -xloopinfo A-52

A.3.92 -xM A-52

A.3.93 -xM1 A-53

A.3.94 -xMerge A-53

A.3.95 -xmaxopt [=v] A-54

A.3.96 -xmemalign= ab A-54

A.3.97 -xnativeconnect [=a[, a]...] A-55

A.3.98 -xnolib A-56

A.3.99 -xnolibmil A-56

A.3.100 -xO [1|2|3|4|5] A-56

A.3.101 -xopenmp [=i] A-58

A.3.102 -xP A-59

A.3.103 -xparallel A-59

A.3.104 -xpentium A-60

A.3.105 -xpg A-60

A.3.106 -xprefetch= [val], val A-60
xviii C User’s Guide • May 2002

A.3.107 -xprefetch_level =l A-61

A.3.108 -xprofile= p A-62

A.3.109 -xreduction A-64

A.3.110 -xregs= r[,r…] A-64

A.3.111 -xrestrict [=f] A-65

A.3.112 -xs A-66

A.3.113 -xsafe=mem A-67

A.3.114 -xsb A-67

A.3.115 -xsbfast A-67

A.3.116 -xsfpconst A-67

A.3.117 -xspace A-67

A.3.118 -xstrconst A-68

A.3.119 -xtarget= t A-68

A.3.120 -xtemp= dir A-73

A.3.121 -xtime A-73

A.3.122 -xtransition A-73

A.3.123 -xtrigraphs A-74

A.3.124 -xunroll= n A-75

A.3.125 -xvector [={yes |no}] A-75

A.3.126 -xvpara A-75

A.3.127 -Y c, dir A-76

A.3.128 -YA, dir A-76

A.3.129 -YI, dir A-76

A.3.130 -YP, dir A-76

A.3.131 -YS, dir A-76

A.3.132 -Zll A-76

A.4 Options Passed to the Linker A-77
Contents xix

B. ISO C Data Representations B-1

B.1 Storage Allocation B-1

B.2 Data Representations B-2

B.2.1 Integer Representations B-3

B.2.2 Floating-Point Representations B-4

B.2.3 Exceptional Values B-6

B.2.4 Hexadecimal Representation of Selected Numbers B-7

B.2.5 Pointer Representation B-7

B.2.6 Array Storage B-8

B.2.7 Arithmetic Operations on Exceptional Values B-8

B.3 Argument-Passing Mechanism B-10

C. Implementation-Defined ISO/IEC C Behavior C-1

C.1 Implementation Compared to the ISO Standard C-1

C.1.1 Translation (G.3.1) C-1

C.1.2 Environment (G.3.2) C-2

C.1.3 Identifiers (G.3.3) C-2

C.1.4 Characters (G.3.4) C-3

C.1.5 Integers (G.3.5) C-5

C.1.6 Floating-Point (G.3.6) C-7

C.1.7 Arrays and Pointers (G.3.7) C-8

C.1.8 Registers (G.3.8) C-9

C.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) C-9

C.1.10 Qualifiers (G.3.10) C-11

C.1.11 Declarators (G.3.11) C-11

C.1.12 Statements (G.3.12) C-11

C.1.13 Preprocessing Directives (G.3.13) C-11

C.1.14 Library Functions (G.3.14) C-13
xx C User’s Guide • May 2002

C.1.15 Locale-Specific Behavior (G.4) C-19

D. Supported Features of C99 D-1

D.1 Idempotent Qualifiers D-1

D.2 _Pragma D-2

D.3 Mixed Declarations and Code D-4

D.4 Static and Other Type Qualifiers Allowed in Array Declarators D-4

D.5 Flexible Array Members D-5

D.6 Declarations Using Implicit int D-6

D.7 Disallowed Implicit int and Implicit Function Declarations D-7

D.8 Declaration in for -Loop Statement D-7

D.9 C99 Keywords D-8

D.9.1 Using the restrict Keyword D-8

D.10 __func__ Support D-8

D.11 Macros With A Variable Number of Arguments D-9

D.12 Variable Length Arrays (VLA): D-10

D.13 inline Specifier For Static Functions D-10

D.14 Commenting Code With // D-11

E. Performance Tuning (SPARC) E-1

E.1 Limits E-1

E.2 libfast.a Library E-2

F. The Differences Between K&R Sun C and Sun ISO C F-1

F.1 K&R Sun C Incompatibilities With Sun ISO C F-1

F.2 Keywords F-7

G. Implementation-Specific Information of OpenMP G-1

Index Index-1
Contents xxi

xxii C User’s Guide • May 2002

Figures

FIGURE 1-1 Organization of the C Compilation System 1-2

FIGURE 3-1 Master and Slave Threads 3-7

FIGURE 3-2 Parallel Execution of a Loop 3-8

FIGURE 3-3 Fixed Problem Speedups 3-13

FIGURE 3-4 Amdahl’s Law Speedup Curve 3-14

FIGURE 3-5 Speedup Curve With Overheads 3-15

FIGURE 4-1 An Example of Incremental Linking 4-3
xxiii

xxiv C User’s Guide • May 2002

Tables

TABLE 1-1 Components of the C Compilation System 1-3

TABLE 2-1 Data Type Suffixes 2-5

TABLE 2-2 Predefined Identifier 2-21

TABLE 5-1 -errchk Arguments 5-6

TABLE 5-2 The -errfmt Values 5-7

TABLE 5-3 The -errhdr Values 5-7

TABLE 5-4 The -erroff Values 5-8

TABLE 5-5 The -errwarn Values 5-9

TABLE 5-6 The -Ncheck Values 5-11

TABLE 5-7 lint Options to Suppress Messages 5-17

TABLE 5-8 lint Directives 5-21

TABLE 7-1 Trigraph Sequences 7-13

TABLE 7-2 Standard Headers 7-24

TABLE 7-3 Names Reserved for Expansion 7-26

TABLE 8-1 Data Type Size for ILP32 and LP64 8-2

TABLE 9-1 cscope Menu Manipulation Commands 9-4

TABLE 9-2 Commands for Use After an Initial Search 9-6

TABLE 9-3 Commands for Selecting Lines to Be Changed 9-16

TABLE A-1 Compiler Options Grouped by Functionality A-2

TABLE A-2 The -errfmt Values A-12
xxv

TABLE A-3 -erroff Arguments A-12

TABLE A-4 The -errshort Values A-13

TABLE A-5 -errwarn Values A-14

TABLE A-6 The -fast Expansion Values A-15

TABLE A-7 The Levels of Alias-Disambiguation A-31

TABLE A-8 –xarch ISA Keywords A-32

TABLE A-9 -xarch Matrix A-33

TABLE A-10 -xarch Values for SPARC Platforms A-35

TABLE A-11 -xarch Values on x86 A-37

TABLE A-12 The -xcache Values A-40

TABLE A-13 The -xchar Values A-41

TABLE A-14 The -xcheck Values A-42

TABLE A-15 The -xchip Values A-43

TABLE A-16 The -xinline Arguments A-49

TABLE A-17 -xmemalign Alignment and Behavior Values A-54

TABLE A-18 Examples of -xmemalign A-55

TABLE 9-4 -xprefetch Arguments A-60

TABLE A-19 The -xregs Values A-65

TABLE A-20 The -xtarget Values A-68

TABLE A-21 -xtarget Expansions on SPARC A-69

TABLE A-22 -xtarget Expansions on Intel Architecture A-73

TABLE B-1 Storage Allocation for Data Types B-1

TABLE B-2 Representation of short B-3

TABLE B-3 Representation of int B-3

TABLE B-4 Representation of long on Intel and SPARC v8 versus SPARC v9 B-3

TABLE B-5 Representation of long long B-4

TABLE B-6 float Representation B-5

TABLE B-7 double Representation B-5

TABLE B-8 long double Representation (SPARC) B-5

TABLE B-9 long double Representation (Intel) B-5
xxvi C User’s Guide • May 2002

TABLE B-10 float Representations B-6

TABLE B-11 double Representations B-6

TABLE B-12 long double Representations B-6

TABLE B-13 Hexadecimal Representation of Selected Numbers (SPARC) B-7

TABLE B-14 Hexadecimal Representation of Selected Numbers (Intel) B-7

TABLE B-15 Array Types and Storage B-8

TABLE B-16 Abbreviation Usage B-9

TABLE B-17 Addition and Subtraction Results B-9

TABLE B-18 Multiplication Results B-9

TABLE B-19 Division Results B-10

TABLE B-20 Comparison Results B-10

TABLE C-1 Representations and Sets of Values of Integers C-5

TABLE C-2 Values for a float C-7

TABLE C-3 Values for a double C-7

TABLE C-4 Values for long double C-7

TABLE C-5 Padding and Alignment of Structure Members C-9

TABLE C-6 Character Sets Tested by isalpha , islower , Etc. C-14

TABLE C-7 Values Returned on Domain Errors C-14

TABLE C-8 Semantics for signal Signals C-15

TABLE C-9 Names of Months C-20

TABLE C-10 Days and Abbreviated Days of the Week C-20

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C F-1

TABLE F-2 ISO C Standard Keywords F-8

TABLE F-3 Sun C (K&R) Keywords F-8
Tables xxvii

xxviii C User’s Guide • May 2002

Before You Begin

This manual describes the Forte Developer 7 C language compiler along with ISO C

compiler-specific information. It is intended for application developers who have a

working knowledge of C, and UNIX®.

This manual provides a reference appendix of compiler commands, explains how to

optimize your code through type-based alias analysis, describes which ISO/IEC

9899:1999, Programming Language - C standard features are supported, describes

the lint program that you can use to examine your code, provides instructions for

parallelizing your code, explains how to transition to ISO compliant code, describes

the incremental linker, and the interactive program cscope . There are also several

appendices with reference material such as ISO C data representations,

implementation defined behavior, the differences between Sun C (K & R) and Sun

ISO C, performance tuning, and converting applications to compile for the 64-bit

environment.
xxix

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…fn] xinline=alpha,dos
xxx C User’s Guide • May 2002

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin xxxi

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

% echo $PATH

% man dbx
xxxii C User’s Guide • May 2002

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.
Before You Begin xxxiii

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Related Forte Developer Documentation

The following table describes related documentation that is available at

file:/opt/SUNWspro/docs/index.html . If your product software is not

installed in the /opt directory, ask your system administrator for the equivalent

path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of

floating-point computations.
xxxiv C User’s Guide • May 2002

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
Before You Begin xxxv

xxxvi C User’s Guide • May 2002

CHAPTER 1

Introduction to the C Compiler

This chapter provides information about the C compiler, including operating

environments, standards conformance, organization of the compiler, and C-related

programming tools.

1.1 Standards Conformance
The compiler conforms to the following standards:

■ The ISO/IEC 9899:1990, Programming Languages - C standard. For information

on implementation-specific behavior, see Appendix C.

■ The FIPS 160 standard.

This release also supports some of the features specified in the following standard:

■ The ISO/IEC 9899:1999, Programming Language - C standard. For more

information on supported features, see Appendix D.

Because the compiler also supports traditional K&R C (Kernighan and Ritchie, or

pre-ANSI C), it can ease your migration to ISO C.

The term C99 used in this book refers to the ISO/IEC 9899:1999 C programming

language. There term C90 refers to the ISO/IEC 9899:1990 C programming language.

1.2 Organization of the Compiler
The C compilation system consists of a compiler, an assembler, and a link editor. The

cc command invokes each of these components automatically unless you use

command-line options to specify otherwise.
1-1

Appendix A discusses all the options available with cc .

The following figure shows the organization of the C compilation system.

FIGURE 1-1 Organization of the C Compilation System

cc

a.out

C source and
header files

Compiler
preprocessor

Compiler
proper

Optimizer
(optional)

Code generator/

Link
Libraries

Assembler

editor

Interprocedural
Optimizer
(optional)
1-2 C User’s Guide • May 2002

The following table summarizes the components of the compilation system.

1.3 C-Related Programming Tools
There are a number of tools available to aid in developing, maintaining, and

improving your C programs. The two most closely tied to C, cscope and lint , are

described in this book. In addition, a man page exists for each of these tools.

Other tools for source browsing, debugging and performance analysis are available.

See “Accessing Forte Developer Documentation” on page xxxiii for more

information.

TABLE 1-1 Components of the C Compilation System

Component Description Notes on Use

cpp Preprocessor -Xs only

acomp Compiler (preprocessor built in for non-Xs
modes)

ssbd Static synchronization bug detection (SPARC)

iropt Code optimizer (SPARC) -O , -xO2 ,

-xO3 , -xO4 , -xO5 ,

-fast

fbe Assembler

cg Code generator, inliner, assembler (SPARC)

ipo Interprocedural Optimizer (SPARC)

postopt Postoptimizer (SPARC)

ir2hf Intermediate code translator (INTEL)

ube Code generator (INTEL)

ube_ipa Interprocedure analyzer (INTEL)

ld Linker

ild Incremental linker (SPARC) -g , -xildon

mcs Manipulate comment section -mr
Chapter 1 Introduction to the C Compiler 1-3

1-4 C User’s Guide • May 2002

CHAPTER 2

C-Compiler Information Specific to
Sun’s Implementation

The C compiler is compatible with some of the features of the C language described

in the new ISO C standard, ISO/IEC 9899-1999. If you wish to compile code that is

compatible with the previous C standard, ISO/IEC 9889-1990 standard (and

amendment 1), use -xc99=%none and the compiler disregards the enhancements of

the ISO/IEC 9899-1999 standard. This chapter documents those areas specific to the

C compiler.

2.1 Environment Variables

2.1.1 OMP_DYNAMIC

Enable or disable dynamic adjustment of the number of threads.

2.1.2 OMP_NESTED

Enable or disable nested parallelism.

2.1.3 OMP_NUM_THREADS

Set the number of threads to use during execution.
2-1

2.1.4 OMP_SCHEDULE

Set the run-time schedule type and chunk size.

2.1.5 PARALLEL

(SPARC) Specifies the number of processors available to the program for

multiprocessor execution. If the target machine has multiple processors, the threads

can map to independent processors. Running the program leads to the creation of

two threads that execute the parallelized portions of the program.

2.1.6 SUN_PROFDATA

Controls the name of the file in which the -xprofile=collect command stores

execution-frequency data.

2.1.7 SUN_PROFDATA_DIR

Controls in which directory the -xprofile=collect command places the

execution-frequency data-file.

2.1.8 SUNPRO_SB_INIT_FILE_NAME

The absolute path name of the directory containing the .sbinit (5) file. This

variable is used only if the -xsb or -xsbfast flag is used.

2.1.9 SUNW_MP_THR_IDLE

Controls the status of each thread after it finishes its share of a parallel job. You can

set SUNW_MP_THR_IDLEto either spin or sleep [n s|n ms]. The default is spin ,

which means the thread goes spin-waiting. The other choice, sleep [n s|n ms] puts

the thread to sleep after spin-waiting for n units. The wait can be seconds (s is the

default unit) or milliseconds (ms) where 1s means one second, 10ms means ten

milliseconds. If a new job arrives before n units is reached, the thread stops

spin-waiting and starts doing the new job. If SUNW_MP_THR_IDLEcontains an illegal

value or is not set, spin is used as the default.
2-2 C User’s Guide • May 2002

2.1.10 TMPDIR

cc normally creates temporary files in the directory /tmp . You can specify another

directory by setting the environment variable TMPDIRto the directory of your

choice. However, if TMPDIRis not a valid directory, cc uses /tmp . The -xtemp
option has precedence over the TMPDIRenvironment variable.

If you use a Bourne shell, type:

If you use a C shell, type:

2.2 Keywords

2.2.1 _ _asm Keyword

The _ _asm keyword (note the initial double-underscore) is a synonym for the asm
keyword. If you use asm, rather than _ _asm, and compile in –Xc mode, the

compiler issues a warning. The compiler does not issue a warning if you use _ _asm
in –Xc mode. The _ _asm statement has the form:

where string is a valid assembly language statement. The _ _asm statements must

appear within function bodies.

2.2.2 _Restrict Keyword

The C compiler supports the _Restrict keyword as an equivalent to the restrict
keyword in the C99 standard. The _Restrict keyword is available with

-xc99=%none and -xc99=%all , whereas the restrict keyword is only available

with -xc99=%all .

$ TMPDIR=dir; export TMPDIR

% setenv TMPDIR dir

_ _asm(" string");
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-3

For more information on supported C99 features, see Appendix D.

2.3 long long Data Type
When you compile with -xc99=%none , the Sun C compiler includes the data-types

long long , and unsigned long long , which are similar to the data-type long . The

long long data-type stores 64 bits of information; long stores 32 bits of information

on SPARC V8 and Intel. The long data-type stores 64 bits on SPARC V9. The long
long data-type is not available in -Xc mode.

2.3.1 Printing long long Data Types

To print or scan long long data types, prefix the conversion specifier with the

letters ll . For example, to print llvar , a variable of long long data type, in signed

decimal format, use:

2.3.2 Usual Arithmetic Conversions

Some binary operators convert the types of their operands to yield a common type,

which is also the type of the result. These are called the usual arithmetic

conversions:

■ If either operand is type long double , the other operand is converted to long
double .

■ Otherwise, if either operand has type double , the other operand is converted to

double .

■ Otherwise, if either operand has type float , the other operand is converted to

float .

■ Otherwise, the integral promotions are performed on both operands. Then, these

rules are applied:

■ If either operand has type unsigned long long int , the other operator is

converted to unsigned long long int .

■ If either operand has type long long int , the other operator is converted to

long long int .

printf("%lld\n", llvar);
2-4 C User’s Guide • May 2002

■ If either operand has type unsigned long int , the other operand is converted

to unsigned long int .

■ Otherwise, when you compile on SPARC V9 only, if one operand has type

long int and the other has type unsigned int , both operands are converted

to unsigned long int .

■ Otherwise, if either operand has type long int , the other operand is

converted to long int .

■ Otherwise, if either operand has type unsigned int , the other operand is

converted to unsigned int .

■ Otherwise, both operands have type int .

2.4 Constants
This section contains information related to constants that is specific to the Sun C

compiler.

2.4.1 Integral Constants

Decimal, octal, and hexadecimal integral constants can be suffixed to indicate type,

as shown in the following table.

With the -xc99=%all , the compiler uses the first item of the following list in which

the value can be represented, as required by the size of the constant:

■ int

TABLE 2-1 Data Type Suffixes

Suffix Type

u or U unsigned

l or L long

ll or LL long long 1

1. The long long and unsigned long long are not available with
-xc99=%none and -Xc mode.

lu , LU, Lu , lU , ul , uL , Ul , or

UL
unsigned long

llu , LLU, LLu , llU , ull ,

ULL, uLL , Ull
unsigned long long 1
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-5

■ long int
■ long long int

The compiler issues a warning if the value exceeds the largest value a long long int

can represent.

With the -xc99=%none , the compiler uses the first item of the following list in

which the value can be represented, as required by the size of the constant, when

assigning types to unsuffixed constants:

■ int
■ long int
■ unsigned long int
■ long long int
■ unsigned long long int

2.4.2 Character Constants

A multiple-character constant that is not an escape sequence has a value derived

from the numeric values of each character. For example, the constant '123' has a

value of:

or 0x333231 .

With the -Xs option and in other, non-ISO versions of C, the value is:

or 0x313233 .

2.5 Include Files
To include any of the standard header files supplied with the C compilation system,

use this format:

0 '3' '2' '1'

0 '1' '2' '3'

#include <stdio.h>
2-6 C User’s Guide • May 2002

The angle brackets (<>) cause the preprocessor to search for the header file in the

standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own directories:

For statements of the form #include "foo.h" (where quotation marks are used),

the compiler searches for include files in the following order:

1. The current directory (that is, the directory containing the “including” file)

2. The directories named with -I options, if any

3. The /usr/include directory

If your header file is not in the same directory as the source files that include it,

specify the path of the directory in which it is stored with the –I option to cc .

Suppose, for instance, that you have included both stdio.h and header.h in the

source file mycode.c :

Suppose further that header.h is stored in the directory../defs . The command:

directs the preprocessor to search for header.h first in the directory containing

mycode.c , then in the directory ../defs , and finally in the standard place. It also

directs the preprocessor to search for stdio.h first in ../defs , then in the

standard place. The difference is that the current directory is searched only for

header files whose names you have enclosed in quotation marks.

You can specify the –I option more than once on the cc command-line. The

preprocessor searches the specified directories in the order they appear. You can

specify multiple options to cc on the same command-line:

#include "header.h"

#include <stdio.h>
#include "header.h"

% cc –I../defs mycode.c

% cc –o prog –I../defs mycode.c
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-7

2.5.1 Using the -I- Option to Change the Search

Algorithm

The new -I- option gives more control over the default search rules. When -I-
appears in the command line:

■ The compiler never searches the current directory, unless the directory is listed

explicitly in a -I directive. This effect applies even for include statements of the

form #include "foo.h" .

■ For include statements of the form #include "foo.h" , the compiler searches

for include files in the following order:

a. The directories named with -I options (both before and after -I-)

b. The /usr/include directory

■ For include statements of the form #include <foo.h> , the compiler searches

for include files in the following order:

a. The directories named with -I that appear after -I- (that is, the compiler does

not search the -I directories that appear before -I-)

b. The /usr/include directory

The following example shows the results of using -I- when compiling prog.c .

prog.c #include "a.h"
#include <b.h>
#include "c.h"

c.h #ifndef _C_H_1
#define _C_H_1
int c1;
#endif
2-8 C User’s Guide • May 2002

The following command shows the default behavior of searching the current

directory (the directory of the including file) for include statements of the form

#include "foo.h" . When processing the #include "c.h" statement in inc/a.h ,

the preprocessor includes the c.h header file from the inc subdirectory. When

processing the #include "c.h" statement in prog.c , the preprocessor includes the

c.h file from the directory containing prog.c . Note that the -H option instructs the

compiler to print the paths of the included files.

The next command shows the effect of the -I- option. The preprocessor does not

look in the including directory first when it processes statements of the form

#include "foo.h" . Instead, it searches the directories named by the -I options in

int/a.h #ifndef _A_H
#define _A_H
#include "c.h"
int a;
#endif

int/b.h #ifndef _B_H
#define _B_H
#include <c.h>
int b;
#endif

int/c.h #ifndef _C_H_2
#define _C_H_2
int c2;
#endif

example% cc -c -Iinc -H prog.c
inc/a.h

inc/c.h
inc/b.h

inc/c.h
c.h
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-9

the order that they appear in the command line. When processing the

#include "c.h" statement in inc/a.h , the preprocessor includes the ./c.h
header file instead of the inc/c.h header file.

For more information, see Section A.3.31, “-I[-|dir]” on page A-22.

2.6 Nonstandard Floating Point
IEEE 754 floating-point default arithmetic is “nonstop.” Underflows are “gradual.”

The following is a summary, see the Numerical Computation Guide for details.

Nonstop means that execution does not halt on occurrences like division by zero,

floating-point overflow, or invalid operation exceptions. For example, consider the

following, where x is zero and y is positive:

z = y / x;

By default, z is set to the value +Inf , and execution continues. With the -fnonstd
option, however, this code causes an exit, such as a core dump.

Here is how gradual underflow works. Suppose you have the following code:

The first time through the loop, x is set to 1; the second time through, to 0.1 ; the

third time through, to 0.01 ; and so on. Eventually, x reaches the lower limit of the

machine’s capacity to represent its value. What happens the next time the loop runs?

Let’s say that the smallest number characterizable is 1.234567e-38

example% cc -c -I. -I- -Iinc -H prog.c
inc/a.h

./c.h
inc/b.h

inc/c.h
./c.h

x = 10;
for (i = 0; i < LARGE_NUMBER; i++)
x = x / 10;
2-10 C User’s Guide • May 2002

The next time the loop runs, the number is modified by “stealing” from the mantissa

and “giving” to the exponent so the new value is 1.23456e-39 and, subsequently,

1.2345e-40 and so on. This is known as “gradual underflow,” which is the default

behavior. In nonstandard mode, none of this “stealing” takes place; typically, x is

simply set to zero.

2.7 Preprocessing Directives and Names
This section describes assertions, pragmas, and predefined names.

2.7.1 Assertions

A line of the form:

associates the token-sequence with the predicate in the assertion name space (separate

from the space used for macro definitions). The predicate must be an identifier

token.

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default (not in -Xc
mode):

lint provides the following predefinition predicate by default (not in -Xc mode):

#assert predicate (token-sequence)

#assert predicate

#assert system (unix)
#assert machine (sparc) (SPARC)
#assert machine (i386) (Intel)
#assert cpu (sparc) (SPARC)
#assert cpu (i386) (Intel)

#assert lint (on)
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-11

Any assertion may be removed by using #unassert , which uses the same syntax as

assert . Using #unassert with no argument deletes all assertions on the predicate;

specifying an assertion deletes only that assertion.

An assertion may be tested in a #if statement with the following syntax:

For example, the predefined predicate system can be tested with the following line:

which evaluates true.

2.7.2 Pragmas

Preprocessing lines of the form:

specify implementation-defined actions.

The following #pragmas are recognized by the compilation system. The compiler

ignores unrecognized pragmas. Using the -v option will give a warning for

unrecognized pragmas.

2.7.2.1 #pragma align integer (variable[, variable])

The align pragma makes all the mentioned variables memory aligned to integer
bytes, overriding the default. The following limitations apply:

■ The integer value must be a power of 2 between 1 and 128; valid values are: 1, 2,

4, 8, 16, 32, 64, and 128.

■ variable is a global or static variable; it cannot be an automatic variable.

■ If the specified alignment is smaller than the default, the default is used.

■ The pragma line must appear before the declaration of the variables which it

mentions; otherwise, it is ignored.

#if #predicate(non-empty token-list)

#if #system(unix)

#pragma pp-tokens
2-12 C User’s Guide • May 2002

■ Any variable that is mentioned but not declared in the text following the pragma

line is ignored. For example:

2.7.2.2 #pragma does_not_read_global_data (funcname
[, funcname])

This pragma asserts that the specified list of routines do not read global data directly

or indirectly. This allows for better optimization of code around calls to such

routines. In particular, assignment statements or stores could be moved around such

calls.

This pragma is permitted only after the prototype for the specified functions are

declared. If the assertion about global access is not true, then the behavior of the

program is undefined.

2.7.2.3 #pragma does_not_return (funcname [, funcname])

This pragma is an assertion to the compiler backend that the calls to the specified

routines will not return. This allows the optimizer to perform optimizations

consistent with that assumption. For example, register life-times will terminate at the

call sites which in turn allows more optimizations.

If the specified function does return, then the behavior of the program is undefined.

This pragma is permitted only after the prototype for the specified functions are

declared as the following example shows:

#pragma align 64 (aninteger, astring, astruct)
int aninteger;
static char astring[256];
struct astruct{int a; char *b;};

extern void exit(int);
#pragma does_not_return(exit)

extern void __assert(int);
#pragma does_not_return(__assert)
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-13

2.7.2.4 #pragma does_not_write_global_data (funcname
[, funcname])

This pragma asserts that the specified list of routines do not write global data

directly or indirectly. This allows for better optimization of code around calls to such

routines. In particular, assignment statements or stores could be moved around such

calls.

This pragma is permitted only after the prototype for the specified functions are

declared. If the assertion about global access is not true, then the behavior of the

program is undefined.

2.7.2.5 #pragma error_messages (on |off |default , tag… tag)

The error message pragma provides control within the source program over the

messages issued by the C compiler and lint. For the C compiler, the pragma has an

effect on warning messages only. The -w option of the C compiler overrides this

pragma by suppressing all warning messages.

■ #pragma error_messages (on , tag… tag)

The on option ends the scope of any preceding #pragma error_messages
option, such as the off option, and overrides the effect of the -erroff option.

■ #pragma error_messages (off , tag… tag)

The off option prevents the C compiler or the lint program from issuing the

given messages beginning with the token specified in the pragma. The scope of

the pragma for any specified error message remains in effect until overridden by

another #pragma error_messages , or the end of compilation.

■ #pragma error_messages (default , tag… tag)

The default option ends the scope of any preceding #pragma
error_messages directive for the specified tags.

2.7.2.6 #pragma fini (f1[, f2…,fn])

Causes the implementation to call functions f1 to fn (finalization functions) after it

calls main() routine. Such functions are expected to be of type void and to accept

no arguments, and are called either when a program terminates under program

control or when the containing shared object is removed from memory. As with

“initialization functions,” finalization functions are executed in the order processed

by the link editors.
2-14 C User’s Guide • May 2002

2.7.2.7 #pragma ident string

Places string in the .comment section of the executable.

2.7.2.8 #pragma init (f1[, f2…,fn])

Causes the implementation to call functions f1 to fn (initialization functions) before it

calls main() . Such functions are expected to be of type void and to accept no

arguments, and are called while constructing the memory image of the program at

the start of execution. In the case of initializers in a shared object, they are executed

during the operation that brings the shared object into memory, either program

start-up or some dynamic loading operation, such as dlopen() . The only ordering

of calls to initialization functions is the order in which they were processed by the

link editors, both static and dynamic.

2.7.2.9 #pragma [no_]inline (funcname[, funcname])

This pragma controls the inlining of routine names listed in the argument of the

pragma. The scope of this pragma is over the entire file. Only global inlining control

is allowed, call-site specific control is not permitted by this pragma.

If you use #pragma inline , it provides a suggestion to the compiler to inline the

calls in the current file that match the list of routines listed in the pragma. This

suggestion may be ignored under certain cases. For example, the suggestion is

ignored when the body of the function is in a different module and the crossfile

option is not used.

If you use #pragma no_inline , it provides a suggestion to the compiler to not

inline the calls in the current file that match the list of routines listed in the pragma.

Both #pragma inline and #pragma no_inline are permitted only after the

prototype for the specified functions are declared as the following example shows:

2.7.2.10 #pragma int_to_unsigned (funcname)

For a function that returns a type of unsigned , in -Xt or -Xs mode, changes the

function return to be of type int .

static void foo(int);
static int bar(int, char *);
#pragma inline(foo, bar)
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-15

2.7.2.11 (SPARC) #pragma MP serial_loop

Refer to Section 3.8.3.1, “Serial Pragmas” on page 3-24 for details.

2.7.2.12 (SPARC) #pragma MP serial_loop_nested

Refer to Section 3.8.3.1, “Serial Pragmas” on page 3-24 for details.

2.7.2.13 (SPARC) #pragma MP taskloop

Refer to Section 3.8.3.2, “Parallel Pragma” on page 3-25 for details.

2.7.2.14 (SPARC) #pragma nomemorydepend

This pragma specifies that for any iteration of a loop, there are no memory

dependences. That is, within any iteration of a loop there are no references to the

same memory. This pragma will permit the compiler (pipeliner) to schedule

instructions, more effectively, within a single iteration of a loop. If any memory

dependences exist within any iteration of a loop, the results of executing the

program are undefined. The pragma applies to the next for loop within the current

block. The compiler takes advantage of this information at optimization level of 3 or

above.

2.7.2.15 (SPARC) #pragma no_side_effect(funcname[,
funcname…])

funcname specifies the name of a function within the current translation unit. The

function must be declared prior to the pragma. The pragma must be specified prior

to the function’s definition. For the named function, funcname, the pragma declares

that the function has no side effects of any kind. This means that funcname returns a

result value that depends only on the passed arguments. In addition, funcname and

any called descendants:

■ Do not access for reading or writing any part of the program state visible in the

caller at the point of the call.

■ Do not perform I/O.

■ Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations using the function.

If the function does have side effects, the results of executing a program which calls

this function are undefined. The compiler takes advantage of this information at

optimization level of 3 or above.
2-16 C User’s Guide • May 2002

2.7.2.16 #pragma opt level (funcname[, funcname])

The value of level specifies the optimization level for the funcname subprograms. You

can assign opt levels 0, 1, 2, 3, 4, 5. You can turn off optimization by setting level to

0. The funcname subprograms must be prototyped prior to the pragma.

The level of optimization for any function listed in the pragma is reduced to the

value of -xmaxopt . The pragma is ignored when -xmaxopt=off .

2.7.2.17 #pragma pack(n)

Use #pragma pack(n) to affect member packing of a structure. By default,

members of a structure are aligned on their natural boundaries; one byte for a char,

two bytes for a short, four bytes for an integer etc. If n is present, it must be a power

of 2 specifying the strictest natural alignment for any structure member. Zero is not

accepted.

You can use #pragma pack(n) to specify an alignment boundary for a structure

member. For example, #pragma pack(2) aligns int, long, long long, float, double,

long double, and pointers on two byte boundaries instead of their natural alignment

boundaries.

If n is the same or greater than the strictest alignment on your platform, (four on

Intel, eight on SPARC v8, and 16 on SPARC v9), the directive has the effect of natural

alignment. Also, if n is omitted, member alignment reverts to the natural alignment

boundaries.

The #pragma pack(n) directive applies to all structure definitions which follow it

until the next pack directive. If the same structure is defined in different translation

units with different packing, your program may fail in unpredictable ways. In

particular, you should not use #pragma pack(n) prior to including a header that

defines the interface of a precompiled library. The recommended usage of #pragma
pack(n) is to place it in your program code immediately before any structure to be

packed. Follow the packed structure immediately with #pragma pack() .

Note that when you use #pragma pack , the alignment of the packed structure itself

is the same as its more strictly aligned member. Therefore any declaration of that

struct will be at the pack alignment. For example, a struct with only chars has no

alignment restrictions, whereas a struct containing a double would be aligned on an

8-byte boundary.

Note – If you use #pragma pack to align struct members on boundaries other than

their natural boundaries, accessing these fields may lead to a bus error on SPARC.

See Section A.3.96, “-xmemalign=ab” on page A-54, for the optimal way to compile

such programs.
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-17

2.7.2.18 (SPARC) #pragma pipeloop(n)

This pragma accepts a positive constant integer value, or 0, for the argument n. This

pragma specifies that a loop is pipelineable and the minimum dependence distance

of the loop-carried dependence is n. If the distance is 0, then the loop is effectively a

Fortran-style doall loop and should be pipelined on the target processors. If the

distance is greater than 0, then the compiler (pipeliner) will only try to pipeline n
successive iterations. The pragma applies to the next for loop within the current

block. The compiler takes advantage of this information at optimization level of 3 or

above.

2.7.2.19 #pragma rarely_called(funcname[, funcname])

This pragma provides a hint to the compiler backend that the specified functions are

called infrequently. This allows the compiler to perform profile-feedback style

optimizations on the call-sites of such routines without the overhead of a

profile-collections phase. Since this pragma is a suggestion, the compiler optimizer

may not perform any optimizations based on this pragma.

The #pragma rarely_called preprocessor directive is only permitted after the

prototype for the specified functions are declares. The following is an example of

#pragma rarely_called :

2.7.2.20 #pragma redefine_extname old_extname new_extname

This pragma causes every externally defined occurrence of the name old_extname in

the object code to be replaced by new_extname. As a result, the linker only sees the

name new_extname at link time. If #pragma redefine_extname is encountered

after the first use of old_extname, as a function definition, an initializer, or an

expression, the effect is undefined. (This pragma is not supported in –Xs mode.)

When #pragma redefine_extname is available, the compiler provides a

definition of the predefined macro PRAGMA_REDEFINE_EXTNAME, which lets you

write portable code that works both with and without #pragma
redefine_extname .

The purpose of #pragma redefine_extname is to allow an efficient means of

redefining a function interface when the name of the function cannot be changed.

For example, when the original function definition must be maintained in a library,

for compatibility with existing programs, along with a new definition of the same

function for use by new programs. This can be accomplished by adding the new

extern void error (char *message);
#pragma rarely_called(error)
2-18 C User’s Guide • May 2002

function definition to the library by a new name. Consequently, the header file that

declares the function uses #pragma redefine_extname so that all of the uses of

the function are linked with the new definition of that function.

2.7.2.21 #pragma returns_new_memory (funcname[, funcname])

This pragma asserts that the return value of the specified functions does not alias

with any memory at the call site. In effect, this call returns a new memory location.

This informations allows the optimizer to better track pointer values and clarify

memory location. This results in improved scheduling, pipelining, and

parallelization of loops. However, if the assertion is false, the behavior of the

program is undefined.

#if defined(__STDC__)

#ifdef __PRAGMA_REDEFINE_EXTNAME
extern int myroutine(const long *, int *);
#pragma redefine_extname myroutine __fixed_myroutine
#else /* __PRAGMA_REDEFINE_EXTNAME */

static int
myroutine(const long * arg1, int * arg2)
{

extern int __myroutine(const long *, int*);
return (__myroutine(arg1, arg2));

}
#endif /* __PRAGMA_REDEFINE_EXTNAME */

#else /* __STDC__ */

#ifdef __PRAGMA_REDEFINE_EXTNAME
extern int myroutine();
#pragma redefine_extnmae myroutine __fixed_myroutine
#else /* __PRAGMA_REDEFINE_EXTNAME */

static int
myroutine(arg1, arg2)

long *arg1;
int *arg2;

{
extern int __fixed_myroutine();
return (__fixed_myroutine(arg1, arg2));

}
#endif /* __PRAGMA_REDEFINE_EXTNAME */

#endif /* __STDC__ */
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-19

This pragma is permitted only after the prototype for the specified functions are

declared as the following example shows:

2.7.2.22 #pragma unknown_control_flow (name[, name])

In order to describe procedures that alter the flow graphs of their callers, the C

compiler provides the #pragma unknown_control_flow directive. Typically, this

directive accompanies declarations of functions like setjmp() . On Sun systems, the

include file <setjmp.h> contains the following:

Other functions with properties like those of setjmp() must be declared similarly.

In principle, an optimizer that recognizes this attribute could insert the appropriate

edges in the control flow graph, thus handling function calls safely in functions that

call setjmp() , while maintaining the ability to optimize code in unaffected parts of

the flow graph.

2.7.2.23 (SPARC) #pragma unroll (unroll_factor)

This pragma accepts a positive constant integer value for the argument unroll_factor.
The pragma applies to the next for loop within the current block. For unroll factor

other than 1, this directive serves as a suggestion to the compiler that the specified

loop should be unrolled by the given factor. The compiler will, when possible, use

that unroll factor. When the unroll factor value is 1, this directive serves as a

command which specifies to the compiler that the loop is not to be unrolled. The

compiler takes advantage of this information at optimization level of 3 or above.

2.7.2.24 #pragma weak symbol1 [= symbol2]

Defines a weak global symbol. This pragma is used mainly in source files for

building libraries. The linker does not produce an error message if it is unable to

resolve a weak symbol.

void *malloc(unsigned);
#pragma returns_new_memory(malloc)

extern int setjmp();
#pragma unknown_control_flow(setjmp)

#pragma weak symbol
2-20 C User’s Guide • May 2002

defines symbol to be a weak symbol. The linker does not produce an error message if

it does not find a definition for symbol.

defines symbol1 to be a weak symbol, which is an alias for the symbol symbol2. This

form of the pragma can only be used in the same translation unit where symbol2 is

defined, either in the sourcefiles or one of its included headerfiles. Otherwise, a

compilation error will result.

If your program calls but does not define symbol1, and symbol1 is a weak symbol in a

library being linked, the linker uses the definition from that library. However, if your

program defines its own version of symbol1, then the program’s definition is used

and the weak global definition of symbol1 in the library is not used. If the program

directly calls symbol2, the definition from the library is used; a duplicate definition of

symbol2 causes an error.

2.7.3 Predefined Names

The following identifier is predefined as an object-like macro:

The compiler issues a warning if __STDC__ is undefined (#undef __STDC__).

__STDC__ is not defined in -Xs mode.

#pragma weak symbol1 = symbol2

TABLE 2-2 Predefined Identifier

Identifier Description

__STDC__ __STDC__ 1 -Xc

__STDC__ 0 -Xa , -Xt

Not defined -Xs
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-21

Predefinitions (not valid in -Xc mode):

■ sun
■ unix
■ sparc (SPARC)
■ i386 (Intel)

The following predefinitions are valid in all modes:

■ __sun
■ __unix
■ __SUNPRO_C=0x540
■ __‘uname -s‘_‘uname -r‘ (example: __SunOS_5_7)

■ __sparc (SPARC)
■ __i386 (Intel)
■ __BUILTIN_VA_ARG_INCR
■ __SVR4
■ __sparcv9 (-Xarch=v9 , v9a)

The compiler also predefines the object-like macro __PRAGMA_REDEFINE_EXTNAME
to indicate that the pragma will be recognized. The following is predefined in -Xa
and -Xt modes only:

__RESTRICT

2.8 Labels as Values
The C compiler recognizes the extension to C known as computed goto . Computed

goto enables runtime determination of branching destinations. The address of a

label can be acquired by using the ’&&’ operator and assigned to a pointer of type

void * :

A later goto statement can branch to label1 through ptr :

Because ptr is computed at runtime, ptr can take on the address of any label that is

in-scope and the goto statement can branch to it.

void *ptr;
...
ptr = &&label1;

goto *ptr;
2-22 C User’s Guide • May 2002

One way of using computed goto is for the implementation of a jump table:

Now the array elements can be selected by indexing:

Addresses of labels can only be computed from the current function scope.

Attempting to take addresses of labels out of the current function yields

unpredictable results.

static void *ptrarray[] = { &&label1, &&label2, &&label3 };

goto *ptrarray[i];
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-23

The jump table works similarly to a switch statement though there are some key

differences and the jump table can make it more difficult to follow program flow. A

notable difference is that the switch-statement jump-destinations are all in the

forward direction from the switch reserved word; using computed goto to

implement a jump table enables branching in both forward and reverse directions.

#include <stdio.h>
void foo()
{

void *ptr;

ptr = &&label1;

goto *ptr;

printf("Failed!\n");
return;

label1:
printf("Passed!\n");
return;

}

int main(void)
{

void *ptr;

ptr = &&label1;

goto *ptr;

printf("Failed!\n");
return 0;

label1:
foo();
return 0;

}

2-24 C User’s Guide • May 2002

The following example also makes use of a jump table to control program flow:

Another application of computed goto is as an interpreter for threaded code. The

label addresses within the interpreter function can be stored in the threaded code for

fast dispatching.

Here is an alternate way to write the above example:

This is more efficient for shared library code, as it reduces the number of dynamic

relocations that are needed, and by consequence, allows the data (ptrarray elements)

to be read-only.

#include <stdio.h>

int main(void)
{

int i = 0;
static void * ptr[3]={&&label1, &&label2, &&label3};

goto *ptr[i];

label1:
printf("label1\n");
return 0;

label2:
printf("label2\n");
return 0;

label3:
printf("label3\n");
return 0;

}

%example: a.out
%example: label1

static const int ptrarray[] = { &&label1 - &&label1,
&&label2 - &&label1, &&label3 - &&label1 };
goto *(&&label1 + ptrarray[i]);
Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-25

2-26 C User’s Guide • May 2002

CHAPTER 3

Parallelizing Sun C Code

The Sun C compiler can optimize code to run on SPARC shared-memory

multiprocessor machines. The process is called parallelizing. The compiled code can

execute in parallel using the multiple processors on the system. This chapter

explains how you can take advantage of the compiler’s parallelizing features.

3.1 Overview
The C compiler generates parallel code for those loops that it determines are safe to

parallelize. Typically, these loops have iterations that are independent of each other.

For such loops, it does not matter in what order the iterations are executed or if they

are executed in parallel. Many, though not all, vector loops fall into this category.

Because of the way aliasing works in C, it is difficult to determine the safety of

parallelization. To help the compiler, Sun C offers pragmas and additional pointer

qualifications to provide aliasing information known to the programmer that the

compiler cannot determine.

3.1.1 Example of Use

The following example illustrates how to enable and control parallelized C:

This generates an executable called example , which can be executed normally. If

you wish to take advantage of multiprocessor execution, see Section A.3.65,

“-xautopar” on page A-37.

% cc -fast -xO4 -xautopar example.c -o example
3-1

3.2 Parallelizing for OpenMP
You can compile your code so that it complies with the OpenMP specification. For

more information on the OpenMP specification for C, visit the web site at

http://www.openmp.org/specs/ .

To take advantage of the compiler’s OpenMP support, you need to issue the

compiler’s -xopenmp option. See Section A.3.101, “-xopenmp[=i]” on page A-58.

3.2.1 Handling OpenMP Runtime Warnings

The OpenMP runtime system can issue warnings for non-fatal errors. Use the

following function to register a call back function to handle these warnings:

int sunw_mp_register_warn(void (*func) (void *))

You can access the prototype for this function by issuing a #include preprocessor

directive for <sunw_mp_misc.h> .

If you do not want to register a function, set the environment variable

SUNW_MP_WARNto TRUEand the warning messages are sent to stderr . For more

information on SUNW_MP_WARN, see “SUNW_MP_WARN” on page 4.

For information specific to this implementation of OpenMP, see Appendix G.

3.3 Environment Variables
There are four environment variables that relate to parallelized C:

■ PARALLEL
■ SUNW_MP_THR_IDLE
■ SUNW_MP_WARN
■ STACKSIZE
3-2 C User’s Guide • May 2002

PARALLEL

Set the PARALLELenvironment variable if you can take advantage of multiprocessor

execution. The PARALLELenvironment variable specifies the number of processors

available to the program. The following example shows that PARALLELis set to two:

If the target machine has multiple processors, the threads can map to independent

processors. Running the program leads to the creation of two threads that execute

the parallelized portions of the program.

SUNW_MP_THR_IDLE

Currently, the starting thread of a program creates bound threads. Once created,

these bound threads participate in executing the parallel part of a program (parallel

loop, parallel region, etc.) and keep spin-waiting while the sequential part of the

program runs. These bound threads never sleep or stop until the program

terminates. Having these threads spin-wait generally gives the best performance

when a parallelized program runs on a dedicated system. However, threads that are

spin-waiting use system resources.

Use the SUNW_MP_THR_IDLEenvironment variable to control the status of each

thread after it finishes its share of a parallel job.

You can substitute either spin or sleep [n s|n ms] for value. The default is spin ,

which means the thread should spin (or busy-wait) after completing a parallel task,

until a new parallel task arrives.

The other choice, sleep [n s|n ms] puts the thread to sleep after spin-waiting n
units. The wait unit can be seconds (s , the default unit) or milliseconds (ms), where

1s means one second, and 10ms means ten milliseconds. sleep with no arguments

puts the thread to sleep immediately after completing a parallel task. sleep ,

sleep0 , sleep0s , and sleep0ms are all equivalent.

If a new job arrives before n units is reached, the thread stops spin-waiting and

starts doing the new job. If SUNW_MP_THR_IDLEcontains an illegal value or isn’t set,

spin is used as the default.

% setenv PARALLEL 2

% setenv SUNW_MP_THR_IDLE value
Chapter 3 Parallelizing Sun C Code 3-3

SUNW_MP_WARN

Set this environment variable to TRUEto print warning messages from OpenMP and

other parallelization runtime-systems.

If you registered a function by using sunw_mp_register_warn() to handle

warning messages, then SUNW_MP_WARNprints no warning messages, even if you set

it to TRUE. If you did not register a function and set SUNW_MP_WARNto TRUE,
SUNW_MP_WARNprints the warning messages to stderr . If you do not register a

function and you do not set SUNW_MP_WARN, no warning messages are issued. For

more information on sunw_mp_register_warn() see Section 3.2.1, “Handling

OpenMP Runtime Warnings” on page 3-2.

STACKSIZE

The executing program maintains a main memory stack for the master thread and

distinct stacks for each slave thread. Stacks are temporary memory address spaces

used to hold arguments and automatic variables over subprogram invocations.

The default size of the main stack is about eight megabytes. Use the limit
command to display the current main stack size as well as set it.

Each slave thread of a multithreaded program has its own thread stack. This stack

mimics the main stack of the master thread but is unique to the thread. The thread’s

private arrays and variables (local to the thread) are allocated on the thread stack.

All slave threads have the same stack size, which is one megabyte for 32-bit

applications and two megabytes for 64-bit applications by default. The size is set

with the STACKSIZE environment variable:

% setenv SUNW_MP_WARN TRUE

% limit
cputime unlimited
filesize unlimited
datasize 2097148 kbytes
stacksize 8192 kbytes <- current main stack size
coredumpsize 0 kbytes
descriptors 256
memorysize unlimited
% limit stacksize 65536 <- set main stack to 64Mb

% setenv STACKSIZE 8192 <- Set thread stack size to 8 Mb
3-4 C User’s Guide • May 2002

Setting the thread stack size to a value larger than the default may be necessary for

most parallelized code.

Sometimes the compiler may generate a warning message that indicates a bigger

stack size is needed. However, it may not be possible to know just how large to set

it, except by trial and error, especially if private/local arrays are involved. If the

stack size is too small for a thread to run, the program will abort with a

segmentation fault.

3.3.0.1 Keyword

The keyword restrict can be used with parallelized C. The proper use of the

keyword restrict helps the optimizer in understanding the aliasing of data required

to determine if a code sequence can be parallelized. Refer to “C99 Keywords” on

page D-8 for details.

3.4 Data Dependence and Interference
The C compiler performs analysis on loops in programs to determine if it is safe to

execute different iterations of the loops in parallel. The purpose of this analysis is to

determine if any two iterations of the loop could interfere with each other. Typically

this happens if one iteration of a variable could read a variable while another

iteration is writing the very same variable. Consider the following program

fragment:

In CODE EXAMPLE 3-1 any two successive iterations, i and i+1 , will write and read

the same variable sum. Therefore, in order for these two iterations to execute in

parallel some form of locking on the variable would be required. Otherwise it is not

safe to allow the two iterations to execute in parallel.

CODE EXAMPLE 3-1 A Loop With Dependence

for (i=1; i < 1000; i++) {
sum = sum + a[i]; /* S1 */

}

Chapter 3 Parallelizing Sun C Code 3-5

However, the use of locks imposes overhead that might slowdown the program. The

C compiler will not ordinarily parallelize the loop in CODE EXAMPLE 3-1. In

CODE EXAMPLE 3-1 there is a data dependence between two iterations of the loop.

Consider another example:

In this case each iteration of the loop references a different array element. Therefore

different iterations of the loop can be executed in any order. They may be executed

in parallel without any locks because no two data elements of different iterations can

possibly interfere.

The analysis performed by the compiler to determine if two different iterations of a

loop could reference the same variable is called data dependence analysis. Data

dependences prevent loop parallelization if one of the references writes to the

variable. The dependence analysis performed by the compiler can have three

outcomes:

■ There is a dependence. In this case, it is not safe to execute the loop in parallel.

CODE EXAMPLE 3-1 illustrates this case.

■ There is no dependence. The loop may safely execute in parallel using an

arbitrary number of processors. CODE EXAMPLE 3-2 illustrates this case.

■ The dependence cannot be determined. The compiler assumes, for safety, that

there might be a dependence that prevents parallel execution of the loop and will

not parallelize the loop.

In CODE EXAMPLE 3-3, whether or not two iterations of the loop write to the same

element of array a depends on whether or not array b contains duplicate elements.

Unless the compiler can determine this fact, it assumes there is a dependence and

does not parallelize the loop.

CODE EXAMPLE 3-2 A Loop Without Dependence

for (i=1; i < 1000; i++) {
a[i] = 2 * a[i]; /* S1 */

}

CODE EXAMPLE 3-3 A Loop That May or May Not Contain Dependencies

for (i=1; i < 1000; i++) {
a[b[i]] = 2 * a[i];

}

3-6 C User’s Guide • May 2002

3.4.1 Parallel Execution Model

The parallel execution of loops is performed by Solaris threads. The thread starting

the initial execution of the program is called the master thread. At program start-up

the master thread creates multiple slave threads as shown in the following figure. At

the end of the program all the slave threads are terminated. Slave thread creation is

performed exactly once to minimize the overhead.

FIGURE 3-1 Master and Slave Threads

After start-up, the master thread starts the execution of the program while slave

threads wait idly. When the master thread encounters a parallel loop, different

iterations of the loop are distributed among the slave and master threads which start

the execution of the loop. After each thread finishes execution of its chunk it

synchronizes with the remaining threads. This synchronization point is called a

barrier. The master thread cannot continue executing the remainder of the program

until all the threads have finished their work and reached the barrier. The slave

threads go into a wait state after the barrier waiting for more parallel work, and the

master thread continues to execute the program.

During this process, various overheads can occur:

■ The overhead of synchronization and work distribution

■ The overhead of barrier synchronization

In general, there may be some parallel loops for which the amount of useful work

performed is not enough to justify the overhead. For such loops, there may be

appreciable slowdown. In the following figure, a loop is parallelized. However the

barriers, represented by horizontal bars, introduce significant overhead. The work

between the barriers is performed serially or in parallel as indicated. The amount of

time required to execute the loop in parallel is considerably less than the amount of

time required to synchronize the master and slave threads at the barriers.

Master Thread

Master Thread

Slave Threads
Chapter 3 Parallelizing Sun C Code 3-7

FIGURE 3-2 Parallel Execution of a Loop

3.4.2 Private Scalars and Private Arrays

There are some data dependences for which the compiler may still be able to

parallelize a loop. Consider the following example.

In this example, assuming that arrays a and b are non-overlapping arrays, there

appears to be a data dependence in any two iterations due to the variable t . The

following statements execute during iterations one and two.

CODE EXAMPLE 3-4 A Parallelizable Loop With Dependence

for (i=1; i < 1000; i++) {
t = 2 * a[i]; /* S1 */
b[i] = t; /* S2 */

}

CODE EXAMPLE 3-5 Iterations One and Two

t = 2*a[1]; /* 1 */
b[1] = t; /* 2 */
t = 2*a[2]; /* 3 */
b[2] = t; /* 4 */

Serial 3

Serial 1

Parallel 1

Serial 2

Parallel 2

Master Thread

Time Slave Threads
3-8 C User’s Guide • May 2002

Because statements one and three modify the variable t , the compiler cannot execute

them in parallel. However, the value of t is always computed and used in the same

iteration so the compiler can use a separate copy of t for each iteration. This

eliminates the interference between different iterations due to such variables. In

effect, we have made variable t as a private variable for each thread executing that

iteration. This can be illustrated as follows:

CODE EXAMPLE 3-6 is essentially the same example as CODE EXAMPLE 3-3, but each

scalar variable reference t is now replaced by an array reference pt . Each iteration

now uses a different element of pt , and this results in eliminating any data

dependencies between any two iterations. Of course one problem with this

illustration is that it may lead to an extra large array. In practice, the compiler only

allocates one copy of the variable for each thread that participates in the execution of

the loop. Each such variable is, in effect, private to the thread.

The compiler can also privatize array variables to create opportunities for parallel

execution of loops. Consider the following example:

CODE EXAMPLE 3-6 Variable t as a Private Variable for Each Thread

for (i=1; i < 1000; i++) {
pt[i] = 2 * a[i]; /* S1 */
b[i] = pt[i]; /* S2 */

}

CODE EXAMPLE 3-7 A Parallelizable Loop With an Array Variable

for (i=1; i < 1000; i++) {
for (j=1; j < 1000; j++) {

x[j] = 2 * a[i]; /* S1 */
b[i][j] = x[j]; /* S2 */

}
}

Chapter 3 Parallelizing Sun C Code 3-9

In CODE EXAMPLE 3-7, different iterations of the outer loop modify the same elements

of array x , and thus the outer loop cannot be parallelized. However, if each thread

executing the outer loop iterations has a private copy of the entire array x , then there

would be no interference between any two iterations of the outer loop. This is

illustrated as follows:

As in the case of private scalars, it is not necessary to expand the array for all the

iterations, but only up to the number of threads executing in the systems. This is

done automatically by the compiler by allocating one copy of the original array in

the private space of each thread.

3.4.3 Storeback

Privatization of variables can be very useful for improving the parallelism in the

program. However, if the private variable is referenced outside the loop then the

compiler needs to assure that it has the right value. Consider the following example:

In CODE EXAMPLE 3-9 the value of t referenced in statement S3 is the final value of t
computed by the loop. After the variable t has been privatized and the loop has

finished executing, the right value of t needs to be stored back into the original

variable. This is called storeback. This is done by copying the value of t on the final

CODE EXAMPLE 3-8 A Parallelizable Loop Using a Privatized Array

for (i=1; i < 1000; i++) {
for (j=1; j < 1000; j++) {

px[i][j] = 2 * a[i]; /* S1 */
b[i][j] = px[i][j]; /* S2 */

}
}

CODE EXAMPLE 3-9 A Parallelized Loop Using Storeback

for (i=1; i < 1000; i++) {
t = 2 * a[i]; /* S1 */
b[i] = t; /* S2 */

}
x = t; /* S3 */
3-10 C User’s Guide • May 2002

iteration back to the original location of variable t . In many cases the compiler can

do this automatically. But there are situations where the last value cannot be

computed so easily:

For correct execution, the value of t in statement S3 is not, in general, the value of t
on the final iteration of the loop. It is in fact the last iteration for which the condition

C1 is true. Computing the final value of t is quite hard in the general cases. In cases

like this the compiler will not parallelize the loop.

3.4.4 Reduction Variables

There are cases when there is a real dependence between iterations of a loop and the

variables causing the dependence cannot simply be privatized. This can arise, for

example, when values are being accumulated from one iteration to the next.

In CODE EXAMPLE 3-11, the loop computes the vector product of two arrays into a

common variable called sum. This loop cannot be parallelized in a simple manner.

The compiler can take advantage of the associative nature of the computation in

statement S1 and allocate a private variable called psum[i] for each thread. Each

copy of the variable psum[i] is initialized to 0. Each thread computes its own

partial sum in its own copy of the variable psum[i] . Before crossing the barrier, all

the partial sums are added onto the original variable sum. In this example, the

variable sum is called a reduction variable because it computes a sum-reduction.

However, one danger of promoting scalar variables to reduction variables is that the

CODE EXAMPLE 3-10 A Loop That Cannot Use Storeback

for (i=1; i < 1000; i++) {
if (c[i] > x[i]) { /* C1 */

t = 2 * a[i]; /* S1 */
b[i] = t; /* S2 */

}
}
x = t*t; /* S3 */

CODE EXAMPLE 3-11 A Loop That May or May Not Be Parallelized

for (i=1; i < 1000; i++) {
sum += a[i]*b[i]; /* S1 */

}

Chapter 3 Parallelizing Sun C Code 3-11

manner in which rounded values are accumulated can change the final value of sum.

The compiler performs this transformation only if you specifically give permission

for it to do so.

3.5 Speedups
If the compiler does not parallelized a portion of a program where a significant

amount of time is spent, then no speedup occurs. This is basically a consequence of

Amdahls Law. For example, if a loop that accounts for five percent of the execution

time of a program is parallelized, then the overall speedup is limited to five percent.

However, there may not be any improvement depending on the size of the workload

and parallel execution overheads.

As a general rule, the larger the fraction of program execution that is parallelized,

the greater the likelihood of a speedup.

Each parallel loop incurs a small overhead during start-up and shutdown. The start

overhead includes the cost of work distribution, and the shutdown overhead

includes the cost of the barrier synchronization. If the total amount of work

performed by the loop is not big enough then no speedup will occur. In fact the loop

might even slow down. So if a large amount of program execution is accounted by a

large number of short parallel loops, then the whole program may slow down

instead of speeding up.

The compiler performs several loop transformations that try to increase the

granularity of the loops. Some of these transformations are loop interchange and

loop fusion. So in general, if the amount of parallelism in a program is small or is

fragmented among small parallel regions, then the speedup is less.

Often scaling up a problem size improves the fraction of parallelism in a program.

For example, consider a problem that consists of two parts: a quadratic part that is

sequential, and a cubic part that is parallelizable. For this problem the parallel part

of the workload grows faster than the sequential part. So at some point the problem

will speedup nicely, unless it runs into resource limitations.

It is beneficial to try some tuning, experimentation with directives, problem sizes

and program restructuring in order to achieve benefits from parallel C.

3.5.1 Amdahl’s Law

Fixed problem-size speedup is generally governed by Amdahl’s law. Amdahl’s Law

simply says that the amount of parallel speedup in a given problem is limited by the

sequential portion of the problem.The following equation describes the speedup of a
3-12 C User’s Guide • May 2002

problem where F is the fraction of time spent in sequential region, and the remaining

fraction of the time is spent uniformly among P processors. If the second term of the

equation drops to zero, the total speedup is bounded by the first term, which

remains fixed.

The following figure illustrates this concept diagrammatically. The darkly shaded

portion represents the sequential part of the program, and remains constant for one,

two, four, and eight processors, while the lightly shaded portion represents the

parallel portion of the program that can be divided uniformly among an arbitrary

number of processors.

FIGURE 3-3 Fixed Problem Speedups

In reality, however, you may incur overheads due to communication and

distribution of work to multiple processors. These overheads may or may not be

fixed for arbitrary number of processors used.

1
S
--- F

1 F–()
P

-----------------+=

P 1 2 4 8
Chapter 3 Parallelizing Sun C Code 3-13

FIGURE 3-4 illustrates the ideal speedups for a program continuing 0%, 2%, 5%, and

10% sequential portions. Here, no overhead is assumed.

FIGURE 3-4 Amdahl’s Law Speedup Curve

3.5.1.1 Overheads

Once the overheads are incorporated in the model the speedup curves change

dramatically. Just for the purposes of illustration we assume that overheads consist

of two parts: a fixed part which is independent of the number of processors, and a

non-fixed part that grows quadratically with the number of the processors used:

In this equation, K1 and K2 are some fixed factors. Under these assumptions the

speedup curve is shown in the following figure. It is interesting to note that in this

case the speedups peak out. After a certain point adding more processors is

detrimental to performance as shown in the following figure.

87654321

8.00

4.00

2.00

0.00

6.00 5%

10%

2%

0%

1
S
--- 1

F 1 F
P
---– 

  K1 K2P
2

+ + +

--=
3-14 C User’s Guide • May 2002

FIGURE 3-5 Speedup Curve With Overheads

87654321

2.50

1.50

1.00

0.50

2.00

15%
20%

10%
5%

0.00
Chapter 3 Parallelizing Sun C Code 3-15

3.5.1.2 Gustafson’s Law

Amdahls Law can be misleading for predicting parallel speedups in real problems.

The fraction of time spent in sequential sections of the program sometimes depends

on the problem size. That is, by scaling the problem size, you may improve the

chances of speedup. The following example demonstrates this.

Assume an ideal overhead of zero and assume that only the second loop nest is

executed in parallel. It is easy to see that for small problem sizes (i.e. small values of

n), the sequential and parallel parts of the program are not so far from each other.

However, as n grows larger, the time spent in the parallel part of the program grows

faster than the time spent in the sequential part. For this problem, it is beneficial to

increase the number of processors as the problem size increases.

CODE EXAMPLE 3-12 Scaling the Problem Size May Improve Chances of Speedup

/*
* initialize the arrays
*/
for (i=0; i < n; i++) {

for (j=0; j < n; j++) {
a[i][j] = 0.0;
b[i][j] = ...
c[i][j] = ...

}
}
/*
* matrix multiply
*/
for (i=0; i < n; i++) {

for(j=0; j < n; j++) {
for (k=0; k < n; k++) {

a[i][j] = b[i][k]*c[k][j];
}

}
}

3-16 C User’s Guide • May 2002

3.6 Load Balance and Loop Scheduling
Loop scheduling is the process of distributing iterations of a parallel loop to multiple

threads. In order to maximize the speedup, it is important that the work be

distributed evenly among the threads while not imposing too much overhead. The

compiler offers several types of scheduling for different situations.

3.6.1 Static or Chunk Scheduling

It is beneficial to divide the work evenly among the different threads on the system

when the work performed by different iterations of a loop is the same. This

approach is known as static scheduling.

Under static or chunk scheduling, each thread will get the same number of

iterations. If there were 4 threads, then in the above example, each thread will get

250 iterations. Provided there are no interruptions and each thread progresses at the

same rate, all the threads will complete at the same time.

3.6.2 Self Scheduling

Static scheduling will not achieve good load balance, in general, when the work

performed by each iteration varies. In static scheduling, each thread grabs the same

chunk of iterations. Each thread, except the master thread, upon completion of its

chunk waits to participate in the next parallel loop execution. The master thread

continues execution of the program. In self scheduling, each thread grabs a different

small chunk of iteration and after completion of its assigned chunk, tries to acquire

more chunks from the same loop.

CODE EXAMPLE 3-13 A Good Loop for Static Scheduling

for (i=1; i < 1000; i++) {
sum += a[i]*b[i]; /* S1 */

}

Chapter 3 Parallelizing Sun C Code 3-17

3.6.3 Guided Self Scheduling

In guided self scheduling (GSS), each thread gets successively smaller number of

chunks. In cases where the size of each iteration varies, GSS can help balance the

load.

3.7 Loop Transformations
The compiler performs several loop restructuring transformations to help improve

the parallelization of a loop in programs. Some of these transformations can also

improve the single processor execution of loops as well. The transformations

performed by the compiler are described below.

3.7.1 Loop Distribution

Often loops contain a few statements that cannot be executed in parallel and many

statements that can be executed in parallel. Loop Distribution attempts to remove

the sequential statements into a separate loop and gather the parallelizable

statements into a different loop. This is illustrated in the following example:

CODE EXAMPLE 3-14 A Candidate for Loop Distribution

for (i=0; i < n; i++) {
x[i] = y[i] + z[i]*w[i]; /* S1 */
a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */
y[i] = z[i] - x[i]; /* S3 */

}

3-18 C User’s Guide • May 2002

Assuming that arrays x , y, w, a, and z do not overlap, statements S1 and S3 can be

parallelized but statement S2 cannot be. Here is how the loop looks after it is split or

distributed into two different loops:

After this transformation, loop L1 does not contain any statements that prevent the

parallelization of the loop and may be executed in parallel. Loop L2, however, still

has a non-parallelizable statement from the original loop.

Loop distribution is not always profitable or safe to perform. The compiler performs

analysis to determine the safety and profitability of distribution.

3.7.2 Loop Fusion

If the granularity of a loop, or the work performed by a loop, is small, the

performance gain from distribution may be insignificant. This is because the

overhead of parallel loop start-up is too high compared to the loop workload. In

such situations, the compiler uses loop fusion to combine several loops into a single

parallel loop, and thus increase the granularity of the loop. Loop fusion is easy and

safe when loops with identical trip counts are adjacent to each other. Consider the

following example:

CODE EXAMPLE 3-15 The Distributed Loop

/* L1: parallel loop */
for (i=0; i < n; i++) {

x[i] = y[i] + z[i]*w[i]; /* S1 */
y[i] = z[i] - x[i]; /* S3 */

}
/* L2: sequential loop */
for (i=0; i < n; i++) {

a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */
}

CODE EXAMPLE 3-16 Loops With Small Work Loads

/* L1: short parallel loop */
for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */
}
/* L2: another short parallel loop */
for (i=0; i < 100; i++) {

b[i] = a[i] * d[i]; /* S2 */
}

Chapter 3 Parallelizing Sun C Code 3-19

The two short parallel loops are next to each other, and can be safely combined as

follows:

The new loop generates half the parallel loop execution overhead. Loop fusion can

also help in other ways. For example if the same data is referenced in two loops,

then combining them can improve the locality of reference.

However, loop fusion is not always safe to perform. If loop fusion creates a data

dependence that did not exist before then the fusion may result in incorrect

execution. Consider the following example:

If the loops in CODE EXAMPLE 3-18 are fused, a data dependence is created from

statement S2 to S1. In effect, the value of a[i] in the right hand side of statement S1

is computed in statement S2. If the loops are not fused, this would not happen. The

compiler performs safety and profitability analysis to determine if loop fusion

should be done. Often, the compiler can fuse an arbitrary number of loops.

Increasing the granularity in this manner can sometimes push a loop far enough up

for it to be profitable for parallelization.

CODE EXAMPLE 3-17 The Two Loops Fused

/* L3: a larger parallel loop */
for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */
b[i] = a[i] * d[i]; /* S2 */

}

CODE EXAMPLE 3-18 Unsafe Fusion Candidates

/* L1: short parallel loop */
for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */
}
/* L2: a short loop with data dependence */
for (i=0; i < 100; i++) {

a[i+1] = a[i] * d[i]; /* S2 */
}

3-20 C User’s Guide • May 2002

3.7.3 Loop Interchange

It is generally more profitable to parallelize the outermost loop in a nest of loops,

since the overheads incurred are small. However, it is not always safe to parallelize

the outermost loops due to dependences that might be carried by such loops. This is

illustrated in the following:

In this example, the loop with the index variable i cannot be parallelized, because of

a dependency between two successive iterations of the loop. The two loops can be

interchanged and the parallel loop (the j -loop) becomes the outer loop:

The resulting loop incurs an overhead of parallel work distribution only once, while

previously, the overhead was incurred n times. The compiler performs safety and

profitability analysis to determine whether to perform loop interchange.

CODE EXAMPLE 3-19 Nested Loop That Cannot Be Parallelized

for (i=0; i <n; i++) {
for (j=0; j <n; j++) {

a[j][i+1] = 2.0*a[j][i-1];
}

}

CODE EXAMPLE 3-20 The Loops Interchanged

for (j=0; j<n; j++) {
for (i=0; i<n; i++) {

a[j][i+1] = 2.0*a[j][i-1];
}

}

Chapter 3 Parallelizing Sun C Code 3-21

3.8 Aliasing and Parallelization
ISO C aliasing can often prevent loops from getting parallelized. Aliasing occurs

when there are two possible references to the same memory location. Consider the

following example:

Since variables a and b are parameters, it is possible that a and b may be pointing to

overlapping regions of memory; e.g, if copy were called as follows:

In the called routine, two successive iterations of the copy loop may be reading and

writing the same element of the array x . However, if the routine copy were called as

follows then there is no possibility of overlap in any of the 20 iterations of the loop:

In general, it is not possible for the compiler to analyze this situation correctly

without knowing how the routine is called. The compiler provides a keyword

extension to ISO C that lets you convey this kind of aliasing information. See

Section 3.8.2, “Restricted Pointers” on page 3-23 for more information.

3.8.1 Array and Pointer References

Part of the aliasing problem is that the C language can define array referencing and

definition through pointer arithmetic. In order for the compiler to effectively

parallelize loops, either automatically or explicitly with pragmas, all data that is laid

out as an array must be referenced using C array reference syntax and not pointers.

CODE EXAMPLE 3-21 A Loop With Two References to the Same Memory Location

void copy(float a[], float b[], int n) {
int i;
for (i=0; i < n; i++) {

a[i] = b[i]; /* S1 */
}

}

copy (x[10], x[11], 20);

copy (x[10], x[40], 20);
3-22 C User’s Guide • May 2002

If pointer syntax is used, the compiler cannot determine the relationship of the data

between different iterations of a loop. Thus it will be conservative and not

parallelize the loop.

3.8.2 Restricted Pointers

In order for a compiler to effectively perform parallel execution of a loop, it needs to

determine if certain lvalues designate distinct regions of storage. Aliases are lvalues

whose regions of storage are not distinct. Determining if two pointers to objects are

aliases is a difficult and time consuming process because it could require analysis of

the entire program. Consider function vsq() below:

The compiler can parallelize the execution of the different iterations of the loops if it

knows that pointers a and b access different objects. If there is an overlap in objects

accessed through pointers a and b then it would be unsafe for the compiler to

execute the loops in parallel. At compile time, the compiler does not know if the

objects accessed by a and b overlap by simply analyzing the function vsq() ; the

compiler may need to analyze the whole program to get this information.

Restricted pointers are used to specify pointers which designate distinct objects so

that the compiler can perform pointer alias analysis. The following is an example of

function vsq() in which function parameters are declared as restricted pointers:

Pointers a and b are declared as restricted pointers, so the compiler knows that a
and b point to distinct regions of storage. With this alias information, the compiler is

able to parallelize the loop.

CODE EXAMPLE 3-22 A Loop With Two Pointers

void vsq(int n, double * a, double * b) {
int i;
for (i=0; i<n; i++) {

b[i] = a[i] * a[i];
}

}

void vsq(int n, double * restrict a, double * restrict b)
Chapter 3 Parallelizing Sun C Code 3-23

The keyword restrict is a type-qualifier, like volatile , and it shall only qualify

pointer types. restrict is recognized as a keyword when you use -xc99=%all
(except with -Xs). There are situations in which you may not want to change the

source code. You can specify that pointer-valued function-parameters be treated as

restricted pointers by using the following command line option:

If a function list is specified, then pointer parameters in the specified functions are

treated as restricted; otherwise, all pointer parameters in the entire C file are treated

as restricted. For example, -xrestrict=vsq , qualifies the pointers a and b given in

the first example of the function vsq() with the keyword restrict .

It is critical that you use restrict correctly. If pointers qualified as restricted

pointers point to objects which are not distinct, the compiler can incorrectly

parallelize loops resulting in undefined behavior. For example, assume that pointers

a and b of function vsq() point to objects which overlap, such that b[i] and

a[i+1] are the same object. If a and b are not declared as restricted pointers the

loops will be executed serially. If a and b are incorrectly qualified as restricted

pointers the compiler may parallelize the execution of the loops, which is not safe,

because b[i+1] should only be computed after b[i] is computed.

3.8.3 Explicit Parallelization and Pragmas

Often, there is not enough information available for the compiler to make a decision

on the legality or profitability of parallelization. Sun ISO C supports pragmas that

allow the programmer to effectively parallelize loops that otherwise would be too

difficult or impossible for the compiler to handle.

3.8.3.1 Serial Pragmas

There are two serial pragmas, and both apply to for loops:

■ #pragma MP serial_loop
■ #pragma MP serial_loop_nested

The #pragma MP serial_loop pragma indicates to the compiler that the next for
loop is not to be automatically parallelized.

The #pragma MP serial_loop_nested pragma indicates to the compiler that the

next for loop and any for loops nested within the scope of this for loop are not to

be automatically parallelized. The scope of the serial_loop_nested pragma does

not extend beyond the scope of the loop to which it applies.

-xrestrict=[func1,…, funcn]
3-24 C User’s Guide • May 2002

3.8.3.2 Parallel Pragma

There is one parallel pragma: #pragma MP taskloop [options] .

The MP taskloop pragma can, optionally, take one or more of the following

arguments.

■ maxcpus (number_of_processors)
■ private (list_of_private_variables)
■ shared (list_of_shared_variables)
■ readonly (list_of_readonly_variables)
■ storeback (list_of_storeback_variables)
■ savelast
■ reduction (list_of_reduction_variables)
■ schedtype (scheduling_type)

Only one option can be specified per MP taskloop pragma; however, the pragmas

are cumulative and apply to the next for loop encountered within the current block

in the source code:

These options may appear multiple times prior to the for loop to which they apply.

In case of conflicting options, the compiler will issue a warning message.

Nesting of for Loops

An MP taskloop pragma applies to the next for loop within the current block.

There is no nesting of parallelized for loops by parallelized C.

Eligibility for Parallelizing

An MP taskloop pragma suggests to the compiler that, unless otherwise

disallowed, the specified for loop should be parallelized.

Any for loop with irregular control flow and unknown loop iteration increment is

ineligible for parallelization. For example, for loops containing setjmp , longjmp ,

exit , abort , return , goto , labels , and break should not be considered as

candidates for parallelization.

#pragma MP taskloop maxcpus(4)
#pragma MP taskloop shared(a,b)
#pragma MP taskloop storeback(x)
Chapter 3 Parallelizing Sun C Code 3-25

Of particular importance is to note that for loops with inter-iteration dependencies

can be eligible for explicit parallelization. This means that if an MP taskloop
pragma is specified for such a loop the compiler will simply honor it, unless the for
loop is disqualified. It is the user’s responsibility to make sure that such explicit

parallelization will not lead to incorrect results.

If both the serial_loop or serial_loop_nested and taskloop pragmas are

specified for a for loop, the last one specified will prevail.

Consider the following example:

The i loop will not be parallelized but the j loop might be.

Number of Processors

#pragma MP taskloop maxcpus (number_of_processors) specifies the number of

processors to be used for this loop, if possible.

The value of maxcpus must be a positive integer. If maxcpus equals 1, then the

specified loop will be executed in serial. (Note that setting maxcpus to be 1 is

equivalent to specifying the serial_loop pragma.) The smaller of the values of

maxcpus or the interpreted value of the PARALLELenvironment variable will be

used. When the environment variable PARALLELis not specified, it is interpreted as

having the value 1.

If more than one maxcpus pragma is specified for a for loop, the last one specified

will prevail.

Classifying Variables

A variable used in a loop is classified as being either a private , shared ,

reduction , or readonly variable. The variable belongs to only one of these

classifications. A variable can only be classified as a reduction or readonly
variable through an explicit pragma. See #pragma MP taskloop reduction and

#pragma MP taskloop readonly . A variable can be classified as being either a

private or shared variable through an explicit pragma or through the following

default scoping rules.

#pragma MP serial_loop_nested
for (i=0; i<100; i++) {

pragma MP taskloop
for (j=0; j<1000; j++) {
...

}
}

3-26 C User’s Guide • May 2002

Default Scoping Rules for private and shared Variables

A private variable is one whose value is private to each processor processing some

iterations of a for loop. In other words, the value assigned to a private variable in

one iteration of a for loop is not propagated to other processors processing other

iterations of that for loop. A shared variable, on the other hand, is a variable

whose current value is accessible by all processors processing iterations of a for
loop. The value assigned to a shared variable by one processor working on

iterations of a loop may be seen by other processors working on other iterations of

the loop. Loops being explicitly parallelized through use of #pragma MP taskloop
directives, that contain references to shared variables, must ensure that such sharing

of values does not cause any correctness problems (such as race conditions). No

synchronization is provided by the compiler on updates and accesses to shared

variables in an explicitly parallelized loop.

In analyzing explicitly parallelized loops, the compiler uses the following “default

scoping rules” to determine whether a variable is private or shared :

■ If a variable is not explicitly classified via a pragma, the variable will default to

being classified as a shared variable if it is declared as a pointer or array, and is

only referenced using array syntax within the loop. Otherwise, it will be classified

as a private variable.

■ The loop index variable is always treated as a private variable and is always a

storeback variable.

It is highly recommended that all variables used in an explicitly parallelized for loop

be explicitly classified as one of shared , private , reduction , or readonly , to

avoid the “default scoping rules.”

Since the compiler does not perform any synchronization on accesses to shared

variables, extreme care must be exercised before using an MP taskloop pragma for

a loop that contains, for example, array references. If inter-iteration data

dependencies exist in such an explicitly parallelized loop, then its parallel execution

may give erroneous results. The compiler may or may not be able to detect such a

potential problem situation and issue a warning message. In any case, the compiler

will not disable the explicit parallelization of loops with potential shared variable

problems.

private Variables

#pragma MP taskloop private (list_of_private_variables)

Use this pragma to specify all the variables that should be treated as private

variables for this loop. All other variables used in the loop that are not explicitly

specified as shared , readonly , or reduction variables, are either shared or

private as defined by the default scoping rules.
Chapter 3 Parallelizing Sun C Code 3-27

A private variable is one whose value is private to each processor processing some

iterations of a loop. In other words, the value assigned to a private variable by one

of the processors working on iterations of a loop is not propagated to other

processors processing other iterations of that loop. A private variable has no initial

value at the start of each iteration of a loop and must be set to a value within the

iteration of a loop prior to its first use within that iteration. Execution of a program

with a loop containing an explicitly declared private variable whose value is used

prior to being set will result in undefined behavior.

shared Variables

#pragma MP taskloop shared (list_of_shared_variables)

Use this pragma to specify all the variables that should be treated as shared
variables for this loop. All other variables used in the loop that are not explicitly

specified as private , readonly , storeback or reduction variables, are either

shared or private as defined by the default scoping rules.

A shared variable is a variable whose current value is accessible by all processors

processing iterations of a for loop. The value assigned to a shared variable by one

processor working on iterations of a loop may be seen by other processors working

on other iterations of the loop.

readonly Variables

#pragma MP taskloop readonly (list_of_readonly_variables)

readonly variables are a special class of shared variables that are not modified in

any iteration of a loop. Use this pragma to indicate to the compiler that it may use a

separate copy of that variable’s value for each processor processing iterations of the

loop.

storeback Variables

#pragma MP taskloop storeback (list_of_storeback_variables)

Use this pragma to specify all the variables to be treated as storeback variables.

A storeback variable is one whose value is computed in a loop, and this computed

value is then used after the termination of the loop. The last loop iteration values of

storeback variables are available for use after the termination of the loop. Such a

variable is a good candidate to be declared explicitly via this directive as a

storeback variable when the variable is a private variable, whether by explicitly

declaring the variable private or by the default scoping rules.
3-28 C User’s Guide • May 2002

Note that the storeback operation for a storeback variable occurs at the last

iteration of the explicitly parallelized loop, regardless of whether or not that

iteration updates the value of the storeback variable. In other words, the processor

that processes the last iteration of a loop may not be the same processor that

currently contains the last updated value for a storeback variable. Consider the

following example:

In the previous example the value of the storeback variable x printed out via the

printf() call may not be the same as that printed out by a serial version of the i
loop, because in the explicitly parallelized case, the processor that processes the last

iteration of the loop (when i==n), which performs the storeback operation for x may

not be the same processor that currently contains the last updated value for x . The

compiler will attempt to issue a warning message to alert the user of such potential

problems.

In an explicitly parallelized loop, variables referenced as arrays are not treated as

storeback variables. Hence it is important to include them in the

list_of_storeback_variables if such storeback operation is desired (for example, if the

variables referenced as arrays have been declared as private variables).

savelast

#pragma MP taskloop savelast

Use this pragma to specify all the private variables of a loop that you want to be

treated as storeback variables. The syntax of this pragma is as follows:

#pragma MP taskloop savelast

It is often convenient to use this form, rather than list out each private variable of a

loop when declaring each variable as storeback variables.

#pragma MP taskloop private(x)
#pragma MP taskloop storeback(x)

for (i=1; i <= n; i++) {
if (...) {

x=...
}

}
printf (“%d”, x);
Chapter 3 Parallelizing Sun C Code 3-29

reduction Variables

#pragma MP taskloop reduction (list_of_reduction_variables) specifies that all

the variables appearing in the reduction list will be treated as reduction variables

for the loop. A reduction variable is one whose partial values can be individually

computed by each of the processors processing iterations of the loop, and whose

final value can be computed from all its partial values. The presence of a list of

reduction variables can facilitate the compiler in identifying that the loop is a

reduction loop, allowing generation of parallel reduction code for it. Consider the

following example:

the variable x is a (sum) reduction variable and the i loop is a(sum) reduction

loop.

Scheduling Control

The Sun ISO C compiler supports several pragmas that can be used in conjunction

with the taskloop pragma to control the loop scheduling strategy for a given loop.

The syntax for this pragma is:

#pragma MP taskloop schedtype (scheduling_type)

This pragma can be used to specify the specific scheduling_type to be used to

schedule the parallelized loop. Scheduling_type can be one of the following:

■ static

In static scheduling all the iterations of the loop are uniformly distributed

among all the participating processors. Consider the following example:

In the above example, each of the four processors will process 250 iterations of the

loop.

■ self [(chunk_size)]

#pragma MP taskloop reduction(x)
for (i=0; i<n; i++) {

x = x + a[i];
}

#pragma MP taskloop maxcpus(4)
#pragma MP taskloop schedtype(static)

for (i=0; i<1000; i++) {
...
}

3-30 C User’s Guide • May 2002

In self scheduling, each participating processor processes a fixed number of

iterations (called the “chunk size”) until all the iterations of the loop have been

processed. The optional chunk_size parameter specifies the “chunk size” to be

used. Chunk_size must be a positive integer constant, or variable of integral type.

If specified as a variable, chunk_size must evaluate to a positive integer value at

the beginning of the loop. If this optional parameter is not specified or its value is

not positive, the compiler will select the chunk size to be used. Consider the

following example:

In the above example, the number of iterations of the loop assigned to each

participating processor, in order of work request, are:

120, 120, 120, 120, 120, 120, 120, 120, 40.

■ gss [(min_chunk_size)]

In guided self scheduling, each participating processor processes a variable

number of iterations (called the “min chunk size”) until all the iterations of the

loop have been processed. The optional min_chunk_size parameter specifies that

each variable chunk size used must be at least min_chunk_size in size.

Min_chunk_size must be a positive integer constant, or variable of integral type. If

specified as a variable, min_chunk_size must evaluate to a positive integer value at

the beginning of the loop. If this optional parameter is not specified or its value is

not positive, the compiler will select the chunk size to be used. Consider the

following example:

In the above example, the number of iterations of the loop assigned to each

participating processor, in order of work request, are:

250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14, 11, 10, 10, 10.

■ factoring [(min_chunk_size)]

In factoring scheduling, each participating processor processes a variable

number of iterations (called the “min chunk size”) until all the iterations of the

loop have been processed. The optional min_chunk_size parameter specifies that

#pragma MP taskloop maxcpus(4)
#pragma MP taskloop schedtype(self(120))
for (i=0; i<1000; i++) {
...
}

#pragma MP taskloop maxcpus(4)
#pragma MP taskloop schedtype(gss(10))
for (i=0; i<1000; i++) {
...
}

Chapter 3 Parallelizing Sun C Code 3-31

each variable chunk size used must be at least min_chunk_size in size.

Min_chunk_size must be a positive integer constant, or variable of integral type. If

specified as a variable min_chunk_size must evaluate to a positive integer value at

the beginning of the loop. If this optional parameter is not specified or its value is

not positive, the compiler will select the chunk size to be used. Consider the

following example:

In the above example, the number of iterations of the loop assigned to each

participating processor, in order of work request, are:

125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 32, 16, 16, 16, 16, 10, 10, 10, 10, 10, 10

#pragma MP taskloop maxcpus(4)
#pragma MP taskloop schedtype(factoring(10))
for (i=0; i<1000; i++) {
...
}

3-32 C User’s Guide • May 2002

CHAPTER 4

Incremental Link Editor (ild)

This chapter describes ild , ild -specific features, example messages, and ild
options.

4.1 Introduction
ild is an incremental version of the Link Editor ld , and replaces ld for linking

programs. Use ild to complete the edit, compile, link, and debug loop efficiently

and more quickly. You can avoid relinking entirely by using the fix and continue
feature of dbx which allows you to work without relinking. However, if you need to

relink, the process can be faster if you use ild . For more information on fix and

continue, see Chapter 11 in Debugging a Program With dbx .

ild links incrementally so you can insert modified object code into an executable

file that you created earlier, without relinking unmodified object files. The time

required to relink depends upon the amount of code modified. Linking your

application on every build does not require the same amount of time; small changes

in code can be relinked very quickly.

On the initial link, ild requires about the same amount of time that ld requires, but

subsequent ild links can be much faster than an ld link. The cost of the reduced

link time is an increase in the size of the executable.

4.2 Overview of Incremental Linking
When you use ild in place of ld , the initial link causes the various text, data, bss,

exception table sections, etc., to be padded with additional space for future

expansion (see FIGURE 4-1). Additionally, all relocation records and the global symbol
4-1

table are saved into a new persistent state region in the executable file. On

subsequent incremental links, ild uses timestamps to determine which object files

have changed and patches the changed object code into a previously built

executable. That is, previous versions of the object files are invalidated and the new

object files are loaded into the space vacated, or into the pad sections of the

executable when needed. All references to symbols in invalidated object files are

patched to point to the correct new object files.

ild does not support all ld command options. If ild is passed a command option

that it does not support, ild directly invokes /usr/ccs/bin/ld to perform the

link. See Section 4.9, “ld Options not Supported by ild” on page 4-18 for more

information on commands that are not supported by the Incremental Linker.

4.3 How to Use ild
ild is invoked automatically by the compilation system in place of ld under certain

conditions. When you invoke a compilation system, you are invoking a compiler

driver. When you pass certain options to the driver, the driver uses ild . The

compiler driver reads the options from the command line and executes various

programs in the correct order and adds files from the list of arguments that are

passed.

For example, cc first runs acomp (the front-end of the compiler), then acomp runs

the optimizing code generator, then cc does the same thing for the other source files

listed on the command line. The driver can then generate a call to either ild or ld ,

depending on the options, passing it all of the files just compiled, plus other files

and libraries needed to make the program complete.
4-2 C User’s Guide • May 2002

The following figure shows an example of incremental linking.

FIGURE 4-1 An Example of Incremental Linking

The following compilation system options control whether a link step is performed

by ild or ld :

■ -xildon Always use ild
■ -xildoff Always use ld

Note – If -xildon and -xildoff are both present, the last command listed is used

by the driver to select the linker.

Text 1 Text 1

Text 2 Text 2 Text 2

Text 3Text 3Text 3

Text

Text 1

Text

Executable
produced

by ld

Executable

produced
 by ild

(padding added)

Executable
produced

by ild

Text padding
(old Text 1)

New Text 1

Data 1

Data 2

Data 3

Data 1

Data 2

Data 3

Data 1

Data 2

Data 3

(incremental)

(new)

Data

Text

Data
paddingpadding

padding

padding

padding
Chapter 4 Incremental Link Editor (ild) 4-3

■ -g When neither -xildoff or -G are given, use ild for link-only invocations

(no source files on the command line). For a complete explanation of -g , see

Section A.3.28, “-g” on page A-20.

■ -G Prevents the -g option from having any effect on linker selection. For a

complete explanation of -G , see Section A.3.27, “-G” on page A-20.

When you use the -g option to invoke debugging, and you have the default

Makefile structure (which includes compile-time options such as -g on the link

command line), you use ild automatically when doing development.

4.4 How ild Works
On an initial link, ild saves information about:

■ All of the object files looked at.

■ The symbol table for the executable produced.

■ All symbolic references not resolved at compile time.

Initial ild links take about as much time as an ld link.

On incremental links, ild :

■ Determines which files have changed.

■ Relinks the modified object files.

■ Uses stored information to modify changed symbolic references in the rest of the

program.

Incremental ild links are much faster than ld links.

In general, you do one initial link and all subsequent links are incremental.

For example, ild saves a list of all places where symbol foo is referenced in your

code. If you do an incremental link that changes the value of foo , ild must change

the value of all references to foo .

ild spreads out the components of the program and each section of the executable

has padding added to it. Padding makes the executable modules larger than when

they were linked by ld . As object files increase in size during successive incremental

links, the padding can become exhausted. If this occurs, ild displays a message and

does a complete full relink of the executable.

For example, as FIGURE 4-1 shows, each of the three columns shows the sequence of

text and data in a linked executable program. The left column shows text and data in

an executable linked by ld . The center column shows the addition of text and data

padding in an executable linked by ild . Assume that a change is made to the source

file for Text 1 that causes the Text section to grow without affecting the size of the
4-4 C User’s Guide • May 2002

other sections. The right column shows that the original location of Text 1 has been

replaced by Text padding (Text 1 has been invalidated). Text 1 has been moved to

occupy a portion of the Text padding space.

To produce a smaller nonincremental executable, run the compiler driver (for

example, cc or CC) with the -xildoff option, and ld is invoked to produce a more

compact executable.

The resulting executable from ild can be debugged by dbx because dbx /Debugger

understands the padding that ild inserts between programs.

For any command-line option that ild does not understand, ild invokes ld . ild is

compatible with ld (in /usr/ccs/bin/ld). See Section 4.7, “ild Options” on

page 4-9, for details.

There are no special or extra files used by ild .

4.5 What ild Cannot Do
When ild is invoked to create shared objects, ild invokes ld to create the link.

Performance of ild may suffer greatly if you change a high percentage of object

files. ild automatically does a full relink when it detects that a high percentage of

files have been changed.

Do not use ild to produce the final production code for shipment. ild makes the

file larger because parts of the program have been spread out due to padding.

Because of the padding and additional time required to link, it is recommended that

you do not use the -xildon option for production code. (Use -xildoff on the link

line if -g is present.)

ild may not link small programs much faster, and the increase in size of the

executable is greater than that for larger programs.

Third-party tools that work on executables may have unexpected results on

ild -produced binaries.

Any program that modifies an executable, for example strip or mcs, might affect

the ability of ild to perform an incremental link. When this happens, ild issues a

message and performs a full relink. For more information on a full relink, see

Section 4.6, “Reasons for Full Relinks” on page 4-6.
Chapter 4 Incremental Link Editor (ild) 4-5

4.6 Reasons for Full Relinks
The following section explains under which circumstances ild calls ld to complete

a link.

4.6.1 ild Deferred-Link Messages

The message ‘ild: calling ld to finish link’ … means that ild cannot

complete the link, and is deferring the link request to ld for completion. By default,

these messages are displayed as needed. You can suppress these messages by using

the -z i_quiet option.

The following message is suppressed if ild is implicitly requested (-g), but is

displayed if -xildon is on the command line. This message is displayed in all cases

if you use the -z i_verbose option, and never displayed if you use the

-z i_quiet option.

ild: calling ld to finish link -- cannot handle shared libraries
in archive library name

Here are further examples of -z i_verbose messages:

ild: calling ld to finish link -- cannot handle keyword Keyword

ild: calling ld to finish link -- cannot handle keyword -d

ild: calling ld to finish link -- cannot handle -z keyword

ild: calling ld to finish link -- cannot handle argument keyword

4.6.2 ild Relink Messages

The message ‘ild: (Performing full relink) ’ … means that for some reason

ild cannot do an incremental link and must do a full relink. This is not an error. It

is to inform you that this link will take longer than an incremental link (see

Section 4.4, “How ild Works” on page 4-4, for more details). ild messages can be

controlled by ild options -z i_quiet and -z i_verbose . Some messages have a

verbose mode with more descriptive text.
4-6 C User’s Guide • May 2002

You can suppress all of these messages by using the ild option -z i_quiet. If the

default message has a verbose mode, the message ends with an ellipsis ([...])

indicating more information is available. You can view the additional information by

using the -z i_verbose option. Example messages are shown with the

-z i_verbose option selected.

4.6.3 Example 1: Internal Free Space Exhausted

The most common of the full relink messages is the internal free space
exhausted message:

These commands show that going from a one-line compile to a two-line compile

causes debugging information to grow in the executable. This growth causes ild to

run out of space and do an full relink.

4.6.4 Example 2: Running strip

Another problem arises when you run strip . Continuing from Example 1:

$ cat test1.c

int main() { return 0; }

$ rm a.out

This creates test1.o $ cc -xildon -c -g test1.c

This creates a.out with
minimal debugging information.

$ cc -xildon -z i_verbose -g test1.o

A one-line compile and link
puts all debugging information
into a.out .

$ cc -xildon -z i_verbose -g test1.c

ild: (Performing full relink) internal free
space in output file exhausted (sections)

$

Strip a.out $ strip a.out

Try to do an incremental
link

$ cc -xildon -z i_verbose -g test1.c

ild: (Performing full relink) a.out has been
altered since the last incremental link --
maybe you ran strip or mcs on it?

$

Chapter 4 Incremental Link Editor (ild) 4-7

4.6.5 Example 3: ild Version

When a new version of ild is run on an executable created by an older version of

ild , you see the following error message:

Note – The numbers (2/16) are used only for internal reporting.

4.6.6 Example 4: Too Many Files Changed

Sometimes ild determines that it will be faster to do a full relink than an

incremental link. For example:

Here, use of the touch command causes ild to determine that files x0.o through

x8.o have changed and that a full relink will be faster than incrementally relinking

all nine object files.

4.6.7 Example 5: Full Relink

There are certain conditions that can cause a full relink on the next link, as compared

to the previous examples that cause a full relink on this link.

Assume old_executable was
created by an earlier
version of ild

$ cc -xildon -z i_verbose foo.o -o old_executable

ild: (Performing full relink) an updated ild
has been installed since a.out was last linked
(2/16)

$ rm a.out

$ cc -xildon -z i_verbose \

 x0.o x1.o x2.o x3.o x4.o x5.o x6.o x7.o x8.o test2. o

$ touch x0.o x1.o x2.o x3.o x4.o x5.o x6.o x7.o x8.o

$ cc -xildon -z i_verbose \

 x0.o x1.o x2.o x3.o x4.o x5.o x6.o x7.o x8.o test2. o

ild: (Performing full relink) too many files changed
4-8 C User’s Guide • May 2002

The next time you try to link that program, you see the message:

A full relink occurs.

4.6.8 Example 6: New Working Directory

4.7 ild Options
This section describes the linker control options directly accepted by the compilation

system and linker options that may be passed through the compilation system to

ild .

4.7.1 -a

In static mode only, produce an executable object file; give errors for undefined

references. This is the default behavior for static mode.

ild detects previous
error and does a full
relink

$ cc -xildon -z i_verbose broken.o

ild: (Performing full relink) cannot do incremental
relink due to problems in the previous link

% cd /tmp

% cat y.c

 int main(){ return 0;}

% cc -c y.c

% rm -f a.out

initial link with cwd
equal to /tmp

% cc -xildon -z i_verbose y.o -o a.out

% mkdir junk

% mv y.o y.c a.out junk

% cd junk

incremental link, cwd
is now /tmp/junk

% cc -xildon -z i_verbose y.o -o a.out

ild: (Performing full relink) current directory has
changed from ‘/tmp’ to ‘/tmp/junk’

%

Chapter 4 Incremental Link Editor (ild) 4-9

4.7.2 -B dynamic | static

Options governing library inclusion. Option -Bdynamic is valid in dynamic mode

only. These options can be specified any number of times on the command line as

toggles: if the -Bstatic option is given, no shared objects are accepted until

-Bdynamic is seen. See option Section 4.7.9, “-lx” on page 4-11.

4.7.3 -d y |n

When -dy (the default) is specified, ild uses dynamic linking; when -dn is

specified, ild uses static linking. See option Section 4.7.2, “-B dynamic | static” on

page 4-10.

4.7.4 -e epsym

Set the entry point address for the output file to be that of the symbol epsym.

4.7.5 -g

The compilation systems invoke ild in place of ld when the -g option (output

debugging information) is given, unless any of the following are true:

■ The -G option (produce a shared library) is given

■ The -xildoff option is present

■ Any source files are named on the command line

4.7.6 -I name
When building an executable, use name as the path name of the interpreter to be

written into the program header. The default in static mode is no interpreter; in

dynamic mode, the default is the name of the runtime linker, /usr/lib/ld.so.1 .

Either case may be overridden by -I name. exec only loads this interpreter when it

loads a.out and will pass control to the interpreter rather than to a.out directly.
4-10 C User’s Guide • May 2002

4.7.7 -i

Ignores LD_LIBRARY_PATHsetting. This option is useful when an

LD_LIBRARY_PATHsetting is in effect to influence the runtime library search, which

would interfere with the link editing being performed. (This also applies to the

setting of LD_LIBRARY_PATH_64).

4.7.8 -L path
Adds path to the library search directories. ild searches for libraries first in any

directories specified by the -L options, and then in the standard directories. This

option is useful only if it precedes the -l options to which it applies on the

command line. You can use the environment variable LD_LIBRARY_PATHand

LD_LIBRARY_PATH_64 to supplement the library search path (see

“LD_LIBRARY_PATH” on page 16).

4.7.9 -l x
Searches a library lib x.so or lib x.a , the conventional names for shared objects

and archive libraries, respectively. In dynamic mode, unless the -Bstatic option is

in effect, ild searches each directory specified in the library search path for a file

lib x.so or lib x.a . The directory search stops at the first directory containing

either. ild chooses the file ending in .so if -l expands to two files whose names are

of the form lib x.so and lib x.a . If no lib x.so is found, then ild accepts lib x.a .

In static mode, or when the -Bstatic option is in effect, ild selects only the file

ending in .a . A library is searched when its name is encountered, so the placement

of -l is significant.

4.7.10 -m

Produce a memory map or listing of the input/output sections on the standard

output.

4.7.11 -o outfile
Produces an output object file named outfile. The name of the default object file is

a.out .
Chapter 4 Incremental Link Editor (ild) 4-11

4.7.12 -Q y |n

Under -Qy , an ident string is added to the .comment section of the output file to

identify the version of the link editor used to create the file. This results in multiple

ld idents when there have been multiple linking steps, such as when using ld -r .

This is identical with the default action of the cc command. Option -Qn suppresses

version identification.

4.7.13 -R path
This option gives a colon-separated list of directories that specifies library search

directories to the runtime linker. If present and not null, path is recorded in the

output object file and passed to the runtime linker. Multiple instances of this option

are concatenated and separated by a colon.

4.7.14 -s

Strips symbolic information from the output file. Any debugging information and

associated relocation entries are removed. Except for relocatable files or shared

objects, the symbol table and string table sections are also removed from the output

object file.

4.7.15 -t

Turn off the warning about multiply defined symbols that are not the same size.

4.7.16 -u symname
Enter symname as an undefined symbol in the symbol table. This is useful for loading

entirely from an archive library, since initially the symbol table is empty and an

unresolved reference is needed to force the loading of the first routine. The

placement of this option on the command line is significant; it must be placed before

the library that defines the symbol.

4.7.17 -V

Output a message about the version of ild being used.
4-12 C User’s Guide • May 2002

4.7.18 -xildoff

Incremental linker off. Force the use of bundled ld . This is the default if -g is not

being used, or -G is being used. You can override this default with -xildon .

4.7.19 -xildon

Incremental linker. Force the use of ild in incremental mode. This is the default if

-g is being used. You can override this default with -xildoff .

4.7.20 -YP, dirlist
(cc only) Changes the default directories used for finding libraries. Option dirlist is a

colon-separated path list.

Note – ild uses the “-z name” form for special options. The i_ prefix to the -z
options identifies those options peculiar to ild .

4.7.21 -z allextract |defaultextract |

weakextract

Alter the extraction criteria of objects from any archives that follow. By default

archive members are extracted to satisfy undefined references and to promote

tentative definitions with data definitions. Weak symbol references do not trigger

extraction. Under -z allextract , all archive members are extracted from the

archive. Under -z weakextract , weak references trigger archive extraction.

-z defaultextract provides a means of returning to the default following use of

the former extract options.

4.7.22 -z defs

Forces a fatal error if any undefined symbols remain at the end of the link. This is

the default when building an executable. It is also useful when building a shared

object to assure that the object is self-contained, that is, that all its symbolic

references are resolved internally.
Chapter 4 Incremental Link Editor (ild) 4-13

4.7.23 -z i_dryrun

(ild only.) Prints the list of files that would be linked by ild and exits.

4.7.24 -z i_full

(ild only.) Does a complete relink in incremental mode.

4.7.25 -z i_noincr

(ild only.) Runs ild in nonincremental mode (not recommended for customer use

— used for testing only).

4.7.26 -z i_quiet

(ild only) Turns off all ild relink messages.

4.7.27 -z i_verbose

(ild only) Expands on default information on some ild relink messages.

4.7.28 -z nodefs

Allows undefined symbols. This is the default when building a shared object. When

used with executables, the behavior of references to such “undefined symbols” is

unspecified.

4.8 Options Passed to ild From the
Compilation System
The following options are accepted by ild, but you must use the form:

-Wl, arg, arg (for cc), to pass them to ild through the compilation system.
4-14 C User’s Guide • May 2002

4.8.1 -a

In static mode only, produces an executable object file; gives errors for undefined

references. This is the default behavior for static mode. Option -a cannot be used

with the -r option.

4.8.2 -e epsym
Sets the entry point address for the output file to be that of the symbol epsym.

4.8.3 -I name

When building an executable, uses name as the path name of the interpreter to be

written into the program header. The default in static mode is no interpreter; in

dynamic mode, the default is the name of the runtime linker, /usr/lib/ld.so.1 .

Either case can be overridden by -I name. The exec system call loads this

interpreter when it loads the a.out and passes control to the interpreter rather than

to the a.out directly.

4.8.4 -m

Produces a memory map or listing of the input/output sections on the standard

output.

4.8.5 -t

Turn off the warning about symbols that are defined more than once and that are not

the same size.

4.8.6 -u symname
Enters symname as an undefined symbol in the symbol table. This is useful for

loading entirely from an archive library because, initially, the symbol table is empty

and an unresolved reference is needed to force the loading of the first routine. The

placement of this option on the command line is significant; it must be placed before

the library that defines the symbol.
Chapter 4 Incremental Link Editor (ild) 4-15

4.8.7 Environment

LD_LIBRARY_PATH

A list of directories which is searched for the libraries that are specified with the

-l option. Multiple directories are separated by a colon. In the most general case,

it contains two directory lists separated by a semicolon:

If ild is called with any number of occurrences of -L , as in:

then the search path ordering is:

When the list of directories does not contain a semicolon, it is interpreted as

follows:

LD_LIBRARY_PATHis also used to specify library search directories to the

runtime linker. That is, if LD_LIBRARY_PATHexists in the environment, the

runtime linker searches the directories named in it, before its default directory, for

shared objects to be linked with the program at execution.

Note – When running a set-user-ID or set-group-ID program, the runtime

linker searches only for libraries in /usr/lib . It also searches for any full pathname

specified within the executable. A full pathname is the result of a runpath being

specified when the executable was constructed. Any library dependencies specified

as relative pathnames are silently ignored.

dirlist1; dirlist2

ild ...-L path1 ... -L pathn ...

dirlist1 path1 ... pathn dirlist2 LIBPATH

dirlist2
4-16 C User’s Guide • May 2002

LD_LIBRARY_PATH_64

On Solaris 7 and Solaris 8, this environment variable is similar to

LD_LIBRARY_PATHbut overrides it when searching for 64-bit dependencies.

When you run Solaris 7 or Solaris 8 on a SPARCprocessor and link in 32-bit mode,

LD_LIBRARY_PATH_64 is ignored. If only LD_LIBRARY_PATHis defined, it is

used for both 32-bit and 64-bit linking. If both LD_LIBRARY_PATHand

LD_LIBRARY_PATH_64are defined, the 32-bit linking will be done using

LD_LIBRARY_PATHand the 64-bit linking will be done using

LD_LIBRARY_PATH_64.

LD_OPTIONS

A default set of options to ild . LD_OPTIONSis interpreted by ild as though its

value had been placed on the command line immediately following the name

used to invoke ild , as in:

LD_PRELOAD

A list of shared objects that are to be interpreted by the runtime linker. The

specified shared objects are linked in after the program being executed and before

any other shared objects that the program references.

Note – When running a set-user-ID or set-group-ID program, this option is

silently ignored.

LD_RUN_PATH

An alternative mechanism for specifying a runpath to the link editor (see the -R
option). If both LD_RUN_PATHand the -R option are specified, the -R is used.

LD_DEBUG

(not supported by ild) Provide a list of tokens that cause the runtime linker to

print debugging information to the standard error. The special token help
indicates the full list of tokens available.

Note – Environment variable names beginning with the characters ‘LD_ ‘are

reserved for possible future enhancements to ld . Environment variable-names

beginning with the characters ‘ILD_ ‘ are reserved for possible future enhancements

to ild .

ild $LD_OPTIONS ... other-arguments ...
Chapter 4 Incremental Link Editor (ild) 4-17

4.9 ld Options not Supported by ild
If ild determines that a command line option is not implemented, ild directly

invokes /usr/css/bin/ld to perform the link.

The following options, which may be given to the compilation system, are not

supported by ild .

4.9.1 -B symbolic

In dynamic mode only, when building a shared object, bind references to global

symbols to their definitions within the object, if definitions are available. Normally,

references to global symbols within shared objects are not bound until runtime, even

if definitions are available, so that definitions of the same symbol in an executable or

other shared objects can override the object’s own definition. ld issues warnings for

undefined symbols unless -z defs overrides.

4.9.2 -b

In dynamic mode only, when creating an executable, does not do special processing

for relocations that reference symbols in shared objects. Without the -b option, the

link editor creates special position-independent relocations for references to

functions defined in shared objects and arranges for data objects defined in shared

objects to be copied into the memory image of the executable by the runtime linker.

With the -b option, the output code can be more efficient, but it is less sharable.

4.9.3 -G

In dynamic mode only, produces a shared object. Undefined symbols are allowed.

4.9.4 -h name

In dynamic mode only, when building a shared object, records name in the object’s

dynamic section. Option name is recorded in executables that are linked with this

object rather than the object’s UNIX System file name. Accordingly, name is used by

the runtime linker as the name of the shared object to search for at runtime.
4-18 C User’s Guide • May 2002

4.9.5 -z muldefs

Allows multiple symbol definitions. By default, multiple symbol definitions

occurring between relocatable objects result in a fatal error condition. This option

suppresses the error condition, and allows the first symbol definition to be taken.

4.9.6 -z text

In dynamic mode only, forces a fatal error if any relocations against non-writable,

allocatable sections remain.

4.10 Additional Unsupported Commands
In addition, the following options that may be passed directly to ld , are not

supported by ild :

4.10.1 -D token,token, ...
Prints debugging information as specified by each token, to the standard error. The

special token help indicates the full list of tokens available.

4.10.2 -F name

Useful only when building a shared object. Specifies that the symbol table of the

shared object is used as a “filter” on the symbol table of the shared object specified

by name.

4.10.3 -M mapfile
Reads mapfile as a text file of directives to ld . See SunOS 5.3 Linker and Libraries
Manual for a description of mapfiles.
Chapter 4 Incremental Link Editor (ild) 4-19

4.10.4 -r

Combines relocatable object files to produce one relocatable object file. ld does not

complain about unresolved references. This option cannot be used in dynamic mode

or with -a .

4.11 Files That ild Uses
■ lib x.a libraries

■ a.out output file
4-20 C User’s Guide • May 2002

CHAPTER 5

lint Source Code Checker

This chapter explains how you can use the lint program to check your C code for

errors that may cause a compilation failure or unexpected results at runtime. In

many cases, lint warns you about incorrect, error-prone, or nonstandard code that

the compiler does not necessarily flag.

The lint program issues every error and warning message produced by the C

compiler. It also issues warnings about potential bugs and portability problems.

Many messages issued by lint can assist you in improving your program’s

effectiveness, including reducing its size and required memory.

The lint program uses the same locale as the compiler and the output from lint is

directed to stderr . See Chapter 6 for more information on and examples of how to

use lint to check code before you perform type-based alias-disambiguation.

5.1 Basic and Enhanced lint Modes
The lint program operates in two modes:

■ Basic, which is the default

■ Enhanced, which includes everything done by basic lint , as well as additional,

detailed analysis of code

In both basic and enhanced modes, lint compensates for separate and independent

compilation in C by flagging inconsistencies in definition and use across files,

including any libraries you have used. In a large project environment especially,

where the same function may be used by different programmers in hundreds of

separate modules of code, lint can help discover bugs that otherwise might be

difficult to find. A function called with one less argument than expected, for

example, looks at the stack for a value the call has never pushed, with results correct

in one condition, incorrect in another, depending on whatever happens to be in
5-1

memory at that stack location. By identifying dependencies like this one and

dependencies on machine architecture as well, lint can improve the reliability of

code run on your machine or someone else’s.

In enhanced mode, lint provides more detailed reporting than in basic mode. In

basic mode, lint ’s capabilities include:

■ Structure and flow analysis of the source program

■ Constant propagations and constant expression evaluations

■ Analysis of control flow and data flow

■ Analysis of data types usage

In enhanced mode, lint can detect these problems:

■ Unused #include directives, variables, and procedures

■ Memory usage after its deallocation

■ Unused assignments

■ Usage of a variable value before its initialization

■ Deallocation of nonallocated memory

■ Usage of pointers when writing in constant data segments

■ Nonequivalent macro redefinitions

■ Unreached code

■ Conformity of the usage of value types in unions

■ Implicit casts of actual arguments.

5.2 Using lint
Invoke the lint program and its options from the command line. To invoke lint in

the basic mode, use the following command:

Enhanced lint is invoked with the -Nlevel or -Ncheck option. For example, you

can invoke enhanced lint as follows:

% lint file1.c file2.c

% lint -Nlevel=3 file1.c file2.c
5-2 C User’s Guide • May 2002

lint examines code in two passes. In the first pass, lint checks for error conditions

within C source files; in the second pass, it checks for inconsistencies across C source

files. This process is invisible to the user unless lint is invoked with -c :

That command directs lint to execute the first pass only and collect information

relevant to the second—about inconsistencies in definition and use across file1.c and

file2.c —in intermediate files named file1.ln and file2.ln :

This way, the -c option to lint is analogous to the -c option to cc , which

suppresses the link editing phase of compilation. Generally speaking, lint ’s

command-line syntax closely follows cc ’s.

When the .ln files are lint ed:

the second pass is executed. lint processes any number of .c or .ln files in their

command-line order. Thus,

directs lint to check file3.c for errors internal to it and all three files for

consistency.

lint searches directories for included header files in the same order as cc . You can

use the -I option to lint as you would the -I option to cc . See Section 2.5,

“Include Files” on page 2-6.

You can specify multiple options to lint on the same command line. Options can be

concatenated unless one of the options takes an argument or if the option has more

than one letter:

% lint -c file1.c file2.c

% ls
file1.c
file1.ln
file2.c
file2.ln

% lint file1.ln file2.ln

% lint file1.ln file2.ln file3.c

% lint -cp -I dir1 -I dir2 file1.c file2.c
Chapter 5 lint Source Code Checker 5-3

That command directs lint to:

■ Execute the first pass only

■ Perform additional portability checks

■ Search the specified directories for included header files

lint has many options you can use to direct lint to perform certain tasks and

report on certain conditions.

5.3 The lint Options
The lint program is a static analyzer. It cannot evaluate the runtime consequences

of the dependencies it detects. Certain programs, for instance, may contain hundreds

of unreachable break statements that are of little importance, but which lint flags

nevertheless. This is one example where the lint command-line options and

directives—special comments embedded in the source text—come in:

■ You can invoke lint with the -b option to suppress all the error messages about

unreachable break statements.

■ You can precede any unreachable statement with the comment /*NOTREACHED*/
to suppress the diagnostic for that statement.

The lint options are listed below alphabetically. Several lint options relate to

suppressing lint diagnostic messages. These options are also listed in TABLE 5-7,

following the alphabetized options, along with the specific messages they suppress.

The options for invoking enhanced lint begin with -N .

lint recognizes many cc command-line options, including -A , -D , -E , -g , -H , -O ,

-P, -U , -Xa , -Xc , -Xs , -Xt , and -Y , although -g and -O are ignored. Unrecognized

options are warned about and ignored.

5.3.1 -#

Turns on verbose mode, showing each component as it is invoked.

5.3.2 -###

Shows each component as it is invoked, but does not actually execute it.
5-4 C User’s Guide • May 2002

5.3.3 -a

Suppresses certain messages. Refer to TABLE 5-7.

5.3.4 -b

Suppresses certain messages. Refer to TABLE 5-7.

5.3.5 -C filename
Creates a .ln file with the file name specified. These .ln files are the product of

lint ’s first pass only. filename can be a complete path name.

5.3.6 -c

Creates a .ln file consisting of information relevant to lint ’s second pass for every

.c file named on the command line. The second pass is not executed.

5.3.7 -dirout= dir
Specifies the directory dir where the lint output files (.ln files) will be placed. This

option affects the -c option.

5.3.8 -err=warn

-err=warn is a macro for -errwarn=%all . See Section 5.3.14, “-errwarn=t” on

page 5-9.
Chapter 5 lint Source Code Checker 5-5

5.3.9 -errchk= l(, l)
Perform additional checking as specified by l. The default is -errchk=%none .

Specifying -errchk is equivalent to specifying -errchk=%all . l is a

comma-separated list of checks that consists of one or more of the following. For

example, -errchk=longptr64,structarg .

TABLE 5-1 -errchk Arguments

Value Meaning

%all Perform all of -errchk ’s checks.

%none Perform none of -errchk ’s checks. This is the default.

[no%]locfmtchk Check for printf-like format strings during the first pass of lint .

Regardless of whether or not you use -errchk=locfmtchk , lint
always checks for printf-like format strings in its second pass.

[no%]longptr64 Check portability to environment for which the size of long integers

and pointers is 64 bits and the size of plain integers is 32 bits. Check

assignments of pointer expressions and long integer expressions to

plain integers, even when explicit cast is used.

[no%]structarg Check structural arguments passed by value and report the cases

when formal parameter type is not known.

[no%]parentheses Check the clarity of precedence within your code. Use this option to

enhance the maintainability of code. If -errchk=parentheses
returns a warning, consider using additional parentheses to clearly

signify the precedence of operations within the code.

[no%]signext Check for situations in which the normal ISO C value-preserving

rules allow the extension of the sign of a signed-integral value in an

expression of unsigned-integral type. This option only produces

error messages when you specify -errchk=longptr64 as well.

[no%]sizematch Check for the assignment of a larger integer to a smaller integer and

issue a warning. These warnings are also issued for assignment

between same size integers that have different signs (unsigned int

gets a signed int).
5-6 C User’s Guide • May 2002

5.3.10 -errfmt= f
Specifies the format of lint output. f can be one of the following: macro , simple ,

src , or tab .

The default is -errfmt=tab . Specifying -errfmt is equivalent to specifying

-errfmt=tab .

If more than one format is specified, the last format specified is used, and lint
warns about the unused formats.

5.3.11 -errhdr= h
Enables the reporting of certain messages for header files when used with -Ncheck .

h is a comma-separated list that consists of one or more of the following: dir, no%dir,
%all , %none, %user .

TABLE 5-2 The -errfmt Values

Value Meaning

macro Displays the source code, the line number, and the place of the error,

with macro unfolding

simple Displays the line number and the place number, in brackets, of the

error, for one-line (simple) diagnostic messages. Similar to the -s
option, but includes error-position information

src Displays the source code, the line number, and the place of the error (no

macro unfolding)

tab Displays in tabular format. This is the default.

TABLE 5-3 The -errhdr Values

Value Meaning

dir Checks header files used in the directory dir

no%dir Does not check header files used in the directory dir

%all Checks all used header files

%none Does not check header files. This is the default.

%user Checks all used user header files, that is, all header files except those in

/usr/include and its subdirectories, as well as those supplied by the

compiler
Chapter 5 lint Source Code Checker 5-7

The default is -errhdr=%none . Specifying -errhdr is equivalent to specifying

-errhdr=%user .

Examples:

checks used header files in directories inc1 and ../inc2 .

checks all used header files except those in the directory ../inc .

5.3.12 -erroff= tag(, tag)

Suppresses or enables lint error messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag,

%all , %none.

The default is -erroff=%none . Specifying -erroff is equivalent to specifying

-erroff=%all .

Examples:

% lint -errhdr=inc1 -errhdr=../inc 2

% lint -errhdr=%all,no%../inc

TABLE 5-4 The -erroff Values

Value Meaning

tag Suppresses the message specified by this tag. You can display the tag

for a message by using the -errtags=yes option.

no%tag Enables the message specified by this tag

%all Suppresses all messages

%none Enables all messages. This is the default.

% lint -erroff=%all,no%E_ENUM_NEVER_DEF,no%E_STATIC_UNUSED
5-8 C User’s Guide • May 2002

prints only the messages “enum never defined” and “static unused”, and suppresses

other messages.

suppresses only the messages “enum never defined” and “static unused”.

5.3.13 -errtags= a
Displays the message tag for each error message. a can be either yes or no . The

default is -errtags=no . Specifying -errtags is equivalent to specifying

-errtags=yes .

Works with all -errfmt options.

5.3.14 -errwarn= t
If the indicated warning message is issued, lint exits with a failure status. t is a

comma-separated list that consists of one or more of the following: tag, no%tag,

%all , %none. Order is important; for example %all,no% tag causes lint to exit

with a fatal status if any warning except tag is issued. The following table list the

-errwarn values:

The default is -errwarn=%none . If you specify -errwarn alone, it is equivalent to

-errwarn=%all .

% lint -erroff=E_ENUM_NEVER_DEF,E_STATIC_UNUSED

TABLE 5-5 The -errwarn Values

tag Cause lint to exit with a fatal status if the message specified by this tag is

issued as a warning message. Has no effect if tag is not issued.

no%tag Prevent lint from exiting with a fatal status if the message specified by tag is

issued only as a warning message. Has no effect if tag is not issued. Use this

option to revert a warning message that was previously specified by this option

with tag or %all from causing lint to exit with a fatal status when issued as a

warning message.

%all Cause lint to exit with a fatal status if any warning messages are issued. %all
can be followed by no%tag to exempt specific warning messages from this

behavior.

%none Prevents any warning message from causing lint to exit with a fatal status

should any warning message be issued.
Chapter 5 lint Source Code Checker 5-9

5.3.15 -F

Prints the path names as supplied on the command line rather than only their base

names when referring to the .c files named on the command line.

5.3.16 -fd

Reports about old-style function definitions or declarations.

5.3.17 -flagsrc= file
Executes lint with options contained in the file file. Multiple options can be

specified in file, one per line.

5.3.18 -h

Suppresses certain messages. Refer to TABLE 5-7.

5.3.19 -I dir
Searches the directory dir for included header files.

5.3.20 -k

Alter the behavior of /* LINTED [message] */ directives or NOTE(LINTED(message))

annotations. Normally, lint suppresses warning messages for the code following

these directives. Instead of suppressing the messages, lint prints an additional

message containing the comment inside the directive or annotation.

5.3.21 -L dir
Searches for a lint library in the directory dir when used with -l .
5-10 C User’s Guide • May 2002

5.3.22 -l x
Accesses the lint library llib-l x.ln .

5.3.23 -m

Suppresses certain messages. Refer to TABLE 5-7.

5.3.24 -Ncheck= c
Checks header files for corresponding declarations; checks macros. c is a

comma-separated list of checks that consists of one or more of the following: macro ,

extern , %all , %none, no%macro, no%extern .

The default is -Ncheck=%none . Specifying -Ncheck is equivalent to specifying

-Ncheck=%all .

Values may be combined with a comma, for example, -Ncheck=extern,macro.

Example:

performs all checks except macro checks.

TABLE 5-6 The -Ncheck Values

Value Meaning

macro Checks for consistency of macro definitions across files

extern Checks for one-to-one correspondence of declarations between source

files and their associated header files (for example, for file1.c and

file1.h). Ensure that there are neither extraneous nor missing

extern declarations in a header file.

%all Performs all of -Ncheck ’s checks

%none Performs none of -Ncheck ’s checks. This is the default.

no%macro Performs none of -Ncheck ’s macro checks

no%extern Performs none of -Ncheck ’s extern checks

% lint -Ncheck=%all,no%macro
Chapter 5 lint Source Code Checker 5-11

5.3.25 -Nlevel= n
Specifies the level of analysis for reporting problems. This option allows you to

control the amount of detected errors. The higher the level, the longer the

verification time. n is a number: 1, 2, 3, or 4.The default is -Nevel=2 . Specifying

-Nlevel is equivalent to specifying -Nlevel=4 .

5.3.25.1 -Nlevel=1

Analyzes single procedures. Reports unconditional errors that occur on some

program execution paths. Does not do global data and control flow analysis.

5.3.25.2 -Nlevel=2

The default. Analyzes the whole program, including global data and control flow.

Reports unconditional errors that occur on some program execution paths.

5.3.25.3 -Nlevel=3

Analyzes the whole program, including constant propagation, cases when constants

are used as actual arguments, as well as the analysis performed under -Nlevel=2 .

Verification of a C program at this analysis level takes two to four times longer then

at the preceding level. The extra time is required because lint assumes partial

interpretation of the program by creating sets of possible values for program

variables. These sets of variables are created on the basis of constants and

conditional statements that contain constant operands available in the program. The

sets form the basis for creating other sets (a form of constant propagation). Sets

received as the result of the analysis are evaluated for correctness according to the

following algorithm:

If a correct value exists among all possible values of an object, then that correct value

is used as the basis for further propagation; otherwise an error is diagnosed.

5.3.25.4 -Nlevel=4

Analyzes the whole program, and reports conditional errors that could occur when

certain program execution paths are used, as well as the analysis performed under

-Nlevel=3 .

At this analysis level, there are additional diagnostic messages. The analysis

algorithm generally corresponds to the analysis algorithm of -Nlevel=3 with the

exception that any invalid values now generate an error message. The amount of
5-12 C User’s Guide • May 2002

time required for analysis at this level can increase as much as two orders (about 20

to 100 time more slowly). In this case the extra time required is directly proportional

to the program complexity as characterized by recursion, conditional statements etc.

As a result of this, it may be difficult to use this level of analysis for a program that

exceeds 100,000 lines.

5.3.26 -n

Suppresses checks for compatibility with the default lint standard C library.

5.3.27 -o x
Causes lint to create a lint library with the name llib-l x.ln . This library is

created from all the .ln files that lint used in its second pass. The -c option

nullifies any use of the -o option. To produce a llib-l x.ln without extraneous

messages, you can use the -x option. The -v option is useful if the source file(s) for

the lint library are just external interfaces. The lint library produced can be used

later if lint is invoked with -l x.

By default, you create libraries in lint ’s basic format. If you use lint ’s enhanced

mode, the library created will be in enhanced format, and can only be used in

enhanced mode.

5.3.28 -p

Enables certain messages relating to portability issues.

5.3.29 -R file
Write a .ln file to file, for use by cxref (1). This option disables the enhanced mode,

if it is switched on.

5.3.30 -s

Converts compound messages into simple ones.
Chapter 5 lint Source Code Checker 5-13

5.3.31 -u

Suppresses certain messages. Refer to TABLE 5-7. This option is suitable for running

lint on a subset of files of a larger program.

5.3.32 -V

Writes the product name and releases to standard error.

5.3.33 -v

Suppresses certain messages. Refer to TABLE 5-7.

5.3.34 -Wfile
Write a .ln file to file, for use by cflow (1). This option disables the enhanced mode,

if it is switched on.

5.3.35 -x

Suppresses certain messages. Refer to TABLE 5-7.

5.3.36 -XCC=a
Accepts C++-style comments. In particular, // can be used to indicate the start of a

comment. a can be either yes or no . The default is -XCC=no. Specifying -XCC is

equivalent to specifying -XCC=yes .

Note – You only need to use this option if you use -xc99=%none . Under

-xc99=%all (the default), lint accepts comments which are indicated by //.
5-14 C User’s Guide • May 2002

5.3.37 -Xalias_level[= l]
where l is one of any , basic , weak, layout , strict , std , or strong . See TABLE A-7

for a detailed explanation of the different levels of disambiguation.

If you do not specify -Xalias_level , the default of the flag is

-Xalias_level=any . This means that there is no type-based alias-analysis. If you

specify -Xalias_level but do not supply a level, the default is

-Xalias_level=layout .

Be sure to run lint at a level of disambiguation that is no more strict than the level at

which you ran the compiler. If you run lint at a level of disambiguation that is more

strict than the level at which you compiled, the results will be difficult to interpret

and possibly misleading.

See Chapter 6 for a detailed explanation of disambiguation as well as a list of

pragmas designed to help with disambiguation.

5.3.38 -Xarch=v9

Predefines the __sparcv9 macro and searches for v9 versions of lint libraries.

5.3.39 -Xexplicitpar= a
(SPARC) Directs lint to recognize #pragma MP directives. a can be either yes or no .

The default is -Xexplicitpar=no . Specifying -Xexplicitpar is equivalent to

specifying -Xexplicitpar=yes .

5.3.40 -Xkeeptmp= a
Keeps temporary files created during lint ing instead of deleting them

automatically. a can be either yes or no . The default is -Xkeeptmp=no . Specifying

-Xkeeptmp is equivalent to specifying -Xkeeptmp=yes .

5.3.41 -Xtemp= dir
Sets the directory for temporary files to dir. Without this option, temporary files go

into /tmp .
Chapter 5 lint Source Code Checker 5-15

5.3.42 -Xtime= a
Reports the execution time for each lint pass. a can be either yes or no . The default

is -Xtime=no . Specifying -Xtime is equivalent to specifying -Xtime=yes .

5.3.43 -Xtransition= a
Issues warnings for the differences between K&R C and Sun ISO C. a can be either

yes or no . The default is -Xtransition=no . Specifying -Xtransition is

equivalent to specifying -Xtransition=yes .

5.3.44 -y

Treats every .c file named on the command line as if it begins with the directive /*
LINTLIBRARY */ or the annotation NOTE(LINTLIBRARY). A lint library is

normally created using the /* LINTLIBRARY */ directive or the

NOTE(LINTLIBRARY) annotation.

5.4 lint Messages
Most of lint ’s messages are simple, one-line statements printed for each occurrence

of the problem they diagnose. Errors detected in included files are reported multiple

times by the compiler, but only once by lint , no matter how many times the file is

included in other source files. Compound messages are issued for inconsistencies

across files and, in a few cases, for problems within them as well. A single message

describes every occurrence of the problem in the file or files being checked. When

use of a lint filter (see Section 5.6.2, “lint Libraries” on page 5-29) requires that a

message be printed for each occurrence, compound diagnostics can be converted to

the simple type by invoking lint with the -s option.

lint ’s messages are written to stderr .

5.4.1 Options to Suppress Messages

You can use several lint options to suppress lint diagnostic messages. Messages

can be suppressed with the -erroff option, followed by one or more tags. These

mnemonic tags can be displayed with the -errtags=yes option.
5-16 C User’s Guide • May 2002

The following table lists the options that suppress lint messages.

5.4.2 lint Message Formats

The lint program can, with certain options, show precise source file lines with

pointers to the line position where the error occurred. The option enabling this

feature is -errfmt= f. Under this option, lint provides the following information:

■ Source line(s) and position(s)

■ Macro unfolding

■ Error-prone stack(s)

TABLE 5-7 lint Options to Suppress Messages

Option Messages Suppressed

-a assignment causes implicit narrowing conversion

conversion to larger integral type may sign-extend
incorrectly

-b statement not reached (unreachable break and empty
statements)

-h assignment operator "=" found where equality operator
"==" was expected

constant operand to op: "!"

fallthrough on case statements

pointer cast may result in improper alignment

precedence confusion possible; parenthesize

statement has no consequent: if

statement has no consequent: else

-m declared global, could be static

-erroff= tag One or more lint messages specified by tag

-u name defined but never used

name used but not defined

-v arguments unused in function

-x name declared but never used or defined
Chapter 5 lint Source Code Checker 5-17

For example, the following program, Test1.c , contains an error.

Using lint on Test1.c with the option:

produces the following output:

The first warning indicates two source lines that are contradictory. The second

warning shows the call stack, with the control flow leading to the error.

1 #include <string.h>
2 static void cpv(char *s, char* v, unsigned n)
3 { int i;
4 for (i=0; i<=n; i++){
5 *v++ = *s++;}
6 }
7 void main(int argc, char* argv[])
8 {
9 if (argc != 0){
10 cpv(argv[0], argc, strlen(argv[0]));}
11}

% lint -errfmt=src -Nlevel=2 Test1.c

|static void cpv(char *s, char* v, unsigned n)
| ^ line 2, Test1.c

 |
| cpv(argv[0], argc, strlen(argv[0]));

 | ^ line 10, Test1.c
warning: improper pointer/integer combination: arg #2

 |
|static void cpv(char *s, char* v, unsigned n)
| ^ line 2, Test1.c

 |
|cpv(argv[0], argc, strlen(argv[0]));

 | ^ line 10, Test1.c
 |
 | *v++ = *s++;
 | ^ line 5, Test1.c
warning:use of a pointer produced in a questionable way

v defined at Test1.c(2)::Test1.c(5)
 call stack:
 main() ,Test1.c(10)
 cpv() ,Test1.c(5)
5-18 C User’s Guide • May 2002

Another program, Test2.c , contains a different error:

Using lint on Test2.c with the option:

produces the following output, showing the steps of macro substitution:

1 #define AA(b) AR[b+l]
2 #define B(c,d) c+AA(d)
3
4 int x=0;
5
6 int AR[10]={1,2,3,4,5,6,77,88,99,0};
7
8 main()
9 {
10 int y=-5, z=5;
11 return B(y,z);
12 }

% lint -errfmt=macro Test2.c

 | return B(y,z);
 | ^ line 11, Test2.c
 |
 |#define B(c,d) c+AA(d)
 | ^ line 2, Test2.c
 |
 |#define AA(b) AR[b+l]
 | ^ line 1, Test2.c
error: undefined symbol: l
|
 | return B(y,z);
 | ^ line 11, Test2.c
 |
 |#define B(c,d) c+AA(d)
 | ^ line 2, Test2.c
 |
 |#define AA(b) AR[b+l]
 | ^ line 1, Test2.c
variable may be used before set: l
lint: errors in Test2.c; no output created
lint: pass2 not run - errors in Test2.c
Chapter 5 lint Source Code Checker 5-19

5.5 lint Directives

5.5.1 Predefined Values

The following predefinitions are valid in all modes:

■ __sun
■ __unix
■ __lint
■ __SUNPRO_C=0x540
■ __‘uname -s‘_‘uname -r‘ (example: __SunOS_5_7)

■ __RESTRICT (-Xa and -Xt modes only)

■ __sparc (SPARC)
■ __i386 (Intel)
■ __BUILTIN_VA_ARG_INCR
■ __SVR4
■ __sparcv9 (-Xarch=v9)

These predefinitions are not valid in -Xc mode:

■ sun
■ unix
■ sparc (SPARC)
■ i386 (Intel)
■ lint

5.5.2 Directives

lint directives in the form of /*...*/ are supported for existing annotations, but

will not be supported for future annotations. Directives in the form of source code

annotations, NOTE(...) , are recommended for all annotations.

Specify lint directives in the form of source code annotations by including the file

note.h , for example:

#include <note.h>

Lint shares the Source Code Annotations scheme with several other tools. When you

install the Sun C compiler, you also automatically install the file

/usr/lib/note/SUNW_SPRO-lint , which contains the names of all the
5-20 C User’s Guide • May 2002

annotations that LockLint understands. However, the Sun C source code checker,

lint , also checks all the files in /usr/lib/note and

/opt/SUNWspro/prod/lib/note for all valid annotations.

You may specify a location other than /usr/lib/note by setting the environment

variable NOTEPATH, as in:

The following table lists the lint directives along with their actions.

setenv NOTEPATH $NOTEPATH:other_location

TABLE 5-8 lint Directives

Directive Action

NOTE(ALIGNMENT(fname,n))
where n=1, 2, 4, 8, 16,
32, 64, 128

Makes lint set the following function result

alignment in n bytes. For example, malloc() is

defined as returning a char * or void * when in fact it

really returns pointers that are word, or even

doubleword, aligned.

Suppresses the following message:

• improper alignment

NOTE(ARGSUSED(n))

/*ARGSUSEDn*/

This directive acts like the -v option for the next

function.

Suppresses the following message for every argument

but the first n in the function definition it precedes.

Default is 0. For the NOTEformat, n must be specified.

• argument unused in function

NOTE(ARGUNUSED

(par_name[,par_name...]))
Makes lint not check the mentioned arguments for

usage (this option acts only for the next function).

Suppresses the following message for every argument

listed in NOTEor directive.

• argument unused in function

NOTE(CONSTCOND)

/*CONSTCOND*/

Suppresses complaints about constant operands for

the conditional expression. Suppresses the following

messages for the constructs it precedes. Also

NOTE(CONSTANTCONDITION)or

/* CONSTANTCONDITION */ .

constant in conditional context

constant operands to op: "!"

logical expression always false: op "&&"

logical expression always true: op "||"
Chapter 5 lint Source Code Checker 5-21

NOTE(EMPTY) /*EMPTY*/ Suppresses complaints about a null statement

consequent on an if statement. This directive should

be placed after the test expression, and before the

semicolon. This directive is supplied to support empty

if statements when a valid else statement follows. It

suppresses messages on an empty else consequent.

Suppresses the following messages when inserted

between the controlling expression of the if and

semicolon.

• statement has no consequent: else

when inserted between the else and semicolon;

• statement has no consequent: if

NOTE(FALLTHRU)

/*FALLTHRU*/

Suppresses complaints about a fall through to a case
or default labelled statement. This directive should

be placed immediately preceding the label.

Suppresses the following message for the case
statement it precedes. Also NOTE(FALLTHROUGH)or

/* FALLTHROUGH */ .

• fallthrough on case statement

NOTE(LINTED (msg))

/*LINTED [msg]*/

Suppresses any intra-file warning except those dealing

with unused variables or functions. This directive

should be placed on the line immediately preceding

where the lint warning occurred. The -k option

alters the way in which lint handles this directive.

Instead of suppressing messages, lint prints an

additional message, if any, contained in the comments.

This directive is useful in conjunction with the -s
option for post-lint filtering.

When -k is not invoked, suppresses every warning

pertaining to an intra-file problem, except:

• argument unused in function

• declarations unused in block

• set but not used in function

• static unused

• variable not used in function

for the line of code it precedes. msg is ignored.

NOTE(LINTLIBRARY)

/*LINTLIBRARY*/

When -o is invoked, writes to a library .ln file only

definitions in the .c file it heads. This directive

suppresses complaints about unused functions and

function arguments in this file.

TABLE 5-8 lint Directives (Continued)

Directive Action
5-22 C User’s Guide • May 2002

NOTE(NOTREACHED)

/*NOTREACHED*/

At appropriate points, stops comments about

unreachable code. This comment is typically placed

just after calls to functions such as exit (2).

Suppresses the following messages for the closing

curly brace it precedes at the end of the function.

• statement not reached

for the unreached statements it precedes;

• fallthrough on case statement

for the case it precedes that cannot be reached from

the preceding case ;

• function falls off bottom without
returning value

NOTE(PRINTFLIKE(n))

NOTE(PRINTFLIKE(fun_name,n))
/*PRINTFLIKE n*/

Treats the nth argument of the function definition it

precedes as a [fs]printf() format string and issues

the following messages for mismatches between the

remaining arguments and the conversion

specifications. lint issues these warnings by default

for errors in the calls to [fs]printf() functions

provided by the standard C library.

For the NOTEformat, n must be specified.

• malformed format strings

for invalid conversion specifications in that argument,

and function argument type inconsistent with format;

• too few arguments for format

• too many arguments for format

TABLE 5-8 lint Directives (Continued)

Directive Action
Chapter 5 lint Source Code Checker 5-23

5.6 lint Reference and Examples
This section provides reference information on lint , including checks performed by

lint , lint libraries, and lint filters.

5.6.1 Diagnostics Performed by lint

lint -specific diagnostics are issued for three broad categories of conditions:

inconsistent use, nonportable code, and questionable constructs. In this section, we

review examples of lint ’s behavior in each of these areas, and suggest possible

responses to the issues they raise.

NOTE(PROTOLIB(n))

/*PROTOLIB n*/

When n is 1 and NOTE(LINTLIBRARY) or /*
LINTLIBRARY */ is used, writes to a library .ln file

only function prototype declarations in the .c file it

heads. The default is 0, which cancels the process.

For the NOTEformat, n must be specified.

NOTE(SCANFLIKE(n))

NOTE(SCANLIKE(fun_name,n))

/*SCANFLIKE n*/

Same as NOTE(PRINTFLIKE(n)) or /*
PRINTFLIKE n */ , except that the nth argument of the

function definition is treated as a [fs]scanf()
format string. By default, lint issues warnings for

errors in the calls to [fs]scanf() functions provided

by the standard C library.

For the NOTEformat, n must be specified.

NOTE(VARARGS(n))

NOTE(VARARGS(fun_name,n))

/*VARARGSn*/

Suppresses the usual checking for variable numbers of

arguments in the following function declaration. The

data types of the first n arguments are checked; a

missing n is taken to be 0. The use of the ellipsis (...)

terminator in the definition is suggested in new or

updated code.

For the function whose definition it precedes,

suppresses the following message for calls to the

function with n or more arguments. For the NOTE
format, n must be specified.

• functions called with variable number
of arguments

TABLE 5-8 lint Directives (Continued)

Directive Action
5-24 C User’s Guide • May 2002

5.6.1.1 Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files as

well as across them. Generally speaking, the same checks are performed for

prototype uses, declarations, and parameters as lint checks for old-style functions.

If your program does not use function prototypes, lint checks the number and

types of parameters in each call to a function more strictly than the compiler. lint
also identifies mismatches of conversion specifications and arguments in

[fs]printf() and [fs]scanf() control strings.

Examples:

■ Within files, lint flags non-void functions that “fall off the bottom” without

returning a value to the invoking function. In the past, programmers often

indicated that a function was not meant to return a value by omitting the return

type: fun() {} . That convention means nothing to the compiler, which regards

fun() as having the return type int . Declare the function with the return type

void to eliminate the problem.

■ Across files, lint detects cases where a non-void function does not return a

value, yet is used for its value in an expression—and the opposite problem, a

function returning a value that is sometimes or always ignored in subsequent

calls. When the value is always ignored, it may indicate an inefficiency in the

function definition. When it is sometimes ignored, it’s probably bad style (typically,

not testing for error conditions). If you need not check the return values of string

functions like strcat() , strcpy() , and sprintf() , or output functions like

printf() and putchar() , cast the offending calls to void .

■ lint identifies variables or functions that are declared but not used or defined;

used, but not defined; or defined, but not used. When lint is applied to some,

but not all files of a collection to be loaded together, it produces error messages

about functions and variables that are:

■ Declared in those files, but defined or used elsewhere

■ Used in those files, but defined elsewhere

■ Defined in those files, but used elsewhere

Invoke the -x option to suppress the first complaint, -u to suppress the latter

two.

5.6.1.2 Portability Checks

Some nonportable code is flagged by lint in its default behavior, and a few more

cases are diagnosed when lint is invoked with -p or -Xc . The latter causes lint to

check for constructs that do not conform to the ISO C standard. For the messages

issued under -p and -Xc , see Section 5.6.2, “lint Libraries” on page 5-29.
Chapter 5 lint Source Code Checker 5-25

Examples:

■ In some C language implementations, character variables that are not explicitly

declared signed or unsigned are treated as signed quantities with a range

typically from -128 to 127. In other implementations, they are treated as

nonnegative quantities with a range typically from 0 to 255. So the test:

where EOFhas the value -1, always fails on machines where character variables

take on nonnegative values. lint invoked with -p checks all comparisons that

imply a plain char may have a negative value. However, declaring c as a signed
char in the above example eliminates the diagnostic, not the problem. That’s

because getchar() must return all possible characters and a distinct EOFvalue,

so a char cannot store its value. We cite this example, perhaps the most common

one arising from implementation-defined sign-extension, to show how a

thoughtful application of lint ’s portability option can help you discover bugs

not related to portability. In any case, declare c as an int .

■ A similar issue arises with bit-fields. When constant values are assigned to

bit-fields, the field may be too small to hold the value. On a machine that treats

bit-fields of type int as unsigned quantities, the values allowed for int x:3
range from 0 to 7, whereas on machines that treat them as signed quantities, they

range from -4 to 3. However, a three-bit field declared type int cannot hold the

value 4 on the latter machines. lint invoked with -p flags all bit-field types

other than unsigned int or signed int . These are the only portable bit-field

types. The compiler supports int , char , short , and long bit-field types that

may be unsigned , signed , or plain. It also supports the enum bit-field type.

■ Bugs can arise when a larger-sized type is assigned to a smaller-sized type. If

significant bits are truncated, accuracy is lost:

lint flags all such assignments by default; the diagnostic can be suppressed by

invoking the -a option. Bear in mind that you may be suppressing other

diagnostics when you invoke lint with this or any other option. Check the list in

Section 5.6.2, “lint Libraries” on page 5-29 for the options that suppress more than

one diagnostic.

char c;
c = getchar();
if (c == EOF) ...

short s;
long l;
s = l;
5-26 C User’s Guide • May 2002

■ A cast of a pointer to one object type to a pointer to an object type with stricter

alignment requirements may not be portable. lint flags:

because, on most machines, an int cannot start on an arbitrary byte boundary,

whereas a char can. You can suppress the diagnostic by invoking lint with -h ,

although, again, you may be disabling other messages. Better still, eliminate the

problem by using the generic pointer void * .

■ ISO C leaves the order of evaluation of complicated expressions undefined. That

is, when function calls, nested assignment statements, or the increment and

decrement operators cause side effects when a variable is changed as a

by-product of the evaluation of an expression, the order in which the side effects

take place is highly machine-dependent. By default, lint flags any variable

changed by a side effect and used elsewhere in the same expression:

In this example, the value of a[1] may be 1 if one compiler is used, 2 if another.

The bitwise logical operator & can give rise to this diagnostic when it is

mistakenly used in place of the logical operator &&:

5.6.1.3 Questionable Constructs

lint flags a miscellany of legal constructs that may not represent what the

programmer intended. Examples:

■ An unsigned variable always has a nonnegative value. So the test:

int *fun(y)
char *y;
{

return(int *)y;
}

int a[10];
main()
{

int i = 1;
a[i++] = i;

}

if ((c = getchar()) != EOF & c != '0')

unsigned x;
if (x < 0) ...
Chapter 5 lint Source Code Checker 5-27

always fails. The test:

is equivalent to:

This may not be the intended action. lint flags questionable comparisons of

unsigned variables with negative constants or 0. To compare an unsigned
variable to the bit pattern of a negative number, cast it to unsigned :

Or use the U suffix:

■ lint flags expressions without side effects that are used in a context where side

effects are expected—that is, where the expression may not represent what the

programmer intends. It issues an additional warning whenever the equality

operator is found where the assignment operator is expected—that is, where a

side effect is expected:

■ lint cautions you to parenthesize expressions that mix both the logical and

bitwise operators (specifically, &, | , ^ , <<, >>), where misunderstanding of

operator precedence may lead to incorrect results. Because the precedence of

bitwise &, for example, falls below logical ==, the expression:

unsigned x;
if (x > 0) ...

if (x != 0) ...

if (u == (unsigned) -1) ...

if (u == -1U) ...

int fun()
{

int a, b, x, y;
(a = x) && (b == y);

}

if (x & a == 0) ...
5-28 C User’s Guide • May 2002

is evaluated as:

which is most likely not what you intended. Invoking lint with -h disables the

diagnostic.

5.6.2 lint Libraries

You can use lint libraries to check your program for compatibility with the library

functions you have called in it—the declaration of the function return type, the

number and types of arguments the function expects, and so on. The standard lint
libraries correspond to libraries supplied by the C compilation system, and generally

are stored in a standard place on your system. By convention, lint libraries have

names of the form llib-lx.ln .

The lint standard C library, llib-lc.ln , is appended to the lint command line

by default; checks for compatibility with it can be suppressed by invoking the -n
option. Other lint libraries are accessed as arguments to -l . That is:

directs lint to check the usage of functions and variables in file1.c and file2.c
for compatibility with the lint library llib-l x.ln . The library file, which consists

only of definitions, is processed exactly as are ordinary source files and ordinary .ln
files, except that functions and variables used inconsistently in the library file, or

defined in the library file but not used in the source files, elicit no complaints.

To create your own lint library, insert the directive NOTE(LINTLIBRARY) at the

head of a C source file, then invoke lint for that file with the -o option and the

library name given to -l :

causes only definitions in the source files headed by NOTE(LINTLIBRARY) to be

written to the file llib-l x.ln . (Note the analogy of lint -o to cc -o .) A library

can be created from a file of function prototype declarations in the same way, except

that both NOTE(LINTLIBRARY) and NOTE(PROTOLIB(n)) must be inserted at the

head of the declarations file. If n is 1, prototype declarations are written to a library

if (x & (a == 0)) ...

% lint -l x file1.c file2.c

% lint -o x file1.c file2.c
Chapter 5 lint Source Code Checker 5-29

.ln file just as are old-style definitions. If n is 0, the default, the process is cancelled.

Invoking lint with -y is another way of creating a lint library. The command

line:

causes each source file named on that line to be treated as if it begins with

NOTE(LINTLIBRARY) , and only its definitions to be written to llib-l x.ln .

By default, lint searches for lint libraries in the standard place. To direct lint to

search for a lint library in a directory other than the standard place, specify the

path of the directory with the -L option:

In enhanced mode, lint produces .ln files which store additional information than

.ln files produced in basic mode. In enhanced mode, lint can read and understand

all .ln files generated by either basic or enhanced lint modes. In basic mode, lint
can read and understand .ln files generated only using basic lint mode.

By default, lint uses libraries from the /usr/lib directory. These libraries are in

the basic lint format. You can run a makefile once, and create enhanced lint
libraries in a new format, which will enable enhanced lint to work more effectively.

To run the makefile and create the new libraries, enter the command:

where /opt/SUNWspro/prod is the installation directory. After the makefile is

run, lint uses the new libraries in enhanced mode, instead of the libraries in the

/usr/lib directory.

The specified directory is searched before the standard place.

5.6.3 lint Filters

A lint filter is a project-specific post-processor that typically uses an awk script or

similar program to read the output of lint and discard messages that your project

has deemed as not identifying real problems—string functions, for instance,

returning values that are sometimes or always ignored. lint filters generate

customized diagnostic reports when lint options and directives do not provide

sufficient control over output.

% lint -y -o x file1.c file2.c

% lint -L dir -l x file1.c file2.c

% cd /opt/SUNWspro/prod/src/lintlib; make
5-30 C User’s Guide • May 2002

Two options to lint are particularly useful in developing a filter:

■ Invoking lint with -s causes compound diagnostics to be converted into simple,

one-line messages issued for each occurrence of the problem diagnosed. The

easily parsed message format is suitable for analysis by an awk script.

■ Invoking lint with -k causes certain comments you have written in the source

file to be printed in output, and can be useful both in documenting project

decisions and specifying the post-processor’s behavior. In the latter instance, if

the comment identifies an expected lint message, and the reported message is

the same, the message can be filtered out. To use -k , insert on the line preceding

the code you wish to comment the NOTE(LINTED(msg)) directive, where msg
refers to the comment to be printed when lint is invoked with -k .

Refer to the list of directives in TABLE 5-8 for an explanation of what lint does

when -k is not invoked for a file containing NOTE(LINTED(msg)) .
Chapter 5 lint Source Code Checker 5-31

5-32 C User’s Guide • May 2002

CHAPTER 6

Type-Based Alias Analysis

This document explains how to use the -xalias_level option and several new

pragmas to enable the compiler to perform type-based alias analysis and

optimizations. You use these extensions to express type-based information about the

way pointers are used in your C program. The C compiler uses this information, in

turn, to do a significantly better job of alias disambiguation for pointer-based

memory references in your program.

See Section A.3.63, “-xalias_level[=l]” on page A-30 for a detailed explanation of this

command’s syntax. Also, see Section 5.3.37, “-Xalias_level[=l]” on page 5-15 for an

explanation of the lint program’s type-based alias-analysis capabilities.

6.1 Introduction to Type-Based Analysis
You can use the -xalias_level option to specify one of seven alias levels. Each

level specifies a certain set of properties about the way you use pointers in your C

program.

As you compile with higher levels of the -xalias_level option, the compiler

makes increasingly extensive assumptions about the pointers in your code. You have

greater programming freedom when the compiler makes fewer assumptions.

However, the optimizations that result from these narrow assumptions may not

result in significant runtime performance improvement. If you code in accordance

with the compiler assumptions of the more advanced levels of the -xalias_level
option, there is a greater chance that the resulting optimizations will enhance

runtime performance.

The -xalias_level option specifies which alias level applies to each translation

unit. For cases where more detail is beneficial, you can use new pragmas to override

whatever alias levels are in effect so that you can explicitly specify the aliasing

relationships between individual types or pointer variables in the translation unit.
6-1

These pragmas are most useful when the pointer usage in a translation unit is

covered by one of the available alias levels, but a few specific pointer variables are

used in an irregular way that is not allowed by one of the available levels.

6.2 Using Pragmas for Finer Control
For cases in which type-based analysis can benefit from more detail, you can use the

following pragmas to override the alias level in effect and specify the aliasing

relationships between individual types or pointer variables in the translation unit.

These pragmas provide the most benefit when the use of pointers in a translation

unit is consistent with one of the available alias levels, but a few specific pointer

variables are used in an irregular way not allowed by one of the available levels.

Note – You must declare the named type or variable prior to the pragma or a

warning message is issued and the pragma is ignored. The results of the program

are undefined if the pragma appears after the first memory reference to which its

meaning applies.

The following terms are used in the pragma definitions.

Term Meaning

level Any of the alias levels listed under Section A.3.63, “-xalias_level[=l]” on

page A-30.

type Any of the following:

• char , short , int , long , long long , float , double , long double

• void , which denotes all pointer types

• typedef name, which is the name of a defined type from a typedef
declaration

• struct name, which is the keyword struct followed by a struct tag
name

• union , which is the keyword union followed by a union tag name

pointer_name The name of any variable of pointer type in the translation unit.
6-2 C User’s Guide • May 2002

6.2.0.1 #pragma alias_level level (list)

Replace level with one of the seven alias levels: any , basic , weak, layout ,

strict , std , or strong . You can replace list with either a single type or a

comma-delimited list of types, or you can replace list with either a single pointer or

a comma-delimited list of pointers. For example, you can issue #pragma
alias_level as follows:

■ #pragma alias_level level (type [, type])
■ #pragma alias_level level (pointer [, pointer])

This pragma specifies that the indicated alias level applies either to all of the

memory references of the translation unit for the listed types, or to all of the

dereferences of the translation unit where any of the named pointer variables are

being dereferenced.

If you specify more than one alias level to be applied to a particular dereference, the

level that is applied by the pointer name, if any, has precedence over all other levels.

The level applied by the type name, if any, has precedence over the level applied by

the option. In the following example, the std level applies to p if the program is

compiled with #pragma alias_level set higher than any .

6.2.0.2 #pragma alias (type, type [, type]…)

This pragma specifies that all the listed types alias each other. In the following

example, the compiler assumes that the indirect access *pt aliases the indirect access

*pf .

6.2.0.3 #pragma alias (pointer, pointer [, pointer]…)

This pragma specifies that at the point of any dereference of any of the named

pointer variables, the pointer value being dereferenced can point to the same object

as any of the other named pointer variables. However, the pointer is not limited to

only the objects contained in the named variables and can point to objects that are

typedef int * int_ptr;
int_ptr p;
#pragma alias_level strong (int_ptr)
#pragma alias_level std (p)

#pragma alias (int, float)
int *pt;
float *pf;
Chapter 6 Type-Based Alias Analysis 6-3

not included in the list. This pragma overrides the aliasing assumptions of any

applied alias levels. In the following example, any indirect accesses of p and q after

the pragma are considered to alias regardless of their type.

6.2.0.4 #pragma may_point_to (pointer, variable
[, variable]…)

This pragma specifies that at the point of any dereference of the named pointer

variable, the pointer value being dereferenced can point to the objects that are

contained in any of the named variables. However, the pointer is not limited to only

the objects contained in the named variables and can point to objects that are not

included in the list. This pragma overrides the aliasing assumptions of any applied

alias levels. In the following example, the compiler assumes that any indirect access

of *p , aliases any direct accesses a, b, and c .

6.2.0.5 #pragma noalias (type, type [, type]…)

This pragma specifies that the listed types do not alias each other. In the following

example, the compiler assumes that any indirect access of *p does not alias the

indirect access *ps .

6.2.0.6 #pragma noalias (pointer, pointer [, pointer]…)

This pragma specifies that at the point of any dereference of any of the named

pointer variables, the pointer value being dereferenced does not point to the same

object as any of the other named pointer variables. This pragma overrides all other

#pragma alias(p, q)

#pragma alias may_point_to(p, a, b, c)

struct S {
float f;
...} *ps;

#pragma noalias(int, struct S)
int *p;
6-4 C User’s Guide • May 2002

applied alias levels. In the following example, the compiler assumes that any

indirect access of *p does not alias the indirect access *q regardless of the types of

the two pointers.

6.2.0.7 #pragma may_not_point_to (pointer, variable
[, variable]…)

This pragma specifies that at the point of any dereference of the named pointer

variable, the pointer value being dereferenced does not point to the objects that are

contained in any of the named variables. This pragma overrides all other applied

alias levels. In the following example, the compiler assumes that any indirect access

of *p does not alias the direct accesses a, b, or c .

6.3 Checking With lint
The lint program recognizes the same levels of type-based alias-disambiguation as

the compiler’s -xalias_level command. The lint program also recognizes the

pragmas related to type-based alias-disambiguation documented in this chapter. For

a detailed explanation of the lint -Xalias_level command, see Section 5.3.37,

“-Xalias_level[=l]” on page 5-15.

There are four situations that lint detects and for which it generates warnings:

■ Casting a scalar pointer to a struct pointer

■ Casting a void pointer to a struct pointer

■ Casting a structure field to a scalar pointer

■ Casting a struct pointer to a struct pointer at the level of

-Xalias_level=strict without explicit aliasing.

#pragma noalias(p, q)

#pragma may_not_point_to(p, a, b, c)
Chapter 6 Type-Based Alias Analysis 6-5

6.3.1 Struct Pointer Cast of Scalar Pointer

In the following example, the pointer p of type integer is cast as a pointer of type

struct foo. With lint -Xalias_level=weak (or higher), this generates a warning.

6.3.2 Struct Pointer Cast of Void Pointer

In the following example, the void pointer vp, is cast as a struct pointer. With lint

-Xalias_level=weak (or higher), this generates a warning.

struct foo {
int a;
int b;

};

struct foo *f;
int *p;

void main()
{

f = (struct foo *)p; /* struct pointer cast of scalar pointer
warning */
}

struct foo {
int a;
int b;

};

struct foo *f;
void *vp;

void main()
{

f = (struct foo *)vp; /* struct pointer cast of void pointer
warning */
}

6-6 C User’s Guide • May 2002

6.3.3 Cast of Struct Field to Structure Pointer

In the following example, the address of structure member foo.b is being cast as an

integer pointer and then assigned to p. With lint -Xalias_level=weak (or higher),

this generates a warning.

6.3.4 Explicit Aliasing Required

In the following example, the pointer f1 of type struct fooa is being cast as a pointer

of type struct foob . With lint -Xalias_level=strict (or higher) such a cast

requires explicit aliasing, unless the struct types are identical (the same number of

fields of the same type). In addition, at alias levels standard and strong , the

struct foo {
int a;
int b;

};

struct foo *f;
int *p;

void main()
{

p = (int *)&f->b; /* cast of struct field to structure pointer
warning */
}

Chapter 6 Type-Based Alias Analysis 6-7

assumptions is that the tags must match for aliasing to occur. Use #pragma alias
(struct fooa , struct foob) before the assignment to f1 and lint stops generating

the warning.

6.4 Examples of Memory Reference
Constraints
This section provides examples of code that are likely to appear in your source files.

Each example is followed by a discussion of the compiler’s assumptions about the

code as dictated by the applied level of type-based analysis.

Consider the following code. It can be compiled with different levels of aliasing to

demonstrate the aliasing relationship of the shown types.

struct fooa {
int a;

};

struct foob {
int b;

};

struct fooa *f1;
struct foob *f2;

void main()
{

f1 = (struct fooa *)f2; /* explicit aliasing required warning
*/
}

6-8 C User’s Guide • May 2002

CODE EXAMPLE 6-1

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=any option, the

compiler considers the following indirect accesses as aliases to each other:

*ip , *sp , *fp , *bp , fp->f1 , fp->f2 , fp->f3 , fp->f4 , bp->b1 , bp->b2 , bp->b3

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=basic option, the

compiler considers the following indirect accesses as aliases to each other:

*ip , *bp , fp->f1 , fp->f4 , bp->b1 , bp->b2 , bp->b3

Additionally, *sp , fp->f2 , and fp->f3 can alias each other, and *sp and *fp can

alias each other.

However, under -xalias_level=basic , the compiler assumes the following:

■ *ip does not alias *sp .

■ *ip does not alias fp->f2 and fp->f3 .

■ *sp does not alias fp->f1 , fp->f4 , bp->b1 , bp->b2 , and bp->b3 .

The compiler makes these assumptions because the access types of the two indirect

accesses are different basic types.

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=weak option, the

compiler assumes the following alias information:

■ *ip can alias *fp , fp->f1 , fp->f4 , *bp , bp->b1 , bp->b2 , and bp->b3 .

■ *sp can alias *fp , fp->f2 and fp->f3 .

■ fp->f1 can alias bp->b1 .

■ fp->f4 can alias bp->b3 .

struct foo {
int f1;
short f2;
short f3;
int f4;

} *fp;

struct bar {
int b1;
int b2;
int b3;

} *bp;

int *ip;
short *sp;
Chapter 6 Type-Based Alias Analysis 6-9

The compiler assumes that fp->fp1 does not alias bp->b2 because f1 is a field

with offset 0 in a structure, whereas b2 is a field with a 4-byte offset in a structure.

Similarly, the compiler assumes that fp->f1 does not alias bp->b3 , and fp->f4
does not alias either bp->b1 or bp->b2 .

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=layout option, the

compiler assumes the following information:

■ *ip can alias *fp , *bp , fp->f1 , fp->f4 , bp->b1 , bp->b2 , and bp->b3 .

■ *sp can alias *fp , fp->f2 , and fp->f3 .

■ fp->f1 can alias bp->b1 and *bp .

■ *fp and *bp can alias each other.

fp->f4 does not alias bp->b3 because f4 and b3 are not corresponding fields in

the common initial sequence of foo and bar .

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=strict option, the

compiler assumes the following alias information:

■ *ip can alias *fp , fp->f1 , fp->f4 , *bp , bp->b1 , bp->b2 , and bp->b3 .

■ *sp can alias *fp , fp->f2 , and fp->f3 .

With -xalias_level=strict , the compiler assumes that *fp , *bp , fp->f1 ,

fp->f2 , fp->f3 , fp->f4 , bp->b1 , bp->b2 , and bp->b3 do not alias each other

because foo and bar are not the same when field names are ignored. However, fp
aliases fp->f1 and bp aliases bp->b1 .

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=std option, the

compiler assumes the following alias information:

■ *ip can alias *fp , fp->f1 , fp->f4 , *bp , bp->b1 , bp->b2 , and bp->b3 .

■ *sp can alias *fp , fp->f2 , and fp->f3 .

However, fp->f1 does not alias bp->b1 , bp->b2 , or bp->b3 because foo and bar
are not the same when field names are considered.
6-10 C User’s Guide • May 2002

If CODE EXAMPLE 6-1 is compiled with the -xalias_level=strong option, the

compiler assumes the following alias information:

■ *ip does not alias fp->f1 , fp->f4 , bp->b1 , bp->b2 , and bp->b3 because a

pointer, such as *ip , should not point to the interior of a structure.

■ Similarly, *sp does not alias fp->f1 or fp->f3 .

■ *ip does not alias *fp , *bp , and *sp due to differing types.

■ *sp does not alias *fp , *bp , and *ip due to differing types.

Consider the following example source code. It demonstrates the aliasing

relationship of the shown types when compiled with different levels of aliasing.

CODE EXAMPLE 6-2

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=any option, the

compiler assumes the following alias information:

*fp , *bp , fp->f1 , fp->f2 , fp->f3 , bp->b1 , bp->b2 and bp->b3 all can alias

each other because any two memory accesses alias each other at the level of

-xalias_level=any .

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=basic option, the

compiler assumes the following alias information:

*fp , *bp , fp->f1 , fp->f2 , fp->f3 , bp->b1 , bp->b2 and bp->b3 all can alias

each other. Any two field accesses using pointers *fp and *bp can alias each other

in this example because all the structure fields are the same basic type.

struct foo {
int f1;
int f2;
int f3;

} *fp;

struct bar {
int b1;
int b2;
int b3;

} *bp;
Chapter 6 Type-Based Alias Analysis 6-11

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=weak option, the

compiler assumes the following alias information:

■ *fp and *fp can alias each other.

■ fp->f1 can alias bp->b1 , *bp and *fp .

■ fp->f2 can alias bp->b2 , *bp and *fp .

■ fp->f3 can alias bp->b3 , *bp and *fp .

However, -xalias_level=weak imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because f1 has an offset of zero, which

is different from that of b2 (four bytes) and b3 (eight bytes).

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 has an offset of four bytes,

which is different from b1 (zero bytes) and b3 (eight bytes).

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 has an offset of eight bytes,

which is different from b1 (zero bytes) and b2 (four bytes).

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=layout options, the

compiler assumes the following alias information:

■ *fp and *bp can alias each other.

■ fp->f1 can alias bp->b1 , *bp , and *fp .

■ fp->f2 can alias bp->b2 , *bp , and *fp .

■ fp->f3 can alias bp->b3 , *bp , and *fp .

However, -xalias_level=layout imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field

b1 in the common initial sequence of foo and bar .

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in

the common initial sequence of foo and bar .

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in

the common initial sequence of foo and bar .

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=strict option, the

compiler assumes the following alias information:

■ *fp and *bp can alias each other.

■ fp->f1 can alias bp->b1 , *bp , and *fp .

■ fp->f2 can alias bp->b2 , *bp , and *fp .

■ fp->f3 can alias bp->b3 , *bp , and *fp .

However, -xalias_level=strict imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field

b1 in the common initial sequence of foo and bar .

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in

the common initial sequence of foo and bar .

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in

the common initial sequence of foo and bar .
6-12 C User’s Guide • May 2002

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=std option, the

compiler assumes the following alias information:

fp->f1 , fp->f2 , fp->f3 , bp->b1 , bp->b2 , and bp->b3 do not alias each other.

If CODE EXAMPLE 6-2 is compiled with the -xalias_level=strong option, the

compiler assumes the following alias information:

fp->f1 , fp->f2 , fp->f3 , bp->b1 , bp->b2 , and bp->b3 do not alias each other.

Consider the following example source code that demonstrates that certain levels of

aliasing cannot handle interior pointers. For a definition of interior pointers see

TABLE A-7.

CODE EXAMPLE 6-3

The dereference in CODE EXAMPLE 6-3 is not supported by weak, layout , strict , or

std . After the pointer assignment bp=(struct bar*)(&fp->f2) , the following

pair of memory accesses touches the same memory locations:

■ fp->f2 and bp->b2 access the same memory location

■ fp->f3 and bp->b3 access the same memory location

■ fp->f4 and bp->b4 access the same memory location

However, under options weak, layout , strict , and std , the compiler assumes

that fp->f2 and bp->b2 do not alias. The compiler makes this assumption because

b2 has an offset of zero, which is different from the offset of f2 (four bytes), and foo
and bar do not have a common initial sequence. Similarly, the compiler also

assumes that bp->b3 does not alias fp->f3 , and bp->b4 does not alias fp->f4 .

struct foo {
 int f1;
 struct bar *f2;
 struct bar *f3;
 int f4;
 int f5;
 struct bar fb[10];
} *fp;

struct bar
 struct bar *b2;
 struct bar *b3;
 int b4;
} *bp;

bp=(struct bar*)(&fp->f2);
Chapter 6 Type-Based Alias Analysis 6-13

Thus, the pointer assignment bp=(struct bar*)(&fp->f2) creates a situation in

which the compiler’s assumptions about alias information are incorrect. This may

lead to incorrect optimization.

Try compiling after you make the modifications shown in the following example.

After the pointer assignment bp=(struct bar*)(&fp->f2) , the following pair of

memory accesses touches the same memory locations:

■ fp->f2 and bp->b2
■ fp->f3 and bp->b3
■ fp->f4 and bp->b4

By examining the changes shown in the preceding code example, you can see that

the expression fp->f2 is another form of the expression fp->fb.b2 . Because

fp->fb is of type bar , fp->f2 accesses the b2 field of bar . Furthermore, bp->b2
also accesses the b2 field of bar . Therefore, the compiler assumes that fp->f2
aliases bp->b2 . Similarly, the compiler assumes that fp->f3 aliases bp->b3 , and

fp->f4 aliases bp->b4 . As a result, the aliasing assumed by the compiler matches

the actual aliases caused by the pointer assignment.

Consider the following example source code.

struct foo {
 int f1;
 struct bar fb; /* Modified line */
#define f2 fb.b2 /* Modified line */
#define f3 fb.b3 /* Modified line */
#define f4 fb.b4 /* Modified line */
 int f5;
 struct bar fb[10];
} *fp;

struct bar
 struct bar *b2;
 struct bar *b3;
 int b4;
} *bp;

bp=(struct bar*)(&fp->f2);
6-14 C User’s Guide • May 2002

CODE EXAMPLE 6-4

If CODE EXAMPLE 6-4 is compiled with the -xalias_level=weak option, the

compiler assumes the following alias information:

■ fp->f1 can alias bp->b1 , cp->c1 , dp->d1 , cp->cf.f1 , and df->db.b1 .

■ fp->f2 can alias bp->b2 , cp->cf.f1 , dp->d2 , cp->cf.f2 , df->db.b2 ,

cp->c2 .

■ bp->b1 can alias fp->f1 , cp->c1 , dp->d1 , cp->cf.f1 , and df->db.b1 .

■ bp->b2 can alias fp->f2 , cp->cf.f1 , dp->d2 , cp->cf.f1 , and df->db.b2 .

fp->f2 can alias cp->c2 because *dp can alias *cp and *fp can alias dp->db .

■ cp->c1 can alias fp->f1 , bp->b1 , dp->d1 , and dp->db.b1 .

■ cp->cf.f1 can alias fp->f1 , fp->f2 , bp->b1 , bp->b2 , dp->d2 , and dp->d1 .

cp->cf.f1 does not alias dp->db.b1 .

■ cp->cf.f2 can alias fp->f2 , bp->b2 , dp->db.b1 , and dp->d2 .

■ cp->c2 can alias dp->db.b2 .

cp->c2 does not alias dp->db.b1 and cp->c2 does not alias dp->d3 .

struct foo {
 int f1;
 int f2;
} *fp;

struct bar {
 int b1;
 int b2;
} *bp;

struct cat {
 int c1;
 struct foo cf;
 int c2;
 int c3;
} *cp;

struct dog {
 int d1;
 int d2;
 struct bar db;
 int d3;
} *dp;
Chapter 6 Type-Based Alias Analysis 6-15

With respect to offsets, cp->c2 can alias db->db.b1 only if *dp aliases cp->cf .

However, if *dp aliases cp->cf , then dp->db.b1 must alias beyond the end of foo
cf , which is prohibited by object restrictions. Therefore, the compiler assumes that

cp->c2 cannot alias db->db.b1 .

cp->c3 can alias dp->d3 .

Notice that cp->c3 does not alias dp->db.b2 . These memory references do not

alias because the offsets of the fields of the types involved in the dereferences differ

and do not overlap. Based on this, the compiler assumes they cannot alias.

■ dp->d1 can alias fp->f1 , bp->b1 , and cp->c1 .

■ dp->d2 can alias fp->f2 , bp->b2 , and cp->cf.f1 .

■ dp->db.b1 can alias fp->f1 , bp->b1 , and cp->c1 .

■ dp->db.b2 can alias fp->f2 , bp->b2 , cp->c2 , and cp->cf.f1 .

■ dp->d3 can alias cp->c3 .

Notice that dp->d3 does not alias cp->cf.f2 . These memory references do not

alias because the offsets of the fields of the types involved in the dereferences differ

and do not overlap. Based on this, the compiler assumes they cannot alias.

If CODE EXAMPLE 6-4 is compiled with the -xalias_level=layout option, the

compiler assumes only the following alias information:

■ fp->f1 , bp->b1 , cp->c1 and dp->d1 all can alias each other.

■ fp->f2 , bp->b2 and dp->d2 all can alias each other.

■ fp->f1 can alias cp->cf.f1 and dp->db.b1 .

■ bp->b1 can alias cp->cf.f1 and dp->db.b1 .

■ fp->f2 can alias cp->cf.f2 and dp->db.b2 .

■ bp->b2 can alias cp->cf.f2 and dp->db.b2 .

If CODE EXAMPLE 6-4 is compiled with the -xalias_level=strict option, the

compiler assumes only the following alias information:

■ fp->f1 and bp->b1 can alias each other.

■ fp->f2 and bp->b2 can alias each other.

■ fp->f1 can alias cp->cf.f1 and dp->db.b1 .

■ bp->b1 can alias cp->cf.f1 and dp->db.b1 .

■ fp->f2 can alias cp->cf.f2 and dp->db.b2 .

■ bp->b2 can alias cp->cf.f2 and dp->db.b2 .

If CODE EXAMPLE 6-4 is compiled with the -xalias_level=std option, the

compiler assumes only the following alias information:

■ fp->f1 can alias cp->cf.f1 .

■ bp->b1 can alias dp->db.b1 .

■ fp->f2 can alias cp->cf.f2 .

■ bp->b2 can alias dp->db.b2 .

Consider the following example source code.
6-16 C User’s Guide • May 2002

CODE EXAMPLE 6-5

Here are the compiler’s assumptions based on the following alias levels:

■ If CODE EXAMPLE 6-5 is compiled with the -xalias_level=weak option, fp->f3
and bp->b2 can alias each other.

■ If CODE EXAMPLE 6-5 is compiled with the -xalias_level=layout option, no

fields can alias each other.

■ If CODE EXAMPLE 6-5 is compiled with the -xalias_level=strict option,

fp->f3 and bp->b2 can alias each other.

■ If CODE EXAMPLE 6-5 is compiled with the -xalias_level=std option, no fields

can alias each other.

Consider the following example source code.

CODE EXAMPLE 6-6

Here are the compiler’s assumptions based on the following alias levels:

struct foo {
 short f1;
 short f2;
 int f3;
} *fp;

struct bar {
 int b1;
 int b2;
} *bp;

union moo {
 struct foo u_f;
 struct bar u_b;
} u;

struct bar;

struct foo {
 struct foo *ffp;
 struct bar *fbp;
} *fp;

struct bar {
 struct bar *bbp;
 long b2;
} *bp;
Chapter 6 Type-Based Alias Analysis 6-17

■ If CODE EXAMPLE 6-6 is compiled with the -xalias_level=weak option, only

fp->ffp and bp->bbp can alias each other.

■ If CODE EXAMPLE 6-6 is compiled with the -xalias_level=layout option, only

fp->ffp and bp->bbp can alias each other.

■ If CODE EXAMPLE 6-6 is compiled with the -xalias_level=strict option, no

fields can alias because the two struct types are still different even after their tags

are removed.

■ If CODE EXAMPLE 6-6 is compiled with the -xalias_level=std option, no fields

can alias because the two types and the tags are not the same.

Consider the following example source code:

CODE EXAMPLE 6-7

The pragma in this example tells the compiler that foo and bar are allowed to alias

each other. The compiler makes the following assumptions about alias information:

■ fp->f1 can alias with bp->b1 , bp->b2 , and bp->b3
■ fp->f2 can alias with bp->b1 , bp->b2 , and bp->b3

struct foo;
struct bar;
#pragma alias (struct foo, struct bar)

struct foo {
 int f1;
 int f2;
} *fp;

struct bar {
 short b1;
 short b2;
 int b3;
} *bp;
6-18 C User’s Guide • May 2002

CHAPTER 7

Transitioning to ISO C

This chapter provides information which you can use to help you port applications

for K&R style C to conform with 9899:1990 ISO/IEC C standard. The information is

presented under the assumption that you are using -xc99=%none because you do

not want to conform with the newer, 9899:1999 ISO/IEC C standard. The C compiler

defaults to -xc99=%all which supports the 9899:1999 ISO/IEC C standard.

7.1 Basic Modes
The ISO C compiler allows both old-style and new-style C code. The compiler

provides varying degrees of compliance to the ISO C standard when you use the

following -X (note case) options with -xc99=%none . -Xa is the default mode. Note

that the compiler’s default mode is -xc99=%all , so its behavior under each of the -
X options depends on the setting of -xc99 .

7.1.1 -Xa

ISO C plus K&R C compatibility extensions, with semantic changes required by ISO

C. Where K&R C and ISO C specify different semantics for the same construct, the

compiler issues warnings about the conflict and uses the ISO C interpretation. This is

the default mode.

7.1.2 -Xc

(c = conformance) Maximally conformant ISO C, without K&R C compatibility

extensions. The compiler issues errors and warnings for programs that use ISO C

constructs.
7-1

7.1.3 -Xs

(s = K&R C) The compiled language includes all features compatible with ISO K&R

C. The computer warns about all language constructs that have differing behavior

between ISO C and K&R C.

7.1.4 -Xt

(t = transition) ISO C plus K&R C compatibility extensions, without semantic

changes required by ISO C. Where K&R C and ISO C specify different semantics for

the same construct, the compiler issues warnings about the conflict and uses the

K&R C interpretation.

7.2 A Mixture of Old- and New-Style
Functions
The 1990 ISO C standard’s most sweeping change to the language is the function

prototype borrowed from the C++ language. By specifying for each function the

number and types of its parameters, not only does every regular compile get the

benefits of argument and parameter checks (similar to those of lint) for each

function call, but arguments are automatically converted (just as with an

assignment) to the type expected by the function. The 1990 ISO C standard includes

rules that govern the mixing of old- and new-style function declarations since there

are many, many lines of existing C code that could and should be converted to use

prototypes.

7.2.1 Writing New Code

When you write an entirely new program, use new-style function declarations

(function prototypes) in headers and new-style function declarations and definitions

in other C source files. However, if there is a possibility that someone will port the

code to a machine with a pre-ISO C compiler, we suggest you use the macro

__STDC__ (which is defined only for ISO C compilation systems) in both header and

source files. Refer to Section 7.2.3, “Mixing Considerations” on page 7-3 for an

example.
7-2 C User’s Guide • May 2002

An ISO C-conforming compiler must issue a diagnostic whenever two incompatible

declarations for the same object or function are in the same scope. If all functions are

declared and defined with prototypes, and the appropriate headers are included by

the correct source files, all calls should agree with the definition of the functions.

This protocol eliminates one of the most common C programming mistakes.

7.2.2 Updating Existing Code

If you have an existing application and want the benefits of function prototypes,

there are a number of possibilities for updating, depending on how much of the

code you would like to change:

1. Recompile without making any changes.

Even with no coding changes, the compiler warns you about mismatches in

parameter type and number when invoked with the –v option.

2. Add function prototypes just to the headers.

All calls to global functions are covered.

3. Add function prototypes to the headers and start each source file with function

prototypes for its local (static) functions.

All calls to functions are covered, but doing this requires typing the interface for

each local function twice in the source file.

4. Change all function declarations and definitions to use function prototypes.

For most programmers, choices 2 and 3 are probably the best cost/benefit

compromise. Unfortunately, these options are precisely the ones that require detailed

knowledge of the rules for mixing old and new styles.

7.2.3 Mixing Considerations

For function prototype declarations to work with old-style function definitions, both

must specify functionally identical interfaces or have compatible types using ISO C’s

terminology.

For functions with varying arguments, there can be no mixing of ISO C’s ellipsis

notation and the old-style varargs() function definition. For functions with a fixed

number of parameters, the situation is fairly straightforward: just specify the types

of the parameters as they were passed in previous implementations.

In K&R C, each argument was converted just before it was passed to the called

function according to the default argument promotions. These promotions specified

that all integral types narrower than int were promoted to int size, and any float
Chapter 7 Transitioning to ISO C 7-3

argument was promoted to double , hence simplifying both the compiler and

libraries. Function prototypes are more expressive—the specified parameter type is

what is passed to the function.

Thus, if a function prototype is written for an existing (old-style) function definition,

there should be no parameters in the function prototype with any of the following

types:

There still remain two complications with writing prototypes: typedef names and

the promotion rules for narrow unsigned types.

If parameters in old-style functions were declared using typedef names, such as

off_t and ino_t , it is important to know whether or not the typedef name

designates a type that is affected by the default argument promotions. For these two,

off_t is a long , so it is appropriate to use in a function prototype; ino_t used to

be an unsigned short , so if it were used in a prototype, the compiler issues a

diagnostic because the old-style definition and the prototype specify different and

incompatible interfaces.

Just what should be used instead of an unsigned short leads us into the final

complication. The one biggest incompatibility between K&R C and the 1990 ISO C

compiler is the promotion rule for the widening of unsigned char and unsigned
short to an int value. (See Section 7.4, “Promotions: Unsigned Versus Value

Preserving” on page 7-9.) The parameter type that matches such an old-style

parameter depends on the compilation mode used when you compile:

■ -Xs and –Xt should use unsigned int
■ –Xa and –Xc should use int

The best approach is to change the old-style definition to specify either int or

unsigned int and use the matching type in the function prototype. You can always

assign its value to a local variable with the narrower type, if necessary, after you

enter the function.

Watch out for the use of id’s in prototypes that may be affected by preprocessing.

Consider the following example:

char signed char unsigned char float

short signed short unsigned short

#define status 23
void my_exit(int status); /* Normally, scope begins */

/* and ends with prototype */
7-4 C User’s Guide • May 2002

Do not mix function prototypes with old-style function declarations that contain

narrow types.

Appropriate use of __STDC__ produces a header file that can be used for both the

old and new compilers:

The following function uses prototypes and can still be compiled on an older system:

void foo(unsigned char, unsigned short);
void foo(i, j) unsigned char i; unsigned short j; {...}

header.h:
struct s { /* . . . */ };
#ifdef __STDC__

void errmsg(int, ...);
struct s *f(const char *);
int g(void);

#else
void errmsg();
struct s *f();
int g();

#endif

struct s *
#ifdef __STDC__

f(const char *p)
#else

f(p) char *p;
#endif
{

/* . . . */
}

Chapter 7 Transitioning to ISO C 7-5

Here is an updated source file (as with choice 3 above). The local function still uses

an old-style definition, but a prototype is included for newer compilers:

7.3 Functions With Varying Arguments
In previous implementations, you could not specify the parameter types that a

function expected, but ISO C encourages you to use prototypes to do just that. To

support functions such as printf() , the syntax for prototypes includes a special

ellipsis (…) terminator. Because an implementation might need to do unusual things

to handle a varying number of arguments, ISO C requires that all declarations and

the definition of such a function include the ellipsis terminator.

Since there are no names for the “…” part of the parameters, a special set of macros

contained in stdarg.h gives the function access to these arguments. Earlier

versions of such functions had to use similar macros contained in varargs.h .

Let us assume that the function we wish to write is an error handler called

errmsg() that returns void , and whose only fixed parameter is an int that

specifies details about the error message. This parameter can be followed by a file

name, a line number, or both, and these are followed by format and arguments,

similar to those of printf() , that specify the text of the error message.

source.c:
#include “header.h”

typedef /* . . . */ MyType;
#ifdef __STDC__

static void del(MyType *);
/* . . . */
static void
del(p)
MyType *p;
{
/* . . . */
}
/* . . . */
7-6 C User’s Guide • May 2002

To allow our example to compile with earlier compilers, we make extensive use of

the macro __STDC__which is defined only for ISO C compilation systems. Thus, the

function’s declaration in the appropriate header file is:

The file that contains the definition of errmsg() is where the old and new styles can

get complex. First, the header to include depends on the compilation system:

stdio.h is included because we call fprintf() and vfprintf() later.

Next comes the definition for the function. The identifiers va_alist and va_dcl
are part of the old-style varargs.h interface.

Since the old-style variable argument mechanism did not allow us to specify any

fixed parameters, we must arrange for them to be accessed before the varying

portion. Also, due to the lack of a name for the “…” part of the parameters, the new

va_start() macro has a second argument—the name of the parameter that comes

just before the “…” terminator.

As an extension, Sun ISO C allows functions to be declared and defined with no

fixed parameters, as in:

int f(...);

#ifdef __STDC__
void errmsg(int code, ...);

#else
void errmsg();

#endif

#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include <stdio.h>

void
#ifdef __STDC__
errmsg(int code, ...)
#else
errmsg(va_alist) va_dcl /* Note: no semicolon! */
#endif
{

/* more detail below */
}

Chapter 7 Transitioning to ISO C 7-7

For such functions, va_start() should be invoked with an empty second

argument, as in:

va_start(ap,)

The following is the body of the function:

Both the va_arg() and va_end() macros work the same for the old-style and ISO

C versions. Because va_arg() changes the value of ap , the call to vfprintf()
cannot be:

The definitions for the macros FILENAME, LINENUMBER, and WARNINGare

presumably contained in the same header as the declaration of errmsg() .

A sample call to errmsg() could be:

{
va_list ap;
char *fmt;

#ifdef __STDC__
va_start(ap, code);

#else
int code;
va_start(ap);
/* extract the fixed argument */
code = va_arg(ap, int);

#endif
if (code & FILENAME)

(void)fprintf(stderr, "\"%s\": ", va_arg(ap, char *));
if (code & LINENUMBER)

(void)fprintf(stderr, "%d: ", va_arg(ap, int));
if (code & WARNING)

(void)fputs("warning: ", stderr);
fmt = va_arg(ap, char *);
(void)vfprintf(stderr, fmt, ap);
va_end(ap);

}

(void)vfprintf(stderr, va_arg(ap, char *), ap);

errmsg(FILENAME, "<command line>", "cannot open: %s\n",
argv[optind]);
7-8 C User’s Guide • May 2002

7.4 Promotions: Unsigned Versus Value
Preserving
The following information appears in the Rationale section that accompanies the

1990 ISO C Standard: “QUIET CHANGE”. A program that depends on unsigned

preserving arithmetic conversions will behave differently, probably without

complaint. This is considered to be the most serious change made by the Committee

to a widespread current practice.

This section explores how this change affects our code.

7.4.1 Background

According to K&R, The C Programming Language (First Edition), unsigned specified

exactly one type; there were no unsigned char s, unsigned short s, or unsigned
long s, but most C compilers added these very soon thereafter. Some compilers did

not implement unsigned long but included the other two. Naturally,

implementations chose different rules for type promotions when these new types

mixed with others in expressions.

In most C compilers, the simpler rule, “unsigned preserving,” is used: when an

unsigned type needs to be widened, it is widened to an unsigned type; when an

unsigned type mixes with a signed type, the result is an unsigned type.

The other rule, specified by ISO C, is known as “value preserving,” in which the

result type depends on the relative sizes of the operand types. When an unsigned
char or unsigned short is widened, the result type is int if an int is large

enough to represent all the values of the smaller type. Otherwise, the result type is

unsigned int . The value preserving rule produces the least surprise arithmetic

result for most expressions.

7.4.2 Compilation Behavior

Only in the transition or ISO modes (-Xt or -Xs) does the ISO C compiler use the

unsigned preserving promotions; in the other two modes, conforming (–Xc) and ISO

(–Xa), the value preserving promotion rules are used.
Chapter 7 Transitioning to ISO C 7-9

7.4.3 First Example: The Use of a Cast

In the following code, assume that an unsigned char is smaller than an int .

The code above causes the compiler to issue the following warning when you use

the -xtransition option:

line 6: warning: semantics of "<" change in ISO C; use explicit
cast

The result of the addition has type int (value preserving) or unsigned int
(unsigned preserving), but the bit pattern does not change between these two. On a

two’s-complement machine, we have:

This bit representation corresponds to -1 for int and UINT_MAXfor unsigned int .

Thus, if the result has type int , a signed comparison is used and the less-than test is

true; if the result has type unsigned int , an unsigned comparison is used and the

less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

Since differing compilers chose different meanings for the same code, this expression

can be ambiguous. The addition of a cast is as much to help the reader as it is to

eliminate the warning message.

int f(void)
{

int i = -2;
unsigned char uc = 1;

return (i + uc) < 17;
}

i: 111...110 (-2)
+ uc: 000...001 (1)
===================

111...111 (-1 or UINT_MAX)

value preserving:
(i + (int)uc) < 17

unsigned preserving:
(i + (unsigned int)uc) < 17
7-10 C User’s Guide • May 2002

7.4.4 Bit-fields

The same situation applies to the promotion of bit-field values. In ISO C, if the

number of bits in an int or unsigned int bit-field is less than the number of bits

in an int , the promoted type is int ; otherwise, the promoted type is unsigned
int . In most older C compilers, the promoted type is unsigned int for explicitly

unsigned bit-fields, and int otherwise.

Similar use of casts can eliminate situations that are ambiguous.

7.4.5 Second Example: Same Result

In the following code, assume that both unsigned short and unsigned char are

narrower than int .

In this example, both automatics are either promoted to int or to unsigned int , so

the comparison is sometimes unsigned and sometimes signed. However, the C

compiler does not warn you because the result is the same for the two choices.

7.4.6 Integral Constants

As with expressions, the rules for the types of certain integral constants have

changed. In K&R C, an unsuffixed decimal constant had type int only if its value fit

in an int ; an unsuffixed octal or hexadecimal constant had type int only if its value

fit in an unsigned int . Otherwise, an integral constant had type long . At times,

the value did not fit in the resulting type. In the 1990 ISO/IEC C standard, the

constant type is the first type encountered in the following list that corresponds to

the value:

■ unsuffixed decimal: int , long , unsigned long
■ unsuffixed octal or hexadecimal: int , unsigned int , long , unsigned long
■ U suffixed: unsigned int , unsigned long
■ L suffixed: long, unsigned long
■ UL suffixed: unsigned long

int f(void)
{

unsigned short us;
unsigned char uc;
return uc < us;

}

Chapter 7 Transitioning to ISO C 7-11

The ISO C compiler warns you, when you use the -xtransition option, about any

expression whose behavior might change according to the typing rules of the

constants involved. The old integral constant typing rules are used only in the

transition mode; the ISO and conforming modes use the new rules.

Note – The rules for typing unsuffixed decimal constants has changed in accordance

with the 1999 ISO C standard. See Section 2.4.1, “Integral Constants” on page 2-5.

7.4.7 Third Example: Integral Constants

In the following code, assume int s are 16 bits.

Because the hexadecimal constant’s type is either int (with a value of –1 on a

two’s-complement machine) or an unsigned int (with a value of 65535), the

comparison is true in –Xs and -Xt modes, and false in –Xa and –Xc modes.

Again, an appropriate cast clarifies the code and suppresses a warning:

The U suffix character is a new feature of ISO C and probably produces an error

message with older compilers.

int f(void)
{

int i = 0;

return i > 0xffff;
}

-Xt, -Xs modes:
i > (int)0xffff

-Xa, -Xc modes:
i > (unsigned int)0xffff

or
i > 0xffffU
7-12 C User’s Guide • May 2002

7.5 Tokenization and Preprocessing
Probably the least specified part of previous versions of C concerned the operations

that transformed each source file from a bunch of characters into a sequence of

tokens, ready to parse. These operations included recognition of white space

(including comments), bundling consecutive characters into tokens, handling

preprocessing directive lines, and macro replacement. However, their respective

ordering was never guaranteed.

7.5.1 ISO C Translation Phases

The order of these translation phases is specified by ISO C:

1. Every trigraph sequence in the source file is replaced. ISO C has exactly nine

trigraph sequences that were invented solely as a concession to deficient character

sets, and are three-character sequences that name a character not in the ISO

646-1983 character set:

TABLE 7-1 Trigraph Sequences

Trigraph Sequence Converts to

??= #

??- ~

??([

??)]

??! |

??< {

??> }

??/ \

??’ ^
Chapter 7 Transitioning to ISO C 7-13

These sequences must be understood by ISO C compilers, but we do not recommend

their use. The ISO C compiler warns you, when you use the -xtransition option,

whenever it replaces a trigraph while in transition (–Xt) mode, even in comments.

For example, consider the following:

The ??/ becomes a backslash. This character and the following newline are

removed. The resulting characters are:

The first / from the second line is the end of the comment. The next token is the * .

1. Every backslash/new-line character pair is deleted.

2. The source file is converted into preprocessing tokens and sequences of white

space. Each comment is effectively replaced by a space character.

3. Every preprocessing directive is handled and all macro invocations are replaced.

Each #include d source file is run through the earlier phases before its contents

replace the directive line.

4. Every escape sequence (in character constants and string literals) is interpreted.

5. Adjacent string literals are concatenated.

6. Every preprocessing token is converted into a regular token; the compiler

properly parses these and generates code.

7. All external object and function references are resolved, resulting in the final

program.

7.5.2 Old C Translation Phases

Previous C compilers did not follow such a simple sequence of phases, nor were

there any guarantees for when these steps were applied. A separate preprocessor

recognized tokens and white space at essentially the same time as it replaced macros

and handled directive lines. The output was then completely retokenized by the

compiler proper, which then parsed the language and generated code.

/* comment *??/
/* still comment? */

/* comment */* still comment? */
7-14 C User’s Guide • May 2002

Because the tokenization process within the preprocessor was a moment-by-moment

operation and macro replacement was done as a character-based, not token-based,

operation, the tokens and white space could have a great deal of variation during

preprocessing.

There are a number of differences that arise from these two approaches. The rest of

this section discusses how code behavior may change due to line splicing, macro

replacement, stringizing, and token pasting, which occur during macro replacement.

7.5.3 Logical Source Lines

In K&R C, backslash/new-line pairs were allowed only as a means to continue a

directive, a string literal, or a character constant to the next line. ISO C extended the

notion so that a backslash/new-line pair can continue anything to the next line. The

result is a logical source line. Therefore, any code that relied on the separate

recognition of tokens on either side of a backslash/new-line pair does not behave as

expected.

7.5.4 Macro Replacement

The macro replacement process has never been described in detail prior to ISO C.

This vagueness spawned a great many divergent implementations. Any code that

relied on anything fancier than manifest constant replacement and simple function–

like macros was probably not truly portable. This manual cannot uncover all the

differences between the old C macro replacement implementation and the ISO C

version. Nearly all uses of macro replacement with the exception of token pasting

and stringizing produce exactly the same series of tokens as before. Furthermore, the

ISO C macro replacement algorithm can do things not possible in the old C version.

For example,

causes any use of name to be replaced with an indirect reference through name. The

old C preprocessor would produce a huge number of parentheses and stars and

eventually produce an error about macro recursion.

The major change in the macro replacement approach taken by ISO C is to require

macro arguments, other than those that are operands of the macro substitution

operators # and ## , to be expanded recursively prior to their substitution in the

replacement token list. However, this change seldom produces an actual difference

in the resulting tokens.

#define name (*name)
Chapter 7 Transitioning to ISO C 7-15

7.5.5 Using Strings

Note – In ISO C, the examples below marked with a ‡ produce a warning about use

of old features, when you use the -xtransition option. Only in the transition

mode (–Xt and -Xs) is the result the same as in previous versions of C.

In K&R C, the following code produced the string literal "x y!" :

Thus, the preprocessor searched inside string literals and character constants for

characters that looked like macro parameters. ISO C recognized the importance of

this feature, but could not condone operations on parts of tokens. In ISO C, all

invocations of the above macro produce the string literal "a!" . To achieve the old

effect in ISO C, we make use of the # macro substitution operator and the

concatenation of string literals.

The above code produces the two string literals "x y" and "!" which, after

concatenation, produces the identical "x y!" .

There is no direct replacement for the analogous operation for character constants.

The major use of this feature was similar to the following:

which produced

which evaluates to the ASCII control-L character. The best solution we know of is to

change all uses of this macro to:

#define str(a) "a!" ‡
str(x y)

#define str(a) #a "!"
str(x y)

#define CNTL(ch) (037 & ’ch’) ‡
CNTL(L)

(037 & 'L')

#define CNTL(ch) (037 & (ch))
CNTL(’L’)
7-16 C User’s Guide • May 2002

This code is more readable and more useful, as it can also be applied to expressions.

7.5.6 Token Pasting

In K&R C, there were at least two ways to combine two tokens. Both invocations in

the following produced a single identifier x1 out of the two tokens x and 1.

Again, ISO C could not sanction either approach. In ISO C, both the above

invocations would produce the two separate tokens x and 1. The second of the

above two methods can be rewritten for ISO C by using the ## macro substitution

operator:

and ## should be used as macro substitution operators only when __STDC__ is

defined. Since ## is an actual operator, the invocation can be much freer with respect

to white space in both the definition and invocation.

There is no direct approach to effect the first of the two old-style pasting schemes,

but since it put the burden of the pasting at the invocation, it was used less

frequently than the other form.

7.6 const and volatile
The keyword const was one of the C++ features that found its way into ISO C.

When an analogous keyword, volatile , was invented by the ISO C Committee, the

“type qualifier” category was created.

#define self(a) a
#define glue(a,b) a/**/b ‡
self(x)1
glue(x,1)

#define glue(a,b) a ## b
glue(x, 1)
Chapter 7 Transitioning to ISO C 7-17

7.6.1 Types, Only for lvalue

const and volatile are part of an identifier’s type, not its storage class. However,

they are often removed from the topmost part of the type when an object’s value is

fetched in the evaluation of an expression—exactly at the point when an lvalue
becomes an rvalue . These terms arise from the prototypical assignment “L=R”; in

which the left side must still refer directly to an object (an lvalue) and the right

side need only be a value (an rvalue). Thus, only expressions that are lvalues can

be qualified by const or volatile or both.

7.6.2 Type Qualifiers in Derived Types

The type qualifiers may modify type names and derived types. Derived types are

those parts of C’s declarations that can be applied over and over to build more and

more complex types: pointers, arrays, functions, structures, and unions. Except for

functions, one or both type qualifiers can be used to change the behavior of a

derived type.

For example,

declares and initializes an object with type const int whose value is not changed

by a correct program. The order of the keywords is not significant to C. For example,

the declarations:

and

are identical to the above declaration in its effect.

The declaration

const int five = 5;

int const five = 5;

const five = 5;

const int *pci = &five;
7-18 C User’s Guide • May 2002

declares an object with type pointer to const int , which initially points to the

previously declared object. The pointer itself does not have a qualified type—it

points to a qualified type, and can be changed to point to essentially any int during

program execution. pci cannot be used to modify the object to which it points

unless a cast is used, as in the following:

If pci actually points to a const object, the behavior of this code is undefined.

The declaration

says that somewhere in the program there exists a definition of a global object with

type const pointer to int . In this case, cpi ’s value will not be changed by a correct

program, but it can be used to modify the object to which it points. Notice that

const comes after the * in the above declaration. The following pair of declarations

produces the same effect:

These declarations can be combined as in the following declaration in which an

object is declared to have type const pointer to const int :

7.6.3 const Means readonly

In hindsight, readonly would have been a better choice for a keyword than const .

If one reads const in this manner, declarations such as:

are easily understood to mean that the second parameter is only used to read

character values, while the first parameter overwrites the characters to which it

points. Furthermore, despite the fact that in the above example, the type of cpi is a

*(int *)pci = 17;

extern int *const cpi;

typedef int *INT_PTR;
extern const INT_PTR cpi;

const int *const cpci;

char *strcpy(char *, const char *);
Chapter 7 Transitioning to ISO C 7-19

pointer to a const int , you can still change the value of the object to which it

points through some other means, unless it actually points to an object declared with

const int type.

7.6.4 Examples of const Usage

The two main uses for const are to declare large compile-time initialized tables of

information as unchanging, and to specify that pointer parameters do not modify

the objects to which they point.

The first use potentially allows portions of the data for a program to be shared by

other concurrent invocations of the same program. It may cause attempts to modify

this invariant data to be detected immediately by means of some sort of memory

protection fault, since the data resides in a read-only portion of memory.

The second use helps locate potential errors before generating a memory fault

during that demo. For example, functions that temporarily place a null character

into the middle of a string are detected at compile time, if passed a pointer to a

string that cannot be so modified.

7.6.5 volatile Means Exact Semantics

So far, the examples have all used const because it’s conceptually simpler. But what

does volatile really mean? To a compiler writer, it has one meaning: take no code

generation shortcuts when accessing such an object. In ISO C, it is a programmer’s

responsibility to declare every object that has the appropriate special properties with

a volatile qualified type.

7.6.6 Examples of volatile Usage

The usual four examples of volatile objects are:

■ An object that is a memory-mapped I/O port

■ An object that is shared between multiple concurrent processes

■ An object that is modified by an asynchronous signal handler

■ An automatic storage duration object declared in a function that calls setjmp ,

and whose value is changed between the call to setjmp and a corresponding call

to longjmp
7-20 C User’s Guide • May 2002

The first three examples are all instances of an object with a particular behavior: its

value can be modified at any point during the execution of the program. Thus, the

seemingly infinite loop:

is valid as long as flag has a volatile qualified type. Presumably, some

asynchronous event sets flag to zero in the future. Otherwise, because the value of

flag is unchanged within the body of the loop, the compilation system is free to

change the above loop into a truly infinite loop that completely ignores the value of

flag .

The fourth example, involving variables local to functions that call setjmp , is more

involved. The fine print about the behavior of setjmp and longjmp notes that there

are no guarantees about the values for objects matching the fourth case. For the most

desirable behavior, it is necessary for longjmp to examine every stack frame

between the function calling setjmp and the function calling longjmp for saved

register values. The possibility of asynchronously created stack frames makes this

job even harder.

When an automatic object is declared with a volatile qualified type, the

compilation system knows that it has to produce code that exactly matches what the

programmer wrote. Therefore, the most recent value for such an automatic object is

always in memory and not just in a register, and is guaranteed to be up-to-date

when longjmp is called.

7.7 Multibyte Characters and Wide
Characters
At first, the internationalization of ISO C affected only library functions. However,

the final stage of internationalization—multibyte characters and wide

characters—also affected the language proper.

7.7.1 Asian Languages Require Multibyte Characters

The basic difficulty in an Asian-language computer environment is the huge number

of ideograms needed for I/O. To work within the constraints of usual computer

architectures, these ideograms are encoded as sequences of bytes. The associated

operating systems, application programs, and terminals understand these byte

flag = 1;
while (flag);
Chapter 7 Transitioning to ISO C 7-21

sequences as individual ideograms. Moreover, all of these encodings allow

intermixing of regular single-byte characters with the ideogram byte sequences. Just

how difficult it is to recognize distinct ideograms depends on the encoding scheme

used.

The term “multibyte character” is defined by ISO C to denote a byte sequence that

encodes an ideogram, no matter what encoding scheme is employed. All multibyte

characters are members of the “extended character set.” A regular single-byte

character is just a special case of a multibyte character. The only requirement placed

on the encoding is that no multibyte character can use a null character as part of its

encoding.

ISO C specifies that program comments, string literals, character constants, and

header names are all sequences of multibyte characters.

7.7.2 Encoding Variations

The encoding schemes fall into two camps. The first is one in which each multibyte

character is self-identifying, that is, any multibyte character can simply be inserted

between any pair of multibyte characters.

The second scheme is one in which the presence of special shift bytes changes the

interpretation of subsequent bytes. An example is the method used by some

character terminals to get in and out of line-drawing mode. For programs written in

multibyte characters with a shift-state-dependent encoding, ISO C requires that each

comment, string literal, character constant, and header name must both begin and

end in the unshifted state.

7.7.3 Wide Characters

Some of the inconvenience of handling multibyte characters would be eliminated if

all characters were of a uniform number of bytes or bits. Since there can be

thousands or tens of thousands of ideograms in such a character set, a 16-bit or

32-bit sized integral value should be used to hold all members. (The full Chinese

alphabet includes more than 65,000 ideograms!) ISO C includes the typedef name

wchar_t as the implementation-defined integral type large enough to hold all

members of the extended character set.

For each wide character, there is a corresponding multibyte character, and vice versa;

the wide character that corresponds to a regular single-byte character is required to

have the same value as its single-byte value, including the null character. However,

there is no guarantee that the value of the macro EOFcan be stored in a wchar_t ,

just as EOFmight not be representable as a char .
7-22 C User’s Guide • May 2002

7.7.4 Conversion Functions

The 1990 ISO/IEC C standard provides five library functions that manage multibyte

characters and wide characters, the 1999 ISO/IEC C standard provides many more

such functions.

7.7.5 C Language Features

To give even more flexibility to the programmer in an Asian-language environment,

ISO C provides wide character constants and wide string literals. These have the

same form as their non-wide versions, except that they are immediately prefixed by

the letter L:

■ 'x ' regular character constant

■ '¥' regular character constant

■ L'x ' wide character constant

■ L'¥' wide character constant

■ "abc¥xyz " regular string literal

■ L"abcxyz " wide string literal

Multibyte characters are valid in both the regular and wide versions. The sequence

of bytes necessary to produce the ideogram ¥ is encoding-specific, but if it consists

of more than one byte, the value of the character constant '¥' is

implementation-defined, just as the value of 'ab ' is implementation-defined. Except

for escape sequences, a regular string literal contains exactly the bytes specified

between the quotes, including the bytes of each specified multibyte character.

When the compilation system encounters a wide character constant or wide string

literal, each multibyte character is converted into a wide character, as if by calling

the mbtowc() function. Thus, the type of L'¥' is wchar_t ; the type of abc¥xyz is

array of wchar_t with length eight. Just as with regular string literals, each wide

string literal has an extra zero-valued element appended, but in these cases, it is a

wchar_t with value zero.

Just as regular string literals can be used as a shorthand method for character array

initialization, wide string literals can be used to initialize wchar_t arrays:

In the above example, the three arrays x , y, and z , and the array pointed to by wp,

have the same length. All are initialized with identical values.

wchar_t *wp = L"a¥z";
wchar_t x[] = L"a¥z";
wchar_t y[] = {L'a', L'¥', L'z', 0};
wchar_t z[] = {'a', L'¥', 'z', '\0'};
Chapter 7 Transitioning to ISO C 7-23

Finally, adjacent wide string literals are concatenated, just as with regular string

literals. However, with the 1990 ISO/IEC C standard, adjacent regular and wide

string literals produce undefined behavior. Also, the 1990 ISO/IEC C standard

specifes that a compiler is not required to produce an error if it does not accept such

concatenations.

7.8 Standard Headers and Reserved Names
Early in the standardization process, the ISO Standards Committee chose to include

library functions, macros, and header files as part of ISO C.

This section presents the various categories of reserved names and some rationale

for their reservations. At the end is a set of rules to follow that can steer your

programs clear of any reserved names.

7.8.1 Standard Headers

The standard headers are:

Most implementations provide more headers, but a strictly conforming 1990

ISO/IEC C program can only use these.

Other standards disagree slightly regarding the contents of some of these headers.

For example, POSIX (IEEE 1003.1) specifies that fdopen is declared in stdio.h . To

allow these two standards to coexist, POSIX requires the macro _POSIX_SOURCEto
be #defined prior to the inclusion of any header to guarantee that these additional

names exist. In its Portability Guide, X/Open has also used this macro scheme for its

extensions. X/Open’s macro is _XOPEN_SOURCE.

TABLE 7-2 Standard Headers

assert.h locale.h stddef.h

ctype.h math.h stdio.h

errno.h setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h
7-24 C User’s Guide • May 2002

ISO C requires the standard headers to be both self-sufficient and idempotent. No

standard header needs any other header to be #included before or after it, and

each standard header can be #included more than once without causing problems.

The Standard also requires that its headers be #included only in safe contexts, so

that the names used in the headers are guaranteed to remain unchanged.

7.8.2 Names Reserved for Implementation Use

The Standard places further restrictions on implementations regarding their

libraries. In the past, most programmers learned not to use names like read and

write for their own functions on UNIX Systems. ISO C requires that only names

reserved by the Standard be introduced by references within the implementation.

Thus, the Standard reserves a subset of all possible names for implementations to

use. This class of names consists of identifiers that begin with an underscore and

continue with either another underscore or a capital letter. The class of names

contains all names matching the following regular expression:

Strictly speaking, if your program uses such an identifier, its behavior is undefined.

Thus, programs using _POSIX_SOURCE(or _XOPEN_SOURCE) have undefined

behavior.

However, undefined behavior comes in different degrees. If, in a POSIX-conforming

implementation you use _POSIX_SOURCE, you know that your program’s undefined

behavior consists of certain additional names in certain headers, and your program

still conforms to an accepted standard. This deliberate loophole in the ISO C

standard allows implementations to conform to seemingly incompatible

specifications. On the other hand, an implementation that does not conform to the

POSIX standard is free to behave in any manner when encountering a name such as

_POSIX_SOURCE.

The Standard also reserves all other names that begin with an underscore for use in

header files as regular file scope identifiers and as tags for structures and unions, but

not in local scopes. The common practice of having functions named _filbuf and

_doprnt to implement hidden parts of the library is allowed.

_[_A-Z][0-9_a-zA-Z]*
Chapter 7 Transitioning to ISO C 7-25

7.8.3 Names Reserved for Expansion

In addition to all the names explicitly reserved, the 1990 ISO/IEC C standard also

reserves (for implementations and future standards) names matching certain

patterns:

In the above lists, names that begin with a capital letter are macros and are reserved

only when the associated header is included. The rest of the names designate

functions and cannot be used to name any global objects or functions.

7.8.4 Names Safe to Use

There are four simple rules you can follow to keep from colliding with any ISO C

reserved names:

■ #include all system headers at the top of your source files (except possibly after

a #define of _POSIX_SOURCEor _XOPEN_SOURCE, or both).

■ Do not define or declare any names that begin with an underscore.

■ Use an underscore or a capital letter somewhere within the first few characters of

all file scope tags and regular names. Beware of the va_ prefix found in

stdarg.h or varargs.h .

■ Use a digit or a non-capital letter somewhere within the first few characters of all

macro names. Almost all names beginning with an E are reserved if errno.h is

#included .

These rules are just a general guideline to follow, as most implementations will

continue to add names to the standard headers by default.

TABLE 7-3 Names Reserved for Expansion

File Reserved Name Pattern

errno.h E[0-9A-Z].*

ctype.h (to|is)[a-z].*

locale.h LC_[A-Z].*

math.h current function names[fl]

signal.h (SIG|SIG_)[A-Z].*

stdlib.h str[a-z].*

string.h (str|mem|wcs)[a-z].*
7-26 C User’s Guide • May 2002

7.9 Internationalization
The section Section 7.7, “Multibyte Characters and Wide Characters” on page 7-21

introduced the internationalization of the standard libraries. This section discusses

the affected library functions and gives some hints on how programs should be

written to take advantage of these features. The section only discusses

internationalization with respect to the 1990 ISO/IEC C standard. The 1999 ISO/IEC

C standard has no significant extension to support internationalization over those

discussed here.

7.9.1 Locales

At any time, a C program has a current locale—a collection of information that

describes the conventions appropriate to some nationality, culture, and language.

Locales have names that are strings. The only two standardized locale names are

"C" and "" . Each program begins in the "C" locale, which causes all library

functions to behave just like they have historically. The "" locale is the

implementation’s best guess at the correct set of conventions appropriate to the

program’s invocation. "C" and "" can cause identical behavior. Other locales may be

provided by implementations.

For the purposes of practicality and expediency, locales are partitioned into a set of

categories. A program can change the complete locale, or just one or more

categories. Generally, each category affects a set of functions disjoint from the

functions affected by other categories, so temporarily changing one category for a

little while can make sense.

7.9.2 The setlocale() Function

The setlocale() function is the interface to the program’s locale. In general, any

program that uses the invocation country’s conventions should place a call such as:

#include <locale.h>
/*...*/
setlocale(LC_ALL, "");
Chapter 7 Transitioning to ISO C 7-27

early in the program’s execution path. This call causes the program’s current locale

to change to the appropriate local version, since LC_ALL is the macro that specifies

the entire locale instead of one category. The following are the standard categories:

Any of these macros can be passed as the first argument to setlocale() to specify

that category.

The setlocale() function returns the name of the current locale for a given

category (or LC_ALL) and serves in an inquiry-only capacity when its second

argument is a null pointer. Thus, code similar to the following can be used to change

the locale or a portion thereof for a limited duration:

Most programs do not need this capability.

7.9.3 Changed Functions

Wherever possible and appropriate, existing library functions were extended to

include locale-dependent behavior. These functions came in two groups:

■ Those declared by the ctype.h header (character classification and conversion),

and

■ Those that convert to and from printable and internal forms of numeric values,

such as printf() and strtod() .

LC_COLLATE sorting information

LC_CTYPE character classification information

LC_MONETARY currency printing information

LC_NUMERIC numeric printing information

LC_TIME date and time printing information

#include <locale.h>
/*...*/
char *oloc;
/*...*/
oloc = setlocale(LC_ category, NULL);
if (setlocale(LC_ category, " new") != 0)
{

/* use temporarily changed locale */
(void)setlocale(LC_ category, oloc);

}

7-28 C User’s Guide • May 2002

All ctype.h predicate functions, except isdigit() and isxdigit() , can return

nonzero (true) for additional characters when the LC_CTYPEcategory of the current

locale is other than "C" . In a Spanish locale, isalpha(’ñ’) should be true.

Similarly, the character conversion functions, tolower() and toupper() , should

appropriately handle any extra alphabetic characters identified by the isalpha()
function. The ctype.h functions are almost always macros that are implemented

using table lookups indexed by the character argument. Their behavior is changed

by resetting the table(s) to the new locale’s values, and therefore there is no

performance impact.

Those functions that write or interpret printable floating values can change to use a

decimal-point character other than period (.) when the LC_NUMERICcategory of the

current locale is other than "C" . There is no provision for converting any numeric

values to printable form with thousands separator-type characters. When converting

from a printable form to an internal form, implementations are allowed to accept

such additional forms, again in other than the "C" locale. Those functions that make

use of the decimal-point character are the printf() and scanf() families,

atof() , and strtod() . Those functions that are allowed implementation-defined

extensions are atof() , atoi() , atol() , strtod() , strtol() , strtoul() , and

the scanf() family.

7.9.4 New Functions

Certain locale-dependent capabilities were added as new standard functions.

Besides setlocale() , which allows control over the locale itself, the Standard

includes the following new functions:

In addition, there are the multibyte functions mblen() , mbtowc() , mbstowcs() ,

wctomb() , and wcstombs() .

The localeconv() function returns a pointer to a structure containing information

useful for formatting numeric and monetary information appropriate to the current

locale’s LC_NUMERICand LC_MONETARYcategories. This is the only function whose

behavior depends on more than one category. For numeric values, the structure

localeconv() numeric/monetary conventions

strcoll() collation order of two strings

strxfrm() translate string for collation

strxfrm() translate string for collation
Chapter 7 Transitioning to ISO C 7-29

describes the decimal-point character, the thousands separator, and where the

separator(s) should be located. There are fifteen other structure members that

describe how to format a monetary value.

The strcoll() function is analogous to the strcmp() function, except that the

two strings are compared according to the LC_COLLATEcategory of the current

locale. The strxfrm() function can also be used to transform a string into another,

such that any two such after-translation strings can be passed to strcmp() , and get

an ordering analogous to what strcoll() would have returned if passed the two

pre-translation strings.

The strftime() function provides formatting similar to that used with sprintf()
of the values in a struct tm , along with some date and time representations that

depend on the LC_TIME category of the current locale. This function is based on the

ascftime() function released as part of UNIX System V Release 3.2.

7.10 Grouping and Evaluation in Expressions
One of the choices made by Dennis Ritchie in the design of C was to give compilers

a license to rearrange expressions involving adjacent operators that are

mathematically commutative and associative, even in the presence of parentheses.

This is explicitly noted in the appendix in the The C Programming Language by

Kernighan and Ritchie. However, ISO C does not grant compilers this same freedom.

This section discusses the differences between these two definitions of C and

clarifies the distinctions between an expression’s side effects, grouping, and

evaluation by considering the expression statement from the following code

fragment.

7.10.1 Definitions

The side effects of an expression are its modifications to memory and its accesses to

volatile qualified objects. The side effects in the above expression are the

updating of i and p and any side effects contained within the functions f() and

g() .

int i, *p, f(void), g(void);
/*...*/
i = *++p + f() + g();
7-30 C User’s Guide • May 2002

An expression’s grouping is the way values are combined with other values and

operators. The above expression’s grouping is primarily the order in which the

additions are performed.

An expression’s evaluation includes everything necessary to produce its resulting

value. To evaluate an expression, all specified side effects must occur anywhere

between the previous and next sequence point, and the specified operations are

performed with a particular grouping. For the above expression, the updating of i
and p must occur after the previous statement and by the ; of this expression

statement; the calls to the functions can occur in either order, any time after the

previous statement, but before their return values are used. In particular, the

operators that cause memory to be updated have no requirement to assign the new

value before the value of the operation is used.

7.10.2 The K&R C Rearrangement License

The K&R C rearrangement license applies to the above expression because addition

is mathematically commutative and associative. To distinguish between regular

parentheses and the actual grouping of an expression, the left and right curly braces

designate grouping. The three possible groupings for the expression are:

All of these are valid given K&R C rules. Moreover, all of these groupings are valid

even if the expression were written instead, for example, in either of these ways:

If this expression is evaluated on an architecture for which either overflows cause an

exception, or addition and subtraction are not inverses across an overflow, these

three groupings behave differently if one of the additions overflows.

For such expressions on these architectures, the only recourse available in K&R C

was to split the expression to force a particular grouping. The following are possible

rewrites that respectively enforce the above three groupings:

i = { {*++p + f()} + g() };
i = { *++p + {f() + g()} };
i = { {*++p + g()} + f() };

i = *++p + (f() + g());
i = (g() + *++p) + f();

i = *++p; i += f(); i += g()
i = f(); i += g(); i += *++p;
i = *++p; i += g(); i += f();
Chapter 7 Transitioning to ISO C 7-31

7.10.3 The ISO C Rules

ISO C does not allow operations to be rearranged that are mathematically

commutative and associative, but that are not actually so on the target architecture.

Thus, the precedence and associativity of the ISO C grammar completely describes

the grouping for all expressions; all expressions must be grouped as they are parsed.

The expression under consideration is grouped in this manner:

This code still does not mean that f() must be called before g() , or that p must be

incremented before g() is called.

In ISO C, expressions need not be split to guard against unintended overflows.

7.10.4 The Parentheses

ISO C is often erroneously described as honoring parentheses or evaluating

according to parentheses due to an incomplete understanding or an inaccurate

presentation.

Since ISO C expressions simply have the grouping specified by their parsing,

parentheses still only serve as a way of controlling how an expression is parsed; the

natural precedence and associativity of expressions carry exactly the same weight as

parentheses.

The above expression could have been written as:

with no different effect on its grouping or evaluation.

7.10.5 The As If Rule

There were several reasons for the K&R C rearrangement rules:

■ The rearrangements provide many more opportunities for optimizations, such as

compile-time constant folding.

■ The rearrangements do not change the result of integral-typed expressions on

most machines.

i = { {*++p + f()} + g() };

i = (((*(++p)) + f()) + g());
7-32 C User’s Guide • May 2002

■ Some of the operations are both mathematically and computationally

commutative and associative on all machines.

The ISO C Committee eventually became convinced that the rearrangement rules

were intended to be an instance of the as if rule when applied to the described target

architectures. ISO C’s as if rule is a general license that permits an implementation to

deviate arbitrarily from the abstract machine description as long as the deviations do

not change the behavior of a valid C program.

Thus, all the binary bitwise operators (other than shifting) are allowed to be

rearranged on any machine because there is no way to notice such regroupings. On

typical two’s-complement machines in which overflow wraps around, integer

expressions involving multiplication or addition can be rearranged for the same

reason.

Therefore, this change in C does not have a significant impact on most C

programmers.

7.11 Incomplete Types
The ISO C standard introduced the term “incomplete type” to formalize a

fundamental, yet misunderstood, portion of C, implicit from its beginnings. This

section describes incomplete types, where they are permitted, and why they are

useful.

7.11.1 Types

ISO separates C’s types into three distinct sets: function, object, and incomplete.

Function types are obvious; object types cover everything else, except when the size

of the object is not known. The Standard uses the term “object type” to specify that

the designated object must have a known size, but it is important to know that

incomplete types other than void also refer to an object.

There are only three variations of incomplete types: void , arrays of unspecified

length, and structures and unions with unspecified content. The type void differs

from the other two in that it is an incomplete type that cannot be completed, and it

serves as a special function return and parameter type.
Chapter 7 Transitioning to ISO C 7-33

7.11.2 Completing Incomplete Types

An array type is completed by specifying the array size in a following declaration in

the same scope that denotes the same object. When an array without a size is

declared and initialized in the same declaration, the array has an incomplete type

only between the end of its declarator and the end of its initializer.

An incomplete structure or union type is completed by specifying the content in a

following declaration in the same scope for the same tag.

7.11.3 Declarations

Certain declarations can use incomplete types, but others require complete object

types. Those declarations that require object types are array elements, members of

structures or unions, and objects local to a function. All other declarations permit

incomplete types. In particular, the following constructs are permitted:

■ Pointers to incomplete types

■ Functions returning incomplete types

■ Incomplete function parameter types

■ typedef names for incomplete types

The function return and parameter types are special. Except for void , an incomplete

type used in such a manner must be completed by the time the function is defined or

called. A return type of void specifies a function that returns no value, and a single

parameter type of void specifies a function that accepts no arguments.

Since array and function parameter types are rewritten to be pointer types, a

seemingly incomplete array parameter type is not actually incomplete. The typical

declaration of main ’s argv , namely, char *argv[] , as an unspecified length array

of character pointers, is rewritten to be a pointer to character pointers.

7.11.4 Expressions

Most expression operators require complete object types. The only three exceptions

are the unary & operator, the first operand of the comma operator, and the second

and third operands of the ?: operator. Most operators that accept pointer operands

also permit pointers to incomplete types, unless pointer arithmetic is required. The

list includes the unary * operator. For example, given:

&*p is a valid subexpression that makes use of this.

void *p
7-34 C User’s Guide • May 2002

7.11.5 Justification

Why are incomplete types necessary? Ignoring void , there is only one feature

provided by incomplete types that C has no other way to handle, and that has to do

with forward references to structures and unions. If one has two structures that need

pointers to each other, the only way to do so is with incomplete types:

All strongly typed programming languages that have some form of pointer and

heterogeneous data types provide some method of handling this case.

7.11.6 Examples

Defining typedef names for incomplete structure and union types is frequently

useful. If you have a complicated bunch of data structures that contain many

pointers to each other, having a list of typedef s to the structures up front, possibly

in a central header, can simplify the declarations.

Moreover, for those structures and unions whose contents should not be available to

the rest of the program, a header can declare the tag without the content. Other parts

of the program can use pointers to the incomplete structure or union without any

problems, unless they attempt to use any of its members.

A frequently used incomplete type is an external array of unspecified length.

Generally, it is not necessary to know the extent of an array to make use of its

contents.

struct a { struct b *bp; };
struct b { struct a *ap; };

typedef struct item_tag Item;
typedef union note_tag Note;
typedef struct list_tag List;
. . .
struct item_tag { . . . };
. . .
struct list_tag {

struct list_tag {
};
Chapter 7 Transitioning to ISO C 7-35

7.12 Compatible and Composite Types
With K&R C, and even more so with ISO C, it is possible for two declarations that

refer to the same entity to be other than identical. The term “compatible type” is

used in ISO C to denote those types that are “close enough”. This section describes

compatible types as well as “composite types”—the result of combining two

compatible types.

7.12.1 Multiple Declarations

If a C program were only allowed to declare each object or function once, there

would be no need for compatible types. Linkage, which allows two or more

declarations to refer to the same entity, function prototypes, and separate

compilation all need such a capability. Separate translation units (source files) have

different rules for type compatibility from within a single translation unit.

7.12.2 Separate Compilation Compatibility

Since each compilation probably looks at different source files, most of the rules for

compatible types across separate compiles are structural in nature:

■ Matching scalar (integral, floating, and pointer) types must be compatible, as if

they were in the same source file.

■ Matching structures, unions, and enums must have the same number of members.

Each matching member must have a compatible type (in the separate compilation

sense), including bit-field widths.

■ Matching structures must have the members in the same order. The order of

union and enum members does not matter.

■ Matching enum members must have the same value.

An additional requirement is that the names of members, including the lack of

names for unnamed members, match for structures, unions, and enums, but not

necessarily their respective tags.
7-36 C User’s Guide • May 2002

7.12.3 Single Compilation Compatibility

When two declarations in the same scope describe the same object or function, the

two declarations must specify compatible types. These two types are then combined

into a single composite type that is compatible with the first two. More about

composite types later.

The compatible types are defined recursively. At the bottom are type specifier

keywords. These are the rules that say that unsigned short is the same as

unsigned short int , and that a type without type specifiers is the same as one

with int . All other types are compatible only if the types from which they are

derived are compatible. For example, two qualified types are compatible if the

qualifiers, const and volatile , are identical, and the unqualified base types are

compatible.

7.12.4 Compatible Pointer Types

For two pointer types to be compatible, the types they point to must be compatible

and the two pointers must be identically qualified. Recall that the qualifiers for a

pointer are specified after the * , so that these two declarations

declare two differently qualified pointers to the same type, int .

7.12.5 Compatible Array Types

For two array types to be compatible, their element types must be compatible. If

both array types have a specified size, they must match, that is, an incomplete array

type (see Section 7.11, “Incomplete Types” on page 7-33) is compatible both with

another incomplete array type and an array type with a specified size.

7.12.6 Compatible Function Types

To make functions compatible, follow these rules:

■ For two function types to be compatible, their return types must be compatible. If

either or both function types have prototypes, the rules are more complicated.

int *const cpi;
int *volatile vpi;
Chapter 7 Transitioning to ISO C 7-37

■ For two function types with prototypes to be compatible, they also must have the

same number of parameters, including use of the ellipsis (…) notation, and the

corresponding parameters must be parameter-compatible.

■ For an old-style function definition to be compatible with a function type with a

prototype, the prototype parameters must not end with an ellipsis (…). Each of the

prototype parameters must be parameter-compatible with the corresponding

old-style parameter, after application of the default argument promotions.

■ For an old-style function declaration (not a definition) to be compatible with a

function type with a prototype, the prototype parameters must not end with an

ellipsis (…). All of the prototype parameters must have types that would be

unaffected by the default argument promotions.

■ For two types to be parameter-compatible, the types must be compatible after the

top-level qualifiers, if any, have been removed, and after a function or array type

has been converted to the appropriate pointer type.

7.12.7 Special Cases

signed int behaves the same as int , except possibly for bit-fields, in which a plain

int may denote an unsigned-behaving quantity.

Another interesting note is that each enumeration type must be compatible with

some integral type. For portable programs, this means that enumeration types are

separate types. In general, the ISO C standard views them in that manner.

7.12.8 Composite Types

The construction of a composite type from two compatible types is also recursively

defined. The ways compatible types can differ from each other are due either to

incomplete arrays or to old-style function types. As such, the simplest description of

the composite type is that it is the type compatible with both of the original types,

including every available array size and every available parameter list from the

original types.
7-38 C User’s Guide • May 2002

CHAPTER 8

Converting Applications for a 64-Bit
Environment

This chapter provides the information you need for writing code for the 32 bit or the

64-bit compilation environment.

Once you try to write or modify code for both the 32-bit and 64-bit compilation

environments, you face two basic issues:

■ Data type consistency between the different data-type models

■ Interaction between the applications using different data-type models

Maintaining a single code-source with as few #ifdefs as possible is usually better

than maintaining multiple source trees. Therefore, this chapter provides guidelines

for writing code that works correctly in both 32-bit and 64-bit compilation

environments. In some cases, the conversion of current code requires only a

recompilation and relinking with the 64-bit libraries. However, for those cases where

code changes are required, this chapter discusses the tools and strategies that make

conversion easier.

8.1 Overview of the Data Model Differences
The biggest difference between the 32-bit and the 64-bit compilation environments is

the change in data-type models.

The C data-type model for 32-bit applications is the ILP32 model, so named because

integers, longs, and pointers are 32-bit data types. The LP64 data model, so named

because longs and pointers grow to 64-bits, is the creation of a consortium of

companies across the industry. The remaining C types, int , long long , short , and

char are the same in both data-type models.
8-1

Regardless of the data-type model, the standard relationship between C integral

types holds true:

sizeof (char) <= sizeof (short) <= sizeof (int) <= sizeof (long)

The following table lists the basic C data types and their corresponding sizes in bits

for both the ILP32 and LP64 data models.

It is not unusual for current 32-bit applications to assume that integers, pointers, and

longs are the same size. Because the size of longs and pointers change in the LP64

data model, you need to be aware that this change alone can cause many ILP32 to

LP64 conversion problems.

In addition, it becomes very important to examine declarations and casts; how

expressions are evaluated can be affected when the types change. The effects of

standard C conversion rules are influenced by the change in data-type sizes. To

adequately show what you intend, you need to explicitly declare the types of

constants. You can also use casts in expressions to make certain that the expression is

evaluated the way you intend. This is particularly true in the case of sign extension,

where explicit casting is essential for demonstrating intent.

8.2 Implementing Single Source Code
The following sections describe some of the available resources that you can use to

write single-source code that supports 32-bit and 64-bit compilation.

TABLE 8-1 Data Type Size for ILP32 and LP64

C Data Type LP32 LP64

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

enum 32 32

float 32 32

double 64 64

long double 128 128
8-2 C User’s Guide • May 2002

8.2.1 Derived Types

Use the system derived types to make code safe for both the 32-bit and the 64-bit

compilation environment. In general, it is good programming practice to use derived

types to allow for change. When you use derived data-types, only the system derived

types need to change due to data model changes, or due to a port.

The system include files <sys/types.h> and <inttypes.h> contain constants,

macros, and derived types that are helpful in making applications 32-bit and 64-bit

safe.

8.2.1.1 <sys/types.h>

Include <sys/types.h> in an application source file to gain access to the definition

of _LP64 and _ILP32 . This header also contains a number of basic derived types that

should be used whenever appropriate. In particular, the following are of special

interest:

■ clock_t represents the system times in clock ticks.

■ dev_t is used for device numbers.

■ off_t is used for file sizes and offsets.

■ ptrdiff_t is the signed integral type for the result of subtracting two pointers.

■ size_t reflects the size, in bytes, of objects in memory.

■ ssize_t is used by functions that return a count of bytes or an error indication.

■ time_t counts time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and

grow to 64-bit quantities in the LP64 compilation environment.

8.2.1.2 <inttypes.h>

The include file <inttypes.h> provides constants, macros, and derived types that

help you make your code compatible with explicitly sized data items, independent of

the compilation environment. It contains mechanisms for manipulating 8-bit, 16-bit,

32-bit, and 64-bit objects. The file is part of the new 1999 ISO/IEC C standard and the

contents of the file track the proposals leading to its inclusion in the 1999 ISO/IEC C

standard. The file will soon be updated to fully conform with the 1999 ISO/IEC C

standard. The following is a discussion of the basic features provided by

<inttypes.h> :

■ Fixed-width integer types.

■ Helpful types such as uintptr_t
■ Constant macros

■ Limits

■ Format string macros
Chapter 8 Converting Applications for a 64-Bit Environment 8-3

The following sections provide more information about the basic features of

<inttypes.h> .

Fixed-Width Integer Types

The fixed-width integer types that <inttypes.h> provides, include signed integer

types, such as int8_t , int16_t , int32_t , int64_t , and unsigned integer types,

such as uint8_t , uint16_t , uint32_t , and uint64_t .

Derived types defined as the smallest integer types that can hold the specified

number of bits include int_least8_t ,…, int_least64_t , uint_least8_t ,…,

uint_least64_t .

It is safe to use an integer for such operations as loop counters and file descriptors;

it is also safe to use a long for an array index. However, do not use these fixed-width

types indiscriminately. Use fixed-width types for explicit binary representations of

the following:

■ On-disk data

■ Over the data wire

■ Hardware registers

■ Binary interface specifications

■ Binary data structures

Helpful Types Such as unintptr_t

The <inttypes.h> file includes signed and unsigned integer types large enough to

hold a pointer. These are given as intptr_t and uintptr_t . In addition,

<inttypes.h> provides intmax_t and uintmax_t , which are the longest (in bits)

signed and unsigned integer types available.

Use the uintptr_t type as the integral type for pointers instead of a fundamental

type such as unsigned long . Even though an unsigned long is the same size as a

pointer in both the ILP32 and LP64 data models, using uintptr_t means that only

the definition of uintptr_t is effected if the data model changes. This makes your

code portable to many other systems. It is also a more clear way to express your

intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when

you want to perform address arithmetic. Use intptr_t and uintptr_t types

instead of long or unsigned long for this purpose.
8-4 C User’s Guide • May 2002

Constant Macros

Use the macros INT8_C(c) , …, INT64_C(c) , UINT8_C(c) ,…, UINT64_C(c) to

specify the size and sign of a given constant. Basically, these macros place an l , ul ,

ll , or ull at the end of the constant, if necessary. For example, INT64_C(1) appends

ll to the constant 1 for ILP32 and an l for LP64.

Use the INTMAX_C(c) and UINTMAX_C(c) macros to make a constant the biggest

type. These macros can be very useful for specifying the type of constants described

in Section 8.3, “Converting to the LP64 Data Type Model” on page 8-7.

Limits

The limits defined by <inttypes.h> are constants that specify the minimum and

maximum values of various integer types. This includes minimum and maximum

values for each of the fixed-width types such as INT8_MIN ,…, INT64_MIN ,

INT8_MAX,…, INT64_MAX, and their unsigned counterparts.

The <inttypes.h> file also provides the minimum and maximum for each of the

least-sized types. These include INT_LEAST8_MIN ,…, INT_LEAST64_MIN ,

INT_LEAST8_MAX,…, INT_LEAST64_MAX, as well as their unsigned counterparts.

Finally, <inttypes.h> defines the minimum and maximum value of the largest

supported integer types. These include INTMAX_MIN and INTMAX_MAXand their

corresponding unsigned versions.

Format String Macros

The <inttypes.h> file also includes the macros that specify the printf(3S) and

scanf(3S) format specifiers. Essentially, these macros prepend the format specifier

with an l or ll to identify the argument as a long or long long , given that the

number of bits in the argument is built into the name of the macro.

There are macros for printf(3S) that print both the smallest and largest integer

types in decimal, octal, unsigned, and hexadecimal formats as the following example

shows:

int64_t i;
printf("i =%" PRIx64 "\n", i);
Chapter 8 Converting Applications for a 64-Bit Environment 8-5

Similarly, there are macros for scanf (3S)that read both the smallest and largest

integer types in decimal, octal, unsigned, and hexadecimal formats.

Do not use these macros indiscriminately. They are best used in conjunction with the

fixed-width types discussed in Section , “Fixed-Width Integer Types” on page 8-4.

8.2.2 Tools

The lint program’s -errchk option detects potential 64-bit porting problems. In

addition, the -v option to the C compiler performs additional and more strict

semantic checks. The -v option also enables certain lint-like checks on the named

files.

When you enhance code to be 64-bit safe, use the header files present in the Solaris

operating environment because these files have the correct definition of the derived

types and data structures for the 64-bit compilation environment.

8.2.2.1 lint

Use lint to check code that is written for both the 32-bit and the 64-bit compilation

environment. Specify the -errchk=longptr64 option to generate LP64 warnings.

Also use the -errchk=longptr64 flag which checks portability to an environment

for which the size of long integers and pointers is 64 bits and the size of plain integers

is 32 bits. The -errchk=longptr64 flag checks assignments of pointer expressions

and long integer expressions to plain integers, even when explicit casts are used.

Use the -errchk=longptr64,signext option to find code where the normal ISO

C value-preserving rules allow the extension of the sign of a signed-integral value in

an expression of unsigned-integral type.

Use the -Xarch=v9 option of lint when you want to check code that you intend to

run in the 64-bit compilation environment only.

When lint generates warnings, it prints the line number of the offending code, a

message that describes the problem, and whether or not a pointer is involved. The

warning message also indicates the sizes of the involved data types. When you know

a pointer is involved and you know the size of the data types, you can find specific

64-bit problems and avoid the pre-existing problems between 32-bit and smaller

types.

uint64_t u;
scanf("%" SCNu64 "\n", &u);
8-6 C User’s Guide • May 2002

Be aware, however, that even though lint gives warnings about potential 64-bit

problems, it cannot detect all problems. Also, in many cases, code that is intentional

and correct for the application generates a warning.

You can suppress the warning for a given line of code by placing a comment of the

form “NOTE(LINTED(“<optional message”>))” on the previous line. This is

useful when you want lint to ignore certain lines of code such as casts and

assignments. Exercise extreme care when you use the “NOTE(LINTED(“<optional
message”>))” comment because it can mask real problems. When you use NOTE,
include #include<note.h> . Refer to the lint man page for more information.

8.3 Converting to the LP64 Data Type Model
The examples that follow illustrate some of the more common problems you are

likely to encounter when you convert code. Where appropriate, the corresponding

lint warnings are shown.

8.3.1 Integer and Pointer Size Change

Since integers and pointers are the same size in the ILP32 compilation environment,

some code relies on this assumption. Pointers are often cast to int or unsigned int
for address arithmetic. Instead, cast your pointers to long because long and pointers

are the same size in both ILP32 and LP64 data-type models. Rather than explicitly

using unsigned long , use uintptr_t instead because it expresses your intent more

closely and makes the code more portable, insulating it against future changes.

Consider the following example:

Here is the modified version:

char *p;
p = (char *) ((int)p & PAGEOFFSET);
%
warning: conversion of pointer loses bits

char *p;
p = (char *) ((uintptr_t)p & PAGEOFFSET);
Chapter 8 Converting Applications for a 64-Bit Environment 8-7

8.3.2 Integer and Long Size Change

Because integers and longs are never really distinguished in the ILP32 data-type

model, your existing code probably uses them indiscriminately. Modify any code that

uses integers and longs interchangeably so it conforms to the requirements of both

the ILP32 and LP64 data-type models. While an integer and a long are both 32-bits in

the ILP32 data-type model, a long is 64 bits in the LP64 data-type model. Consider the

following example:

8.3.3 Sign Extension

Sign extension is a common problem when you convert to the 64-bit compilation

environment because the type conversion and promotion rules are somewhat

obscure. To prevent sign extension problems, use explicit casting to achieve the

intended results.

To understand why sign extension occurs, it helps to understand the conversion rules

for ISO C. The conversion rules that seem to cause the most sign extension problems

between the 32-bit and the 64-bit compilation environment come into effect during

the following operations:

■ Integral promotion

You can use a char , short , enumerated type , or bit-field, whether signed or

unsigned, in any expression that calls for an integer.

If an integer can hold all possible values of the original type, the value is

converted to an integer; otherwise, the value is converted to an unsigned integer.

■ Conversion between signed and unsigned integers

When an integer with a negative sign is promoted to an unsigned integer of the

same or larger type, it is first promoted to the signed equivalent of the larger type,

then converted to the unsigned value.

int waiting;
long w_io;
long w_swap;
...
waiting = w_io + w_swap;

%
warning: assignment of 64-bit integer to 32-bit integer
8-8 C User’s Guide • May 2002

When the following example is compiled as a 64-bit program, the addr variable

becomes sign-extended, even though both addr and a.base are unsigned types.

This sign extension occurs because the conversion rules are applied as follows:

■ a.base is converted from an unsigned int to an int because of the integral

promotion rule. Thus, the expression a.base << 13 is of type int , but no sign

extension has yet occurred.

■ The expression a.base << 13 is of type int , but it is converted to a long and

then to an unsigned long before being assigned to addr , because of signed and

unsigned integer promotion rules. The sign extension occurs when it is converted

from an int to a long .

%cat test.c
struct foo {
unsigned int base:19, rehash:13;
};

main(int argc, char *argv[])
{

struct foo a;
unsigned long addr;

a.base = 0x40000;
addr = a.base << 13; /* Sign extension here! */
printf("addr 0x%lx\n", addr);

addr = (unsigned int)(a.base << 13); /* No sign extension here! */
printf("addr 0x%lx\n", addr);

}

% cc -o test64 -xarch=v9 test.c
% ./test64
addr 0xffffffff80000000
addr 0x80000000
%

Chapter 8 Converting Applications for a 64-Bit Environment 8-9

When this same example is compiled as a 32-bit program it does not display any sign

extension:

For a more detailed discussion of the conversion rules, refer to the ISO C standard.

Also included in this standard are useful rules for ordinary arithmetic conversions

and integer constants.

8.3.4 Pointer Arithmetic Instead of Integers

In general, using pointer arithmetic works better than integers because pointer

arithmetic is independent of the data model, whereas integers might not be. Also, you

can usually simplify your code by using pointer arithmetic. Consider the following

example:

Here is the modified version:

8.3.5 Structures

Check the internal data structures in an applications for holes. Use extra padding

between fields in the structure to meet alignment requirements. This extra padding is

allocated when long or pointer fields grow to 64 bits for the LP64 data-type model.

cc -o test test.c
%test

addr 0x80000000
addr 0x80000000

int *end;
int *p;
p = malloc(4 * NUM_ELEMENTS);
end = (int *)((unsigned int)p + 4 * NUM_ELEMENTS);

%
warning: conversion of pointer loses bits

int *end;
int *p;
p = malloc(sizeof (*p) * NUM_ELEMENTS);
end = p + NUM_ELEMENTS;
8-10 C User’s Guide • May 2002

In the 64-bit compilation environment on SPARC platforms, all types of structures are

aligned to the size of the largest member within them. When you repack a structure,

follow the simple rule of moving the long and pointer fields to the beginning of the

structure. Consider the following structure definition:

Here is the same structure with the long and pointer data types defined at the

beginning of the structure:

8.3.6 Unions

Be sure to check unions because their fields can change size between the ILP32 and

the LP64 data-type models.

Here is the modified version

struct bar {
int i;
long j;
int k;
char *p;

}; /* sizeof (struct bar) = 32 */

struct bar {
char *p;
long j;
int i;
int k;

}; /* sizeof (struct bar) = 24 */

typedef union {
double _d;
long _l[2];

} llx_t;

typedef union {
double _d;
int _l[2];

} llx_t;
Chapter 8 Converting Applications for a 64-Bit Environment 8-11

Type Constants

A lack of precision can cause the loss of data in some constant expressions. Be explicit

when you specify the data types in your constant expression. Specify the type of each

integer constant by adding some combination of {u,U,l,L}. You can also use casts to

specify the type of a constant expression. Consider the following example:

Here is the modified version:

8.3.7 Beware of Implicit Declarations

If you use -xc99=%none , the C compiler assumes that any function or variable that

is used in a module and not defined or declared externally is an integer. Any longs

and pointers used in this way are truncated by the compiler’s implicit integer

declaration. Place the appropriate extern declaration for the function or variable in a

header and not in the C module. Include this header in any C module that uses the

function or variable. If this is a function or variable defined by the system headers,

you still need to include the proper header in the code. Consider the following

example:

int i = 32;
long j = 1 << i; /* j will get 0 because RHS is integer */

/* expression */

int i = 32;
long j = 1L << i;

int
main(int argc, char *argv[])
{

char *name = getlogin()
 printf("login = %s\n", name);
 return (0);
}

%
warning: improper pointer/integer combination: op "="
warning: cast to pointer from 32-bit integer
implicitly declared to return int
getlogin printf
8-12 C User’s Guide • May 2002

The proper headers are now in the modified version

8.3.8 sizeof() Is an Unsigned long

In the LP64 data-type model, sizeof() has the effective type of an unsigned long.

Occasionally, sizeof() is passed to a function expecting an argument of type int ,

or assigned or cast to an integer. In some cases, this truncation causes loss of data.

8.3.9 Use Casts to Show Your Intentions

Relational expressions can be tricky because of conversion rules. You should be very

explicit about how you want the expression to be evaluated by adding casts wherever

necessary.

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{
 char *name = getlogin();
 (void) printf("login = %s\n", name);
 return (0);
}

long a[50];
unsigned char size = sizeof (a);

%
warning: 64-bit constant truncated to 8 bits by assignment
warning: initializer does not fit or is out of range: 0x190
Chapter 8 Converting Applications for a 64-Bit Environment 8-13

8.3.10 Check Format String Conversion Operation

Make sure the format strings for printf (3S), sprintf (3S), scanf (3S), and

sscanf (3S) can accommodate long or pointer arguments. For pointer arguments, the

conversion operation given in the format string should be %pto work in both the

32-bit and 64-bit compilation environments.

Here is the modified version

For long arguments, the long size specification, l, should be prepended to the

conversion operation character in the format string. Furthermore, check to be sure

that the storage pointed to by buf is large enough to contain 16 digits.

char *buf;
struct dev_info *devi;
...
(void) sprintf(buf, "di%x", (void *)devi);

%
warning: function argument (number) type inconsistent with format
sprintf (arg 3) void *: (format) int

char *buf;
struct dev_info *devi;
...
(void) sprintf(buf, ‘di%p", (void *)devi);

size_t nbytes;
u_long align, addr, raddr, alloc;
printf("kalloca:%d%%%d from heap got%x.%x returns%x\n",
nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

%
warning: cast of 64-bit integer to 32-bit integer
warning: cast of 64-bit integer to 32-bit integer
warning: cast of 64-bit integer to 32-bit integer
8-14 C User’s Guide • May 2002

Here is the modified version

8.4 Other Considerations
The remaining guidelines highlight common problems encountered when converting

an application to a full 64-bit program.

8.4.1 Derived Types That Have Grown in Size

A number of derived types have changed to now represent 64-bit quantities in the

64-bit application compilation environment. This change does not affect 32-bit

applications; however, any 64-bit applications that consume or export data described

by these types need to be reevaluated. An example of this is in applications that

directly manipulate the utmp (4) or utmpx (4) files. For correct operation in the 64-bit

application environment, do not attempt to directly access these files. Instead, use the

getutxent (3C) and related family of functions.

8.4.2 Check for Side Effects of Changes

Be aware that a type change in one area can result in an unexpected 64-bit conversion

in another area. For example, check all the callers of a function that previously

returned an int and now returns an ssize_t .

8.4.3 Check Whether Literal Uses of long Still Make

Sense

A variable that is defined as a long is 32 bits in the ILP32 data-type model and 64 bits

in the LP64 data-type model. Where it is possible, avoid problems by redefining the

variable and use a more portable derived type.

size_t nbytes;
u_long align, addr, raddr, alloc;
printf("kalloca:%lu%%%lu from heap got%lx.%lx returns%lx\n",
nbytes, align, raddr, raddr + alloc, addr);
Chapter 8 Converting Applications for a 64-Bit Environment 8-15

Related to this, a number of derived types have changed under the LP64 data-type

model. For example, pid_t remains a long in the 32-bit environment, but under the

64-bit environment, a pid_t is an int .

8.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit

Prototypes

In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. You

can distinguish these by specifying the _LP64 or _ILP32 feature test macros in the

headers. Similarly, code that runs in 32-bit and 64-bit environments needs to utilize

the appropriate #ifdefs , depending on the compilation mode.

8.4.5 Calling Convention Changes

When you pass structures by value and compile the code for SPARC V9, the structure

is passed in registers rather than as a pointer to a copy if it is small enough. This can

cause problems if you try to pass structures between C code and handwritten

assembly code.

Floating point parameters work in a similar fashion; some floating point values

passed by value are passed in floating point registers.

8.4.6 Algorithm Changes

After your code is safe for the 64-bit environment, review your code again to verify

that the algorithms and data structures still make sense. The data types are larger, so

data structures might use more space. The performance of your code might change as

well. Given these concerns, you might need to modify your code appropriately.

8.5 Checklist for Getting Started
Use the following checklist to help you convert your code to 64-bit.

■ Review all data structures and interfaces to verify that these are still valid in the

64-bit environment.
8-16 C User’s Guide • May 2002

■ Include <inttypes.h> in your code to pull in the _ILP32 or _LP64 definitions

as well as many basic derived types. Systems programs may wish to include

<sys/types.h> (or at a minimum, <sys/isa_defs.h>) to obtain the

definitions of _ILP32 or _LP64 .

■ Move function prototypes and external declarations with non-local scope to

headers and include these headers in your code.

■ Run lint using the -errchk=longptr64,signext and -D__sparcv9 flags and

review each warning individually. Keep in mind that not all warnings require a

change to the code. Depending on the changes, run lint again in both 32-bit and

64-bit modes.

■ Compile code as both 32-bit and 64-bit, unless the application is being provided

only as 64-bit.

■ Test the application by executing the 32-bit version on the 32-bit operating

system, and the 64-bit version on the 64-bit operating system. You can also test

the 32-bit version on the 64-bit operating system.
Chapter 8 Converting Applications for a 64-Bit Environment 8-17

8-18 C User’s Guide • May 2002

CHAPTER 9

cscope : Interactively Examining a
C Program

cscope is an interactive program that locates specified elements of code in C, lex ,

or yacc source files. With cscope , you can search and edit your source files more

efficiently than you could with a typical editor. That’s because cscope supports

function calls—when a function is being called, when it is doing the calling—as well

as C language identifiers and keywords.

This chapter is a tutorial on the cscope browser provided with this release.

Note – The cscope program has not yet been updated to understand codes written

for the 1999 ISO/IEC C standard. For example, it does not yet recognize the new

keywords introduced in the 1999 ISO/IEC C standard.

9.1 The cscope Process
When cscope is called for a set of C, lex , or yacc source files, it builds a symbol

cross-reference table for the functions, function calls, macros, variables, and

preprocessor symbols in those files. You can then query that table about the locations

of symbols you specify. First, it presents a menu and asks you to choose the type of

search you would like to have performed. You may, for instance, want cscope to

find all the functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry contains the

name of the file, the number of the line, and the text of the line in which cscope has

found the specified code. In our case, the list also includes the names of the

functions that call the specified function. You now have the option of requesting

another search or examining one of the listed lines with the editor. If you choose the

latter, cscope invokes the editor for the file in which the line appears, with the
9-1

cursor on that line. You can now view the code in context and, if you wish, edit the

file as any other file. You can then return to the menu from the editor to request a

new search.

Because the procedure you follow depends on the task at hand, there is no single set

of instructions for using cscope . For an extended example of its use, review the

cscope session described in the next section. It shows how you can locate a bug in

a program without learning all the code.

9.2 Basic Use
Suppose you are given responsibility for maintaining the program prog . You are

told that an error message, out of storage, sometimes appears just as the program

starts up. Now you want to use cscope to locate the parts of the code that are

generating the message. Here is how you do it.

9.2.1 Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in the

Terminal Information Utilities (terminfo) database. Be sure you have set the TERM
environment variable to your terminal type so that cscope can verify that it is listed

in the terminfo database. If you have not done so, assign a value to TERMand

export it to the shell as follows:

In a Bourne shell, type:

In a C shell, type:

You may now want to assign a value to the EDITOR environment variable. By

default, cscope invokes the vi editor. (The examples in this chapter illustrate vi
usage.) If you prefer not to use vi , set the EDITOR environment variable to the

editor of your choice and export EDITOR, as follows:

$ TERM=term_name; export TERM

% setenv TERM term_name
9-2 C User’s Guide • May 2002

In a Bourne shell, type:

In a C shell, type:

You may have to write an interface between cscope and your editor. For details, see

Section 9.2.9, “Command-Line Syntax for Editors” on page 9-19.

If you want to use cscope only for browsing (without editing), you can set the

VIEWERenvironment variable to pg and export VIEWER. cscope will then invoke

pg instead of vi .

An environment variable called VPATHcan be set to specify directories to be

searched for source files. See Section 9.2.6, “View Paths” on page 9-14.

9.2.2 Step 2: Invoke the cscope Program

By default, cscope builds a symbol cross-reference table for all the C, lex , and

yacc source files in the current directory, and for any included header files in the

current directory or the standard place. So, if all the source files for the program to

be browsed are in the current directory, and if its header files are there or in the

standard place, invoke cscope without arguments:

To browse through selected source files, invoke cscope with the names of those files

as arguments:

For other ways to invoke cscope , see Section 9.2.5, “Command-Line Options” on

page 9-11.

cscope builds the symbol cross-reference table the first time it is used on the source

files for the program to be browsed. By default, the table is stored in the file

cscope.out in the current directory. On a subsequent invocation, cscope rebuilds

the cross-reference only if a source file has been modified or the list of source files is

$ EDITOR=emacs; export EDITOR

% setenv EDITOR emacs

% cscope

% cscope file1.c file2.c file3.h
Chapter 9 cscope : Interactively Examining a C Program 9-3

different. When the cross-reference is rebuilt, the data for the unchanged files is

copied from the old cross-reference, which makes rebuilding faster than the initial

build, and reduces startup time for subsequent invocations.

9.2.3 Step 3: Locate the Code

Now let’s return to the task we undertook at the beginning of this section: to identify

the problem that is causing the error message out of storage to be printed. You have

invoked cscope , the cross-reference table has been built. The cscope menu of tasks

appears on the screen.

The cscope Menu of Tasks:

Press the Return key to move the cursor down the screen (with wraparound at the

bottom of the display), and ^p (Control-p) to move the cursor up; or use the up (ua)

and down (da) arrow keys. You can manipulate the menu and perform other tasks

with the following single-key commands:

% cscope

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

TABLE 9-1 cscope Menu Manipulation Commands

Tab Move to the next input field.

Return Move to the next input field.

^n Move to the next input field.

^p Move to the previous input field.

^y Search with the last text typed.

^b Move to the previous input field and search pattern.
9-4 C User’s Guide • May 2002

If the first character of the text for which you are searching matches one of these

commands, you can escape the command by entering a \ (backslash) before the

character.

Now move the cursor to the fifth menu item, Find this text string , enter the

text out of storage, and press the Return key.

cscope Function: Requesting a Search for a Text String:

Note – Follow the same procedure to perform any other task listed in the menu

except the sixth, Change this text string . Because this task is slightly more

complex than the others, there is a different procedure for performing it. For a

description of how to change a text string, see Section 9.2.8, “Examples” on

page 9-15.

cscope searches for the specified text, finds one line that contains it, and reports its

finding.

^f Move to the next input field and search pattern.

^c Toggle ignore/use letter case when searching. For example, a search for

FILE matches file and File when ignoring the letter case.

^r Rebuild cross-reference.

! Start an interactive shell. Type ^d to return to cscope .

^l Redraw the screen.

? Display the list of commands.

^d Exit cscope .

$ cscope

cscope Press the ? key for help

Find this C symbol
Find this global definition
Find functions called by this function
Find functions calling this function
Find this text string: out of storage
Change this text string
Find this egrep pattern
Find this file
Find files #including this file

TABLE 9-1 cscope Menu Manipulation Commands (Continued)
Chapter 9 cscope : Interactively Examining a C Program 9-5

cscope Function: Listing Lines Containing the Text String:

After cscope shows you the results of a successful search, you have several options.

You may want to change one of the lines or examine the code surrounding it in the

editor. Or, if cscope has found so many lines that a list of them does not fit on the

screen at once, you may want to look at the next part of the list. The following table

shows the commands available after cscope has found the specified text:

Again, if the first character of the text for which you are searching matches one of

these commands, you can escape the command by entering a backslash before the

character.

Text string: out of storage

 File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n",
argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

TABLE 9-2 Commands for Use After an Initial Search

1 - 9 Edit the file referenced by this line. The number you type corresponds to an

item in the list of lines printed by cscope .

Space Display the next set of matching lines.

+ Display the next set of matching lines.

^v Display the next set of matching lines.

— Display the previous set of matching lines.

^e Edit the displayed files in order.

> Append the list of lines being displayed to a file.

| Pipe all lines to a shell command.
9-6 C User’s Guide • May 2002

Now examine the code around the newly found line. Enter 1 (the number of the line

in the list). The editor is invoked with the file alloc.c with the cursor at the

beginning of line 63 of alloc.c .

cscope Function: Examining a Line of Code:

You can see that the error message is generated when the variable p is NULL. To

determine how an argument passed to alloctest() could have been NULL, you

must first identify the functions that call alloctest() .

Exit the editor by using normal quit conventions. You are returned to the menu of

tasks. Now type alloctest after the fourth item, Find functions calling
this function .

{
return(alloctest(realloc(p, (unsigned) size)));

}

/* check for memory allocation failure */

static char *
alloctest(p)
char *p;
{

if (p == NULL) {
(void) fprintf(stderr, "\n%s: out of storage\n", argv0);
exit(1);

}
return(p);

}
~
~
~
~
~
~
~
"alloc.c" 67 lines, 1283 characters
Chapter 9 cscope : Interactively Examining a C Program 9-7

cscope Function: Requesting a List of Functions That Call alloctest() :

cscope finds and lists three such functions.

cscope Function: Listing Functions That Call alloctest() :

Now you want to know which functions call mymalloc() . cscope finds ten such

functions. It lists nine of them on the screen and instructs you to press the space bar

to see the rest of the list.

Text string: out of storage

 File Line
1 alloc.c 63(void)fprintf(stderr,"\n%s: out of storage\n",argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function: alloctest
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Functions calling this function: alloctest
File Function Line
1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem,
(unsigned) size)));
3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned)
size)));

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
9-8 C User’s Guide • May 2002

cscope Function: Listing Functions That Call mymalloc() :

Because you know that the error message out of storage is generated at the

beginning of the program, you can guess that the problem may have occurred in the

function dispinit() (display initialization).

To view dispinit() , the seventh function on the list, type 7.

Functions calling this function: mymalloc

File Function Line
1 alloc.c stralloc 24 return(strcpy(mymalloc

(strlen(s) + 1), s));
2 crossref.c crossref 47 symbol = (struct symbol *)mymalloc

(msymbols * sizeof(struct symbol));
3 dir.c makevpsrcdirs 63 srcdirs = (char **) mymalloc

(nsrcdirs * sizeof(char*));
4 dir.c addincdir 167 incdirs = (char **)mymalloc

(sizeof(char *));
5 dir.c addincdir 168 incnames = (char **)

mymalloc(sizeof(char *));
6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc

(sizeof(struct listitem));
7 display.c dispinit 87 displine = (int *) mymalloc

(mdisprefs * sizeof(int));
8 history.c addcmd 19 h = (struct cmd *) mymalloc

(sizeof(struct cmd));
9 main.c main 212 s = mymalloc((unsigned)

(strlen(reffile) +strlen(home) + 2));

* 9 more lines - press the space bar to display more *
Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Chapter 9 cscope : Interactively Examining a C Program 9-9

cscope Function: Viewing dispinit() in the Editor:

mymalloc() failed because it was called either with a very large number or a

negative number. By examining the possible values of FLDLINE and REFLINE, you

can see that there are situations in which the value of mdisprefs is negative, that is,

in which you are trying to call mymalloc() with a negative number.

9.2.4 Step 4: Edit the Code

On a windowing terminal, you may have multiple windows of arbitrary size. The

error message out of storage might have appeared as a result of running prog in a

window with too few lines. In other words, that may have been one of the situations

in which mymalloc() was called with a negative number. Now you want to be sure

that when the program aborts in this situation in the future, it does so after printing

the more meaningful error message screen too small. Edit the function dispinit()
as follows.

void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {

mdisprefs = 9;
}

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

}
^L/* display a page of the references */

void
display()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1];/* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters
9-10 C User’s Guide • May 2002

cscope Function: Correcting the Problem:

You have fixed the problem we began investigating at the beginning of this section.

Now if prog is run in a window with too few lines, it does not simply fail with the

unedifying error message out of storage. Instead, it checks the window size and

generates a more meaningful error message before exiting.

9.2.5 Command-Line Options

As noted, cscope builds a symbol cross-reference table for the C, lex , and source

files in the current directory by default. That is,

is equivalent to:

void
dispinit()
{
/* calculate the maximum displayed reference lines */

lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {

mdisprefs = 9;
}

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

}
^L/* display a page of the references */

void
display()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1];/* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters

% cscope

% cscope *.[chly]
Chapter 9 cscope : Interactively Examining a C Program 9-11

We have also seen that you can browse through selected source files by invoking

cscope with the names of those files as arguments:

cscope provides command-line options with greater flexibility in specifying source

files to be included in the cross-reference. When you invoke cscope with the –s
option and any number of directory names (separated by commas):

cscope builds a cross-reference for all the source files in the specified directories as

well as the current directory. To browse through all of the source files whose names

are listed in file (file names separated by spaces, tabs, or new-lines), invoke cscope
with the –i option and the name of the file containing the list:

If your source files are in a directory tree, use the following commands to browse

through all of them:

If this option is selected, however, cscope ignores any other files appearing on the

command-line.

The –I option can be used for cscope in the same way as the –I option to cc . See

Section 2.5, “Include Files” on page 2-6.

You can specify a cross-reference file other than the default cscope.out by

invoking the –f option. This is useful for keeping separate symbol cross-reference

files in the same directory. You may want to do this if two programs are in the same

directory, but do not share all the same files:

% cscope file1.c file2.c file3.h

% cscope –s dir1,dir2,dir3

% cscope –i file

% find . –name '*.[chly]' –print | sort > file
% cscope –i file

% cscope –f admin.ref admin.c common.c aux.c libs.c
% cscope –f delta.ref delta.c common.c aux.c libs.c
9-12 C User’s Guide • May 2002

In this example, the source files for two programs, admin and delta , are in the

same directory, but the programs consist of different groups of files. By specifying

different symbol cross-reference files when you invoke cscope for each set of source

files, the cross-reference information for the two programs is kept separate.

You can use the –pn option to specify that cscope display the path name, or part of

the path name, of a file when it lists the results of a search. The number you give to

–p stands for the last n elements of the path name you want to be displayed. The

default is 1, the name of the file itself. So if your current directory is home/common,

the command:

causes cscope to display common/file1.c , common/file2.c , and so forth when

it lists the results of a search.

If the program you want to browse contains a large number of source files, you can

use the –b option, so that cscope stops after it has built a cross-reference; cscope
does not display a menu of tasks. When you use cscope –b in a pipeline with the

batch (1) command, cscope builds the cross-reference in the background:

Once the cross-reference is built, and as long as you have not changed a source file

or the list of source files in the meantime, you need only specify:

for the cross-reference to be copied and the menu of tasks to be displayed in the

normal way. You can use this sequence of commands when you want to continue

working without having to wait for cscope to finish its initial processing.

The –d option instructs cscope not to update the symbol cross-reference. You can

use it to save time if you are sure that no such changes have been made; cscope
does not check the source files for changes.

Note – Use the –d option with care. If you specify –d under the erroneous

impression that your source files have not been changed, cscope refers to an

outdated symbol cross-reference in responding to your queries.

Check the cscope(1) man page for other command-line options.

% cscope –p2

% echo 'cscope -b' | batch

% cscope
Chapter 9 cscope : Interactively Examining a C Program 9-13

9.2.6 View Paths

As we have seen, cscope searches for source files in the current directory by

default. When the environment variable VPATHis set, cscope searches for source

files in directories that comprise your view path. A view path is an ordered list of

directories, each of which has the same directory structure below it.

For example, suppose you are part of a software project. There is an official set of

source files in directories below /fs1/ofc . Each user has a home directory

(/usr/you). If you make changes to the software system, you may have copies of

just those files you are changing in /usr/you/src/cmd/prog1 . The official

versions of the entire program can be found in the directory

/fs1/ofc/src/cmd/prog1 .

Suppose you use cscope to browse through the three files that comprise prog1 ,

namely, f1.c , f2.c , and f3.c . You would set VPATHto /usr/you and /fs1/ofc
and export it, as in:

In a Bourne shell, type:

In a C shell, type:

You then make your current directory /usr/you/src/cmd/prog1 , and invoke

cscope :

The program locates all the files in the view path. In case duplicates are found,

cscope uses the file whose parent directory appears earlier in VPATH. Thus, if f2.c
is in your directory, and all three files are in the official directory, cscope examines

f2.c from your directory, and f1.c and f3.c from the official directory.

The first directory in VPATHmust be a prefix of the directory you will be working in,

usually $HOME. Each colon-separated directory in VPATHmust be absolute: it should

begin at / .

$ VPATH=/usr/you:/fs1/ofc; export VPATH

% setenv VPATH /usr/you:/fs1/ofc

% cscope
9-14 C User’s Guide • May 2002

9.2.7 cscope and Editor Call Stacks

cscope and editor calls can be stacked. That is, when cscope puts you in the editor

to view a reference to a symbol and there is another reference of interest, you can

invoke cscope again from within the editor to view the second reference without

exiting the current invocation of either cscope or the editor. You can then back up

by exiting the most recent invocation with the appropriate cscope and editor

commands.

9.2.8 Examples

This section presents examples of how cscope can be used to perform three tasks:

changing a constant to a preprocessor symbol, adding an argument to a function,

and changing the value of a variable. The first example demonstrates the procedure

for changing a text string, which differs slightly from the other tasks on the cscope
menu. That is, once you have entered the text string to be changed, cscope prompts

you for the new text, displays the lines containing the old text, and waits for you to

specify which of these lines you want it to change.

9.2.8.1 Changing a Constant to a Preprocessor Symbol

Suppose you want to change a constant, 100 , to a preprocessor symbol, MAXSIZE.

Select the sixth menu item, Change this text string , and enter \100 . The 1
must be escaped with a backslash because it has a special meaning (item 1 on the

menu) to cscope . Now press Return. cscope prompts you for the new text string.

Type MAXSIZE.

cscope Function: Changing a Text String:

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string: \100
Find this egrep pattern:
Find this file:
Find files #including this file:
To: MAXSIZE
Chapter 9 cscope : Interactively Examining a C Program 9-15

cscope displays the lines containing the specified text string, and waits for you to

select those in which you want the text to be changed.

cscope Function: Prompting for Lines to be Changed:

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8 of the

listed source files) should be changed to MAXSIZE. You also know that 0100 in

read.c and 100.0 in err.c (lines 4 and 5 of the list) should not be changed. You

select the lines you want changed with the following single-key commands:

In this case, enter 1, 2, and 3. The numbers you type are not printed on the screen.

Instead, cscope marks each list item you want to be changed by printing a >
(greater than) symbol after its line number in the list.

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string: \100
Find this egrep pattern:
Find this file:
Find files #including this file:
To: MAXSIZE

TABLE 9-3 Commands for Selecting Lines to Be Changed

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.

Space Display the next set of lines.

+ Display the next set of lines.

– Display the previous set of lines.

a Mark all lines to be changed.

^d Change the marked lines and exit.

Esc Exit without changing the marked lines.
9-16 C User’s Guide • May 2002

cscope Function: Marking Lines to be Changed:

Now type ^d to change the selected lines. cscope displays the lines that have been

changed and prompts you to continue.

cscope Function: Displaying Changed Lines of Text:

When you press Return in response to this prompt, cscope redraws the screen,

restoring it to its state before you selected the lines to be changed.

The next step is to add the #define for the new symbol MAXSIZE. Because the

header file in which the #define is to appear is not among the files whose lines are

displayed, you must escape to the shell by typing ! . The shell prompt appears at the

bottom of the screen. Then enter the editor and add the #define .

Change "100" to "MAXSIZE"

 File Line
1>init.c 4 char s[100];
2>init.c 26 for (i = 0; i < 100; i++)
3>find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help):

Changed lines:

char s[MAXSIZE];
for (i = 0; i < MAXSIZE; i++)
if (c < MAXSIZE) {

Press the RETURN key to continue:
Chapter 9 cscope : Interactively Examining a C Program 9-17

cscope Function: Exiting to the Shell:

To resume the cscope session, quit the editor and type ^d to exit the shell.

9.2.8.2 Adding an Argument to a Function

Adding an argument to a function involves two steps: editing the function itself and

adding the new argument to every place in the code where the function is called.

First, edit the function by using the second menu item, Find this global
definition . Next, find out where the function is called. Use the fourth menu item,

Find functions calling this function , to obtain a list of all the functions

that call it. With this list, you can either invoke the editor for each line found by

entering the list number of the line individually, or invoke the editor for all the lines

automatically by typing ^e . Using cscope to make this kind of change ensures that

none of the functions you need to edit are overlooked.

9.2.8.3 Changing the Value of a Variable

At times, you may want to see how a proposed change affects your code.

Text string: 100

 File Line
1 init.c 4 char s[100];
2 init.c 26 for (i = 0; i < 100; i++)
3 find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0;/* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
$ vi defs.h
9-18 C User’s Guide • May 2002

Suppose you want to change the value of a variable or preprocessor symbol. Before

doing so, use the first menu item, Find this C symbol , to obtain a list of

references that are affected. Then use the editor to examine each one. This step helps

you predict the overall effects of your proposed change. Later, you can use cscope
in the same way to verify that your changes have been made.

9.2.9 Command-Line Syntax for Editors

cscope invokes the vi editor by default. You can override the default setting by

assigning your preferred editor to the EDITOR environment variable and exporting

EDITOR, as described in Section 9.2.1, “Step 1: Set Up the Environment” on page 9-2.

However, cscope expects the editor it uses to have a command-line syntax of the

form:

as does vi . If the editor you want to use does not have this command-line syntax,

you must write an interface between cscope and the editor.

Suppose you want to use ed . Because ed does not allow specification of a line

number on the command-line, you cannot use it to view or edit files with cscope
unless you write a shell script that contains the following line:

Let’s name the shell script myedit . Now set the value of EDITORto your shell script

and export EDITOR:

In a Bourne shell, type:

In a C shell, type:

When cscope invokes the editor for the list item you have specified, say, line 17 in

main.c , it invokes your shell script with the command-line:

% myedit +17 main.c

% editor + linenum filename

/usr/bin/ed $2

$ EDITOR=myedit; export EDITOR

% setenv EDITOR myedit
Chapter 9 cscope : Interactively Examining a C Program 9-19

myedit then discards the line number ($1) and calls ed correctly with the file name

($2). Of course, you are not moved automatically to line 17 of the file and must

execute the appropriate ed commands to display and edit the line.

9.3 Unknown Terminal Type Error
If you see the error message:

your terminal may not be listed in the Terminal Information Utilities (terminfo)

database that is currently loaded. Make sure you have assigned the correct value to

TERM. If the message reappears, try reloading the Terminal Information Utilities.

If this message is displayed:

set and export the TERMvariable as described in Section 9.2.1, “Step 1: Set Up the

Environment” on page 9-2.

Sorry, I don't know how to deal with your "term" terminal

Sorry, I need to know a more specific terminal type than "unknown"
9-20 C User’s Guide • May 2002

APPENDIX A

C Compiler Options

This chapter describes the C compiler options. Take note that the C compiler

recognizes by default some of the constructs of the 1999 ISO/IEC C standard.

Specifically, the supported features are detailed in “Supported Features of C99” on

page D-1. Use the -xc99=%none command if you want to limit the compiler to the

1990 ISO/IEC C standard.

If you are porting a K&R C program to ISO C, make special note of the section on

compatibility flags, Section A.3.59, “-X[c|a|t|s]” on page A-28. Using them makes

the transition to ISO C easier. Also refer to the discussion on the transition in

Chapter 7.

A.1 Option Syntax
The syntax of the cc command is:

where:

■ options represents one or more of the options described in Section A.3, “The cc

Options” on page A-8

■ filenames represents one or more files used in building the executable program

cc accepts a list of C source files and object files contained in the list of files

specified by filenames. The resulting executable code is placed in a.out , unless

the -o option is used. In this case, the code is placed in the file named by the -o
option.

Use cc to compile and link any combination of the following:

■ C source files, with a .c suffix

% cc [options] filenames [libraries]...
A-1

■ Inline template files, with a .il suffix (only when specified with .c files)

■ C preprocessed source files, with a .i suffix

■ Object-code files, with .o suffixes

■ Assembler source files, with .s suffixes

After linking, cc places the linked files, now in executable code, into a file

named a.out , or into the file specified by the -o option.

■ libraries represents any of a number of standard or user-provided libraries

containing functions, macros, and definitions of constants.

See option -Y P, dir to change the default directories used for finding libraries. dir is

a colon-separated path list. The default library search order for cc is:

/opt/SUNWspro/prod/lib

/usr/ccs/lib

/usr/lib

cc uses getopt to parse command-line options. Options are treated as a single letter

or a single letter followed by an argument. See getopt (3c).

A.2 Options Summary
In this section, the compiler options are grouped by function to provide an easy

reference. The details are in the sections of the following pages. The following table

summarizes the cc compiler options by functionality. Some flags serve more than

one purpose and appear more than once.

TABLE A-1 Compiler Options Grouped by Functionality

Licensing Option Flag

Returns information about the licensing system. -xlicinfo

Optimization and Performance Option Flag

Selects the optimum combination of compilation options for

speed of executable code.

-fast

Prepares the object code to collect data for profiling -p

Optimizes for the 80386 processor. -x386

Optimizes for the 80486 processor. -x486

Enables the compiler to perform type-based alias analysis and

optimizations.

-xalias_level
A-2 C User’s Guide • May 2002

Improve the optimization of code that calls standard library

functions.

-xbuiltin

Enables optimization and inlining across source files. -xcrossfile

Analyzes loops for inter-iteration data dependencies and does

loop restructuring.

-xdepend

Enables performance analysis of the executable using the

Analyzer.

-xF

Tries to inline only those functions specified. -xinline

Performs whole-program optimizations by invoking an

interprocedural analysis component.

-xipo

Inlines some library routines for faster execution. -xlibmil

Links in the Sun-supplied performance libraries. -xlic_lib=
sunperf

This command limits the level of pragma opt to the level

specified.

-xmaxopt

Does not inline math library routines. -xnolibmil

Optimizes the object code. -x0

Optimizes for the Pentium™ processor. -xpentium

Enable prefetch instructions. -xprefetch

Control the aggressiveness of automatic insertion of prefetch

instructions as set by -xprefetch=auto
-xprefetch_level

Collects data for a profile or uses a profile to optimize. -xprofile

Treats pointer-valued function parameters as restricted pointers. -xrestrict

Allows the compiler to assume no memory-based traps occur. -xsafe

Does no optimizations or parallelization of loops that increase

code size.

-xspace

Suggests to the optimizer to unroll loops n times. -xunroll

Data Alignment Option Flag

Produce an integer constant by placing the characters of a

multi-character character-constant in the specified byte order.

-xchar_byte_order

Specify maximum assumed memory alignment and behavior of

misaligned data accesses.

-xmemalign

Numerics and Floating-Point Option Flag

Causes nonstandard initialization of floating-point arithmetic

hardware.

-fnonstd

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
Appendix A C Compiler Options A-3

Turns on the SPARC nonstandard floating-point mode. -fns

Initializes the rounding-precision mode bits in the

Floating-point Control Word

-fprecision

Sets the IEEE 754 rounding mode that is established at runtime

during the program initialization.

-fround

Allows the optimizer to make simplifying assumptions

concerning floating-point arithmetic.

-fsimple

Causes the compiler to evaluate float expressions as single

precision rather than double precision.

-fsingle

Causes the compiler to convert the value of a floating-point

expression or function to the type on the left-hand side of an

assignment

-fstore

Sets the IEEE 754 trapping mode in effect at startup. -ftrap

Does not convert the value of a floating-point expression or

function to the type on the left-hand side of an assignment

-nofstore

Forces IEEE 754 style return values for math routines in

exceptional cases.

-xlibmieee

Represents unsuffixed floating-point constants as single

precision

-xsfpconst

Enable automatic generation of calls to the vector library

functions.

-xvector

Parallelization Option Flag

Macro option that expands to -D_REENTRANT -lthread . -mt

Turns on automatic parallelization for multiple processors. -xautopar

Adds a runtime check for stack overflow. -xcheck

Analyzes loops for inter-iteration data dependencies and does

loop restructuring.

-xdepend

Generates parallelized code based on specification of #pragma
MPdirectives.

-xexplicitpar

Shows which loops are parallelized and which are not. -xloopinfo

Supports the OpenMP interface for explicit parallelization

including a set of source code directives, run-time library

routines, and environment variables

-xopenmp

Parallelizes loops both automatically by the compiler and

explicitly specified by the programmer.

-xparallel

Turns on reduction recognition during automatic

parallelization.

-xreduction

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
A-4 C User’s Guide • May 2002

Treats pointer-valued function parameters as restricted pointers. -xrestrict

Warns about loops that have #pragma MP directives specified

but may not be properly specified for parallelization.

-xvpara

Creates the program database for lock_lint , but does not

generate executable code.

-Zll

Source Code Option Flag

Associates name as a predicate with the specified tokens as if by

a #assert preprocessing directive.

-A

Prevents the preprocessor from removing comments, except

those on the preprocessing directive lines.

-C

Associates name with the specified tokens as if by a #define
preprocessing directive.

-D

Runs the source file through the preprocessor only and sends

the output to stdout .

-E

Reports K&R-style function definitions and declarations. -fd

Prints to standard error, one per line, the path name of each file

included during the current compilation.

-H

Adds directories to the list that is searched for #include files

with relative file names.

-I

Runs the source file through the C preprocessor only. -P

Removes any initial definition of the preprocessor symbol name. -U

Accepts the C++-style comments. -xCC

Controls compiler recognition of supported C99 features. -xc99

Helps with migration from systems where char is defined as

unsigned.

-xchar

Allows the C compiler to accept source code written in locales

that do not conform to the ISO C source character code

requirements

-xcsi

Runs only the preprocessor on the named C programs,

requesting that it generate makefile dependencies and send the

result to the standard output

-xM

Collects dependencies like -xM , but excludes /usr/include
files.

-xM1

Prints prototypes for all K&R C functions defined in this

module

-xP

Prepares the object code to collect data for profiling with

gprof(1).

-xpg

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
Appendix A C Compiler Options A-5

Generates extra symbol table information for the Source

Browser.

-xsb

Creates the database for the Source Browser. -xsbfast

Determines recognition of trigraph sequences. -xtrigraphs

Compiled Code Option Flag

Directs the compiler to suppress linking with ld(1) and to

produce a .o file for each source file

-c

Names the output file -o

Directs the compiler to produce an assembly source file but not

to assemble the program.

-S

Compilation Mode Option Flag

Turns on verbose mode, which shows how command options

expand and shows each component as it is invoked.

-#

Shows each component as it would be invoked, but does not

actually execute it. Also shows how command options expand.

-###

Retains temporary files created during compilation instead of

deleting them automatically.

-keeptmp

Directs cc to print the name and version ID of each component

as the compiler executes.

-V

Passes arguments to C compilation-system components. -W

The -X options specify varying degrees of compliance to the

ISO C standard.

-X

Preserves the sign of a char -xchar

Displays on-line help information. -xhelp

Sets the directory for temporary files used by cc to dir. -xtemp

Reports the time and resources used by each compilation

component.

-xtime

Specifies a new directory for the location of a C

compilation-system component.

-Y

Changes the default directory searched for components. -YA

Changes the default directory searched for include files. -YI

Changes the default directory for finding library files. -YP

Changes the default directory for startup object files. -YS

Diagnostics Option Flag

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
A-6 C User’s Guide • May 2002

Prefix error messages with string “error:” for ready distinction

from warning messages.

-errfmt

Suppresses compiler warning messages. -erroff

Control how much detail is in the error message produced by

the compiler when it discovers a type mismatch.

-errshort

Displays the message tag for each warning message. -errtags

If the indicated warning message is issued, cc exits with a

failure status.

-errwarn

Directs the compiler to perform stricter semantic checks and to

enable other lint -like checks.

-v

Suppresses compiler warning messages. -w

Performs only syntax and semantic checking on the source file,

but does not produce any object or executable code.

-xe

‘Issues warnings for the differences between K&R C and Sun

ISO C.

-xtransition

Warns about loops that have #pragma MP directives specified

but may not be properly specified for parallelization.

-xvpara

Debugging Option Flag

Adds a runtime check for stack overflow. -xcheck

Produces additional symbol table information for the debugger. -g

Removes all symbolic debugging information from the output

object file.

-s

Disables Auto-Read of object files for dbx . -xs

Linking and Libraries Option Flag

Specifies whether bindings of libraries for linking are static
or dynamic .

-B

Specifies dynamic or static linking in the link editor. -d

Passes the option to the link editor to produce a shared object

rather than a dynamically linked executable.

-G

Assigns a name to a shared dynamic library as a way to have

different versions of a library.

-h

Passes the option to the linker to ignore any LD_LIBRARY_PATH
setting.

-i

Adds directories to the list that the linker searches for libraries. -L

Links with object library lib name.so , or lib name.a . -l

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
Appendix A C Compiler Options A-7

A.3 The cc Options
This section describes the cc options, arranged alphabetically. These descriptions are

also available in the man page, cc (1). Use the cc -flags option for a one-line

summary of these descriptions.

Removes duplicate strings from the .comment section of the

object file.

-mc

Removes all strings from the .comment section. Can also insert

a string in that section of the object file.

-mr

Emits or does not emit identification information to the output

file.

-Q

Passes a colon-separated list of directories used to specify

library search directories to the runtime linker.

-R

Merges data segments into text segments. -xMerge

Specify code address space. -xcode

Inserts string literals into the read-only data section of the text

segment instead of the default data segment.

-xstrconst

Turns off the incremental linker and forces the use of ld . -xildoff

Turns on the incremental linker and forces the use of ild in

incremental mode.

-xildon

Includes interface information inside object files and subsequent

shared libraries so that the shared library can interface with

code written in the Java[tm] programming language.

-xnativeconnect

Does not link any libraries by default -xnolib

Does not inline math library routines. -xnolibmil

Target Platform Option Flag

Specify instruction set architecture. -xarch

Defines the cache properties for use by the optimizer. -xcache

Specifies values for -xarch , -xchip , and -xcache . -xcg

Specifies the target processor for use by the optimizer. -xchip

Specifies the usage of registers for the generated code. -xregs

Specifies the target system for instruction set and optimization. -xtarget

TABLE A-1 Compiler Options Grouped by Functionality (Continued)
A-8 C User’s Guide • May 2002

Options noted as being unique to one or more platforms are accepted without error

and ignored on all other platforms. For an explanation of the typographic notations

used with the options and arguments, refer to “Typographic Conventions” on

page xxx.

A.3.1 -#

Turns on verbose mode, showing how command options expand. Shows each

component as it is invoked.

A.3.2 -###

Shows each component as it would be invoked, but does not actually execute it. Also

shows how command options would expand.

A.3.3 -A name[(tokens)]

Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive. Preassertions:

■ system(unix)
■ machine(sparc) (SPARC)
■ machine(i386) (Intel)
■ cpu(sparc) (SPARC)
■ cpu(i386) (Intel)

These preassertions are not valid in -Xc mode.

A.3.4 -B [static |dynamic]

Specifies whether bindings of libraries for linking are static or dynamic ,

indicating whether libraries are non-shared or shared, respectively.

–Bdynamic causes the link editor to look for files named lib x.so and then for files

named lib x.a when given the -l x option.

–Bstatic causes the link editor to look only for files named lib x.a . This option

may be specified multiple times on the command line as a toggle. This option and its

argument are passed to ld (1).
Appendix A C Compiler Options A-9

Note – Many system libraries, such as libc , are only available as dynamic libraries

in the Solaris 64-bit compilation environment. Therefore, do not use -Bstatic as

the last toggle on the command line.

A.3.5 -C

Prevents the C preprocessor from removing comments, except those on the

preprocessing directive lines.

A.3.6 -c

Directs cc to suppress linking with ld (1) and to produce a .o file for each source

file. You can explicitly name a single object file using the -o option. When the

compiler produces object code for each .i or .c input file, it always creates an object

(.o) file in the current working directory. If you suppress the linking step, you also

suppress the removal of the object files.

A.3.7 -D name[=tokens]

Associates name with the specified tokens as if by a #define preprocessing directive.

If no =tokens is specified, the token 1 is supplied.

Predefinitions (not valid in -Xc mode):

■ sun
■ unix
■ sparc (SPARC)
■ i386 (Intel)

The following predefinitions are valid in all modes.

■ __sparcv9 (-xarch=v9 , v9a , v9b)
■ __sun
■ __unix
■ __SUNPRO_C=0x540
■ __‘uname -s‘_‘uname -r‘ (example: __SunOS_5_7)

■ __sparc (SPARC)
■ __i386 (Intel)
■ __BUILTIN_VA_ARG_INCR
■ __SVR4

The following is predefined in -Xa and -Xt modes only:
A-10 C User’s Guide • May 2002

■ __RESTRICT

The compiler also predefines the object-like macro

__PRAGMA_REDEFINE_EXTNAME,to indicate the pragma will be recognized.

A.3.8 -d [y|n]

-dy specifies dynamic linking, which is the default, in the link editor.

-dn specifies static linking in the link editor.

This option and its arguments are passed to ld (1).

Note – Many system libraries are only available as dynamic libraries in the Solaris

64-bit compilation environment. As a result, this option causes fatal errors if you use

it in combination with -xarch=v9 .

A.3.9 -dalign

-dalign is equivalent to -xmemalign=8s . See Section A.3.96, “-xmemalign=ab” on

page A-54.

A.3.10 -E

Runs the source file through the preprocessor only and sends the output to stdout .

The preprocessor is built directly into the compiler, except in -Xs mode, where

/usr/ccs/lib/cpp is invoked. Includes the preprocessor line numbering

information. See also the –P option.
Appendix A C Compiler Options A-11

A.3.11 -errfmt [=[no%]error]

Use this option if you want to prefix the string “error:” to the beginning of error

messages so they are more easily distinguishable from warning messages. The prefix

is also attached to warnings that are converted to errors by -errwarn .

If you do not use this option, the compiler sets it to -errfmt=no%error . If you use

specify -errfmt, but do not supply a value, the compiler sets it to -errfmt=error .

A.3.12 -erroff [=t]
This command suppresses C compiler warning messages and has no effect on error

messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag,

%all , %none. Order is important; for example, %all,no% tag suppresses all warning

messages except tag. The following table lists the -erroff values:

The default is -erroff=%none . Specifying -erroff is equivalent to specifying

-erroff=%all .

Only warning messages from the C compiler front-end that display a tag when the

-errtags option is used can be suppressed with the -erroff option. You can

achieve finer control over error message suppression. See Section 2.7.2.5, “#pragma

error_messages (on|off|default, tag… tag)” on page 2-14.

TABLE A-2 The -errfmt Values

Value Meaning

error Add the prefix “error:” to all error messages.

no%error Do not add the prefix “error:” to any error messages.

TABLE A-3 -erroff Arguments

Value Meaning

tag Suppresses the warning message specified by this tag. You can display

the tag for a message by using the -errtags=yes option.

no%tag Enables the warning message specified by this tag

%all Suppresses all warning messages

%none Enables all warning messages (default)
A-12 C User’s Guide • May 2002

A.3.13 -errshort [=i]
Use this option to control how much detail is in the error message produced by the

compiler when it discovers a type mismatch. This option is particularly useful when

the compiler discovers a type mismatch that involves a large aggregate.

i can be one of the following:

If you do not use -errshort , the compiler sets the option to -errshort=full . If

you specify -errshort , but do not provide a value, the compiler sets the option to

-errshort=tags .

This option does not accumulate, it accepts the last value specified on the command

line.

A.3.14 -errtags [=a]

Displays the message tag for each warning message of the C compiler front-end that

can be suppressed with the -erroff option or made a fatal error with the

-errwarn option. Messages from the C compiler driver and other components of

the C compilation system do not have error tags, and cannot be suppressed with

-errof f and made fatal with -errwarn .

a can be either yes or no . The default is -errtags=no . Specifying -errtags is

equivalent to specifying -errtags=yes .

A.3.15 -errwarn [=t]
Use -errwarn to cause the C compiler to exit with a failure status for the given

warning messages.

TABLE A-4 The -errshort Values

Value Meaning

short Error messages are printed in short form with no expansion of

types. Aggregate members are not expanded, neither are function

argument and return types.

full Error messages are printed in full verbose form showing the full

expansion of the mismatched types.

tags Error messages are printed with tag names for types which have tag

names. If there is no tag name, the type is shown in expanded form.
Appendix A C Compiler Options A-13

t is a comma-separated list that consists of one or more of the following: tag, no%tag,

%all , %none. Order is important; for example %all,no% tag causes cc to exit with a

fatal status if any warning except tag is issued.

The warning messages generated by the C compiler change from release to release as

the compiler error checking improves and features are added. Code that compiles

using -errwarn=%all without error may not compile without error in the next

release of the compiler.

Only warning messages from the C compiler front-end that display a tag when the

-errtags option is used can be specified with the -errwarn option to cause the C

compiler to exit with a failure status.

The following table details the -errwarn values:

The default is -errwarn=%none . If you specify -errwarn alone, it is equivalent to

-errwarn=%all .

A.3.16 -fast

Selects a set of baseline options for optimizing benchmark applications. These

optimizations may alter the behavior of programs from that defined by the ISO C

and IEEE standards. Modules compiled with -fast must also be linked with -fast .

-fast is a macro option that can be effectively used as a starting point for tuning an

executable for maximum runtime performance. -fast is a macro that can change

from one release of the compiler to the next and expands to options that are target

platform specific. We suggest that you use the -# option to examine the expansion of

-fast , and incorporate the appropriate options of -fast into the ongoing process

of tunning the executable.

TABLE A-5 -errwarn Values

tag Cause cc to exit with a fatal status if the message specified by this tag is issued

as a warning message. Has no effect if tag is not issued.

no%tag Prevent cc from exiting with a fatal status if the message specified by tag is

issued only as a warning message. Has no effect if the message specified by tag
is not issued. Use this option to revert a warning message that was previously

specified by this option with tag or %all from causing cc to exit with a fatal

status when issued as a warning message.

%all Cause cc to exit with a fatal status if any warning messages are issued. %all
can be followed by no%tag to exempt specific warning messages from this

behavior.

%none Prevents any warning message from causing cc to exit with a fatal status

should any warning message be issued.
A-14 C User’s Guide • May 2002

The –fast option is unsuitable for programs intended to run on a different target

than the compilation machine. In such cases, follow -fast with the appropriate

-xtarget option. For example:

For C modules that depend on exception handling specified by SUID, follow -fast
by -xnolibmil :

With -xlibmil , exceptions cannot be noted by setting errno or calling

matherr (3m).

The –fast option is unsuitable for programs that require strict conformance to the

IEEE 754 Standard.

The following table lists the set of options selected by -fast across platforms.

cc -fast -xtarget=ultra ...

% cc -fast -xnolibmil

TABLE A-6 The -fast Expansion Values

Option SPARC x86

-dalign - X

-fns X X

-fsimple=2 X -

-fsingle X X

-ftrap=%none X X

-nofstore - X

-xalias_level=basic X -

-xarch X X

-xbuiltin=%all X X

-xdepend X X

-xlibmil X X

-xmemalign=8s X -

-xO5 X X

-xprefetch=auto,explicit X -
Appendix A C Compiler Options A-15

Note – Some optimizations make certain assumptions about program behavior. If

the program does not conform to these assumptions, the application may crash or

produce incorrect results. Please refer to the description of the individual options to

determine if your program is suitable for compilation with -fast .

The optimizations performed by these options may alter the behavior of programs

from that defined by the ISO C and IEEE standards. See the description of the

specific option for details.

–fast acts like a macro expansion on the command line. Therefore, you can

override the optimization level and code generation option aspects by following

-fast with the desired optimization level or code generation option. Compiling

with the -fast -xO4 pair is like compiling with the -xO2 -xO4 pair. The latter

specification takes precedence.

In previous releases, the -fast macro option included -fnonstd ; now it includes

-fns instead.

-fast also defines the macro __MATHERR_ERRNO_DONTCARE. This macro causes

math.h to assert performance-related pragmas such as the following for some math

routines prototyped in <math.h> :

■ #pragma does_not_read_global_data
■ #pragma does_not_write_global_data
■ #pragma no_side_effect

If your code relies on the return value of errno in exceptional cases as documented

in the matherr (3M) man page, you must turn off the macro by issuing the

-U__MATHERR_ERRNO_DONTCAREmacro after the -fast option.

You can usually improve performance for most programs with this option.

Do not use this option for programs that depend on IEEE standard exception

handling; you can get different numerical results, premature program termination,

or unexpected SIGFPE signals.

See Section A.3.1, “-#” on page A-9 and Section A.3.2, “-###” on page A-9 for details

of how you can see the expansion of macro options.

A.3.17 -fd

Reports K&R-style function definitions and declarations.
A-16 C User’s Guide • May 2002

A.3.18 -flags

Prints a brief summary of each available compiler option.

A.3.19 -fnonstd

Causes nonstandard initialization of floating-point arithmetic hardware. In addition,

the –fnonstd option causes hardware traps to be enabled for floating-point

overflow, division by zero, and invalid operations exceptions. These are converted

into SIGFPE signals; if the program has no SIGFPE handler, it terminates with a

memory dump.

By default, IEEE 754 floating-point arithmetic is nonstop, and underflows are

gradual. (See Section 2.6, “Nonstandard Floating Point” on page 2-10 for a further

explanation.)

(SPARC) Synonym for -fns -ftrap=common .

A.3.20 -fns [={no,yes }]

(SPARC) Turns on the SPARC nonstandard floating-point mode.

The default is -fns=no , the SPARC standard floating-point mode. -fns is the same

as -fns=yes .

Optional use of =yes or =no provides a way of toggling the -fns flag following

some other macro flag that includes -fns , such as -fast . This flag enables the

nonstandard floating point mode when a program begins execution. By default, the

non-standard floating point mode will not be enabled automatically.

On some SPARC systems, the nonstandard floating point mode disables “gradual

underflow,” causing tiny results to be flushed to zero rather than producing

subnormal numbers. It also causes subnormal operands to be replaced silently by

zero. On those SPARC systems that do not support gradual underflow and

subnormal numbers in hardware, use of this option can significantly improve the

performance of some programs.

When nonstandard mode is enabled, floating point arithmetic may produce results

that do not conform to the requirements of the IEEE 754 standard. See the Numerical

Computation Guide for more information.

This option is effective only on SPARC systems and only if used when compiling the

main program. On x86 systems, the option is ignored.
Appendix A C Compiler Options A-17

A.3.21 -fprecision= p
(x86) -fprecision={single, double, extended}

Initializes the rounding-precision mode bits in the Floating-point Control Word to

single (24 bits), double (53 bits), or extended (64 bits), respectively. The default

floating-point rounding-precision mode is extended.

Note that on Intel, only the precision, not exponent, range is affected by the setting

of floating-point rounding precision mode.

A.3.22 -fround= r
Sets the IEEE 754 rounding mode that is established at runtime during the program

initialization.

r must be one of: nearest , tozero , negative , positive .

The default is -fround=nearest .

The meanings are the same as those for the ieee_flags subroutine.

When r is tozero , negative , or positive , this flag sets the rounding direction

mode to round-to-zero, round-to-negative-infinity, or round-to-positive-infinity

respectively when a program begins execution. When r is nearest or the -fround
flag is not used, the rounding direction mode is not altered from its initial value

(round-to-nearest by default).

This option is effective only if used when compiling the main program.

A.3.23 -fsimple [=n]

Allows the optimizer to make simplifying assumptions concerning floating-point

arithmetic.

If n is present, it must be 0, 1, or 2. The defaults are:

■ With no -fsimple [=n], the compiler uses -fsimple=0
■ With only -fsimple , no =n, the compiler uses -fsimple=1

-fsimple=0

Permits no simplifying assumptions. Preserve strict IEEE 754 conformance.
A-18 C User’s Guide • May 2002

-fsimple=1

Allows conservative simplifications. The resulting code does not strictly conform to

IEEE 754, but numeric results of most programs are unchanged.

With -fsimple=1 , the optimizer can assume the following:

■ IEEE 754 default rounding/trapping modes do not change after process

initialization.

■ Computations producing no visible result other than potential floating point

exceptions may be deleted.

■ Computations with Infinity or NaNs as operands need not propagate NaNs to

their results; for example, x*0 may be replaced by 0.

■ Computations do not depend on sign of zero.

With -fsimple=1 , the optimizer is not allowed to optimize completely without

regard to roundoff or exceptions. In particular, a floating-point computation cannot

be replaced by one that produces different results with rounding modes held

constant at runtime. The -fast macroflag includes -fsimple=1 .

-fsimple=2

Permits aggressive floating point optimizations that may cause many programs to

produce different numeric results due to changes in rounding. For example,

-fsimple=2 permits the optimizer to replace all computations of x/y in a given

loop with x*z , where x/y is guaranteed to be evaluated at least once in the loop,

z=1/y , and the values of y and z are known to have constant values during

execution of the loop.

Even with -fsimple=2 , the optimizer is not permitted to introduce a floating point

exception in a program that otherwise produces none.

A.3.24 -fsingle

(-Xt and -Xs modes only) Causes the compiler to evaluate float expressions as

single precision rather than double precision. This option has no effect if the

compiler is used in either -Xa or -Xc modes, as float expressions are already

evaluated as single precision.

A.3.25 -fstore

(Intel) Causes the compiler to convert the value of a floating-point expression or

function to the type on the left-hand side of an assignment, when that expression or

function is assigned to a variable, or when the expression is cast to a shorter
Appendix A C Compiler Options A-19

floating-point type, rather than leaving the value in a register. Due to rounding and

truncation, the results may be different from those that are generated from the

register value. This is the default mode.

To turn off this option, use the -nofstore option.

A.3.26 -ftrap= t
Sets the IEEE 754 trapping mode in effect at startup.

t is a comma-separated list that consists of one or more of the following: %all ,

%none, common, [no%]invalid , [no%]overflow , [no%]underflow , [no%]division ,

[no%]inexact .

The default is -ftrap=%none .

This option sets the IEEE 754 trapping modes that are established at program

initialization. Processing is left-to-right. The commonexceptions, by definition, are

invalid, division by zero, and overflow.

Example: -ftrap=%all,no%inexact means set all traps, except inexact .

The meanings are the same as for the ieee_flags subroutine, except that:

■ %all turns on all the trapping modes.

■ %none, the default, turns off all trapping modes.

■ A no%prefix turns off that specific trapping mode.

If you compile one routine with -ftrap= t, compile all routines of the program with

the same -ftrap= t option; otherwise, you can get unexpected results.

A.3.27 -G

Passes the option to the link editor to produce a shared object rather than a

dynamically linked executable. This option is passed to ld (1), and cannot be used

with the -dn option.

A.3.28 -g

Produces additional symbol table information for debugging with dbx (1) and the

Performance Analyzer analyzer (1).
A-20 C User’s Guide • May 2002

This option invokes the incremental linker; see Section A.3.83, “-xildoff” on

page A-48 and Section A.3.84, “-xildon” on page A-48. Invoke ild instead of ld
unless you are using the -G or -xildoff options, or you are naming source files on

the command line.

If you specify -g , and the optimization level is -xO3 or lower, the compiler provides

best-effort symbolic information with almost full optimization. Tail-call optimization

and back-end inlining are disabled.

If you specify -g and the optimization level is -xO4 , the compiler provides

best-effort symbolic information with full optimization.

Compile with the -g option to use the full capabilities of the Performance Analyzer.

While some performance analysis features do not require -g , you must compile with

-g to view annotated source, some function level information, and compiler

commentary messages. See the analyzer (1) man page and "Compiling Your

Program for Data Collection and Analysis" in Program Performance Analysis Tools for

more information.

The commentary messages that are generated with -g describe the optimizations

and transformations that the compiler made while compiling your program. Use the

er_src (1) command to display the messages, which are interleaved with the source

code.

For more information on debugging, see the Debugging a Program With dbx manual.

A.3.29 -H

Prints to standard error, one per line, the path name of each file included during the

current compilation. The display is indented so as to show which files are included

by other files.

Here, the program sample.c includes the files, stdio.h and math.h ; math.h
includes the file, floatingpoint.h , which itself includes functions that use

sys/ieeefp.h :

% cc -H sample.c
/usr/include/stdio.h
/usr/include/math.h

/usr/include/floatingpoint.h
/usr/include/sys/ieeefp.h
Appendix A C Compiler Options A-21

A.3.30 -h name
Assigns a name to a shared dynamic library as a way to have different versions of a

library. In general, the name after -h should be the same as the file name given after

the -o option. The space between -h and name is optional.

The linker assigns the specified name to the library and records the name in the

library file as the intrinsic name of the library. If there is no -h name option, then no

intrinsic name is recorded in the library file.

When the runtime linker loads the library into an executable file, it copies the

intrinsic name from the library file into the executable, into a list of needed shared

library files. Every executable has such a list. If there is no intrinsic name of a shared

library, then the linker copies the path of the shared library file instead.

A.3.31 -I [-| dir]

-I dir adds dir to the list of directories that are searched for #include files with

relative file names, that is, those not beginning with a / (slash). -I values

accumulate. See Section 2.5, “Include Files” on page 2-6 for a discussion of the search

order used to find the include files.

-I- gives you more control over the algorithm that the compiler uses when

searching for include files. -I- values do not accumulate. This section first describes

the default search algorithms, then it describes the effect of -I- on these algorithms.

For more information on the search pattern of the compiler, see Section 2.5, “Include

Files” on page 2-6.

A.3.32 -i

Passes the option to the linker to ignore any LD_LIBRARY_PATHor

LD_LIBRARY_PATH_64setting.

A.3.33 -KPIC

(SPARC) The -KPIC command is equivalent to -xcode=pic32 . See also

Section A.3.75, “-xcode[=v]” on page A-44.

(Intel) -KPIC is identical to -Kpic .
A-22 C User’s Guide • May 2002

A.3.34 -Kpic

(SPARC) The -Kpic command is equivalent to -xcode=pic13 . See Section A.3.75,

“-xcode[=v]” on page A-44.

(Intel) Generate position-independent code for use in shared libraries (small model).

Permits references to, at most, 2**11 unique external symbols.

A.3.35 -keeptmp

Retains temporary files created during compilation instead of deleting them

automatically.

A.3.36 -L dir
Adds dir to the list of directories searched for libraries by ld (1). This option and its

arguments are passed to ld (1).

A.3.37 -l name
Links with object library lib name.so , or lib name.a . The order of libraries in the

command-line is important, as symbols are resolved from left to right.

This option must follow the sourcefile arguments.

A.3.38 -mc

Removes duplicate strings from the .comment section of the object file. When you

use the -mc flag, mcs -c is invoked.

A.3.39 -misalign

(SPARC) -misalign is equivalent to -xmemalign=1i . See Section A.3.96,

“-xmemalign=ab” on page A-54.
Appendix A C Compiler Options A-23

A.3.40 -misalign2

(SPARC) -misalign2 is equivalent to -xmemalign=2i. See Section A.3.96,

“-xmemalign=ab” on page A-54.

A.3.41 -mr [, string]

-mr removes all strings from the .comment section. When you use this flag, mcs -d
-a is invoked.

-mr, string removes all strings from the .comment section and inserts string in that

section of the object file. If string contains embedded blanks, it must be enclosed in

quotation marks. A null string results in an empty .comment section. This option is

passed as -d - astring to mcs.

A.3.42 -mt

Macro option that expands to -D_REENTRANT -lthread . If you are doing your own

multithread coding, you must use this option in the compile and link steps. To

obtain faster execution, this option requires a multiprocessor system. On a

single-processor system, the resulting executable usually runs more slowly with this

option.

A.3.43 -native

This option is a synonym for -xtarget=native .

A.3.44 -nofstore

(Intel) Does not convert the value of a floating-point expression or function to the

type on the left-hand side of an assignment, when that expression or function is

assigned to a variable or is cast to a shorter floating-point type; rather, it leaves the

value in a register. See also Section A.3.25, “-fstore” on page A-19.

A.3.45 -O

Same as -xO2 .
A-24 C User’s Guide • May 2002

A.3.46 -o filename
Names the output file filename (as opposed to the default, a.out). filename cannot be

the same as sourcefile, since cc does not overwrite the source file. This option and its

arguments are passed to ld (1).

A.3.47 -P

Runs the source file through the C preprocessor only. It then puts the output in a file

with a .i suffix. Unlike -E , this option does not include preprocessor-type line

number information in the output. See also the -E option.

A.3.48 -p

Prepares the object code to collect data for profiling with prof (1). This option

invokes a runtime recording mechanism that produces a mon.out file at normal

termination.

A.3.49 -Q[y|n]

Emits or does not emit identification information to the output file. -Qy is the

default.

If -Qy is used, identification information about each invoked compilation tool is

added to the .comment section of output files, which is accessible with mcs. This

option can be useful for software administration.

-Qn suppresses this information.

A.3.50 -qp

Same as -p .

A.3.51 -R dir[: dir]

Passes a colon-separated list of directories used to specify library search directories

to the runtime linker. If present and not null, it is recorded in the output object file

and passed to the runtime linker.
Appendix A C Compiler Options A-25

If both LD_RUN_PATHand the -R option are specified, the -R option takes

precedence.

A.3.52 -S

Directs cc to produce an assembly source file but not to assemble the program.

A.3.53 -s

Removes all symbolic debugging information from the output object file. This option

cannot be specified with -g .

Passed to ld (1).

A.3.54 -U name
Undefines the preprocessor symbol name. This option removes any initial definition

of the preprocessor symbol name created by -D on the same command line including

those placed there by the command-line driver.

-U has no effect on any preprocessor directives in source files. You can give multiple

-U options on the command line.

If the same name is specified for both -D and -U on the command line, name is

undefined, regardless of the order the options appear. In the following example, -U
undefines __sun :

Preprocessor statements of the following form in test.c will not take effect because

__sun is undefined.

See Section A.3.7, “-Dname[=tokens]” on page A-10 for a list of predefined symbols.

cc -U__sun text.c

#ifdef(__sun)
A-26 C User’s Guide • May 2002

A.3.55 -V

Directs cc to print the name and version ID of each component as the compiler

executes.

A.3.56 -v

Directs the compiler to perform stricter semantic checks and to enable other

lint -like checks. For example, the code:

compiles and executes without problem. With -v , it still compiles; however, the

compiler displays this warning:

"hello.c", line 5: warning: function has no return statement:
main

-v does not give all the warnings that lint (1) does. Try running the above example

through lint .

A.3.57 -Wc, arg
Passes the argument arg to a specified component c. Each argument must be

separated from the preceding only by a comma. All -W arguments are passed after

the regular command-line arguments. A comma can be part of an argument by

escaping it by an immediately preceding \ (backslash) character. All -W arguments

are passed after the regular command-line arguments.

For example, -Wa,-o ,objfile passes -o and objfile to the assembler, in that

order. Also, -Wl ,-I ,name causes the linking phase to override the default name of

the dynamic linker, /usr/lib/ld.so.1 .

The order in which the argument(s) are passed to a tool with respect to the other

specified command line options may change.

#include <stdio.h>
main(void)
{

printf("Hello World.\n");
}

Appendix A C Compiler Options A-27

See TABLE 1-1 for a list of components. c can be one of the following:

A.3.58 -w

Suppresses compiler warning messages.

This option overrides the error_messages pragma.

A.3.59 -X [c|a|t |s]

The -X (note uppercase X) options specify varying degrees of compliance to the ISO

C standard. The value of -xc99 affects which version of the ISO C standard the -X
option applies. The -xc99 option defaults to -xc99=%all which supports a subset

of the 1999 ISO/IEC C standard. -xc99=%none supports the 1990 ISO/IEC C

standard. See Appendix D for a discussion of supported 1999 ISO/IEC features. See

Appendix F for a discussion of differences between ISO/IEC C and K&R C.

The default mode is -Xa .

-Xc

a Assembler: (fbe); (gas)

c C code generator: (cg) (SPARC);

d cc driver1

1. You cannot use -Wd to pass the cc options listed in this chapter to the C compiler.

h Intermediate code translator (ir2hf)(Intel)

i Interprocedure analysis (ube_ipa)(Intel)

l Link editor (ld)

m mcs

O Interprocedural optimizer

p Preprocessor (cpp)

u C code generator (ube) (Intel)

0 Compiler (acomp) (ssbd, SPARC)

2 Optimizer: (iropt) (SPARC)
A-28 C User’s Guide • May 2002

(c = conformance) Issues errors and warnings for programs that use non-ISO C

constructs. This option is strictly conformant ISO C, without K&R C compatibility

extensions. The predefined macro _ _STDC_ _ has a value of 1 with the -Xc
option.

-Xa

This is the default compiler mode. ISO C plus K&R C compatibility extensions, with

semantic changes required by ISO C. Where K&R C and ISO C specify different

semantics for the same construct, the compiler uses the ISO C interpretation. If the

-Xa option is used in conjunction with the -xtransition option, the compiler

issues warnings about the different semantics. The predefined macro _ _STDC_ _

has a value of 0 with the -Xa option.

-Xt

(t = transition) This option uses ISO C plus K&R C compatibility extensions without
semantic changes required by ISO C. Where K&R C and ISO C specify different

semantics for the same construct, the compiler uses the K&R C interpretation. If you

use the -Xt option in conjunction with the -xtransition option, the compiler

issues warnings about the different semantics. The predefined macro _ _STDC_ _

has a value of 0 with the -Xt option.

-Xs

(s = K&R C) Attempts to warn about all language constructs that have differing

behavior between ISO C and K&R C. The compiler language includes all features

compatible with K&R C. This option invokes cpp for preprocessing. _ _STDC_ _ is

not defined in this mode.

A.3.60 -x386

(Intel) Optimizes for the 80386 processor.

A.3.61 -x486

(Intel) Optimizes for the 80486 processor.

A.3.62 -xa

This option is now considered obsolete. Use -xprofile=tcov instead.
Appendix A C Compiler Options A-29

A.3.63 -xalias_level [=l]
(SPARC) The compiler uses the -xalias_level option to determine what

assumptions it can make in order to perform optimizations using type-based

alias-analysis. This option places the indicated alias level into effect for the

translation units being compiled.

If you do not specify the -xalias_level command, the compiler assumes

-xalias_level=any . If you specify -xalias_level without a value, the default

is -xalias_level=layout .

The -xalias_level option requires optimization level -xO3 or above. If

optimization is set lower, a warning is issued and the -xalias_level option is

ignored.

Remember that if you issue the -xalias_level option but you fail to adhere to all

of the assumptions and restrictions about aliasing described for any of the alias

levels, the behavior of your program is undefined.
A-30 C User’s Guide • May 2002

Replace l with one of the terms in the following table.

TABLE A-7 The Levels of Alias-Disambiguation

Term Meaning

any The compiler assumes that all memory references can alias at this level. There is

no type-based alias analysis at the level of -xalias_level=any .

basic If you use the -xalias_level=basic option, the compiler assumes that

memory references that involve different C basic types do not alias each other.

The compiler also assumes that references to all other types can alias each other

as well as any C basic type. The compiler assumes that references using char *
can alias any other type.

For example, at the -xalias_level=basic level, the compiler assumes that a

pointer variable of type int * is not going to access a float object. Therefore it

is safe for the compiler to perform optimizations that assume a pointer of type

float * will not alias the same memory that is referenced with a pointer of

type int * .

weak If you use the -xalias_level=weak option, the compiler assumes that any

structure pointer can point to any structure type.

Any structure or union type that contains a reference to any type that is either

referenced in an expression in the source being compiled or is referenced from

outside the source being compiled, must be declared prior to the expression in

the source being compiled.

You can satisfy this restriction by including all the header files of a program

that contain types that reference any of the types of the objects referenced in

any expression of the source being compiled.

At the level of -xalias_level=weak , the compiler assumes that memory

references that involve different C basic types do not alias each other. The

compiler assumes that references using char * alias memory references that

involve any other type.

layout If you use the -xalias_level=layout option, the compiler assumes that

memory references that involve types with the same sequence of types in

memory can alias each other.

The compiler assumes that two references with types that do not look the same

in memory do not alias each other. The compiler assumes that any two memory

accesses through different struct types alias if the initial members of the

structures look the same in memory. However, at this level, you should not use

a pointer to a struct to access some field of a dissimilar struct object that is

beyond any of the common initial sequence of members that look the same in

memory between the two structs. This is because the compiler assumes that

such references do not alias each other.

At the level of -xalias_level=layout the compiler assumes that memory

references that involve different C basic types do not alias each other. The

compiler assumes that references using char * can alias memory references

involving any other type.
Appendix A C Compiler Options A-31

A.3.64 -xarch= isa
Specify instruction set architecture (ISA).

Architectures that are accepted by -xarch keyword isa are shown in TABLE A-8:

strict If you use the -xalias_level=strict option, the compiler assumes that

memory references, that involve types such as structs or unions, that are the

same when tags are removed, can alias each other. Conversely, the compiler

assumes that memory references involving types that are not the same even

after tags are removed do not alias each other.

However, any structure or union type that contains a reference to any type that

is part of any object referenced in an expression in the source being compiled,

or is referenced from outside the source being compiled, must be declared prior

to the expression in the source being compiled.

You can satisfy this restriction by including all the header files of a program

that contain types that reference any of the types of the objects referenced in

any expression of the source being compiled. At the level of

-xalias_level=strict the compiler assumes that memory references that

involve different C basic types do not alias each other. The compiler assumes

that references using char * can alias any other type.

std If you use the -xalias_level=std option, the compiler assumes that types

and tags need to be the same to alias, however, references using char * can

alias any other type. This rule is the same as the restrictions on the

dereferencing of pointers that are found in the 1999 ISO C standard. Programs

that properly use this rule will be very portable and should see good

performance gains under optimization.

strong If you use the -xalias_level=strong option, the same restrictions apply as

at the std level, but additionally, the compiler assumes that pointers of type

char * are used only to access an object of type char. Also, the compiler

assumes that there are no interior pointers. An interior pointer is defined as a

pointer that points to a member of a struct.

TABLE A-8 –xarch ISA Keywords

Platform Valid -xarch Keywords

SPARC generic , native , v7 , v8a , v8 , v8plus , v8plusa , v8plusb , v9 , v9a , v9b

x86 generic , native , 386, pentium_pro

TABLE A-7 The Levels of Alias-Disambiguation (Continued)

Term Meaning
A-32 C User’s Guide • May 2002

Note that although -xarch can be used alone, it is part of the expansion of the

-xtarget option and may be used to override the -xarch value that is set by a

specific -xtarget option. For example:

overrides the -xarch=v8 set by -xtarget=ultra2

If you use this option with optimization, the appropriate choice can provide good

performance of the executable on the specified architecture. An inappropriate choice

results in a binary program that is not executable on the intended target platform.

A.3.64.1 SPARC Only

The following table details the performance of an executable that is compiled with a

given -xarch option and then executed by various SPARC processors. The purpose

of this table is to help you identify the best -xarch option for your executable given

a particular target machine. Start by identifying the range of machines that are of

interest to you and then consider the cost of maintaining multiple binaries versus the

benefit of extracting the last iota of performance from newer machines.

% cc -xtarget=ultra2 -xarch=v8plusb ...

TABLE A-9 -xarch Matrix

Instruction Set of SPARC Machine:

V7 V8a V8 V9 (Non-Sun

Processor)

V9

(Sun processor)

V9b

v7 N S S S S S

v8a PD N S S S S

-xarch

compilation

option

v8 PD PD N S S S

v8plus NE NE NE N S S

v8plusa NE NE NE ** N S

v8plusb NE NE NE ** NE N

v9 NE NE NE N S S

v9a NE NE NE ** N S

v9b NE NE NE ** NE N

** Note: An executable compiled with this instruction set may perform nominally on a V9 non-Sun processor chip or it may not execute
at all. Check with your hardware vendor to make sure your executable can run on its target machine.
Appendix A C Compiler Options A-33

■ N reflects Nominal performance. The program executes and takes full advantage

of the processor’s instruction set.

■ S reflects Satisfactory performance. The program executes but may not exploit all

available processor instructions.

■ PD reflects Performance Degradation. The program executes, but depending on

the instructions used, may experience slight to significant performance

degradation. The degradation occurs when instructions that are not implemented

by the processor are emulated by the kernel.

■ NE means Not Executable. The program will not execute because the kernel does

not emulate the instructions that are not implemented by the processor.

If you are going to compile your executable with the v8plus or v8plusa instruction

set, consider compiling your executable with v9 or v9a instead. The v8plus and

v8plusa options were provided so that programs could take advantage of some

SPARC V9 and UltraSPARC features prior to the availability of Solaris 7 with its

support for 64-bit programs. Programs compiled with the v8plus or v8plusa
option are not portable to SPARC V8 or older machines. Such programs can be

recompiled with v9 or v9a , respectively, to take full advantage of all the features of

SPARC V9 and UltraSPARC. The V8+ Technical Specification white paper, part number

802-7447-10, is available through your Sun representative and explains the

limitations of v8plus and v8plusa .

■ SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and

can execute together, but only on a SPARC V8plusa compatible platform.

■ Object binary files (.o) compiled with v8plus , v8plusa , and v8plusb can be

linked and can execute together, but only on a SPARC V8plusb compatible

platform.

■ -xarch values v9 , v9a , and v9b are only available on UltraSPARC 64–bit Solaris

environments.

■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute

together, but will run only on a SPARC V9a compatible platform.

■ Object binary files (.o) compiled with v9 , v9a , and v9b can be linked and can

execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on

earlier architectures. Also, although quad-precision (REAL*16 and long double)

floating-point instructions are available in many of these instruction set

architectures, the compiler does not use these instructions in the code it generates.
A-34 C User’s Guide • May 2002

The following table gives details for each of the -xarch keywords on SPARC

platforms.

TABLE A-10 -xarch Values for SPARC Platforms

-xarch= Meaning

generic Compile for good performance on most systems.
This is the default. This option uses the best instruction set for good

performance on most processors without major performance degradation on

any of them. With each new release, the definition of “best” instruction set may

be adjusted, if appropriate.

native Compile for good performance on this system.
This is the default for the -fast option. The compiler chooses the appropriate

setting for the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on the

V8 ISA, but without integer mul and div instructions, and the fsmuld
instruction.

Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the fsmuld instruction.

This option enables the compiler to generate code for good performance on the

V8a ISA.

Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8

architecture.

Example: SPARCstation 10

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
By definition, V8plus means the V9 ISA, but limited to the 32–bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

• This option enables the compiler to generate code for good performance on

the V8plus ISA.

• The resulting object code is in SPARC-V8+ ELF32 format and only executes in

a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture
Appendix A C Compiler Options A-35

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

• This option enables the compiler to generate code for good performance on

the UltraSPARC architecture, but limited to the 32–bit subset defined by the

V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only executes in

a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC III extensions.
Enables the compiler to generate object code for the UltraSPARC architecture,

plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC III

extensions.

• The resulting object code is in SPARC-V8+ ELF32 format and executes only in

a Solaris UltraSPARC III environment.

• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC III architecture.

v9 Compile for the SPARC–V9 ISA.
Enables the compiler to generate code for good performance on the V9 SPARC

architecture.

• The resulting .o object files are in ELF64 format and can only be linked with

other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris

environment.

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate code

for good performance on the V9 SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked with

other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris

operating environment.

TABLE A-10 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning
A-36 C User’s Guide • May 2002

A.3.64.2 x86 Only

A.3.65 -xautopar

(SPARC) Turns on automatic parallelization for multiple processors. Does

dependence analysis (analyze loops for inter-iteration data dependence) and loop

restructuring. If optimization is not at -xO3 or higher, optimization is raised to -xO3
and a warning is emitted.

Avoid -xautopar if you do your own thread management.

To achieve faster execution, this option requires a multiple processor system. On a

single-processor system, the resulting binary usually runs slower.

v9b Compile for the SPARC-V9 ISA with UltraSPARC III extensions.
Adds UltraSPARC III extensions and VIS version 2.0 to the V9a version of the

SPARC-V9 ISA. Compiling with this option uses the best instruction set for

good performance in a Solaris UltraSPARC III environment.

• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC III processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris

operating environment.

TABLE A-11 -xarch Values on x86

Value Meaning

generic Limits instruction set to the Intel x86 architecture and is the equivalent

of the 386 option.

native Compile for good performance on this system. This is the default for the

-fast option. The compiler chooses the appropriate setting for the

current system processor on which it is compiling.

386 Limits the instruction set to the Intel 386/486 architecture.

pentium_pro Limits the instruction set to the pentium_pro architecture.

TABLE A-10 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning
Appendix A C Compiler Options A-37

To determine how many processors you have, use the psrinfo command:

To request a number of processors, set the PARALLELenvironment variable. The

default is 1.

■ Do not request more processors than are available.

■ If N is the number of processors on the machine, then for a one-user,

multiprocessor system, try PARALLEL=N-1 .

If you use -xautopar and compile and link in one step, then linking automatically

includes the microtasking library and the threads-safe C runtime library. If you use

-xautopar and compile and link in separate steps, then you must also link with

-xautopar .

A.3.66 -xbuiltin [=(%all |%none)]

Use the -xbuiltin [=(%all |%none)] command when you want to improve the

optimization of code that calls standard library functions. Many standard library

functions, such as the ones defined in math.h and stdio.h , are commonly used by

various programs. This command lets the compiler substitute intrinsic functions or

inline system functions where profitable for performance.

If you do not specify -xbuiltin, the default is -xbuiltin=%none , which means

no functions from the standard libraries are substituted or inlined. If you specify

-xbuiltin , but do not provide any argument, the default is -xbuiltin%all ,

which means the compiler substitutes intrinsics or inlines standard library functions

as it determines the optimization benefit.

If you compile with -fast , then -xbuiltin is set to %all .

Note – -xbuiltin only inlines global functions defined in system header files,

never static functions defined by the user.

% psrinfo
0 on-line since 01/12/95 10:41:54
1 on-line since 01/12/95 10:41:54
3 on-line since 01/12/95 10:41:54
4 on-line since 01/12/95 10:41:54
A-38 C User’s Guide • May 2002

A.3.67 -xCC

When you specify -xc99=%none and -xCC , the compiler accepts the C++-style

comments. In particular, // can be used to indicate the start of a comment.

A.3.68 -xc99 [=o]

The -xc99 flag controls compiler recognition of the implemented features from the

C99 standard (ISO/IEC 9899:1999, Programming Language - C).

o can be one of the following: %all , %none.

-xc99=%none turns off recognition of C99 features. -xc99=%all turns on

recognition of supported C99 features.

Specifying -xc99 without any arguments is the same as -xc99=%all .

Note – Though the compiler support-level defaults to the features of C99 listed in

Appendix D, the standard headers provided by Solaris in /usr/include do not yet

conform with the 1999 ISO/IEC C standard. If you encounter error messages, try

using -xc99=%none to obtain the 1990 ISO/IEC C standard behavior for these

headers.

A.3.69 -xcache [=c]

Defines the cache properties for use by the optimizer. c must be one of the following:

■ generic
■ s1/ l1/ a1
■ s1/ l1/ a1: s2/ l2/ a2
■ s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/li/ai are defined as follows:

Although this option can be used alone, it is part of the expansion of the -xtarget
option; its primary use is to override a value supplied by the -xtarget option.

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i
Appendix A C Compiler Options A-39

This option specifies the cache properties that the optimizer can use. It does not

guarantee that any particular cache property is used. The following table lists the

-xcache values.

Example: -xcache=16/32/4:1024/32/1 specifies the following:

A.3.70 –xcg [89|92]

(SPARC)

-xcg89 is a macro for: -xarch=v7 -xchip=old -xcache=64/32/1 .

-xcg92 is a macro for: -xarch=v8 -xchip=super

-xcache=16/32/4:1024/32/1.

TABLE A-12 The -xcache Values

Value Meaning

generic Define the cache properties for good performance on

most x86 and SPARC architectures.

This is the default value which directs the compiler to use

cache properties for good performance on most x86 and

SPARC processors, without major performance

degradation on any of them.

With each new release, these best timing properties will

be adjusted, if appropriate.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties.

Level 1 cache has:

16K bytes

32 bytes line size

4-way associativity

Level 2 cache has:

1024K bytes

32 bytes line size

Direct mapping associativity
A-40 C User’s Guide • May 2002

A.3.71 -xchar [=o]

The option is provided solely for the purpose of easing the migration of code from

systems where the char type is defined as unsigned. Unless you are migrating from

such a system, do not use this option. Only code that relies on the sign of a char type

needs to be rewritten to explicitly specify signed or unsigned.

You can substitute one of the following for o:

If you do not specify -xchar , the compiler assumes -xchar=s .

If you specify -xchar , but do not specify a value, the compiler assumes -xchar=s .

The -xchar option changes the range of values for the type char only for code

compiled with -xchar . This option does not change the range of values for type

char in any system routine or header file. In particular, the value of CHAR_MAXand

CHAR_MIN, as defined by limits.h , do not change when this option is specified.

Therefore, CHAR_MAXand CHAR_MINno longer represent the range of values

encodable in a plain char.

If you use -xchar , be particularly careful when you compare a char against a

predefined system macro because the value in the macro may be signed. This is most

common for any routine that returns an error code which is accessed through a

macro. Error codes are typically negative values so when you compare a char against

the value from such a macro, the result is always false. A negative number can never

be equal to any value of an unsigned type.

It is strongly recommended that you never use -xchar to compile routines for any

interface exported through a library. By default, the C compiler defines char as

signed as per the Solaris ABI and -xchar does not change that. Therefore, users of

such a library need to be cautioned to also use this option or otherwise deal with

any char values being passed or returned.

TABLE A-13 The -xchar Values

Value Meaning

signed Treat character constants and variables declared as char as signed.

This impacts the behavior of compiled code, it does not affect the

behavior of library routines.

s Equivalent to signed

unsigned Treat character constants and variables declared as char as unsigned.

This impacts the behavior of compiled code, it does not affect the

behavior of library routines.

u Equivalent to unsigned
Appendix A C Compiler Options A-41

A.3.72 -xchar_byte_order [=o]

Produce an integer constant by placing the characters of a multi-character

character-constant in the specified byte order. You can substitute one of the

following values for o:

■ low : place the characters of a multi-character character-constant in low-to-high

byte order.

■ high : place the characters of a multi-character character-constant in high-to-low

byte order.

■ default : place the characters of a multi-character character-constant in an order

determined by the compilation mode -X[c|a|t|s]. For more information, see

Section 2.4.2, “Character Constants” on page 2-6.

A.3.73 -xcheck [=o]

(SPARC)

Compiling with -xcheck=stkovf adds a runtime check for stack overflow of the

main thread in a singly-threaded program as well as slave-thread stacks in a

multithreaded program. If a stack overflow is detected, a SIGSEGVis generated. If

your application needs to handle a SIGSEGVcaused by a stack overflow differently

than it handles other address-space violations, see sigaltstack(2) .

You can substitute one of the following values for o:

If you do not specify -xcheck , the compiler defaults to -xcheck=%none . If you

specify -xcheck without any arguments, the compiler defaults to -xcheck=%all
which turns on the runtime check for stack overflow.

The -xcheck option does not accumulate on the command line. The compiler sets

the flag in accordance with the last occurrence of the command.

TABLE A-14 The -xcheck Values

Value Meaning

%none Perform none of the -xcheck checks.

%all Perform all of the -xcheck checks.

stkovf Turns on stack-overflow checking.

no%stkovf Turns off stack-overflow checking.
A-42 C User’s Guide • May 2002

A.3.74 -xchip [=c]

Specifies the target processor for use by the optimizer.

c must be one of the following: generic , old , super , super2 , micro , micro2 ,

hyper , hyper2 , powerup , ultra , ultra2 , ultra2e , ultra2i , ultra3 ,

ultra3cu , 386 , 486 , pentium , pentium_pro .

Although this option can be used alone, it is part of the expansion of the -xtarget
option; its primary use is to override a value supplied by the -xtarget option.

This option specifies timing properties by specifying the target processor.

Some effects are:

■ The ordering of instructions, that is, scheduling

■ The way the compiler uses branches

■ The instructions to use in cases where semantically equivalent alternatives are

available

TABLE A-15 The -xchip Values

Value Meaning

generic Use timing properties for good performance on most x86 and SPARC

architectures.

This is the default value that directs the compiler to use the best timing

properties for good performance on most processors, without major

performance degradation on any of them.

old Uses timing properties of pre-SuperSPARC processors.

super Uses timing properties of the SuperSPARC processors.

super2 Uses timing properties of the SuperSPARC II processors.

micro Uses timing properties of the microSPARC processors.

micro2 Uses timing properties of the microSPARC II processors.

hyper Uses timing properties of the hyperSPARC processors.

hyper2 Uses timing properties of the hyperSPARC II processors.

powerup Uses timing properties of the Weitek PowerUp processors.

ultra Uses timing properties of the UltraSPARC processors.

ultra2 Uses timing properties of the UltraSPARC II processors.

ultra2e Uses timing properties of the UltraSPARC IIe processors.

ultra2i Uses timing properties of the UltraSPARC IIi processors.

ultra3 Uses timing properties of the UltraSPARC III processors.
Appendix A C Compiler Options A-43

A.3.75 -xcode [=v]

(SPARC) Specify code address space. v must be one of:

The default is -xcode=abs32 for SPARC V7 and V8, and -xcode=abs64 for

SPARC and UltraSPARC V9 (with -xarch=v9|v9a).

When building shared dynamic libraries with -xarch=v9 or v9a or v9b on 64-bit

Solaris environments, you can specify -xcode=pic13 or -xcode=pic32 but are not

required to do so.

There are two nominal performance costs with –xcode=pic13 and –xcode=pic32 :

ultra3cu Uses timing properties of the UltraSPARC III Cu processors.

386 Uses timing properties of the Intel 386 architecture.

486 Uses timing properties of the Intel 486 architecture

pentium Uses timing properties of the Intel pentium architecture

pentium_pro Uses timing properties of the Intel pentium_pro architecture

abs32 Generate 32-bit absolute addresses. Code + data + bss size is limited to 2**32

bytes. This is the default on 32-bit architectures: -xarch-generic, v7 , v8 , v8a ,

v8plus , v8plusa

abs44 Generate 44-bit absolute addresses. Code + data + bss size is limited to 2**44

bytes. Available only on 64-bit architectures: -xarch=v9 , v9a

abs64 Generate 64-bit absolute addresses. Available only on 64-bit architectures:

-xarch=v9 , v9a

pic13 Generate position-independent code for use in shared libraries (small model).

Equivalent to -Kpic. Permits references to at most 2**11 unique external symbols

on 32-bit architectures, 2**10 on 64-bit architectures.

The -xcode=pic13 command is similar to –xcode=pic32 , except that the size

of the global offset table is limited to 8Kbytes.

pic32 Generate position-independent code for use in shared libraries (large model).

Equivalent to -KPIC. Permits references to at most 2**30 unique external symbols

on 32-bit architectures, 2**29 on 64-bit architectures.

Each reference to a global datum is generated as a dereference of a pointer in the

global offset table. Each function call is generated in pc -relative addressing

mode through a procedure linkage table. With this option, the global offset table

spans the range of 32-bit addresses in those rare cases where there are too many

global data objects for –xcode=pic32 .

TABLE A-15 The -xchip Values (Continued)

Value Meaning
A-44 C User’s Guide • May 2002

■ A routine compiled with either –xcode=pic13 or –xcode=pic32 executes a few

extra instructions upon entry to set a register to point at a table

(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library’s global or static

variables.

■ Each access to a global or static variable involves an extra indirect memory

reference through _GLOBAL_OFFSET_TABLE_. If the compile is done with

-xcode=pic32 , there are two additional instructions per global and static

memory reference.

When considering the above costs, remember that the use of -xcode=pic13 and

-xcode=pic32 can significantly reduce system memory requirements, due to the

effect of library code sharing. Every page of code in a shared library compiled

-xcode=pic13 or –xcode=pic32 can be shared by every process that uses the

library. If a page of code in a shared library contains even a single non-pic (that is,

absolute) memory reference, the page becomes nonsharable, and a copy of the page

must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with

-xcode=pic13 or –xcode=pic32 is with the nmcommand:

A .o file containing position-independent code contains an unresolved external

reference to _GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use –xcode=pic13 or –xcode=pic32 , use nm to identify

the number of distinct global and static variables used or defined in the library. If the

size of _GLOBAL_OFFSET_TABLE_is under 8,192 bytes, you can use -Kpic .

Otherwise, you must use –xcode=pic32 .

A.3.76 -xcrossfile [=n]

(SPARC) Enables optimization and inlining across source files. If specified, n can be

0 or 1.

Normally the scope of the compiler’s analysis is limited to each separate file on the

command line. For example, -xO4 ’s automatic inlining is limited to subprograms

defined and referenced within the same source file.

With -xcrossfile , the compiler analyzes all the files named on the command line

as if they had been concatenated into a single source file. -xcrossfile is only

effective when used with -xO4 or -xO5 .

% nm file.o | grep _GLOBAL_OFFSET_TABLE _ U _GLOBAL_OFFSET_TABLE_
Appendix A C Compiler Options A-45

The files produced from this compilation are interdependent due to possible

inlining, and must be used as a unit when they are linked into a program. If any one

routine is changed and the files recompiled, they must all be recompiled. As a result,

using this option affects the construction of make files.

The default is -xcrossfile=0 , and no crossfile optimizations are performed.

-xcrossfile is equivalent to -xcrossfile=1 .

A.3.77 -xcsi

Allows the C compiler to accept source code written in locales that do not conform

to the ISO C source character code requirements. These locales include: ja_JP.PCK .

The compiler translation phases required to handle such locales may result in

significantly longer compilation times. You should only use this option when you

compile source files that contain source characters from one of these locales.

The compiler does not recognize source code written in locales that do not conform

to the ISO C source character code requirements unless you specify -xcsi .

A.3.78 -xdepend

(SPARC) Analyzes loops for inter-iteration data dependencies and does loop

restructuring. Loop restructuring includes loop interchange, loop fusion, scalar

replacement, and elimination of “dead” array assignments. If optimization is not at

-xO3 or higher, optimization is raised to -xO3 and a warning is issued.

Dependency analysis is also included with -xautopar or -xparallel . The

dependency analysis is done at compile time.

Dependency analysis may help on single-processor systems. However, if you try

-xdepend on single-processor systems, you should not use either -xautopar or

-xexplicitpar . If either of them is on, then the -xdepend optimization is done for

multiple-processor systems.

A.3.79 -xe

Performs only syntax and semantic checking on the source file, but does not produce

any object or executable code.
A-46 C User’s Guide • May 2002

A.3.80 -xexplicitpar

(SPARC) Generates parallelized code based on specification of #pragma MP
directives. You do the dependency analysis: analyze and specify loops for

inter-iteration data dependencies. The software parallelizes the specified loops. If

optimization is not at -xO3 or higher, optimization is raised to -xO3 and a warning

is issued. Avoid -xexplicitpar if you do your own thread management.

To get faster code, this option requires a multiprocessor system. On a

single-processor system, the generated code usually runs slower.

If you identify a loop for parallelization, and the loop has dependencies, you can get

incorrect results, possibly different ones with each run, and with no warnings. Do

not apply an explicit parallel pragma to a reduction loop. The explicit parallelization

is done, but the reduction aspect of the loop is not done, and the results can be

incorrect.

In summary, to parallelize explicitly:

■ Analyze the loops to find those that are safe to parallelize.

■ Insert #pragma MP to parallelize a loop. See the Section 3.8.3, “Explicit

Parallelization and Pragmas” on page 3-24” for more information.

■ Use the -xexplicitpar option.

The following is an example of inserting a parallel pragma immediately before the

loop:

If you use -xexplicitpar and compile and link in one step, then linking

automatically includes the microtasking library and the threads-safe C runtime

library. If you use -xexplicitpar and compile and link in separate steps, then you

must also link with -xexplicitpar .

Do not specify -xexplicitpar and -xopenmp together.

A.3.81 -xF

Allow function reordering by the Performance Analyzer. (See the analyzer (1) man

pages.) If you compile with the -xF option, and then run the Performance Analyzer,

you can generate a map file that shows an optimized order for the functions. The

subsequent link to build the executable file can be directed to use that map file by

#pragma MP taskloop
for (j=0; j<1000; j++){
...
}

Appendix A C Compiler Options A-47

using the linker -Mmapfile option. It places each function from the executable file

into a separate section; for example, functions foo() and bar() are placed in the

sections .text%foo and .text%bar , respectively. This option also causes the

assembler to generate some debugging information in the object file, necessary for

data collection.

A.3.82 -xhelp= f
Displays on-line help information.

f must be either flags , or readme .

-xhelp=flags displays a summary of the compiler options.

-xhelp=readme displays the READMEfile.

A.3.83 -xildoff

Turns off the incremental linker and forces the use of ld . This option is the default if

you do not use the -g option, or you do use the -G option, or any source files are

present on the command line. Override this default by using the -xildon option.

A.3.84 -xildon

Turns on the incremental linker and forces the use of ild in incremental mode. This

option is the default if you use the -g option, and you do not use the -G option, and

there are no source files present on the command line. Override this default by using

the -xildoff option.

A.3.85 -xinline= list
The format of the list for -xinline is as follows:

[{%auto ,func_name,no% func_name}[,{%auto ,func_name,no% func_name}]...]
A-48 C User’s Guide • May 2002

-xinline tries to inline only those functions specified in the optional list. The list

is either empty, or comprised of a comma-separated list of func_name ,

no%func_name , or %auto , where func_name is a function name. -xinline only has

an effect at -xO3 or higher.

The list of values accumulates from left to right. So for a specification of

-xinline=%auto,no%foo the compiler attempts to inline all functions except foo .

For a specification of -xinline=%bar,%myfunc,no%bar the compiler only tries to

inline myfunc .

When you compile with optimization set at -xO4 or above, the compiler normally

tries to inline all references to functions defined in the source file. You can restrict

the set of functions the compiler attempts to inline by specifying the -xinline
option. If you specify only -xinline= , that is you do not name any functions or

%auto , this indicates that none of the routines in the source files are to be inlined. If

you specify a list of func_name and no%func_name without specifying %auto , the

compiler only attempts to inline those functions specified in the list. If %auto is

specified in the list of values with the -xinline option at optimization level set at

-xO4 or above, the compiler attempts to inline all functions that are not explicitly

excluded by no%func_name .

A function is not inlined if any of the following conditions apply. No warning is

issued.

■ Optimization is less than -xO3 .

■ The routine cannot be found.

■ Inlining the routine does not look practicable to the optimizer.

■ The source for the routine is not in the file being compiled (however, see

-xcrossfile).

TABLE A-16 The -xinline Arguments

Value Meaning

%auto Specifies that the compiler is to attempt to automatically inline all

functions in the source file. %auto only takes effect at -xO4 or

higher optimization levels. %auto is silently ignored at -xO3 or

lower optimization levels.

func_name Specifies that the compiler is to attempt to inline the named

function.

no%func_name Specifies that the compiler is not to inline the named function.

no value Specifies that the compiler is not to attempt to inline any functions

in the source files.
Appendix A C Compiler Options A-49

If you specify multiple -xinline options on the command line, they do not

accumulate. The last -xinline on the command line specifies what functions the

compiler attempts to inline.

A.3.86 -xipo [=a]

Replace a with 0, 1, or 2. -xipo without any arguments is equivalent -xipo=1 .

-xipo=0 is the default setting and turns off -xipo .

This compiler performs whole-program optimizations by invoking an

interprocedural analysis component. Unlike -xcrossfile , -xipo performs

optimizations across all object files in the link step, and is not limited to just the

source files of the compile command. With -xipo=1 , the compiler performs inlining

across all source files. With -xipo=2 , the compiler performs interprocedural aliasing

analysis as well as optimizations of memory allocation and layout to improve cache

performance.

The -xipo option generates significantly larger object files due to the additional

information needed to perform optimizations across files. However, this additional

information does not become part of the final executable binary file. Any increase in

the size of the executable program is due to the additional optimizations

performed.The object files created in the compilation steps have additional analysis

information compiled within them to permit crossfile optimizations to take place at

the link step.

-xipo is particularly useful when compiling and linking large multi-file

applications. Object files compiled with this flag have analysis information compiled

within them that enables interprocedural analysis across source and pre-compiled

program files.

However, analysis and optimization is limited to the object files compiled with

-xipo , and does not extend to object files in the libraries.

-xipo is multiphased, so you need to specify -xipo for each step if you compile

and link in separate steps.

In this example, compilation and linking occur in a single step:

The optimizer performs crossfile inlining across all three source files. This is done in

the final link step, so the compilation of the source files need not all take place in a

single compilation and could take place over a number of separate compilations,

each specifying -xipo .

cc -xipo -xO4 -o prog part1.c part2.c part3.c
A-50 C User’s Guide • May 2002

In this example, compilation and linking occur in separate steps:

A restriction is that libraries, even if compiled with -xipo , do not participate in

crossfile interprocedural analysis, as this example shows:

Here interprocedural optimizations are performed between one.c , two.c and

three.c , and between main.c and four.c , but not between main.c or four.c
and the routines on mylib.a . (The first compilation may generate warnings about

undefined symbols, but the interprocedural optimizations are performed because it

is a compile and link step.)

Other important information about -xipo :

■ It requires an optimization level of at least -xO4 .

■ It conflicts with -xcrossfile . If you use these together, the result is a

compilation error.

■ Objects that are compiled without -xipo can be linked freely with objects that are

compiled with -xipo .

A.3.87 -xlibmieee

Forces IEEE 754 style return values for math routines in exceptional cases. In such

cases, no exception message is printed, and you should not rely on errno .

A.3.88 -xlibmil

Inlines some library routines for faster execution. This option selects the appropriate

assembly language inline templates for the floating-point option and platform for

your system.

-xlibmil inlines a function regardless of any specification of the function as part of

the -xinline flag.

cc -xipo -xO4 -c part1.c part2.c
cc -xipo -xO4 -c part3.c
cc -xipo -xO4 -o prog part1.o part2.o part3.o

cc -xipo -xO4 one.c two.c three.c
ar -r mylib.a one.o two.o three.o
...
cc -xipo -xO4 -o myprog main.c four.c mylib.a
Appendix A C Compiler Options A-51

A.3.89 -xlic_lib=sunperf

(SPARC) Links in the Sun-supplied performance libraries.

A.3.90 -xlicinfo

Returns information about the license file used, the license tokens accepted, the

serial number, the RTUs, trial license and the number of days to expiration. This

option does not request compilation or check out a license.

A.3.91 -xloopinfo

(SPARC) Shows which loops are parallelized and which are not. Gives a short reason

for not parallelizing a loop. The -xloopinfo option is valid only if -xautopar , or

-xparallel , or -xexplicitpar is specified; otherwise, the compiler issues a

warning.

To achieve faster execution, this option requires a multiprocessor system. On a

single-processor system, the generated code usually runs slower.

A.3.92 -xM

Runs only the preprocessor on the named C programs, requesting that it generate

makefile dependencies and send the result to the standard output (see make(1) for

details about make files and dependencies).

For example:

#include <unistd.h>
void main(void)
{}
A-52 C User’s Guide • May 2002

generates this output:

A.3.93 -xM1

Collects dependencies like -xM , but excludes /usr/include files. For example:

Compiling with -xM1 does not report header file dependencies:

-xM1 is not available under -Xs mode.

A.3.94 -xMerge

Merges data segments into text segments. Data initialized in the object file produced

by this compilation is read-only and (unless linked with ld -N) is shared between

processes.

e.o: e.c
e.o: /usr/include/unistd.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/machtypes.h
e.o: /usr/include/sys/select.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/unistd.h

more hello.c
#include<stdio.h>
main()
{

(void)printf(“hello\n”);
}
cc –xM hello.c
hello.o: hello.c
hello.o: /usr/include/stdio.h

cc –xM1 hello.c
hello.o: hello.c
Appendix A C Compiler Options A-53

A.3.95 -xmaxopt [=v]

where v is one of off , 1, 2, 3, 4, 5. This command limits the level of pragma opt to

the level specified. The default value is -xmaxopt=off which causes pragma opt to

be ignored. If you specify -xmaxopt without supplying an argument, that is the

equivalent of specifying -xmaxopt=5 .

A.3.96 -xmemalign= ab
Specify maximum assumed memory alignment and behavior of misaligned data

accesses. There must be a value for both a (alignment) and b (behavior). a specifies

the maximum assumed memory alignment and b specifies the behavior for

misaligned memory accesses. The following table lists the alignment and behavior

values for -xmemalign

For memory accesses where the alignment is determinable at compile time, the

compiler will generate the appropriate load/store instruction sequence for that

alignment of data.

For memory accesses where the alignment cannot be determined at compile time,

the compiler must assume an alignment to generate the needed load/store sequence.

The -xmemalign flag allows the user to specify the maximum memory alignment of

data to be assumed by the compiler in these indeterminable situations. It also

specifies the error behavior to be followed at run time when a misaligned memory

access does take place.

Here are the default values for -xmemalign . The following default values only

apply when no -xmemalign flag is present:

■ -xmemalgin=4s when -xarch has the value generic , v7 , v8 , v8a , v8plus ,

v8plusa .Removed ILP32 from list per bug 4340650

■ -xmemalign=8s when -xarch has the value v9 , v9a .

TABLE A-17 -xmemalign Alignment and Behavior Values

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.

2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f Raise signal SIGBUS for alignments less

or equal to 4,otherwise interpret access

and continue execution.
8 Assume at most 8 byte alignment.

16 Assume at most 16 byte alignment
A-54 C User’s Guide • May 2002

Here is the default when -xmemalign flag is present but no value is given:

■ -xmemalign=1i for all -xarch values.

The following table shows how you can use -xmemalign to handle different

alignment situations.

A.3.97 -xnativeconnect [=a[, a]...]

Use the -xnativeconnect option when you want to include interface information

inside object files and subsequent shared libraries so that the shared library can

interface with code written in the Java[tm] programming language (Java code). You

must also include -xnativeconnect when you build the shared library with the

cc -G command.

When you compile with -xnativeconnect , you are providing the maximum,

external, visibility of the native code interfaces. The Native Connector Tool (NCT)

enables the automatic generation of Java code and the Java[tm] Native Interface

(JNI) so that C shared libraries can be called from Java code. For more information

on how to use the NCT, see the Forte Developer online help.

a can be one of the following: %all|%none|[no%]interfaces

If you do not specify -xnativeconnect , the compiler sets the option to

-xnativeconnect=%none . If you specify only -xnativeconnect , the compiler

sets the option to -xnativeconnect=interfaces .

-xnativeconnect=interfaces forces the generation of Binary Interface

Descriptors (BIDS).

TABLE A-18 Examples of -xmemalign

Command Situation

-xmemalign=1s There are many misaligned accesses so trap handling is too

slow.

-xmemalign=8i There are occasional, intentional, misaligned accesses in code

that is otherwise correct.

-xmemalign=8s There should be no misaligned accesses in the program.

-xmemalign=2s You want to check for possible odd-byte accesses.

-xmemalign=2i You want to check for possible odd-byte access and you want

the program to work.
Appendix A C Compiler Options A-55

A.3.98 -xnolib

Does not link any libraries by default; that is, no -l options are passed to ld (1).

Normally, the cc driver passes -lc to ld .

When you use -xnolib , you have to pass all the -l options yourself. For example:

links libm statically and the other libraries dynamically.

A.3.99 -xnolibmil

Does not inline math library routines. Use it after the –fast option. For example:

A.3.100 -xO [1|2|3|4|5]

Optimizes the object code; note the upper-case letter O. When -xO is used with the

-g option, a limited amount of debugging is available. For more information, see

“Debugging Optimized Code” in Chapter 1 of Debugging a Program With dbx .

The levels (1, 2, 3, 4, or 5) you can use with -xO differ according to the platform you

are using.

(SPARC)

-xO1

Does basic local optimization (peephole).

-xO2

Does basic local and global optimization. This is induction variable elimination, local

and global common subexpression elimination, algebraic simplification, copy

propagation, constant propagation, loop-invariant optimization, register allocation,

basic block merging, tail recursion elimination, dead code elimination, tail call

elimination, and complex expression expansion.

% cc test.c -xnolib -Bstatic -lm -Bdynamic -lc

% cc –fast –xnolibmil....
A-56 C User’s Guide • May 2002

The -xO2 level does not assign global, external, or indirect references or definitions

to registers. It treats these references and definitions as if they were declared

volatile . In general, the -xO2 level results in minimum code size.

-xO3

Performs like -xO2 , but also optimizes references or definitions for external

variables. Loop unrolling and software pipelining are also performed. This level

does not trace the effects of pointer assignments. When compiling either device

drivers, or programs that modify external variables from within signal handlers, you

may need to use the volatile type qualifier to protect the object from

optimization. In general, the -xO3 level results in increased code size.

-xO4

Performs like -xO3 , but also automatically inlines functions contained in the same

file; this usually improves execution speed. If you want to control which functions

are inlined, see Section A.3.85, “-xinline=list” on page A-48.

This level traces the effects of pointer assignments, and usually results in increased

code size.

-xO5

Attempts to generate the highest level of optimization. Uses optimization algorithms

that take more compilation time or that do not have as high a certainty of improving

execution time. Optimization at this level is more likely to improve performance if it

is done with profile feedback. See Section A.3.108, “-xprofile=p” on page A-62.

(Intel)

-xO1

Preloads arguments from memory, cross-jumping (tail-merging), as well as the single

pass of the default optimization.

-xO2

Schedules both high- and low-level instructions and performs improved spill

analysis, loop memory-reference elimination, register lifetime analysis, enhanced

register allocation, and elimination of global common subexpressions.

-xO3

Performs loop strength reduction, induction variable elimination, as well as the

optimization done by level 2.

-xO4
Appendix A C Compiler Options A-57

Performs loop unrolling, avoids creating stack frames when possible, and

automatically inlines functions contained in the same file, as well as the optimization

done by levels 2 and 3. Note that this optimization level can cause stack traces from

adb and dbx to be incorrect.

-xO5

Generates the highest level of optimization. Uses optimization algorithms that take

more compilation time or that do not have as high a certainty of improving

execution time. Some of these include generating local calling convention entry

points for exported functions, further optimizing spill code and adding analysis to

improve instruction scheduling.

If the optimizer runs out of memory, it tries to recover by retrying the current

procedure at a lower level of optimization and resumes subsequent procedures at

the original level specified in the command-line option.

If you optimize at -xO3 or -xO4 with very large procedures (thousands of lines of

code in the same procedure), the optimizer may require a large amount of virtual

memory. In such cases, machine performance may degrade.

For more information on debugging, see the Debugging a Program With dbx manual.

For more information on optimization, see the Program Performance Analysis Tools
manual.

A.3.101 -xopenmp [=i]
(SPARC)

where i is one of parallel , stubs , or none . If you specify -xopenmp but do not

include a value, the compiler assumes -xopenmp=parallel . If you do not specify

-xopenmp , the compiler assumes -xopenmp=none .

-xopenmp=parallel enables recognition of OpenMP pragmas and applies to

SPARC only. The optimization level under -xopenmp=parallel is -xO3 . The

compiler issues a warning if the optimization level of your program is changed from

a lower level to -xO3 . -xopenmp=parallel predefines the _OPENMPpreprocessor

token.

-xopenmp=stubs links with the stubs routines for the OpenMP API routines. Use

this option if you need to compile your application to execute serially.

-xopenmp=stubs also predefines the _OPENMPpreprocessor token.

-xopenmp=none does not enable recognition of OpenMP pragmas, makes no

change to the optimization level of your program, and does not predefine any

preprocessor tokens.

Do not specify -xopenmp , with either -xexplicitpar , or -xparallel .
A-58 C User’s Guide • May 2002

For more information on how to compile a program that is OpenMP compliant, see

Section 3.2, “Parallelizing for OpenMP” on page 3-2.

For information that is specific to this implementation of OpenMP, see Appendix G.

A.3.102 -xP

Prints prototypes for all K&R C functions defined in this module.

produces this output:

A.3.103 -xparallel

(SPARC) Parallelizes loops both automatically by the compiler and explicitly

specified by the programmer. The -xparallel option is a macro, and is equivalent

to specifying all three of -xautopar , -xdepend , and -xexplicitpar . With explicit

parallelization of loops, there is a risk of producing incorrect results. If optimization

is not at -xO3 or higher, optimization is raised to -xO3 and a warning is issued.

Avoid -xparallel if you do your own thread management. Do not use

-xparallel if you are issuing -xopenmp . -xparallel sets -xexplicitpar
which should not be used if you specify -xopenmp .

To get faster code, this option requires a multiprocessor system. On a

single-processor system, the generated code usually runs slower.

If you compile and link in one step, -xparallel links with the microtasking library

and the threads-safe C runtime library. If you compile and link in separate steps, and

you compile with -xparallel , then link with -xparallel

f()
{
}

main(argc,argv)
int argc;
char *argv[];
{
}

int f(void);
int main(int, char **);
Appendix A C Compiler Options A-59

A.3.104 -xpentium

(Intel) Optimizes for the Pentium processor.

A.3.105 -xpg

Prepares the object code to collect data for profiling with gprof (1). It invokes a

runtime recording mechanism that produces a gmon.out file at normal termination.

A.3.106 -xprefetch= [val], val
(SPARC) Enable prefetch instructions on those architectures that support prefetch,

such as UltraSPARC II. (-xarch=v8plus , v9plusa , v9 , or v9a)

Explicit prefetching should only be used under special circumstances that are

supported by measurements.

val must be one of the following:

If you do not specify -xprefetch , the default is

-xprefetch=no%auto,explicit . If you specify -xprefetch without a value,

that is equivalent to -xprefetch=auto,explicit .

The sun_prefetch.h header file provides the macros that you can use to specify

explicit prefetch instructions. The prefetches are approximately at the place in the

executable that corresponds to where the macros appear.

TABLE 9-4 -xprefetch Arguments

Value Meaning

latx:factor Adjust the compiler’s assumed prefetch-to-load and

prefetch-to-store latencies by the specified factor. See “Prefetch

Latency Ratio” on page 61

[no%]auto [Disable] Enable automatic generation of prefetch instructions

[no%]explicit [Disable] Enable explicit prefetch macros

yes Same as -xprefetch=auto,explicit

no Same as -xprefetch=no%auto,no%explicit
A-60 C User’s Guide • May 2002

A.3.106.1 Prefetch Latency Ratio

The prefetch latency is the hardware delay between the execution of a prefetch

instruction and the time the data being prefetched is available in the cache.

The factor must be a positive number of the form n.n.

The compiler assumes a prefetch latency value when determining how far apart to

place a prefetch instruction and the load or store instruction that uses the prefetched

data. The assumed latency between a prefetch and a load may not be the same as the

assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide

range of machines and applications. This tuning may not always be optimal. For

memory-intensive applications, especially applications intended to run on large

multiprocessors, you may be able to obtain better performance by increasing the

prefetch latency values. To increase the values, use a factor that is greater than 1

(one). A value between .5 and 2.0 will most likely pro vide the maximum

performance.

For applications with datasets that reside entirely within the external cache, you may

be able to obtain better performance by decreasing the prefetch latency values. To

decrease the values, use a factor that is less than one.

To use the latx:factor suboption, start with a factor value near 1.0 and run

performance tests against the application. Then increase or decrease the factor, as

appropriate, and run the performance tests again. Continue adjusting the factor and

running the performance tests until you achieve optimum performance. When you

increase or decrease the factor in small steps, you will see no performance difference

for a few steps, then a sudden difference, then it will level off again.

A.3.107 -xprefetch_level =l
Use the -xprefetch_level option to control the aggressiveness of automatic

insertion of prefetch instructions as determined with -xprefetch=auto . l must be

1, 2, or 3. The compiler becomes more aggressive, or in other words, introduces

more prefetches with each, higher, level of -xprefetch_level .

The appropriate value for the -xprefetch_level depends on the number of cache

misses the application may have. Higher -xprefetch_level values have the

potential to improve the performance of applications.

This option is effective only when it is compiled with -xprefetch=auto , with

optimization level 3 or greater, and generate code for a platform that supports

prefetch (v8plus , v8plusa , v9 , v9a , v9b , generic64 , native64).
Appendix A C Compiler Options A-61

-xprefetch_level=1 enables automatic generation of prefetch instructions.

-xprefetch_level=2 enables additional generation beyond level 1 and

-xprefetch_level=3 enables additional generation beyond level 2.

The default is -xprefetch_level=1 when you specify -xprefetch=auto .

A.3.108 -xprofile= p
(SPARC)

Collects data for a profile or uses a profile to optimize.

p must be collect [:name], use [:name], or tcov .

This option causes execution frequency data to be collected and saved during

execution, then the data can be used in subsequent runs to improve performance.

This option is only valid when you specify a level of optimization -xO2 or above.

■ collect [: name]

Collects and saves execution frequency data for later use by the optimizer with

-xprofile=use . The compiler generates code to measure statement

execution-frequency.

The name is the name of the program that is being analyzed. This name is

optional. If name is not specified, a.out is assumed to be the name of the

executable.

You can set the environment variables SUN_PROFDATAand SUN_PROFDATA_DIR
to control where a program compiled with -xprofile=collect stores the

profile data. If set, the -xprofile=collect data is written to

SUN_PROFDATA_DIR/SUN_PROFDATA.

These environment variables similarly control the path and names of the profile

data files written by tcov, as described in the tcov (1) man page.

If these environment variables are not set, the profile data is written to

name.profile/feedback in the current directory, where name is the name of the

executable or the name specified in the -xprofile=collect: name flag.

-xprofile does not append .profile to name if name already ends in

.profile . If you run the program several times, the execution frequency data

accumulates in the feedback file; that is, output from prior executions is not lost.

Note – Compiling shared libraries with -xprofile=collect is not supported.

■ use [: name]

Uses execution frequency data to optimize strategically.
A-62 C User’s Guide • May 2002

As with collect: name, the name is optional and may be used to specify the

name of the program.

The program is optimized by using the execution frequency data previously

generated and saved in the feedback files written by a previous execution of the

program compiled with –xprofile=collect .

Except for the -xprofile option, the source files and other compiler options

must be exactly the same as those used for the compilation that created the

compiled program which in turn generated the feedback file. The same version

of the compiler must be used for both the collect build and the use build as well.

If compiled with -xprofile=collect: name, the same program name name
must appear in the optimizing compilation: -xprofile=use: name.

■ tcov

Basic block coverage analysis using “new” style tcov .

The -xprofile=tcov option is the new style of basic block profiling for tcov . It

has similar functionality to the -xa option, but correctly collects data for

programs that have source code in header files. See Section A.3.62, “-xa” on

page A-29 for information on the old style of profiling, the tcov (1) man page, and

Analyzing Program Performance for more details.

Code instrumentation is performed similarly to that of the -xa option, but .d
files are no longer generated. Instead, a single file is generated, the name of which

is based on the final executable. For example, if the program is run out of

/foo/bar/myprog.profile , the data file is stored in

/foo/bar/myprog.profile/myprog.tcovd .

The -xprofile=tcov and the -xa options are compatible in a single executable.

That is, you can link a program that contains some files that have been compiled

with -xprofile=tcov , and others with -xa . You cannot compile a single file

with both options.

When running tcov , you must pass it the -x option to make it use the new style

of data. If not, tcov uses the old .d files, if any, by default for data, and produces

unexpected output.

Unlike the -xa option, the TCOVDIRenvironment variable has no effect at

compile-time. However, its value is used at program runtime. See tcov (1) and

Program Performance Analysis Tools for more details.

Note – tcov ’s code coverage report can be unreliable if there is inlining of routines

due to -xO4 or -xinline .

When you use -xprofile=collect to compile a program for profile collection and

-xprofile=use to compile a program for profile feedback, the source files and

compiler options other than -xprofile=collect and -xprofile=use must be

identical in both compilations.
Appendix A C Compiler Options A-63

The profile feedback directory names specified by the -xprofile=use :name option

are accumulated from all instances of the option in a single invocation of the

compiler. For example, assume that profile directories a.profile , b.profile and

c.profile are created as a result of executing profiled binaries named a, b, and c
respectively.

All three profile directories are used. Any valid profile feedback data pertaining to a

particular object file is accumulated from the specified feedback directories when the

object file is compiled.

If both -xprofile=collect and -xprofile=use are specified in the same

command line, the rightmost -xprofile option in the command line is applied as

follows:

■ If the rightmost -xprofile option is -xprofile=use , all profile feedback

directory names specified by the -xprofile=use options are used for

feedback-directed optimization, and the previous -xprofile=collect options

are ignored.

■ If the rightmost -xprofile option is -xprofile=collect , all profile feedback

directory names specified by -xprofile=use options are ignored, and

instrumentation for profile generation is enabled.

A.3.109 -xreduction

(SPARC) Turns on reduction recognition during automatic parallelization.

-xreduction must be specified with -xautopar , or -xparallel .

When reduction recognition is enabled, the compiler parallelizes reductions such as

dot products, maximum and minimum finding. These reductions yield different

roundoffs than obtained by unparallelized code.

A.3.110 -xregs= r[,r…]

(SPARC) Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following: [no%]appl ,

[no%]float .

cc -O -c foo.c -xprofile=use:a -xprofile=use:b -xprofile=use:c
A-64 C User’s Guide • May 2002

Example: -xregs=appl,no%float

The default is -xregs=appl,float .

It is strongly recommended that you compile code intended for shared libraries that

will link with applications, with -xregs=no%appl,float . At the very least, the

shared library should explicitly document how it uses the application registers so

that applications linking with those libraries know how to cope with the issue.

For example, an application using the registers in some global sense (such as using a

register to point to some critical data structure) would need to know exactly how a

library with code compiled without -xregs=no%appl is using the application

registers in order to safely link with that library.

A.3.111 -xrestrict [=f]
(SPARC) Treats pointer-valued function parameters as restricted pointers . f is %all ,

%none, or a comma-separated list of one or more function names:

{%all |%none|fn[,fn...]}.

TABLE A-19 The -xregs Values

Value Meaning

appl Allows the use of the following registers:

g2, g3, g4 (v8a, v8, v8plus, v8plusa, v8plusb)

g2, g3 (v9, v9a, v9b)

For more information on SPARC instruction sets, see Section A.3.64,

“-xarch=isa” on page A-32.

In the SPARC ABI, these registers are described as application registers. Using

these registers can increase performance because fewer load and store

instructions are needed. However, such use can conflict with some old

library programs written in assembly code.

no%appl Does not use the appl registers: g2, g3, g4 (v8a, v8, v8plus, v8plusa, v8plusb)

g2, g3 (v9, v9a, v9b). It is strongly recommended that all system software

and libraries be compiled using -xreg=no%appl . System software

(including shared libraries) must preserve these registers’ values for the

application. Their use is intended to be controlled by the compilation system

and must be consistent throughout the application.

float Allows using the floating-point registers as specified in the SPARC ABI. You

can use these registers even if the program contains no floating-point code.

no%float Does not use the floating-point registers.

With this option, a source program cannot contain any floating-point code.
Appendix A C Compiler Options A-65

If a function list is specified with this option, pointer parameters in the specified

functions are treated as restricted; if -xrestrict=%all is specified, all pointer

parameters in the entire C file are treated as restricted. Refer to Section 3.8.2,

“Restricted Pointers” on page 3-23, for more information.

This command-line option can be used on its own, but it is best used with

optimization. For example, the command:

treats all pointer parameters in the file prog.c as restricted pointers. The command:

treats all pointer parameters in the function agc in the file prog.c as restricted

pointers.

The default is %none; specifying -xrestrict is equivalent to specifying

-xrestrict=%all .

A.3.112 -xs

Disables Auto-Read of .o files by dbx . Use this option in case you cannot keep the

.o files around. It passes the -s option to the assembler.

No Auto-Read is the older way of loading symbol tables. It places all symbol tables

for dbx in the executable file. The linker links more slowly and dbx initializes more

slowly.

Auto-Read is the newer and default way of loading symbol tables. With Auto-Read,

the information is distributed in the .o files, so that dbx loads the symbol table

information only if and when it is needed. Hence, the linker links faster, and dbx
initializes faster.

With -xs , if you move the executables to another directory, then to use dbx , you can

ignore the object (.o) files.

Without -xs , if you move the executables, you must move both the source files and

the object (.o) files, or set the path with the dbx pathmap or use command.

%cc -xO3 -xrestrict=%all prog.c

%cc -xO3 -xrestrict=agc prog.c
A-66 C User’s Guide • May 2002

A.3.113 -xsafe=mem

(SPARC) Allows the compiler to assume no memory-based traps occur.

This option grants permission to use the speculative load instruction on V9

machines. It is only effective when you specify -xO5 optimization and

-xarch=v8plus|v8plusa|v9|v9a .

Note – Because non-faulting loads do not cause a trap when a fault such as address

misalignment or segmentation violation occurs, you should use this option only for

programs in which such faults cannot occur. Because few programs incur

memory-based traps, you can safely use this option for most programs. Do not use

this option for programs that explicitly depend on memory-based traps to handle

exceptional conditions.

A.3.114 -xsb

Generates extra symbol table information for the Source Browser. This option is not

valid with the –Xs mode of the compiler.

A.3.115 -xsbfast

Creates the database for the Source Browser. Does not compile source into an object

file. This option is not valid with the –Xs mode of the compiler.

A.3.116 -xsfpconst

Represents unsuffixed floating-point constants as single precision, instead of the

default mode of double precision. Not valid with -Xc .

A.3.117 -xspace

Does no optimizations or parallelization of loops that increase code size.

Example: The compiler will not unroll loops or parallelize loops if it increases code

size.
Appendix A C Compiler Options A-67

A.3.118 -xstrconst

Inserts string literals into the read-only data section of the text segment instead of

the default data segment. Duplicate strings will be eliminated and the remaining

copy shared amongst references in the code.

A.3.119 -xtarget= t
Specifies the target system for instruction set and optimization.

The value of t must be one of the following: native , generic , system-name (SPARC,
x86).

The -xtarget option is a macro that permits a quick and easy specification of the

-xarch , -xchip , and -xcache combinations that occur on real systems. The only

meaning of -xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler with an

accurate description of the target computer hardware. When program performance

is critical, the proper specification of the target hardware could be very important.

This is especially true when running on the newer SPARC processors. However, for

most programs and older SPARC processors, the performance gain is negligible and

a generic specification is sufficient.

Each specific value for -xtarget expands into a specific set of values for the

-xarch , -xchip , and -xcache options. See TABLE A-21 for the values. For example:

-xtarget=sun4/15 is equivalent to: -xarch=v8a -xchip=micro

TABLE A-20 The -xtarget Values

Value Meaning

native Gets the best performance on the host system.

The compiler generates code for the best performance on the host system.

It determines the available architecture, chip, and cache properties of the

machine on which the compiler is running.

generic Gets the best performance for generic architecture, chip, and cache.

The compiler expands -xtarget=generic to:

-xarch=generic -xchip=generic -xcache=generic

This is the default value.

system-name Gets the best performance for the specified system.

You select a system name from TABLE A-21 that lists the mnemonic

encodings of the actual system name and numbers.
A-68 C User’s Guide • May 2002

-xcache=2/16/1

TABLE A-21 -xtarget Expansions on SPARC

-xtarget= -xarch -xchip -xcache

generic generic generic generic

cs6400 v8 super 16/32/4:2048/64/1

entr150 v8 ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1
Appendix A C Compiler Options A-69

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

TABLE A-21 -xtarget Expansions on SPARC(Continued)

-xtarget= -xarch -xchip -xcache
A-70 C User’s Guide • May 2002

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

TABLE A-21 -xtarget Expansions on SPARC(Continued)

-xtarget= -xarch -xchip -xcache
Appendix A C Compiler Options A-71

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1

ultra3cu v8plusa ultra3cu 64/32/4:8192/512/2

TABLE A-21 -xtarget Expansions on SPARC(Continued)

-xtarget= -xarch -xchip -xcache
A-72 C User’s Guide • May 2002

The following table lists the –xtarget values for the Intel Architecture:

A.3.120 -xtemp= dir
Sets the directory for temporary files used by cc to dir. No space is allowed within

this option string. Without this option, temporary files go into /tmp . -xtemp has

precedence over the TMPDIRenvironment variable.

A.3.121 -xtime

Reports the time and resources used by each compilation component.

A.3.122 -xtransition

Issues warnings for the differences between K&R C and Sun ISO C.

The -xtransition option issues warnings in conjunction with the -Xa and -Xt
options. You can eliminate all warning messages about differing behavior through

appropriate coding. The following warnings no longer appear unless you issue the

-xtransition option:

■ \a is ISO C “alert” character
■ \x is ISO C hex escape
■ bad octal digit
■ base type is really type tag: name
■ comment is replaced by “##”

■ comment does not concatenate tokens
■ declaration introduces new type in ISO C: type tag
■ macro replacement within a character constant
■ macro replacement within a string literal

TABLE A-22 -xtarget Expansions on Intel Architecture

-xtarget= -xarch -xchip -xcache

generic generic generic generic

386 386 386 generic

486 386 486 generic

pentium 386 pentium generic

pentium_pro pentium_pro pentium_pro generic
Appendix A C Compiler Options A-73

■ no macro replacement within a character constant
■ no macro replacement within a string literal
■ operand treated as unsigned
■ trigraph sequence replaced
■ ISO C treats constant as unsigned: operator
■ semantics of operator change in ISO C; use explicit cast

A.3.123 -xtrigraphs

The -xtrigraphs option determines whether the compiler recognizes trigraph

sequences as defined by the ISO C standard.

By default, the compiler assumes -xtrigraphs=yes and recognizes all trigraph

sequences throughout the compilation unit.

If your source code has a literal string containing question marks (?) that the

compiler is interpreting as a trigraph sequence, you can use the -xtrigraph=no
suboption to turn off the recognition of trigraph sequences. The -xtrigraphs=no
option turns off recognition of all trigraphs throughout the entire compilation unit.

Consider the following example source file named trigraphs_demo.c .

Here is the output if you compile this code with -xtrigraphs=yes .

#include <stdio.h>

int main ()
{

 (void) printf("(\?\?) in a string appears as (??)\n");

 return 0;
}

example% cc -xtrigraphs=yes trigraphs_demo.c
example% a.out
(??) in a string appears as (]
A-74 C User’s Guide • May 2002

Here is the output if you compile this code with -xtrigraphs=no .

A.3.124 -xunroll= n
Suggests to the optimizer to unroll loops n times. n is a positive integer. When n is 1,

it is a command, and the compiler unrolls no loops. When n is greater than 1, the

-xunroll= n merely suggests to the compiler that it unroll loops n times.

A.3.125 -xvector [={yes |no}]

Enable automatic generation of calls to the vector library functions.

-xvector=yes permits the compiler to transform math library calls within loops

into single calls to the equivalent vector math routines when such transformations

are possible. Such transformations could result in a performance improvement for

loops with large loop counts.

If you do not specify -xvector , the default is -xvector=no . -xvector=no undoes

a previously specified -xvector=yes . If you specify -xvector but do not supply a

value, the default is -xvector=yes .

If you use -xvector on the command line without previously specifying

-xdepend , -xvector triggers -xdepend . The -xvector option also raises the

optimization level to -x03 if optimization is not specified or optimization is set

lower than -x03 .

The compiler includes the libmvec libraries in the load step. If you compile and

link with separate commands, be sure to use -xvector in the linking cc command.

A.3.126 -xvpara

(SPARC) Warns about loops that have #pragma MP directives specified when the

loop may not be properly specified for parallelization. For example, when the

optimizer detects data dependencies between loop iterations, it issues a warning.

example% cc -xtrigraphs=no trigraphs_demo.c
example% a.out
(??) in a string appears as (??)
Appendix A C Compiler Options A-75

Use -xvpara with the -xexplicitpar option or the -xparallel option and the

#pragma MP. See Section 3.8.3, “Explicit Parallelization and Pragmas” on page 3-24

for more information.

A.3.127 -Y c, dir
Specifies a new directory dir for the location of component c. c can consist of any of

the characters representing components that are listed under the -W option.

If the location of a component is specified, then the new path name for the tool is

dir/tool. If more than one -Y option is applied to any one item, then the last

occurrence holds.

A.3.128 -YA, dir
Changes the default directory searched for components.

A.3.129 -YI, dir
Changes the default directory searched for include files.

A.3.130 -YP, dir
Changes the default directory for finding library files.

A.3.131 -YS, dir
Changes the default directory for startup object files.

A.3.132 -Zll

(SPARC) Creates the program database for lock_lint , but does not generate

executable code. Refer to the lock_lint (1) man page for more details.
A-76 C User’s Guide • May 2002

A.4 Options Passed to the Linker
cc recognizes -a , -e , -r , -t , -u , and -z and passes these options and their

arguments to ld . cc passes any unrecognized options to ld with a warning.
Appendix A C Compiler Options A-77

A-78 C User’s Guide • May 2002

APPENDIX B

ISO C Data Representations

This appendix describes how ISO C represents data in storage and the mechanisms

for passing arguments to functions. It is intended as a guide to programmers who

want to write or use modules in languages other than C and have those modules

interface with C code.

B.1 Storage Allocation
The following table shows the data types and how they are represented.

Note – Storage allocated on the stack (identifiers with internal, or automatic,

linkage) should be limited to two gigabytes or less.

TABLE B-1 Storage Allocation for Data Types

Data Type Internal Representation

char elements A single 8-bit byte aligned on a byte boundary.

short integers Halfword (two bytes or 16 bits), aligned on a two-byte boundary

int 32 bits (four bytes or one word), aligned on a four-byte boundary

long 32 bits on v8 and Intel (four bytes or one word), aligned on a

four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte

boundary)

pointer 32 bits on v8 and Intel (four bytes or one word), aligned on a

four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte

boundary)
B-1

B.2 Data Representations
Bit numbering of any given data element depend on the architecture in use:

SPARCstation™ machines use bit 0 as the least significant bit, with byte 0 being the

most significant byte. The tables in this section describe the various representations.

long long 1 (SPARC) 64 bits (eight bytes or two words), aligned on an eight-byte

boundary

(Intel) 64 bits (eight bytes or two words), aligned on a four-byte

boundary

float 32 bits (four bytes or one word), aligned on a four-byte boundary. A

float has a sign bit, 8-bit exponent, and 23-bit fraction.

double 64 bits (eight bytes or two words), aligned on an eight-byte boundary

(SPARC) or aligned on a four-byte boundary (Intel). A double
element has a sign bit, an 11-bit exponent and a 52-bit fraction.

long double v8 (SPARC) 128 bits (16 bytes or four words), aligned on an eight-byte

boundary. A long double element has a sign bit, a 15-bit exponent

and a 112-bit fraction.

v9 (SPARC) 128 bits (16 bytes or four words), aligned on a 16 byte

boundary. A long double element has a sign bit, a 15-bit exponent

and a 112-bit fraction.

(Intel) 96 bits (12 bytes or three words) aligned on a four-byte

boundary. A long double element has a sign bit, a 16-bit exponent,

and a 64-bit fraction. 16 bits are unused.

1. long long is not available in -Xc mode with -xc99=%none .

TABLE B-1 Storage Allocation for Data Types (Continued)

Data Type Internal Representation
B-2 C User’s Guide • May 2002

B.2.1 Integer Representations

Integer types used in ISO C are short , int , long , and long long :

TABLE B-2 Representation of short

Bits Content

8 - 15 Byte 0 (SPARC)
Byte 1 (Intel)

0 - 7 Byte 1 (SPARC)
Byte 0 (Intel)

TABLE B-3 Representation of int

Bits Content

24 - 31 Byte 0 (SPARC)
Byte 3 (Intel)

16 - 23 Byte 1 (SPARC)
Byte 2 (Intel)

8 - 15 Byte 2 (SPARC)
Byte 1 (Intel)

0 - 7 Byte 3 (SPARC)
Byte 0 (Intel)

TABLE B-4 Representation of long on Intel and SPARC v8 versus SPARC v9

Bits Content

24 - 31 Byte 0 (SPARC) v8

Byte 4 (SPARC) v9

Byte 3 (Intel)

16 - 23 Byte 1 (SPARC) v8

Byte 5 (SPARC) v9

Byte 2 (Intel)

8 - 15 Byte 2 (SPARC) v8

Byte 6 (SPARC) v9

Byte 1 (Intel)

0 - 7 Byte 3 (SPARC) v8

Byte 7 (SPARC) v9

Byte 0 (Intel)
Appendix B ISO C Data Representations B-3

B.2.2 Floating-Point Representations

float , double , and long double data elements are represented according to the

ISO IEEE 754-1985 standard. The representation is:

(-1)s(e - bias)×2 j.f

where:

■ s = sign

■ e = biased exponent

■ j is the leading bit, determined by the value of e. In the case of long
double (Intel), the leading bit is explicit; in all other cases, it is implicit.

■ f = fraction

■ u means that the bit can be either 0 or 1.

TABLE B-5 Representation of long long 1

Bits Content

56 - 63 Byte 0 (SPARC)
Byte 7 (Intel)

48 - 55 Byte 1 (SPARC)
Byte 6 (Intel)

40 - 47 Byte 2 (SPARC)
Byte 5 (Intel)

32 - 39 Byte 3 (SPARC)
Byte 4 (Intel)

24 - 31 Byte 4 (SPARC)
Byte 3 (Intel)

16 - 23 Byte 5 (SPARC)
Byte 2 (Intel)

8 - 15 Byte 6(SPARC)
Byte 1 (Intel)

0 - 7 Byte 7 (SPARC)
Byte 0 (Intel)

1. long long is not available in -Xc mode.
B-4 C User’s Guide • May 2002

The following tables show the position of the bits.

For further information, refer to the Numerical Computation Guide.

TABLE B-6 float Representation

Bits Name

31 Sign

23 - 30 Exponent

0 - 22 Fraction

TABLE B-7 double Representation

Bits Name

63 Sign

52 - 62 Exponent

0 - 51 Fraction

TABLE B-8 long double Representation (SPARC)

Bits Name

127 Sign

112 - 126 Exponent

0 - 111 Fraction

TABLE B-9 long double Representation (Intel)

Bits Name

80 - 95 Unused

79 Sign

64 - 78 Exponent

63 Leading bit

0 - 62 Fraction
Appendix B ISO C Data Representations B-5

B.2.3 Exceptional Values

float and double numbers are said to contain a “hidden,” or implied, bit,

providing for one more bit of precision than would otherwise be the case. In the case

of long double , the leading bit is implicit (SPARC) or explicit (Intel); this bit is 1 for

normal numbers, and 0 for subnormal numbers.

TABLE B-10 float Representations

normal number (0<e<255): (-1)Sign2 (exponent - 127)1.f

subnormal number

(e=0, f!=0):

(-1)Sign2 (-126)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=255(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=255(max); f=.1uuu-uu

Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

TABLE B-11 double Representations

normal number (0<e<2047): (-1)Sign2 (exponent - 1023)1.f

subnormal number (e=0, f!=0): (-1)Sign2 (-1022)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=2047(max); f=.0uuu-uu; at least one bit must be

nonzero

quiet NaN s=u, e=2047(max); f=.1uuu-uu

Infinity s=u, e=2047(max); f=.0000-00 (all zeroes)

TABLE B-12 long double Representations

normal number (0<e<32767): (-1)Sign2 (exponent - 16383)1.f

subnormal number (e=0, f!=0): (-1)Sign2 (-16382)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=32767(max); f=.0uuu-uu; at least one bit must be

nonzero

quiet NaN s=u, e=32767(max); f=.1uuu-uu

Infinity s=u, e=32767(max); f=.0000-00 (all zeroes)
B-6 C User’s Guide • May 2002

B.2.4 Hexadecimal Representation of Selected Numbers

The following tables show the hexadecimal representations.

For further information, refer to the Numerical Computation Guide.

B.2.5 Pointer Representation

A pointer in C occupies four bytes. A pointer in C occupies eight bytes on SPARC v9

architectures. The NULL value pointer is equal to zero.

TABLE B-13 Hexadecimal Representation of Selected Numbers (SPARC)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

8000000000000000

00000000000000000000000000000000

80000000000000000000000000000000

+1.0

-1.0

3F800000

BF800000

3FF0000000000000

BFF0000000000000

3FFF00000000000000000000000000000

BFFF00000000000000000000000000000

+2.0

+3.0

40000000

40400000

4000000000000000

4008000000000000

40000000000000000000000000000000

40080000000000000000000000000000

+Infinity

-Infinity

7F800000

FF800000

7FF0000000000000

FFF0000000000000

7FFF00000000000000000000000000000

FFFF00000000000000000000000000000

NaN 7FBFFFFF 7FF7FFFFFFFFFFFF 7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFF

TABLE B-14 Hexadecimal Representation of Selected Numbers (Intel)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

0000000080000000

00000000000000000000

80000000000000000000

+1.0

-1.0

3F800000

BF800000

000000003FF00000

00000000BFF00000

3FFF8000000000000000

BFFF8000000000000000

+2.0

+3.0

40000000

40400000

0000000040000000

0000000040080000

40008000000000000000

4000C000000000000000

+Infinity

-Infinity

7F800000

FF800000

000000007FF00000

00000000FFF00000

7FFF8000000000000000

FFFF8000000000000000

NaN 7FBFFFFF FFFFFFFF7FF7FFFF 7FFFBFFFFFFFFFFFFFFF
Appendix B ISO C Data Representations B-7

B.2.6 Array Storage

Arrays are stored with their elements in a specific storage order. The elements are

actually stored in a linear sequence of storage elements.

C arrays are stored in row-major order; the last subscript in a multidimensional

array varies the fastest.

String data types are simply arrays of char elements. The maximum number of

characters allowed in a string literal or wide string literal (after concatenation) is

4,294,967,295.

See Section B.1, “Storage Allocation” on page B-1 for information on the size limit of

storage allocated on the stack.

Static and global arrays can accommodate many more elements.

B.2.7 Arithmetic Operations on Exceptional Values

This section describes the results derived from applying the basic arithmetic

operations to combinations of exceptional and ordinary floating-point values. The

information that follows assumes that no traps or any other exception actions are

taken.

TABLE B-15 Array Types and Storage

Type
Maximum Number of Elements
for SPARC and Intel

Maximum Number of Elements
for SPARC V9

char 4,294,967,295 2,305,843,009,213,693,951

short 2,147,483,647 1,152,921,504,606,846,975

int 1,073,741,823 576,460,752,303,423,487

long 1,073,741,823 288,230,376,151,711,743

float 1,073,741,823 576,460,752,303,423,487

double 536,870,911 288,230,376,151,711,743

long double 268,435,451 144,115,188,075,855,871

long long 1

1. Not valid in -Xc mode with -xc99=%none .

536,870,911 288,230,376,151,711,743
B-8 C User’s Guide • May 2002

The following table explains the abbreviations:

The following tables describe the types of values that result from arithmetic

operations performed with combinations of different types of operands.

TABLE B-16 Abbreviation Usage

Abbreviation Meaning

Num Subnormal or normal number

Inf Infinity (positive or negative)

NaN Not a number

Uno Unordered

TABLE B-17 Addition and Subtraction Results

Right Operand:
0

Right Operand:
Num

Right Operand:
Inf

Right Operand:
NaN

Left Operand:
0

0 Num Inf NaN

Left Operand:
Num

Num See1

1. Num + Num could be Inf, rather than Num, when the result is too large (overflow). Inf + Inf = NaN when the
infinities are of opposite sign .

Inf NaN

Left Operand:
Inf

Inf Inf See1 NaN

Left Operand:
NaN

NaN NaN NaN NaN

TABLE B-18 Multiplication Results

Right Operand:
0

Right Operand:
Num

Right Operand:
Inf

Right Operand:
NaN

Left Operand:
0

0 0 NaN NaN

Left Operand:
Num

0 Num Inf NaN

Left Operand:
Inf

NaN Inf Inf NaN

Left Operand:
NaN

NaN NaN NaN NaN
Appendix B ISO C Data Representations B-9

Note – NaN compared with NaN is unordered, and results in inequality. +0

compares equal to -0.

B.3 Argument-Passing Mechanism
This section describes how arguments are passed in ISO C.

■ All arguments to C functions are passed by value.

■ Actual arguments are passed in the reverse order from which they are declared in

a function declaration.

■ Actual arguments which are expressions are evaluated before the function

reference. The result of the expression is then placed in a register or pushed onto

the stack.

TABLE B-19 Division Results

Right Operand:
0

Right Operand:
Num

Right Operand:
Inf

Right Operand:
NaN

Left Operand:
0

NaN 0 0 NaN

Left Operand:
Num

Inf Num 0 NaN

Left Operand:
Inf

Inf Inf NaN NaN

Left Operand:
NaN

NaN NaN NaN NaN

TABLE B-20 Comparison Results

Right Operand:
0

Right Operand:
+Num

Right Operand:
+Inf

Right Operand:
+NaN

Left Operand:
0

= < < Uno

Left Operand:
+Num

> The result of the

comparison

< Uno

Left Operand:
+Inf

> > = Uno

Left Operand:
+NaN

Uno Uno Uno Uno
B-10 C User’s Guide • May 2002

(SPARC)

Functions return integer results in register %o0, float results in register %f0 , and

double results in registers %f0 and %f1 .

long long 1 integers are passed in registers with the higher word order in %oN, and

the lower order word in %o(N+1) . In-register results are returned in %i0 and %i1 ,

with similar ordering.

All arguments, except doubles and long doubles , are passed as four-byte values.

A double is passed as an eight-byte value. The first six four-byte values (double
counts as 8) are passed in registers %o0 through %o5. The rest are passed onto the

stack. Structures are passed by making a copy of the structure and passing a pointer

to the copy. A long double is passed in the same manner as a structure.

Upon return from a function, it is the responsibility of the caller to pop arguments

from the stack. Registers described are as seen by the caller.

SPARC v9

All integral arguments are passed as eight-byte values.

Floating-point arguments are passed in floating-point registers when possible.

(Intel)

Functions return integer results in register %eax.

long long results are returned in registers %edx and %eax. Functions return float ,

double , and long double results in register %st(0) .

All arguments except struct s, union s, long long s, double s and long double s

are passed as four-byte values; a long long is passed as an eight-byte value, a

double is passed as an eight-byte value, and a long double is passed as a 12-byte

value.

structs and unions are copied onto the stack. The size is rounded up to a

multiple of four bytes. Functions returning structs and unions are passed a

hidden first argument, pointing to the location into which the returned struct or

union is stored.

Upon return from a function, it is the responsibility of the caller to pop arguments

from the stack, except for the extra argument for struct and union returns that is

popped by the called function.

1. Not available in -Xc mode with -xc99=%none .
Appendix B ISO C Data Representations B-11

B-12 C User’s Guide • May 2002

APPENDIX C

Implementation-Defined ISO/IEC C
Behavior

The ISO/IEC 9899:1990, Programming Languages - C standard specifies the form

and establishes the interpretation of programs written in C. However, this standard

leaves a number of issues as implementation-defined, that is, as varying from

compiler to compiler. This chapter details these areas. They can be readily compared

to the ISO/IEC 9899:1990 standard itself:

■ Each issue uses the same section text as found in the ISO standard.

■ Each issue is preceded by its corresponding section number in the ISO standard.

C.1 Implementation Compared to the ISO
Standard

C.1.1 Translation (G.3.1)

The numbers in parentheses correspond to section numbers in the ISO/IEC

9899:1990 standard.

(5.1.1.3) Identification of diagnostics:

Error messages have the following format:

filename, line line number: message

Warning messages have the following format:

filename, line line number: warning message
C-1

Where:

■ filename is the name of the file containing the error or warning

■ line number is the number of the line on which the error or warning is found

■ message is the diagnostic message

C.1.2 Environment (G.3.2)

(5.1.2.2.1) Semantics of arguments to main :

argc is the number of command-line arguments with which the program is invoked

with. After any shell expansion, argc is always equal to at least 1, the name of the

program.

argv is an array of pointers to the command-line arguments.

(5.1.2.3) What constitutes an interactive device:

An interactive device is one for which the system library call isatty() returns a

nonzero value.

C.1.3 Identifiers (G.3.3)

(6.1.2) The number of significant initial characters (beyond 31) in an
identifier without external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

(6.1.2) The number of significant initial characters (beyond 6) in an
identifier with external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

int main (int argc, char *argv[])
{
....
}

C-2 C User’s Guide • May 2002

C.1.4 Characters (G.3.4)

(5.2.1) The members of the source and execution character sets, except as
explicitly specified in the Standard:

Both sets are identical to the ASCII character sets, plus locale-specific extensions.

(5.2.1.2) The shift states used for the encoding of multibyte characters:

There are no shift states.

(5.2.4.2.1) The number of bits in a character in the execution character
set:

There are 8 bits in a character for the ASCII portion; locale-specific multiple of 8 bits

for locale-specific extended portion.

(6.1.3.4) The mapping of members of the source character set (in
character and string literals) to members of the execution character set:

Mapping is identical between source and execution characters.

(6.1.3.4) The value of an integer character constant that contains a
character or escape sequence not represented in the basic execution
character set or the extended character set for a wide character constant:

It is the numerical value of the rightmost character. For example, '\q ' equals 'q' . A

warning is emitted if such an escape sequence occurs.

(3.1.3.4) The value of an integer character constant that contains more
than one character or a wide character constant that contains more than
one multibyte character:

A multiple-character constant that is not an escape sequence has a value derived

from the numeric values of each character.
Appendix C Implementation-Defined ISO/IEC C Behavior C-3

(6.1.3.4) The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant:

The valid locale specified by LC_ALL, LC_CTYPE, or LANGenvironment variable.

(6.2.1.1) Whether a plain char has the same range of values as signed
char or unsigned char :

A char is treated as a signed char (SPARC) (Intel).
C-4 C User’s Guide • May 2002

C.1.5 Integers (G.3.5)

(6.1.2.5) The representations and sets of values of the various types of
integers:

(6.2.1.2) The result of converting an integer to a shorter signed integer,
or the result of converting an unsigned integer to a signed integer of

TABLE C-1 Representations and Sets of Values of Integers

Integer Bits Minimum Maximum

char (SPARC) (Intel) 8 -128 127

signed char 8 -128 127

unsigned char 8 0 255

short 16 -32768 32767

signed short 16 -32768 32767

unsigned short 16 0 65535

int 32 -2147483648 2147483647

signed int 32 -2147483648 2147483647

unsigned int 32 0 4294967295

long (SPARC) v8 32 -2147483648 2147483647

long (SPARC) v9 64 -9223372036854775808 9223372036854775807

signed long
(SPARC)v8

32 -2147483648 2147483647

signed long (SPARC)
v9

64 -9223372036854775808 9223372036854775807

unsigned long
(SPARC) v8

32 0 4294967295

unsigned long
(SPARC) v9

64 0 18446744073709551615

long long 1

1. Not valid in -Xc mode

64 -9223372036854775808 9223372036854775807

signed long long 1 64 -9223372036854775808 9223372036854775807

unsigned long long 1 64 0 18446744073709551615
Appendix C Implementation-Defined ISO/IEC C Behavior C-5

equal length, if the value cannot be represented:

When an integer is converted to a shorter signed integer, the low order bits are

copied from the longer integer to the shorter signed integer. The result may be

negative.

When an unsigned integer is converted to a signed integer of equal size, the low

order bits are copied from the unsigned integer to the signed integer. The result

may be negative.

(6.3) The results of bitwise operations on signed integers:

The result of a bitwise operation applied to a signed type is the bitwise operation of

the operands, including the sign bit. Thus, each bit in the result is set if—and only

if—each of the corresponding bits in both of the operands is set.

(6.3.5) The sign of the remainder on integer division:

The result is the same sign as the dividend; thus, the remainder of -23/4 is -3.

(6.3.7) The result of a right shift of a negative-valued signed integral
type:

The result of a right shift is a signed right shift.
C-6 C User’s Guide • May 2002

C.1.6 Floating-Point (G.3.6)

(6.1.2.5) The representations and sets of values of the various types of
floating-point numbers:

(6.2.1.3) The direction of truncation when an integral number is
converted to a floating-point number that cannot exactly represent the

TABLE C-2 Values for a float

float

Bits 32

Min 1.17549435E-38

Max 3.40282347E+38

Epsilon 1.19209290E-07

TABLE C-3 Values for a double

double

Bits 64

Min 2.2250738585072014E-308

Max 1.7976931348623157E+308

Epsilon 2.2204460492503131E-16

TABLE C-4 Values for long double

long double

Bits 128 (SPARC)
80 (Intel)

Min 3.362103143112093506262677817321752603E-4932 (SPARC)
3.3621031431120935062627E-4932 (Intel)

Max 1.189731495357231765085759326628007016E+4932 (SPARC)
1.1897314953572317650213E4932 (Intel)

Epsilon 1.925929944387235853055977942584927319E-34 (SPARC)
1.0842021724855044340075E-19 (Intel)
Appendix C Implementation-Defined ISO/IEC C Behavior C-7

original value:

Numbers are rounded to the nearest value that can be represented.

(6.2.1.4) The direction of truncation or rounding when a floating- point
number is converted to a narrower floating-point number:

Numbers are rounded to the nearest value that can be represented.

C.1.7 Arrays and Pointers (G.3.7)

(6.3.3.4, 7.1.1) The type of integer required to hold the maximum size of
an array; that is, the type of the sizeof operator, size_t :

unsigned int as defined in stddef.h .

unsigned long for -Xarch=v9

(6.3.4) The result of casting a pointer to an integer, or vice versa:

The bit pattern does not change for pointers and values of type int , long ,

unsigned int and unsigned long .

(6.3.6, 7.1.1) The type of integer required to hold the difference between
two pointers to members of the same array, ptrdiff_t :

int as defined in stddef.h .

long for -Xarch=v9
C-8 C User’s Guide • May 2002

C.1.8 Registers (G.3.8)

(6.5.1) The extent to which objects can actually be placed in registers by
use of the register storage-class specifier:

The number of effective register declarations depends on patterns of use and

definition within each function and is bounded by the number of registers available

for allocation. Neither the compiler nor the optimizer is required to honor register

declarations.

C.1.9 Structures, Unions, Enumerations, and Bit-Fields

(G.3.9)

(6.3.2.3) A member of a union object is accessed using a member of a
different type:

The bit pattern stored in the union member is accessed, and the value interpreted,

according to the type of the member by which it is accessed.

(6.5.2.1) The padding and alignment of members of structures.

TABLE C-5 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char Byte 1

short Halfword 2

int Word 4

long (SPARC) v8 Word 4

long (SPARC) v9 Doubleword 8

float (SPARC) Word 4

double (SPARC) Doubleword (SPARC)
Word (Intel)

8 (SPARC)
4 (Intel)

long double (SPARC) v8 Doubleword (SPARC)
Word (Intel)

8 (SPARC)
4 (Intel)
Appendix C Implementation-Defined ISO/IEC C Behavior C-9

Structure members are padded internally, so that every element is aligned on the

appropriate boundary.

Alignment of structures is the same as its more strictly aligned member. For

example, a struct with only chars has no alignment restrictions, whereas a

struct containing a double would be aligned on an 8-byte boundary.

(6.5.2.1) Whether a plain int bit-field is treated as a signed int
bit-field or as an unsigned int bit-field:

It is treated as an unsigned int .

(6.5.2.1) The order of allocation of bit-fields within an int :

Bit-fields are allocated within a storage unit from high-order to low-order.

(6.5.2.1) Whether a bit-field can straddle a storage-unit boundary:

Bit-fields do not straddle storage-unit boundaries.

(6.5.2.2) The integer type chosen to represent the values of an
enumeration type:

This is an int .

long double (SPARC) v9 Quadword 16

pointer (SPARC) v8 Word 4

pointer (SPARC) v9 Quadword 8

long long 1 Doubleword (SPARC)
Word (Intel)

8 (SPARC)
4 (Intel)

1. Not available in -Xc mode.

TABLE C-5 Padding and Alignment of Structure Members (Continued)

Type Alignment Boundary Byte Alignment
C-10 C User’s Guide • May 2002

C.1.10 Qualifiers (G.3.10)

(6.5.5.3) What constitutes an access to an object that has
volatile-qualified type:

Each reference to the name of an object constitutes one access to the object.

C.1.11 Declarators (G.3.11)

(6.5.4) The maximum number of declarators that may modify an
arithmetic, structure, or union type:

No limit is imposed by the compiler.

C.1.12 Statements (G.3.12)

(6.6.4.2) The maximum number of case values in a switch statement:

No limit is imposed by the compiler.

C.1.13 Preprocessing Directives (G.3.13)

(6.8.1) Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the value
of the same character constant in the execution character set:

A character constant within a preprocessing directive has the same numeric value as

it has within any other expression.

(6.8.1) Whether such a character constant may have a negative value:

Character constants in this context may have negative values (SPARC) (Intel).
Appendix C Implementation-Defined ISO/IEC C Behavior C-11

(6.8.2) The method for locating includable source files:

A file whose name is delimited by < > is searched for first in the directories named

by the -I option, and then in the standard directory. The standard directory is

/usr/include , unless the -YI option is used to specify a different default location.

A file whose name is delimited by quotes is searched for first in the directory of the

source file that contains the #include , then in directories named by the -I option,

and last in the standard directory.

If a file name enclosed in < > or double quotes begins with a / character, the file

name is interpreted as a path name beginning in the root directory. The search for

this file begins in the root directory only.

(6.8.2) The support of quoted names for includable source files:

Quoted file names in include directives are supported.

(6.8.2) The mapping of source file character sequences:

Source file characters are mapped to their corresponding ASCII values.

(6.8.6) The behavior on each recognized #pragma directive:

The following pragmas are supported. See Section 2.7.2, “Pragmas” on page 2-12 for

more information.

■ align integer (variable[, variable])
■ does_not_read_global_data (funcname [, funcname])
■ does_not_return (funcname[, funcname])
■ does_not_write_global_data (funcname[, funcname])
■ error_messages (on|off|default, tag1[tag2... tagn])
■ fini (f1[, f2..., fn])
■ ident string
■ init (f1[, f2..., fn])
■ inline (funcname[, funcname])
■ int_to_unsigned (funcname)
■ MP serial_loop
■ MP serial_loop_nested
■ MP taskloop
■ no_inline (funcname[, funcname])
■ nomemorydepend
■ no_side_effect (funcname[, funcname])
■ opt_level (funcname[, funcname])
■ pack (n)
C-12 C User’s Guide • May 2002

■ pipeloop (n)
■ rarely_called (funcname[, funcname])
■ redefine_extname old_extname new_extname
■ returns_new_memory (funcname[, funcname])
■ unknown_control_flow (name[, name])
■ unroll (unroll_factor)
■ weak (symbol1 [= symbol2])

(6.8.8) The definitions for __DATE__ and __TIME__ when,
respectively, the date and time of translation are not available:

These macros are always available from the environment.

C.1.14 Library Functions (G.3.14)

(7.1.6) The null pointer constant to which the macro NULL expands:

NULL equals 0.

(7.2) The diagnostic printed by and the termination behavior of the
assert function:

The diagnostic is:

Assertion failed: statement. file filename, line number

Where:

■ statement is the statement which failed the assertion

■ filename is the name of the file containing the failure

■ line number is the number of the line on which the failure occurs
Appendix C Implementation-Defined ISO/IEC C Behavior C-13

(7.3.1) The sets of characters tested for by the isalnum , isalpha ,
iscntrl , islower , isprint , and isupper functions:

(7.5.1) The values returned by the mathematics functions on domain
errors:

TABLE C-6 Character Sets Tested by isalpha , islower , Etc.

isalnum ASCII characters A-Z, a-z and 0-9

isalpha ASCII characters A-Z and a-z, plus locale-specific single-byte

letters

iscntrl ASCII characters with value 0-31 and 127

islower ASCII characters a-z

isprint Locale-specific single-byte printable characters

isupper ASCII characters A-Z

TABLE C-7 Values Returned on Domain Errors

Error Math Functions

Compiler Modes

-Xs , -Xt -Xa , -Xc

DOMAIN acos(|x|>1) 0.0 0.0

DOMAIN asin(|x|>1) 0.0 0.0

DOMAIN atan2(+-0,+-0) 0.0 0.0

DOMAIN y0(0) -HUGE -HUGE_VAL

DOMAIN y0(x<0) -HUGE -HUGE_VAL

DOMAIN y1(0) -HUGE -HUGE_VAL

DOMAIN y1(x<0) -HUGE -HUGE_VAL

DOMAIN yn(n,0) -HUGE -HUGE_VAL

DOMAIN yn(n,x<0) -HUGE -HUGE_VAL

DOMAIN log(x<0) -HUGE -HUGE_VAL

DOMAIN log10(x<0) -HUGE -HUGE_VAL

DOMAIN pow(0,0) 0.0 1.0

DOMAIN pow(0,neg) 0.0 -HUGE_VAL

DOMAIN pow(neg,non-integal) 0.0 NaN
C-14 C User’s Guide • May 2002

(7.5.1) Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGEon underflow range errors:

Mathematics functions, except scalbn , set errno to ERANGEwhen underflow is

detected.

(7.5.6.4) Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero:

In this case, it returns the first argument with domain error.

(7.7.1.1) The set of signals for the signal function:

The following table shows the semantics for each signal as recognized by the

signal function:

DOMAIN sqrt(x<0) 0.0 NaN

DOMAIN fmod(x,0) x NaN

DOMAIN remainder(x,0) NaN NaN

DOMAIN acosh(x<1) NaN NaN

DOMAIN atanh(|x|>1) NaN NaN

TABLE C-8 Semantics for signal Signals

Signal No. Default Event

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt

SIGQUIT 3 Core quit

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

TABLE C-7 Values Returned on Domain Errors (Continued)

Error Math Functions

Compiler Modes

-Xs , -Xt -Xa , -Xc
Appendix C Implementation-Defined ISO/IEC C Behavior C-15

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

SIGIO 22 Exit socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

SIGWAITINGT 32 Ignore process's lwps are blocked

TABLE C-8 Semantics for signal Signals (Continued)

Signal No. Default Event
C-16 C User’s Guide • May 2002

(7.7.1.1) The default handling and the handling at program startup for
each signal recognized by the signal function:

See above.

(7.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not
executed prior to the call of a signal handler, the blocking of the signal
that is performed:

The equivalent of signal(sig,SIG_DFL) is always executed.

(7.7.1.1) Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the signal function:

Default handling is not reset in SIGILL .

(7.9.2) Whether the last line of a text stream requires a terminating
new-line character:

The last line does not need to end in a newline.

(7.9.2) Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in:

All characters appear when the stream is read.

(7.9.2) The number of null characters that may be appended to data
written to a binary stream:

No null characters are appended to a binary stream.

(7.9.3) Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file:

The file position indicator is initially positioned at the end of the file.
Appendix C Implementation-Defined ISO/IEC C Behavior C-17

(7.9.3) Whether a write on a text stream causes the associated file to be
truncated beyond that point:

A write on a text stream does not cause a file to be truncated beyond that point

unless a hardware device forces it to happen.

(7.9.3) The characteristics of file buffering:

Output streams, with the exception of the standard error stream (stderr), are by

default-buffered if the output refers to a file, and line-buffered if the output refers to

a terminal. The standard error output stream (stderr) is by default unbuffered.

A buffered output stream saves many characters, and then writes the characters as a

block. An unbuffered output stream queues information for immediate writing on

the destination file or terminal immediately. Line-buffered output queues each line

of output until the line is complete (a newline character is requested).

(7.9.3) Whether a zero-length file actually exists:

A zero-length file does exist since it has a directory entry.

(7.9.3) The rules for composing valid file names:

A valid file name can be from 1 to 1,023 characters in length and can use all

character except the characters null and / (slash).

(7.9.3) Whether the same file can be open multiple times:

The same file can be opened multiple times.

(7.9.4.1) The effect of the remove function on an open file:

The file is deleted on the last call which closes the file. A program cannot open a file

which has already been removed.

(7.9.4.2) The effect if a file with the new name exists prior to a call to the
rename function:

If the file exists, it is removed and the new file is written over the previously existing

file.
C-18 C User’s Guide • May 2002

(7.9.6.1) The output for %pconversion in the fprintf function:

The output for %pis equivalent to %x.

(7.9.6.2) The input for %pconversion in the fscanf function:

The input for %pis equivalent to %x.

(7.9.6.2) The interpretation of a - character that is neither the first nor
the last character in the scan list for %[conversion in the fscanf
function:

The - character indicates an inclusive range; thus, [0-9] is equivalent to

[0123456789] .

C.1.15 Locale-Specific Behavior (G.4)

(7.12.1) The local time zone and Daylight Savings Time:

The local time zone is set by the environment variable TZ.

(7.12.2.1) The era for the clock function

The era for the clock is represented as clock ticks with the origin at the beginning of

the execution of the program.

The following characteristics of a hosted environment are locale-specific:

(5.2.1) The content of the execution character set, in addition to the
required members:

Locale-specific (no extension in C locale).

(5.2.2) The direction of printing:

Printing is always left to right.
Appendix C Implementation-Defined ISO/IEC C Behavior C-19

(7.1.1) The decimal-point character:

Locale-specific (“.” in C locale).

(7.3) The implementation-defined aspects of character testing and case
mapping functions:

Same as 4.3.1.

(7.11.4.4) The collation sequence of the execution character set:

Locale-specific (ASCII collation in C locale).

(7.12.3.5) The formats for time and date:

Locale-specific. Formats for the C locale are shown in the tables below.

The names of the months are:

The names of the days of the week are:

The format for time is:

%H:%M:%S

TABLE C-9 Names of Months

January May September

February June October

March July November

April August December

TABLE C-10 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed
C-20 C User’s Guide • May 2002

The format for date is:

%m/%d/%y

The formats for AM and PM designation are: AM PM
Appendix C Implementation-Defined ISO/IEC C Behavior C-21

C-22 C User’s Guide • May 2002

APPENDIX D

Supported Features of C99

This appendix details the supported features of the ISO/IEC 9899:1999,

Programming Language - C standard. The -xc99 flag controls compiler recognition

of the implemented features. For more information on the syntax of -xc99 , see

Appendix A.3.68.

Note – Though the compiler defaults to supporting the features of C99 listed below,

standard headers provided by Solaris in /usr/include do not yet conform with

the 1999 ISO/IEC C standard. If error messages are encountered, try using

-xc99=%none to obtain the 1990 ISO/IEC C standard behavior for these headers.

D.1 Idempotent Qualifiers
6.7.3 Type qualifiers:

If the same qualifier appears more than once in the same specifier-qualifier-list,

either directly or through one or more typedefs, the behavior is the same as when

the type qualifier appears only once.
D-1

In C90, the following code would cause an error:

However, with C99, the C compiler accepts multiple qualifiers.

D.2 _Pragma
A unary operator expression of the form: _Pragma (string-literal) is processed as

follows:

■ The L prefix of the string literal is deleted, if it is present.

■ The leading and trailing double-quotes are deleted.

■ Each escape sequence ' is replaced by a double-quote.

■ Each escape sequence \\ is replaced by a single backslash.

The resulting sequence of preprocessing tokens are processed as if they were the

preprocessor tokens in a pragma directive.

The original four preprocessing tokens in the unary operator expression are

removed.

_Pragma offers an advantage over #pragma in that _Pragma can be used in a macro

definition.

%example cat test.c

const const int a;

int main(void) {
return(0);

}

%example cc -xc99=%none test.c
"test.c", line 1: invalid type combination

%example cc -xc99 test.c
%example
D-2 C User’s Guide • May 2002

_Pragma("string") behaves exactly the same as #pragma string. Consider the

following example. First, the example’s source code is listed and then the example’s

source is listed after the preprocessor has made it’s pass.

Here’s the source after the preprocessor has finished.

example% cat test.c

#include <omp.h>
#include <stdio.h>

#define Pragma(x) _Pragma(#x)
#define OMP(directive) Pragma(omp directive)

void main()
{

omp_set_dynamic(0);
omp_set_num_threads(2);
OMP(parallel)
{
printf("Hello!\n");
}

}

example% cc test.c -P -xopenmp -x03
example% cat test.i

void main()
{

omp_set_dynamic(0);
omp_set_num_threads(2);
pragma omp parallel
{

printf("Hellow!\n");
}

}

example% cc test.c -xopenmp -->
example% ./a.out
Hello!
Hello!
example%
Appendix D Supported Features of C99 D-3

D.3 Mixed Declarations and Code
6.8.2 Compound statement

The C compiler now accepts mixing type declarations with executable code as

shown by the following example:

D.4 Static and Other Type Qualifiers
Allowed in Array Declarators
6.7.5.2 Array declarator:

The keyword static can now appear in the Array declarator of a parameter in a

function declarator to indicate that the compiler can assume at least that many

elements will be passed to the function being declared. Allows the optimizer to

make assumptions about which it otherwise could not determine.

The C compiler adjusts array parameters into pointers therefore void foo(int
a[]) is the same as void foo(int *a) .

If you specify type qualifiers such as void foo(int * restrict a); , the C

compiler expresses it with array syntax void foo(int a[restrict]); which is

essentially the same as declaring a restricted pointer.

The C compiler also uses a static qualifier to preserve information about the array

size. For example, if you specify void foo(int a[10]) the compiler still expresses

it as void foo(int *a) . Use a static qualifier as follows, void foo(int
a[static 10]) , to let the compiler know that pointer a is not NULL and that it

provides access to an integer array of at least ten elements.

#include <stdio.h>

int main(void){
int num1 = 3;
printf("%d\n", num1);

int num2 = 10;
printf("%d\n", num2);
return(0);

}

D-4 C User’s Guide • May 2002

D.5 Flexible Array Members
6.7.2.1 Structure and union specifiers

Also known as the "struct hack". Allows the last member of a struct to be an array of

zero length, such as int foo[]; Such a struct is commonly used as the header to

access malloced memory.

For example, in this structure, struc t s { int n; double d[]; } S; , the

array, d, is an incomplete array type. The C compiler does not count any memory

offset for this member of S. In other words, sizeof(struct s) is the same as the

offset of S.n .

d can be used like any, ordinary, array-member. S.d[10] = 0; .

Without the C compiler’s support for an incomplete array type, you would define

and declare a structure as the following example, called DynamicDouble , shows:

Note that the array d is not an incomplete array type and is declared with one

member.

Next, you declare a pointer dd and allocate memory thus:

You then store the size of the offset in S.n thus:

Because the compiler supports incomplete array types, you can achieve the same

result without declaring the array with one member:

typedef struct { int n; double d[1];) DynamicDouble;

DynamicDouble *dd =
malloc(sizeof(DynamicDouble)+(actual_size-1)*sizeof(double));

dd->n = actual_size;

typedef struct { int n; double d[]; } DynamicDouble;
Appendix D Supported Features of C99 D-5

You now declare a pointer dd and allocate memory as before, except that it is no

longer necessary to subtract one from actual_size:

The offset is stored, as before, in S.n thus:

D.6 Declarations Using Implicit int
6.7.2 Type specifiers:

At least one type specifier shall be given in the declaration specifiers in each

declaration.

The C compiler now issues warnings on any implicit int declaration as in the

following example:

DynamicDouble *dd = malloc (sizeof(DynamicDouble) +
(actual_size)*sizeof(double));

dd->n = actual_size;

example% more test.c
volatile i;
const foo()
{

return i;
}
example% cc test.c

"test.c", line 1: warning: no explicit type given
"test.c", line 3: warning: no explicit type given

example%
D-6 C User’s Guide • May 2002

D.7 Disallowed Implicit int and Implicit
Function Declarations
Implicit declarations are no longer allowed in the 1999 C standard as they were in

the 1990 C standard. Previous versions of the C compiler issued warning messages

about implicit definitions only with -v (verbose). These messages and new

additional warnings about implicit definitions, are now issued whenever identifiers

are implicitly defined as int or functions.

This change is very likely to be noticed by nearly all users of this compiler because it

can lead to a large number of warning messages. Common causes include a failure

to include the appropriate system header files that declare functions being used, like

printf which needs <stdio.h> included. The 1990 C standard behavior of

accepting implicit declarations silently can be restored using -xc99=%none .

The C compiler now generates a warning for an implicit function declaration:

D.8 Declaration in for -Loop Statement
6.8.5 Iteration statements

The C compiler now accepts a type declaration as the first expression in a for
loop-statement:

The scope of any variable declared in the initialization statement of the for loop is

the entire loop (including controlling and iteration expressions).

example% cat test.c
void main()
{

printf("Hello, world!\n");
}
example% cc test.c
"test.c", line 3: warning: implicit function declaration: printf
example%

for (int i=0; i<10; i++){ //loop body };
Appendix D Supported Features of C99 D-7

D.9 C99 Keywords
6.4.1 Keywords

The C99 standard introduces the following new keywords. The compiler issues a

warning if you use these keywords as identifiers while compiling with

-xc99=%none . Without -xc99=%none the compiler issues a warning or error

messages for use of these keywords as identifiers depending on the context.

■ inline
■ _Imaginary
■ _Complex
■ _Bool
■ restrict

D.9.1 Using the restrict Keyword

An object that is accessed through a restrict qualified pointer requires that all

accesses to that object use, directly or indirectly, the value of that particular

restrict qualified pointer. Any access to the object through any other means may

result in undefined behavior. The intended use of the restrict qualifier is to allow

the compiler to make assumptions that promote optimizations.

See Section 3.8.2, “Restricted Pointers” on page 3-23 for examples and an

explanation on how to use the restrict qualifier effectively.

D.10 __func__ Support
6.4.2.2 Predefined identifiers

The compiler provides support for the predefined identifier __func__ . __func__ is

defined as an array of chars which contains the name of the current function in

which __func__ appears.
D-8 C User’s Guide • May 2002

D.11 Macros With A Variable Number of
Arguments
6.10.3 Macro replacement

The C compiler accepts #define preprocessor directives of the following form:

If the identifier_list in the macro definition ends with an ellipses, it means that there

will be more arguments in the invocation than there are parameters in the macro

definition, excluding the ellipsis. Otherwise, the number of parameters in the macro

definition, including those arguments which consist of no preprocessing tokens,

matches the number of arguments. Use the identifier __VA_ARGS__in the

replacement list of a #define preprocessing directive which uses the ellipsis

notation in its arguments. The following example demonstrates the variable

argument list macro facilities.

which results in the following:

#define identifier (...) replacement_list
#define identifier (identifier_list , ...) replacement_list

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug(“Flag”);
debug(“X = %d\n”,x);
showlist(The first, second, and third items.);
report(x>y, “x is %d but y is %d”, x, y);

fprintf(stderr, “Flag”);
fprintf(stderr, “X = %d\n”, x);
puts(“The first, second, and third items.”);
((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y));
Appendix D Supported Features of C99 D-9

D.12 Variable Length Arrays (VLA):
6.7.5.2 Array declarators

VLAs are allocated on the stack as if by calling the alloca function. Their

lifetime, regardless of their scope, is the same as any data allocated on the stack

by calling alloca ; until the function returns. The space allocated is freed when

the stack is released upon returning from the function in which the VLA is

allocated.

Not all constraints are yet enforced for variable length arrays. Constraint

violations lead to undefined results.

D.13 inline Specifier For Static Functions
6.7.4 Function specifiers

#include <stdio.h>
void foo(int);

int main(void) {
foo(4);
return(0);

}

void foo (int n) {
int i;
int a[n];
for (i = 0; i < n; i++)

a[i] = n-i;
for (i = n-1; i >= 0; i--)

printf("a[%d] = %d\n", i, a[i]);
}

example% cc test.c
example% a.out
a[3] = 1
a[2] = 2
a[1] = 3
a[0] = 4
D-10 C User’s Guide • May 2002

The C99 function-specifier inline has been added. inline is fully functional for

functions with internal linkage. For functions defined with external linkage use of

the inline function-specifier creates an inline definition only, no external definition

of the function is created. Thus pointers to inline functions with external linkage are

unique to each translation unit and will not compare equal.

D.14 Commenting Code With //
6.4.9 Comments

The characters // introduce a comment that includes all multibyte characters up to,

but not including, the next new-line character except when the // characters appear

within a character constant, a string literal, or a comment.
Appendix D Supported Features of C99 D-11

D-12 C User’s Guide • May 2002

APPENDIX E

Performance Tuning (SPARC)

This appendix describes performance tuning on SPARC platforms.

E.1 Limits
Some parts of the C library cannot be optimized for speed, even though doing so

would benefit most applications. Some examples:

■ Integer arithmetic routines—Current SPARC V8 processors support integer

multiplication and division instructions. However, if standard C library routines

were to use these instructions, programs running on V7 SPARC processors would

either run slowly due to kernel emulation overhead, or might break altogether.

Hence, integer multiplication and division instructions cannot be used in the

standard C library routines.

■ Doubleword memory access—Block copy and move routines, such as memmove()
and bcopy() , could run considerably faster if they used SPARC doubleword load

and store instructions (ldd and std). Some memory-mapped devices, such as

frame buffers, do not support 64-bit access; nevertheless, these devices are

expected to work correctly with memmove() and bcopy() . Hence, ldd and std
cannot be used in the standard C library routines.

■ Memory allocation algorithms—The C library routines malloc() and free()
are typically implemented as a compromise between speed, space, and

insensitivity to coding errors in old UNIX programs. Memory allocators based on

“buddy system” algorithms typically run faster than the standard library version,

but tend to use more space.
E-1

E.2 libfast.a Library
The library libfast.a provides speed-tuned versions of standard C library

functions. Because it is an optional library, it can use algorithms and data

representations that may not be appropriate for the standard C library, even though

they improve the performance of most applications.

Use profiling to determine whether the routines in the following checklist are

important to the performance of your application, then use this checklist to decide

whether libfast.a benefits the performance:

■ Do use libfast.a if performance of integer multiplication or division is

important, even if a single binary version of the application must run on both V7

and V8 SPARC platforms. The important routines are: .mul , .div , .rem , .umul ,

.udiv , and .urem .

■ Do use libfast.a if performance of memory allocation is important, and the

size of the most commonly allocated blocks is close to a power of two. The

important routines are: malloc() , free() , realloc() .

■ Do use libfast.a if performance of block move or fill routines is important. The

important routines are: bcopy() , bzero() , memcpy() , memmove(), and

memset() .

■ Do not use libfast.a if the application requires user mode, memory-mapped

access to an I/O device that does not support 64-bit memory operations.

■ Do not use libfast.a if the application is multithreaded.

When linking the application, add the option -lfast to the cc command used at

link time. The cc command links the routines in libfast.a ahead of their

counterparts in the standard C library.
E-2 C User’s Guide • May 2002

APPENDIX F

The Differences Between K&R
Sun C and Sun ISO C

This appendix describes the differences between the previous K&R Sun C and Sun

ISO C.

For more information see Section 1.1, “Standards Conformance” on page 1-1.

F.1 K&R Sun C Incompatibilities With Sun
ISO C

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C

Topic Sun C (K&R) Sun ISO C

envp argument

to main()
Allows envp as third argument to

main() .

Allows this third argument;

however, this usage is not

strictly conforming to the ISO C

standard.

Keywords Treats the identifiers const ,

volatile , and signed as ordinary

identifiers.

const , volatile , and signed
are keywords.

extern and

static
functions

declarations

inside a block

Promotes these function

declarations to file scope.

The ISO standard does not

guarantee that block scope

function declarations are

promoted to file scope.

Identifiers Allows dollar signs ($) in

identifiers.

$ not allowed.

long float
types

Accepts long float declarations

and treats these as double (s).

Does not accept these

declarations.
F-1

Multi-character

character-

constants

int mc = 'abcd';

yields:

abcd

int mc = 'abcd';

yields:

dcba

Integer constants Accepts 8 or 9 in octal escape

sequences.

Does not accept 8 or 9 in octal

escape sequences.

Assignment

operators

Treats the following operator pairs

as two tokens, and as a

consequence, permits white space

between them:

*=, /=, %=, +=, -=, <<=,
>>=, &=, ^=, |=

Treats them as single tokens, and

therefore disallows white space

in between.

Unsigned

preserving

semantics for

expressions

Supports unsigned preserving, that

is, unsigned char/shorts are

converted into unsigned int (s).

Supports value-preserving, that

is, unsigned char /short (s)

are converted into int (s).

Single/double

precision

calculations

Promotes the operands of floating

point expressions to double .

Functions which are declared to

return float s always promote

their return values to double s.

Allows operations on float s to

be performed in single precision

calculations.

Allows float return types for

these functions.

Name spaces of

struct/union
members

Allows struct , union , and

arithmetic types using member

selection operators ('. ', '-> ') to

work on members of other

struct (s) or unions .

Requires that every unique

struct /union have its own

unique name space.

A cast as an

lvalue
Supports casts as lvalue (s). For

example:

(char *)ip = &char;

Does not support this feature.

Implied int
declarations

Supports declarations without an

explicit type specifier. A declaration

such as num; is treated as implied

int . For example:

num; /*num implied as an
int*/

int num2; /* num2
explicitly*/

/* declared an
int */

The num; declaration (without

the explicit type specifier int) is

not supported, and generates a

syntax error.

Empty

declarations

Allows empty declarations, such as:

int;

Except for tags, disallows empty

declarations.

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
F-2 C User’s Guide • May 2002

Type specifiers

on type

definitions

Allows type specifiers such as

unsigned , short , long on

typedef s declarations. For

example:

typedef short small;

unsigned small x;

Does not allow type specifiers to

modify typedef declarations.

Types allowed on

bit fields

Allows bit fields of all integral

types, including unnamed bit fields.

The ABI requires support of

unnamed bit fields and the other

integral types.

Supports bit-fields only of the

type int , unsigned int and

signed int . Other types are

undefined.

Treatment of tags

in incomplete

declarations

Ignores the incomplete type

declaration. In the following

example, f1 refers to the outer

struct :

struc t x { . . . } s1;

{struct x; struct y {struct
x f1; } s2; struct x

{ . . . };}

In an ISO-conforming

implementation, an incomplete

struct or union type specifier

hides an enclosing declaration

with the same tag.

Mismatch on

struct/union/
enum
declarations

Allows a mismatch on the

struct/enum/union type of a tag

in nested struct/union
declarations. In the following

example, the second declaration is

treated as a struct :

struct x {. . . }s1;

{union x s2; . . .}

Treats the inner declaration as a

new declaration, hiding the

outer tag.

Labels in

expressions

Treats labels as (void *)
lvalue s.

Does not allow labels in

expressions.

switch
condition type

Allows float (s) and double (s) by

converting them to int (s).

Evaluates only integral types

(int, char , and enumerated)

for the switch condition type.

Syntax of

conditional

inclusion

directives

The preprocessor ignores trailing

tokens after an #else or #endif
directive.

Disallows such constructs.

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
Appendix F The Differences Between K&R Sun C and Sun ISO C F-3

Token-pasting

and the ##
preprocessor

operator

Does not recognize the ## operator.

Token-pasting is accomplished by

placing a comment between the two

tokens being pasted:

#define PASTE(A,B) A/*any
comment*/B

Defines ## as the preprocessor

operator that performs

token-pasting, as shown in this

example:

#define PASTE(A,B) A##B

Furthermore, the Sun ISO C

preprocessor doesn’t recognize

the Sun C method. Instead, it

treats the comment between the

two tokens as white space.

Preprocessor

rescanning

The preprocessor recursively

substitutes:

#define F(X) X(arg)

F(F)

yields

arg(arg)

A macro is not replaced if it is

found in the replacement list

during the rescan:

#define F(X)X(arg)
F(F)

yields:

F(arg)

typedef names

in formal

parameter lists

You can use typedef names as

formal parameter names in a

function declaration. “Hides” the

typedef declaration.

Disallows the use of an identifier

declared as a typedef name as

a formal parameter.

Implementation-

specific

initializations of

aggregates

Uses a bottom-up algorithm when

parsing and processing partially

elided initializers within braces:

struct{ int a[3]; int b; }\
w[]={{1},2};

yields

sizeof(w)=16

w[0].a=1,0,0

w[0].b=2

Uses a top-down parsing

algorithm. For example:

struct{int a[3];int b;}\

w[]={{1},2};

yields

sizeof(w)=32
w[0].a=1,0,0
w[0].b=0
w[1].a=2,0,0
w[1].b=0

Comments

spanning

include files

Allows comments which start in an

#include file to be terminated by

the file that includes the first file.

Comments are replaced by a

white-space character in the

translation phase of the

compilation, which occurs before

the #include directive is

processed.

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
F-4 C User’s Guide • May 2002

Formal

parameter

substitution

within a

character

constant

Substitutes characters within a

character constant when it matches

the replacement list macro:

#define charize(c)'c'

charize(Z)

yields:

'Z'

The character is not replaced:

#define charize(c) 'c'
charize(Z)

yields:

'c'

Formal

parameter

substitution

within a string

constant

The preprocessor substitutes a

formal parameter when enclosed

within a string constant:

#define stringize(str)
'str'

stringize(foo)

yields:

”foo”

The # preprocessor operator

should be used:

#define stringize(str)
'str'

stringize(foo)

yields:

”str”

Preprocessor

built into the

compiler

“front-end”

Compiler invokes cpp (1) followed

by all the other components of the

compilation system depending on

the options specified.

The ISO C translation phases 1-4,

which cover the processing of

preprocessor directives, is built

directly into acomp, so cpp is not

directly invoked during

compilation, except in -Xs
mode.

Line

concatenation

with backslash

Does not recognize the backslash

character in this context.

Requires that a newline

character immediately preceded

by a backslash character be

spliced together.

Trigraphs in

string literals

Does not support this ISO C

feature.

asm keyword asm is a keyword. asm is treated as an ordinary

identifier.

Linkage of

identifiers

Does not treat uninitialized static
declarations as tentative

declarations. As a consequence, the

second declaration will generate a

'redeclaration' error, as in:

static in t i = 1;

static int i;

Treats uninitialized static
declarations as tentative

declarations.

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
Appendix F The Differences Between K&R Sun C and Sun ISO C F-5

Name spaces Distinguishes only three:

struct/union/enum tags,

members of struct/union/enum ,

and everything else.

Recognizes four distinct name

spaces: label names, tags (the

names that follow the keywords

struct, union or enum),

members of

struct/union/enum , and

ordinary identifiers.

long double
type

Not supported. Allows long double type

declaration.

Floating point

constants

The floating point suffixes, f , l , F,

and L, are not supported.

Unsuffixed

integer constants

can have

different types

The integer constant suffixes u and
U are not supported.

Wide character

constants

Does not accept the ISO C syntax

for wide character constants, as in:

wchar_t wc = L’x’;

Supports this syntax.

'\a' and '\x' Treats them as the characters 'a' and

'x '.

Treats '\a' and '\x' as special

escape sequences.

Concatenation of

string literals

Does not support the ISO C

concatenation of adjacent string

literals.

Wide character

string literal

syntax

Does not support the ISO C wide

character, string literal syntax

shown in this example:

wchar_t *ws = L"hello";

Supports this syntax.

Pointers:

void * versus

char *

Supports the ISO C void * feature.

Unary plus

operator

Does not support this ISO C

feature.

Function

prototypes—

ellipses

Not supported. ISO C defines the use of ellipses

"..." to denote a variable

argument parameter list.

Type definitions Disallows typedef s to be

redeclared in an inner block by

another declaration with the same

type name.

Allows typedef s to be

redeclared in an inner block by

another declaration with the

same type name.

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
F-6 C User’s Guide • May 2002

F.2 Keywords
The following tables list the keywords for the ISO C Standard, the Sun ISO C

compiler, and the Sun C compiler.

Initialization of

extern variables

Does not support the initialization

of variables explicitly declared as

extern .

Treats the initialization of

variables explicitly declared as

extern , as definitions.

Initialization of

aggregates

Does not support the ISO C

initialization of unions or automatic

structures.

Prototypes Does not support this ISO C

feature.

Syntax of

preprocessing

directive

Recognizes only those directives

with a # in the first column.

ISO C allows leading

white-space characters before a #
directive.

The #
preprocessor

operator

Does not support the ISO C #

preprocessor operator.

#error
directive

Does not support this ISO C

feature.

Preprocessor

directives

Supports two pragmas,

unknown_control_flow and

makes_regs_inconsistent
along with the #ident directive.

The preprocessor issues warnings

when it finds unrecognized

pragmas.

Does not specify its behavior for

unrecognized pragmas.

Predefined macro

names

These ISO C-defined macro names

are not defined:

__STDC__

__DATE__

__TIME__

__LINE__

TABLE F-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
Appendix F The Differences Between K&R Sun C and Sun ISO C F-7

The first table lists the keywords defined by the ISO C standard.

The C compiler also defines one additional keyword, asm. However, asm is not

supported in -Xc mode.

Keywords in Sun C are listed below.

TABLE F-2 ISO C Standard Keywords

_Bool 1 _Complex 1 _Imaginary 1 auto

break case char const

continue default do double

else enum extern float

for goto if inline 1

int long register restrict 1

1. Defined with -xc99=%all only.

return short signed sizeof

static struct switch typedef

union unsigned void volatile

while

TABLE F-3 Sun C (K&R) Keywords

asm auto break case

char continue default do

double else enum extern

float for fortran goto

if int long register

return short sizeof static

struct switch typedef union

unsigned void while
F-8 C User’s Guide • May 2002

APPENDIX G

Implementation-Specific
Information of OpenMP

This appendix details the implementation specific details of OpenMP C and C++
Application Program Interface Version 1.0 - October 1998 (available from:

http://www.openmp.org)

■ In the absence of an explicitly defined OMP_SCHEDULEenvironment variable, this

implementation uses static scheduling for loops with schedule(runtime) .

■ In the absence of an explicitly defined schedule clause, the default is static

scheduling.

■ If you do not explicitly specify the number of threads in a team through either the

opm_set_num_threads function or the OMP_NUM_THREADSenvironment

variable, the default is 1.

■ If you do not explicitly specify whether dynamic adjustment of threads is enabled

through either the omp_set_dynamic function or the OMP_DYNAMIC
environment variable, the default is enabled dynamic adjustment.

■ Nested parallelism is not supported and is disabled by default.
G-1

G-2 C User’s Guide • May 2002

Index
SYMBOLS
, A-29

#assert , 2-11, A-9

#define , A-10

#include
adding header files with, 2-6

#pragma , 2-12 to 2-21, 6-2 to 6-5

.profile filename extenstion, A-62

// comment indicators

in C99, D-11

with -xCC , A-39

_ _asm keyword, 2-3

__’uname -s’_’uname -r’ , 2-22, 5-20, A-10

__BUILT_IN_VA_ARG_INCR , 2-22, 5-20, A-10

__DATE__, C-13

__func__ , D-8

__i386 , 2-22, 5-20, A-10

__lint predefined token, 5-20

__MATHERR_ERRNO_DONTCARE, A-16

__PRAGMA_REDEFINE_EXTNAME, 2-22

__RESTRICT, 2-22, 5-20, A-11

__sparc , 2-22, 5-20, A-10

__sparcv9 , 5-15, 5-20, A-10

__sun , 2-22, 5-20, A-10

__SUNPRO_C, 2-22, 5-20, A-10

__SVR4, 2-22, 5-20, A-10

__TIME__ , C-13

__unix , 2-22, 5-20, A-10

_OPENMP, A-58

_Pragma, D-2

_REENTRANT-lthread , A-24

_Restrict , 2-3

A
accessible documentation, xxxiv

acomp (C compiler), 1-3

alias disambiguation, 6-1 to 6-18

alignment of structures, C-9

any level alias disambiguation, A-31

arithmetic conversions, 2-4 to 2-5

array

declarators per C99, D-4

incomplete array types per C99, D-5

_ _asm keyword, 2-3

assembler, 1-3

assembly in source, 2-3

#assert , 2-11, A-9

Auto-Read, A-66

B
basic level alias disambiguation, A-31

basic mode of lint , 5-1

behavior, implementation-defined, C-1 to C-21

Binary Interface Descriptors (BIDS), A-55

binding

static vs. dynamic, A-9

bit-field

as impacted by transition to ISO C, 7-38

portability of constants assigned to, 5-26

promotion of, 7-11

treating as signed or unsigned, C-10

bits, in execution character set, C-3

bitwise

operations on signed integers, C-6

buffering, C-18
Index-1

C
C compiler

changing default dirs searched for libraries, A-2

compilation modes and dependencies, 2-21

compiling a program, A-1 to A-2

components, 1-3

driver call to incremental linker, 4-2

options passed to linker, A-77

options summary table, A-2

C programming tools, 1-3

_ _STDC_ _ value under -X , A-29

C99

// comment indicators, D-11

__func__ support, D-8

_Pragma , D-2

array declarator, D-4

flexible array members, D-5

idempotent qualifiers, D-1

implicit function declaration in, D-7

inline function specifier, D-10

list of keywords, D-8

mixed declarations and code, D-4

type declaration in for loop, D-7

type specifier requirement, D-6

variable length arrays, D-10

case statements, C-11

cc compiler options, A-1 to A-76

-# , A-6, A-9

-### , A-6, A-9

-A , A-5, A-9

-B , A-7, A-9

-C , A-5, A-10

-c , A-6, A-10

-D , A-5, A-10

-d , A-7, A-11

-dalign
as part of -fast expansion, A-15

syntax, A-11

-E , A-5, A-11

-errfmt , A-7, A-12

-erroff , A-7, A-12

-errshort , A-7, A-13

-errtags , A-7, A-13

-errwarn , A-7, A-13

-fast , A-2, A-14

-fd , A-5, A-16

-flags , A-17

-fnonstd , A-3, A-17

-fns

as part of -fast expansion, A-15

grouped by functionality, A-4

syntax, A-17

-fprecision , A-4, A-18

-fround , A-4, A-18

-fsimple
as part of -fast expansion, A-15

grouped by functionality, A-4

syntax, A-18

-fsingle
as part of -fast expansion, A-15

grouped by functionality, A-4

syntax, A-19

-fstore , A-4, A-19

-ftrap
as part of -fast expansion, A-15

grouped by functionality, A-4

syntax, A-20

-G , A-7, A-20

-g , A-7, A-20

-H , A-5, A-21

-h , A-7, A-22

-I , A-5, A-22

-i , A-7, A-22

-keeptmp , A-6, A-23

-KPIC , A-22

-Kpic , A-23

-L , A-7, A-23

-l , A-7, A-23

-mc , A-8, A-23

-misalign , A-23

-misalign2 , A-24

-mr , A-8, A-24

-mt , A-4, A-24

-native , A-24

-nofstore
as part of -fast expansion, A-15

grouped by functionality, A-4

syntax, A-24

-O , A-24

-o , A-6, A-25

-P , A-5, A-25

-p , A-2, A-25

-Q , A-8, A-25

-qp , A-25

-R , A-8, A-25

-S , A-6, A-26

-s , A-7, A-26

-U , A-5, A-26
Index-2 C User’s Guide • May 2002

-V , A-6, A-27

-v , A-7, A-27

-W, A-6, A-27

-w , A-7, A-28

-X , A-6, A-28

-x386 , A-2, A-29

-x486 , A-2, A-29

-xa , A-29

-xalias_level
as part of -fast expansion, A-15

examples, 6-8 to 6-18

explanation, 6-1

grouped by functionality, A-2

syntax, A-30

-xarch
as part of -fast expansion, A-15

grouped by functionality, A-8

syntax, A-32

-xautopar , A-4, A-37

-xbuiltin
as part of -fast expansion, A-15

grouped by functionality, A-3

syntax, A-38

-xc99 , A-5

-xcache , A-8, A-39

-xCC , A-5, A-39

-xcg , A-8, A-40

-xchar , A-5, A-6, A-41

-xchar_byte_order , A-3, A-42

-xcheck , A-4, A-7, A-42

-xchip , A-8, A-43

-xcode , A-8, A-44

-xcrossfile , A-3, A-45

-xcsi , A-5, A-46

-xdepend
as part of -fast expansion, A-15

grouped by functionality, A-3

syntax, A-46

-xe , A-7, A-46

-xexplicitpar , A-4, A-47

-xF , A-3

-xhelp , A-6, A-48

-xildoff , A-8, A-48

-xildon , A-8, A-48

-xinline , A-3, A-48

-xipo , A-3, A-50

-xlibmieee , A-4, A-51

-xlibmil
as part of -fast expansion, A-15

grouped by functionality, A-3

syntax, A-51

-xlic_lib , A-3, A-52

-xlicinfo , A-2, A-52

-xloopinfo , A-4, A-52

-xM , A-5, A-52

-xM1 , A-5, A-53

-xmaxopt , A-3, A-54

-xmemalign
as part of -fast expansion, A-15

grouped by functionality, A-3

syntax, A-54

-xMerge , A-8, A-53

-xnativeconnect , A-8, A-55

-xnolib , A-8, A-56

-xnolibmil , A-3, A-8, A-56

-xO
grouped by functionality, A-3

syntax, A-56

-xopenmp , A-4, A-58

-xP , A-5, A-59

-xparallel , A-4, A-59

-xpentium , A-3, A-60

-xpg , A-5, A-60

-xprefetch
grouped by functionality, A-3

syntax, A-60

-xprefetch_level , A-3, A-61

-xprofile , A-3, A-62

-xreduction , A-4, A-64

-xregs , A-8, A-64

-xrestrict , A-3, A-65

-xs , A-7, A-66

-xsafe , A-3, A-67

-xsb , A-6, A-67

-xsbfast , A-6, A-67

-xsfpconst , A-4, A-67

-xspace , A-3, A-67

-xstrconst , A-8, A-68

-xtarget
grouped by functionality, A-8

syntax, A-68

-xtemp , A-6, A-73

-xtime , A-6, A-73

-xtransition , A-7, A-73

-xtrigraphs , A-6, A-74

-xunroll , A-3, A-75

-xvector , A-4, A-75

-xvpara , A-5, A-7, A-75
Index-3

-Y , A-6, A-76

-YA , A-6, A-76

-YI , A-6, A-76

-YP , A-6, A-76

-YS , A-6, A-76

-Zll , A-5, A-76

cg (code generator), 1-3

char
signedness of, A-41

storage allocation for, B-1

character

bits in set, C-3

decimal point, C-20

mapping set, C-3

multibyte, shift status, C-3

set, collation sequence, C-20

single-character character constant, C-11

source and execution of set, C-3

space, C-17

testing of sets, C-14

clock function, C-19

code generator, 1-3

code optimization

by using -fast , A-14

optimizer, 1-3

with -xO , A-56

comments

preventing removal by preprocessor, A-10

using // by issuing -xCC , A-39

using // in C99, D-11

compatibility options, A-1, A-28

compilers, accessing, xxxi

consistency checks by lint , 5-25

const, 7-17 to 7-20, 7-37

constants

promotion of integral, 7-11

specific to Sun ISO C, 2-5 to 2-6

conversion

integers, C-5

conversions, 2-4 to 2-5

cpp (C preprocessor), 1-3

cscope , 9-1 to 9-20

command-line use, 9-3 to 9-4, 9-11 to 9-13

editing source files, 9-2 to 9-3, 9-10 to 9-11, 9-19

to 9-20

environment setup, 9-2 to 9-3, 9-20

environment variables, 9-14

searching source files, 9-1 to 9-2, 9-3, 9-4 to 9-10

See also Source Browser

usage examples, 9-2 to 9-11, 9-15 to 9-19

D
data types

long long , 2-4

unsigned long long , 2-4

__DATE__, C-13

date and time formats, C-20

dbx tool

disable Auto-Read for, A-66

initializes faster, A-66

symbol table information for, A-20

debugging information, removing, A-26

decimal-point character, C-20

declarators, C-11

default

compiler behavior, A-28

handling and SIGILL , C-17

locale, C-4

default dirs searched for libraries, A-2

deferred-link messages, 4-6

#define , A-10

diagnostics, format, C-1

directives, 2-11

documentation index, xxxiii

documentation, accessing, xxxiii to xxxiv

domain errors, math functions, C-14

double
storage allocation for, B-2

dynamic linking, A-11

E
edit, source files, See cscope
EDITOR, 9-2, 9-19

ellipsis notation, 7-3, 7-6, 7-38

enhanced mode of lint , 5-1

environment variable

EDITOR as used by cscope , 9-2, 9-19

LANG, C-4

LC_ALL, C-4

LC_CTYPE, C-4

LD_DEBUG, 4-17

LD_LIBRARY_PATH, 4-11

LD_LIBRARY_PATH as used by incremental

linker, 4-16
Index-4 C User’s Guide • May 2002

LD_LIBRARY_PATH_64, 4-17

LD_OPTIONS, 4-17

LD_PRELOAD, 4-17

LD_RUN_PATH, 4-17

list of Sun specific variables, 2-3

OMP_DYNAMIC, 2-1, G-1

OMP_NESTED, 2-1

OMP_NUM_THREADS, 2-1, G-1

OMP_SCHEDULE, 2-2, G-1

PARALLEL, 2-2, 3-3, A-38

SUN_PROFDATA, 2-2, A-62

SUN_PROFDATA_DIR, 2-2, A-62

SUNPRO_SB_INIT_FILE_NAME, 2-2

SUNW_MP_THR_IDLE, 3-3

SUNW_MP_WARN, 3-4

TCOVDIR, A-63

TERM as used by cscope , 9-2

TZ, C-19

VPATH as used by cscope , 9-3

ERANGE, C-15

errno , C-15

error messages, C-1

adding prefix "error:" to, A-12

controlling length for a type mismatch, A-13

suppressing in lint , 5-8

example messages

full relink, 4-8

ild version, 4-8

new working directory, 4-9

out of room, 4-7

running strip , 4-7

too many files changed, 4-8

executable, modifying, 4-5

expressions, grouping and evaluation in, 7-30 to

7-33

F
faster linking and initializing, A-66

fbe (assembler), 1-3

file

padding by incremental linker, 4-1

filename, .profile extension for, A-62

files used by ild , 4-20

files, temporary, 2-3

filters for lint , 5-30 to 5-31

final production code and incremental linker, 4-5

FIPS 160 standard, 1-1

Fix and Continue
and ild , 4-1

linking, 4-1

float
storage allocation for, B-2

float expressions as single precision, A-19

floating point, C-7

gradual underflows, 2-10

nonstandard, A-17

nonstop, 2-10

representations, C-7

truncation, C-7, C-8

values, C-7

for loop that contains a type declaration, D-7

fprintf function, C-19

fscanf function, C-19

full relink,reasons for, 4-6

function

clock , C-19

fmod , C-15

fprintf , C-19

fscanf , C-19

implicit declaration of, D-7

omp_get_num_threads , G-1

omp_set_dynamic , G-1

prototypes, 5-25, 7-2 to 7-6

prototypes, lint checks for, 5-29

remove , C-18

rename , C-18

sunw_mp_register , 3-2

using varying argument lists, 7-6 to 7-8

G
-g

 example 1, 4-7

 example 2, 4-7

global symbols and the incremental linker, 4-2

gradual underflows, 2-10

H
hardware architecture, A-32

header files

format for #include directives, 2-6

how to include, 2-6 to 2-7

math.h , A-16
Index-5

standard place, 2-7

with lint , 5-3 to 5-4

how to use the incremental linker, 4-2

I
i386 predefined token, 2-22, 5-20, A-10

idempotent qualifier in C99, D-1

implementation-defined behavior, C-1 to C-21

incomplete types, 7-33 to 7-35

incremental linker (ILD)

as compared to linker, 4-4

as part of C compilation system, 1-3

as used by compiler driver, 4-2

bypassing with -G , A-20

commands

-a , 4-9

-B , 4-10

-d , 4-10

-e , 4-10

-g , 4-10

-I , 4-10

-i , 4-11

-L , 4-11

-l , 4-11

-m, 4-11

-o , 4-11

-Q , 4-12

-R , 4-12

-s , 4-12

-t , 4-12

-u , 4-12

-V , 4-12

-xildoff , 4-13

-xildon , 4-13

-YP , 4-13

-z , 4-13

-z defs , 4-13

-z i_dryrun , 4-14

-z i_full , 4-14

-z i_noincr , 4-14

-z i_quiet , 4-14

-z i_verbose , 4-14

-z nodefs , 4-14

commands accepted from compiler

-a , 4-15

-e , 4-15

-I , 4-15

-m, 4-15

-t , 4-15

-u , 4-15

environament variables

LD_DEBUG, 4-17

LD_LIBRARY_PATH, 4-16
LD_LIBRARY_PATH_64, 4-17

LD_OPTIONS, 4-17

LD_PRELOAD, 4-17

LD_RUN_PATH, 4-17

examples, 4-7 to 4-9

figure explaining, 4-3

global symbols, 4-2

how it works, 4-4

how to use, 4-2

impact of changing object files, 4-5

impact on final production code, 4-5

introduction, 4-1

invalidating object files, 4-2

invoking with -g , A-20

limitations, 4-5

linker commands passed to, 4-2

overview, 4-1

performance improvement with -xs , A-66

relink messages, 4-6

relocation records, 4-1

saved files, 4-1, 4-2

See linker

symbol references, 4-4

timestamps, 4-2

turning off with -xildoff , A-48

turning on with -xildon , A-48

unsupported commands

-D , 4-19

-F , 4-19

-M, 4-19

-r , 4-20

unsupported commands from linker

-B , 4-18

-b , 4-18

-G , 4-18

-h , 4-18

-z muldefs , 4-19

-z text , 4-19

inline expansion templates, A-51, A-56

inline function specifier for C99, D-10

inlining, A-51

int
storage allocation for, B-1
Index-6 C User’s Guide • May 2002

integers, C-5 to C-6

integral constants, promotion of, 7-11

interactive device, C-2

internationalization, 7-21 to 7-24, 7-27 to 7-30

interprocedural analysis pass, A-50

invoking the incremental linker, 4-2

ipo (C compiler), 1-3

ir2hf (C compiler), 1-3

iropt (code optimizer), 1-3

isalnum, C-14

isalpha, C-14

iscntrl, C-14

islower, C-14

ISO C vs. K&R C, A-1, A-28 to A-29

ISO/IEC 9899:1990 Programming Language C, 1-1

ISO/IEC 9899:1999 Programming Language C, 1-1,

D-1

ISO/IEC 9899-1990 standard, 2-1

ISO/IEC 9899-1999 standard, 2-1

isprint, C-14

isupper, C-14

J
Java Native Interface, A-55

JNI, A-55

K
K&R C vs. ISO C, A-1, A-28 to A-29

keywords, 2-3

list for C99, D-8

L
LANG, C-4

layout level alias disambiguation, A-31

LC_ALL, C-4

LC_CTYPE, C-4

ld (C compiler), 1-3

LD_DEBUG, 4-17

LD_LIBRARY_PATH, 4-11

LD_LIBRARY_PATH_64, 4-17

LD_OPTIONS, 4-17

LD_PRELOAD, 4-17

LD_RUN_PATH, 4-17

libfast.a , E-2

libraries

default dirs searched by cc , A-2

intrinsic name, A-22

libfast.a , E-2

lint , 5-29 to 5-30

llib-lx.ln , 5-29

renaming shared, A-22

shared or non shared, A-9

specifying dynamir or static links, A-9

library bindings, A-9

limit of memory allocation on stack, B-1

link, static vs. dynamic, A-11

linker

invoking with -G , A-20

options not supported by incremental

linker, 4-18

options received from compiler, A-77

See incremental linker (ILD)

specifying dynamic or static linking in, A-11

suppressing linking with, A-10

using in place of incremental linker, A-48

lint

basic mode

introduced, 5-1

invoking, 5-2

commands

-# , 5-4

-### , 5-4

-a , 5-5

-b , 5-5

-C , 5-5

-c , 5-5

-dirout , 5-5

-err=warn , 5-5

-errchk , 5-6

-errfmt , 5-7

-errhdr , 5-7

-erroff , 5-8

-errtags , 5-9

-errwarn , 5-9

-F , 5-10

-fd , 5-10

-flagsrc , 5-10

-h , 5-10

-I , 5-10

-k , 5-10

-L , 5-10

-l , 5-11
Index-7

-m, 5-11

-n , 5-13

-Ncheck , 5-11

-Nlevel , 5-12

-o , 5-13

-p , 5-13

-R , 5-13

-s , 5-13

-u , 5-14

-V , 5-14

-v , 5-14

-W, 5-14

-x , 5-14

-Xalias_level , 5-15

-Xarch=v9 , 5-15

-XCC, 5-14

-Xexplicitpar , 5-15

-Xkeeptmp , 5-15

-Xtemp , 5-15

-Xtime , 5-16

-Xtransition , 5-16

-y , 5-16

consistency checks, 5-25

diagnostics, 5-24 to 5-29

directives, 5-20 to 5-24

enhanced mode

introduced, 5-1

invoking, 5-2

filters, 5-30 to 5-31

header files, finding, 5-3

how lint examines code, 5-3

introduction to, 5-1

libraries, 5-29 to 5-30

messages

formats of, 5-17 to 5-19

message ID (tag), identifying, 5-9, 5-16

suppressing, 5-16

portability checks, 5-25 to 5-27

predefined tokens, 5-20

predefinition, 2-11

questionable constructs, 5-27 to 5-29

recognized cc commands, 5-4

llib-lx.ln library, 5-29

local time zone, C-19

locale, 7-27, 7-29

behavior, C-19

default, C-4

use of non-conforming, A-46

long

storage allocation for, B-1

long double , B-11

storage allocation for, B-2

long int , 2-5

long long , 2-4 to 2-5

arithmetic promotions, 2-4

passing, B-11

representation of, B-4

returning, B-11

storage allocation for, B-2

suffix, 2-5

value preserving, 2-6

loops, A-46

M
macro expansion, 7-15

macros

__DATE__, C-13

__MATHERR_ERRNO_DONTCARE, A-16

__RESTRICT, 2-22

__TIME__ , C-13

main
semantics of args, C-2

man pages, accessing, xxxi

MANPATH environment variable, setting, xxxiii

math functions,domain errors, C-14

mcs (C compiler), 1-3

mcs and strip , 4-7

memory allocation on the stack, B-1

message ID (tag), A-12, A-13

messages

deferred link, 4-6

error, C-1

ild relink, 4-6

mode, compiler, A-29

MP C, 3-1 to 3-32

multibyte characters and wide characters, 7-21 to

7-24

multiprocessing, 3-1 to 3-32

N
Native Connector Tool (NCT), A-55

NCT, A-55

newline, terminating, C-17

nonstop
Index-8 C User’s Guide • May 2002

floating-point arithmetic, 2-10, A-17

null characters not appended to data, C-17

NULL, value of, C-13

O
object file

impact of changes on incremental linker, 4-5

invalidated by incremental linker, 4-2

linking with ld , A-10

producing object file for each source file, A-10

supressing removal of, A-10

OMP_DYNAMIC, 2-1

OMP_DYNAMIC environment variable, G-1

omp_get_num_threads , G-1

OMP_NESTED, 2-1

OMP_NUM_THREADS, 2-1

OMP_NUM_THREADS environment variable, G-1

OMP_SCHEDULE, 2-2

OMP_SCHEDULE environment variable, G-1

omp_set_dynamic , G-1

OpenMP

defining the_OPENMP prepeocessor token, A-58

how to compile for, 3-2

implementation specific information, G-1

OMP_DYNAMIC environment variable, G-1

omp_get_num_threads , G-1

OMP_NUM_THREADS environment variable, G-1

OMP_SCHEDULE environment variable, G-1

omp_set_dynamic , G-1

sunw_mp_register , 3-2

supported version information, G-1

-xopenmp command, A-58

optimization

by using -xipo , A-50

for SPARC, E-1

optimizer, 1-3

specify hardware architecture, A-32

with -fast , A-14

with -xO , A-56

options

compiler, A-1 to A-77

Incremental Linke Editor ild , 4-9

lint , 5-4 to 5-16

overview of incremental linker, 4-1

P
padding added to files by incremental linker, 4-1

padding of structures, C-9

PARALLEL, 2-2, 3-3, A-38

parallelization, 3-1 to 3-32

checking for properly parallelized loops with

-xvpara , A-75

creating a program database with -Zll , A-76

finding parallelized loops with -
xloopinfo , A-52

list of compiler commands for, A-4

See also OpenMP

specifying multithread coding with -mt , A-24

specifying OpenMP pragmas with

-xopenmp , A-58

turning on reduction recognition with

-xreduction , A-64

turning on with -xautopar for multiple

processors, A-37

with -xexplicitpar , A-47

-xparallel macro, A-59

pass, name and version of each, A-27

PATH environment variable, setting, xxxii

Pentium, A-73

performance

comparison of incremental linker and linker, 4-4

impact of incremental linker on final production

code, 4-5

improving linker’s with -xs , A-66

optimizing for SPARC, E-1

optimizing with -fast , A-14

optimizing with-xO , A-56

portability checks performed by lint , 5-25 to 5-27

portability, of code, 5-25 to 5-27

postopt (C compiler), 1-3

#pragma alias , 6-3

#pragma alias_level , 6-3

#pragma align , 2-12

#pragma does_not_read_global_data , 2-13

#pragma does_not_return , 2-13

#pragma does_not_write_global_data , 2-14

#pragma error_messages , 2-14

#pragma fini , 2-14

#pragma ident , 2-15

#pragma init , 2-15

#pragma inline , 2-15

#pragma int_to_unsigned , 2-15

#pragma may_not_point_to , 6-5

#pragma may_piont_to , 6-4
Index-9

#pragma MP serial_loop , 2-16, 3-24

#pragma MP serial_loop-nested , 2-16, 3-24

#pragma MP taskloop , 2-16, 3-25

#pragma no_inline , 2-15

#pragma no_side_effect , 2-16, 2-17

#pragma noalias , 6-4

#pragma nomemorydepend , 2-16

#pragma opt , 2-17

#pragma pack , 2-17

#pragma pipeloop , 2-18

#pragma rarely_called , 2-18

#pragma redefine_extname , 2-18

#pragma returns_new_memory , 2-19

#pragma unknown_control_flow , 2-20

#pragma unroll , 2-20

#pragma weak , 2-20

preassertions for -Aname , A-9

predefined tokens

__’uname -s’_’uname -r’ , 2-22, 5-20, A-10

__BUILTIN_VA_ARG_INCR, 2-22, 5-20, A-10

__i386 , 2-22, 5-20, A-10

__lint , 5-20

__RESTRICT, 2-22, 5-20, A-11

__sparc , 2-22, 5-20, A-10

__sparcv9 , 5-15, 5-20, A-10

__sun , 2-22, 5-20, A-10

__SUNPRO_C, 2-22, 5-20, A-10

__SVR4, 2-22, 5-20, A-10

__unix , 2-22, 5-20, A-10

i386 , 2-22, 5-20, A-10

lint , 5-20

sparc , 2-22, 5-20, A-10

sun , 2-22, 5-20, A-10

unix , 2-22, 5-20, A-10

preprocessing, 7-13 to 7-17

directives, 2-7, 2-21, A-10, C-11

how to preserve comments, A-10

predefined names, 2-21

stringizing, 7-16

token pasting, 7-17

preserving signedness of chars, A-41

printing, 2-4, C-19

profiling with tcov , A-29

programming tools for C, 1-3

promotion, 7-9 to 7-12

bit-fields, 7-11

default arguments, 7-3

integral constants, 7-11

value preserving, 7-9

Q
qualifiers, C-11

R
reasons for full relinks, 4-6

relink messages, 4-6

remove function, C-18

removing symbolic debugging information, A-26

rename function, C-18

renaming shared libraries, A-22

representation

floating point, C-7

integers, C-5

reserved names, 7-24 to 7-26

for expansion, 7-26

for implementation use, 7-25

guidelines for choosing, 7-26

__RESTRICT macro, 2-22

restrict keyword

as part of supported C99 features, D-8

as recognized by -Xs , 3-24

as type qualifier in parallelized code, 3-24

as used in parallelized code, 3-5

right shift, C-6

rounding behavior, 2-10

S
saved files and the incremental linker, 4-2

search, source files, See cscope
setlocale (3C), 7-27, 7-29

shared libraries, 4-5

shared libraries, naming, A-22

shared objects as created by incremental linker, 4-5

shell prompts, xxxi

short
storage allocation for, B-1

signal, C-15 to C-17

signed , C-4

signedness of chars, A-41

source files

checking with lint , 5-1 to 5-31

compatability of K&R C and ISO C, A-1

editing, See cscope
locating, C-12

searching, See cscope
Index-10 C User’s Guide • May 2002

space characters, C-17

sparc predefined token, 2-22, 5-20, A-10

ssbd (C compiler), 1-3

stack, memory allocation on, B-1

standards conformance, 1-1, 2-1

static linking, A-11

static scheduling, G-1

std level alias disambiguation, A-32

storage allocation for types, B-1

streams, C-17

strict level alias disambiguation, A-32

string literals in text segment, A-68

strip and mcs , 4-7

strong level alias disambiguation, A-32

structure

alignment, C-9

padding, C-9

sun predefined token, 2-22, 5-20, A-10

SUN_PROFDATA, 2-2, A-62

SUN_PROFDATA_DIR, 2-2, A-62

SUNPRO_SB_INIT_FILE_NAME, 2-2

SUNW_MP_THR_IDLE, 3-3

symbol references of incremental linker, 4-4

symbol table for dbx , A-66

symbolic debugging information, removing, A-26

T
tcov

new style with -xprofile , A-63

tcov tool, A-29

TCOVDIR, A-63

Temporary files, 2-3

TERM, 9-2

text

segment and string literals, A-68

stream, C-17

__TIME__ , C-13

time and date formats, C-20

time to link, 4-1

timestamps as used by incremental linker, 4-2

/tmp , 2-3

TMPDIR environment variable, 2-3

tokens, 7-13 to 7-17

tools for programming with C, 1-3

trigraph sequences, 7-13

type-based alias-disambiguation, 6-1 to 6-18

types

compatible and composite, 7-36 to 7-38

const and volatile qualifier, 7-17 to 7-21

declaraions and code, D-4

declaration in for loop, D-7

incomplete, 7-33 to 7-35

specifier requirement in declaration, D-6

storage allocation for, B-1

typographic conventions, xxx

TZ, C-19

U
ube (C compiler), 1-3

ube_ipa (C compiler), 1-3

underflow, gradual, A-17

unix predefined token, 2-22, 5-20, A-10

unsigned , C-4

unsigned long long , 2-4

using assembly in source, 2-3

V
value

floating point, C-7

integers, C-5

varargs (5), 7-3

variable length arrays in C99, D-10

volatile, 7-17 to 7-19, 7-20 to 7-21, 7-37

volatile , C-11

VPATH, 9-3

W
warning messages, C-1

weak level alias disambiguation, A-31

whole-program optimizations, A-50

wide character constants, 7-23 to 7-24

wide characters, 7-22 to 7-24

wide string literals, 7-23 to 7-24

write on text stream, C-18

Z
-z i_verbose option, 4-6

zero-length file, C-18
Index-11

Index-12 C User’s Guide • May 2002

	C User's Guide
	Contents
	Figures
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Compilers and Tools
	Accessing Forte Developer Man Pages

	Accessing Forte Developer Documentation
	Product Documentation in Accessible Formats
	Related Forte Developer Documentation

	Accessing Related Solaris Documentation
	Sending Your Comments

	Introduction to the C Compiler
	1.1 Standards Conformance
	1.2 Organization of the Compiler
	1.3 C�Related Programming Tools

	C-Compiler Information Specific to Sun’s Implementation
	2.1 Environment Variables
	2.1.1 OMP_DYNAMIC
	2.1.2 OMP_NESTED
	2.1.3 OMP_NUM_THREADS
	2.1.4 OMP_SCHEDULE
	2.1.5 PARALLEL
	2.1.6 SUN_PROFDATA
	2.1.7 SUN_PROFDATA_DIR
	2.1.8 SUNPRO_SB_INIT_FILE_NAME
	2.1.9 SUNW_MP_THR_IDLE
	2.1.10 TMPDIR

	2.2 Keywords
	2.2.1 _ _asm Keyword
	2.2.2 _Restrict Keyword

	2.3 long long Data Type
	2.3.1 Printing long long Data Types
	2.3.2 Usual Arithmetic Conversions

	2.4 Constants
	2.4.1 Integral Constants
	2.4.2 Character Constants

	2.5 Include Files
	2.5.1 Using the -I- Option to Change the Search Algorithm

	2.6 Nonstandard Floating Point
	2.7 Preprocessing Directives and Names
	2.7.1 Assertions
	2.7.2 Pragmas
	2.7.3 Predefined Names

	2.8 Labels as Values

	Parallelizing Sun C Code
	3.1 Overview
	3.1.1 Example of Use

	3.2 Parallelizing for OpenMP
	3.2.1 Handling OpenMP Runtime Warnings

	3.3 Environment Variables
	3.4 Data Dependence and Interference
	3.4.1 Parallel Execution Model
	3.4.2 Private Scalars and Private Arrays
	3.4.3 Storeback
	3.4.4 Reduction Variables

	3.5 Speedups
	3.5.1 Amdahl’s Law

	3.6 Load Balance and Loop Scheduling
	3.6.1 Static or Chunk Scheduling
	3.6.2 Self Scheduling
	3.6.3 Guided Self Scheduling

	3.7 Loop Transformations
	3.7.1 Loop Distribution
	3.7.2 Loop Fusion
	3.7.3 Loop Interchange

	3.8 Aliasing and Parallelization
	3.8.1 Array and Pointer References
	3.8.2 Restricted Pointers
	3.8.3 Explicit Parallelization and Pragmas

	Incremental Link Editor (ild)
	4.1 Introduction
	4.2 Overview of Incremental Linking
	4.3 How to Use ild
	4.4 How ild Works
	4.5 What ild Cannot Do
	4.6 Reasons for Full Relinks
	4.6.1 ild Deferred�Link Messages
	4.6.2 ild Relink Messages
	4.6.3 Example 1: Internal Free Space Exhausted
	4.6.4 Example 2: Running strip
	4.6.5 Example 3: ild Version
	4.6.6 Example 4: Too Many Files Changed
	4.6.7 Example 5: Full Relink
	4.6.8 Example 6: New Working Directory

	4.7 ild Options
	4.7.1 �a
	4.7.2 �B dynamic | static
	4.7.3 �d y|n
	4.7.4 �e epsym
	4.7.5 �g
	4.7.6 �I name
	4.7.7 �i
	4.7.8 �Lpath
	4.7.9 �lx
	4.7.10 �m
	4.7.11 �o outfile
	4.7.12 �Q y|n
	4.7.13 �Rpath
	4.7.14 �s
	4.7.15 �t
	4.7.16 �u symname
	4.7.17 �V
	4.7.18 �xildoff
	4.7.19 �xildon
	4.7.20 �YP,dirlist
	4.7.21 �z allextract|defaultextract| weakextract
	4.7.22 �z defs
	4.7.23 �z i_dryrun
	4.7.24 �z i_full
	4.7.25 �z i_noincr
	4.7.26 �z i_quiet
	4.7.27 �z i_verbose
	4.7.28 �z nodefs

	4.8 Options Passed to ild From the Compilation System
	4.8.1 �a
	4.8.2 �e epsym
	4.8.3 �I name
	4.8.4 �m
	4.8.5 �t
	4.8.6 �u symname
	4.8.7 Environment

	4.9 ld Options not Supported by ild
	4.9.1 �B symbolic
	4.9.2 �b
	4.9.3 �G
	4.9.4 �h name
	4.9.5 �z muldefs
	4.9.6 �z text

	4.10 Additional Unsupported Commands
	4.10.1 �D token,token, ...
	4.10.2 �F name
	4.10.3 �M mapfile
	4.10.4 �r

	4.11 Files That ild Uses

	lint Source Code Checker
	5.1 Basic and Enhanced lint Modes
	5.2 Using lint
	5.3 The lint Options
	5.3.1 -#
	5.3.2 -###
	5.3.3 -a
	5.3.4 -b
	5.3.5 -C filename
	5.3.6 -c
	5.3.7 -dirout=dir
	5.3.8 -err=warn
	5.3.9 -errchk=l(, l)
	5.3.10 -errfmt=f
	5.3.11 -errhdr=h
	5.3.12 -erroff=tag(, tag)
	5.3.13 -errtags=a
	5.3.14 -errwarn=t
	5.3.15 -F
	5.3.16 -fd
	5.3.17 -flagsrc=file
	5.3.18 -h
	5.3.19 -Idir
	5.3.20 -k
	5.3.21 -Ldir
	5.3.22 -lx
	5.3.23 -m
	5.3.24 -Ncheck=c
	5.3.25 -Nlevel=n
	5.3.26 -n
	5.3.27 -ox
	5.3.28 -p
	5.3.29 -Rfile
	5.3.30 -s
	5.3.31 -u
	5.3.32 -V
	5.3.33 -v
	5.3.34 -Wfile
	5.3.35 -x
	5.3.36 -XCC=a
	5.3.37 �Xalias_level[=l]
	5.3.38 -Xarch=v9
	5.3.39 -Xexplicitpar=a
	5.3.40 -Xkeeptmp=a
	5.3.41 -Xtemp=dir
	5.3.42 -Xtime=a
	5.3.43 -Xtransition=a
	5.3.44 -y

	5.4 lint Messages
	5.4.1 Options to Suppress Messages
	5.4.2 lint Message Formats

	5.5 lint Directives
	5.5.1 Predefined Values
	5.5.2 Directives

	5.6 lint Reference and Examples
	5.6.1 Diagnostics Performed by lint
	5.6.2 lint Libraries
	5.6.3 lint Filters

	Type-Based Alias Analysis
	6.1 Introduction to Type-Based Analysis
	6.2 Using Pragmas for Finer Control
	6.3 Checking With lint
	6.3.1 Struct Pointer Cast of Scalar Pointer
	6.3.2 Struct Pointer Cast of Void Pointer
	6.3.3 Cast of Struct Field to Structure Pointer
	6.3.4 Explicit Aliasing Required

	6.4 Examples of Memory Reference Constraints

	Transitioning to ISO C
	7.1 Basic Modes
	7.1.1 �Xa
	7.1.2 �Xc
	7.1.3 �Xs
	7.1.4 �Xt

	7.2 A Mixture of Old� and New�Style Functions
	7.2.1 Writing New Code
	7.2.2 Updating Existing Code
	7.2.3 Mixing Considerations

	7.3 Functions With Varying Arguments
	7.4 Promotions: Unsigned Versus Value Preserving
	7.4.1 Background
	7.4.2 Compilation Behavior
	7.4.3 First Example: The Use of a Cast
	7.4.4 Bit�fields
	7.4.5 Second Example: Same Result
	7.4.6 Integral Constants
	7.4.7 Third Example: Integral Constants

	7.5 Tokenization and Preprocessing
	7.5.1 ISO C Translation Phases
	7.5.2 Old C Translation Phases
	7.5.3 Logical Source Lines
	7.5.4 Macro Replacement
	7.5.5 Using Strings
	7.5.6 Token Pasting

	7.6 const and volatile
	7.6.1 Types, Only for lvalue
	7.6.2 Type Qualifiers in Derived Types
	7.6.3 const Means readonly
	7.6.4 Examples of const Usage
	7.6.5 volatile Means Exact Semantics
	7.6.6 Examples of volatile Usage

	7.7 Multibyte Characters and Wide Characters
	7.7.1 Asian Languages Require Multibyte Characters
	7.7.2 Encoding Variations
	7.7.3 Wide Characters
	7.7.4 Conversion Functions
	7.7.5 C Language Features

	7.8 Standard Headers and Reserved Names
	7.8.1 Standard Headers
	7.8.2 Names Reserved for Implementation Use
	7.8.3 Names Reserved for Expansion
	7.8.4 Names Safe to Use

	7.9 Internationalization
	7.9.1 Locales
	7.9.2 The setlocale() Function
	7.9.3 Changed Functions
	7.9.4 New Functions

	7.10 Grouping and Evaluation in Expressions
	7.10.1 Definitions
	7.10.2 The K&R C Rearrangement License
	7.10.3 The ISO C Rules
	7.10.4 The Parentheses
	7.10.5 The As If Rule

	7.11 Incomplete Types
	7.11.1 Types
	7.11.2 Completing Incomplete Types
	7.11.3 Declarations
	7.11.4 Expressions
	7.11.5 Justification
	7.11.6 Examples

	7.12 Compatible and Composite Types
	7.12.1 Multiple Declarations
	7.12.2 Separate Compilation Compatibility
	7.12.3 Single Compilation Compatibility
	7.12.4 Compatible Pointer Types
	7.12.5 Compatible Array Types
	7.12.6 Compatible Function Types
	7.12.7 Special Cases
	7.12.8 Composite Types

	Converting Applications for a 64-Bit Environment
	8.1 Overview of the Data Model Differences
	8.2 Implementing Single Source Code
	8.2.1 Derived Types
	8.2.2 Tools

	8.3 Converting to the LP64 Data Type Model
	8.3.1 Integer and Pointer Size Change
	8.3.2 Integer and Long Size Change
	8.3.3 Sign Extension
	8.3.4 Pointer Arithmetic Instead of Integers
	8.3.5 Structures
	8.3.6 Unions
	8.3.7 Beware of Implicit Declarations
	8.3.8 sizeof() Is an Unsigned long
	8.3.9 Use Casts to Show Your Intentions
	8.3.10 Check Format String Conversion Operation

	8.4 Other Considerations
	8.4.1 Derived Types That Have Grown in Size
	8.4.2 Check for Side Effects of Changes
	8.4.3 Check Whether Literal Uses of long Still Make Sense
	8.4.4 Use #ifdef for Explicit 32�bit Versus 64�bit Prototypes
	8.4.5 Calling Convention Changes
	8.4.6 Algorithm Changes

	8.5 Checklist for Getting Started

	cscope: Interactively Examining a C Program
	9.1 The cscope Process
	9.2 Basic Use
	9.2.1 Step 1: Set Up the Environment
	9.2.2 Step 2: Invoke the cscope Program
	9.2.3 Step 3: Locate the Code
	9.2.4 Step 4: Edit the Code
	9.2.5 Command�Line Options
	9.2.6 View Paths
	9.2.7 cscope and Editor Call Stacks
	9.2.8 Examples
	9.2.9 Command�Line Syntax for Editors

	9.3 Unknown Terminal Type Error

	C Compiler Options
	A.1 Option Syntax
	A.2 Options Summary
	A.3 The cc Options
	A.3.1 �#
	A.3.2 �###
	A.3.3 �Aname[(tokens)]
	A.3.4 �B[static|dynamic]
	A.3.5 �C
	A.3.6 �c
	A.3.7 �Dname[=tokens]
	A.3.8 �d[y|n]
	A.3.9 �dalign
	A.3.10 �E
	A.3.11 -errfmt[=[no%]error]
	A.3.12 �erroff[=t]
	A.3.13 -errshort[=i]
	A.3.14 �errtags[=a]
	A.3.15 �errwarn[=t]
	A.3.16 �fast
	A.3.17 �fd
	A.3.18 �flags
	A.3.19 �fnonstd
	A.3.20 �fns[={no,yes}]
	A.3.21 �fprecision=p
	A.3.22 �fround=r
	A.3.23 �fsimple[=n]
	A.3.24 �fsingle
	A.3.25 �fstore
	A.3.26 �ftrap=t
	A.3.27 �G
	A.3.28 �g
	A.3.29 �H
	A.3.30 �h name
	A.3.31 -I[-|dir]
	A.3.32 �i
	A.3.33 �KPIC
	A.3.34 �Kpic
	A.3.35 �keeptmp
	A.3.36 �Ldir
	A.3.37 �lname
	A.3.38 �mc
	A.3.39 �misalign
	A.3.40 �misalign2
	A.3.41 �mr[,string]
	A.3.42 �mt
	A.3.43 �native
	A.3.44 �nofstore
	A.3.45 �O
	A.3.46 �o filename
	A.3.47 �P
	A.3.48 �p
	A.3.49 �Q[y|n]
	A.3.50 �qp
	A.3.51 �Rdir[:dir]
	A.3.52 �S
	A.3.53 �s
	A.3.54 �Uname
	A.3.55 �V
	A.3.56 �v
	A.3.57 �Wc,arg
	A.3.58 �w
	A.3.59 �X[c|a|t|s]
	A.3.60 �x386
	A.3.61 �x486
	A.3.62 �xa
	A.3.63 -xalias_level[=l]
	A.3.64 �xarch=isa
	A.3.65 �xautopar
	A.3.66 -xbuiltin[=(%all|%none)]
	A.3.67 �xCC
	A.3.68 -xc99[=o]
	A.3.69 �xcache[=c]
	A.3.70 –xcg[89|92]
	A.3.71 �xchar[=o]
	A.3.72 �xchar_byte_order[=o]
	A.3.73 -xcheck[=o]
	A.3.74 �xchip[=c]
	A.3.75 �xcode[=v]
	A.3.76 �xcrossfile[=n]
	A.3.77 -xcsi
	A.3.78 �xdepend
	A.3.79 �xe
	A.3.80 �xexplicitpar
	A.3.81 �xF
	A.3.82 �xhelp=f
	A.3.83 �xildoff
	A.3.84 �xildon
	A.3.85 �xinline=list
	A.3.86 -xipo[=a]
	A.3.87 �xlibmieee
	A.3.88 �xlibmil
	A.3.89 �xlic_lib=sunperf
	A.3.90 �xlicinfo
	A.3.91 �xloopinfo
	A.3.92 �xM
	A.3.93 �xM1
	A.3.94 �xMerge
	A.3.95 �xmaxopt[=v]
	A.3.96 �xmemalign=ab
	A.3.97 -xnativeconnect[=a[,a]...]
	A.3.98 �xnolib
	A.3.99 �xnolibmil
	A.3.100 �xO[1|2|3|4|5]
	A.3.101 �xopenmp[=i]
	A.3.102 �xP
	A.3.103 �xparallel
	A.3.104 �xpentium
	A.3.105 �xpg
	A.3.106 �xprefetch=[val],val
	A.3.107 -xprefetch_level=l
	A.3.108 �xprofile=p
	A.3.109 �xreduction
	A.3.110 �xregs=r[,r…]
	A.3.111 �xrestrict[=f]
	A.3.112 �xs
	A.3.113 �xsafe=mem
	A.3.114 �xsb
	A.3.115 �xsbfast
	A.3.116 �xsfpconst
	A.3.117 �xspace
	A.3.118 �xstrconst
	A.3.119 �xtarget=t
	A.3.120 �xtemp=dir
	A.3.121 �xtime
	A.3.122 �xtransition
	A.3.123 -xtrigraphs
	A.3.124 �xunroll=n
	A.3.125 �xvector[={yes|no}]
	A.3.126 �xvpara
	A.3.127 �Yc, dir
	A.3.128 �YA, dir
	A.3.129 �YI, dir
	A.3.130 �YP, dir
	A.3.131 �YS, dir
	A.3.132 �Zll

	A.4 Options Passed to the Linker

	ISO C Data Representations
	B.1 Storage Allocation
	B.2 Data Representations
	B.2.1 Integer Representations
	B.2.2 Floating�Point Representations
	B.2.3 Exceptional Values
	B.2.4 Hexadecimal Representation of Selected Numbers
	B.2.5 Pointer Representation
	B.2.6 Array Storage
	B.2.7 Arithmetic Operations on Exceptional Values

	B.3 Argument�Passing Mechanism

	Implementation�Defined ISO/IEC C Behavior
	C.1 Implementation Compared to the ISO Standard
	C.1.1 Translation (G.3.1)
	C.1.2 Environment (G.3.2)
	C.1.3 Identifiers (G.3.3)
	C.1.4 Characters (G.3.4)
	C.1.5 Integers (G.3.5)
	C.1.6 Floating�Point (G.3.6)
	C.1.7 Arrays and Pointers (G.3.7)
	C.1.8 Registers (G.3.8)
	C.1.9 Structures, Unions, Enumerations, and Bit�Fields (G.3.9)
	C.1.10 Qualifiers (G.3.10)
	C.1.11 Declarators (G.3.11)
	C.1.12 Statements (G.3.12)
	C.1.13 Preprocessing Directives (G.3.13)
	C.1.14 Library Functions (G.3.14)
	C.1.15 Locale�Specific Behavior (G.4)

	Supported Features of C99
	D.1 Idempotent Qualifiers
	D.2 _Pragma
	D.3 Mixed Declarations and Code
	D.4 Static and Other Type Qualifiers Allowed in Array Declarators
	D.5 Flexible Array Members
	D.6 Declarations Using Implicit int
	D.7 Disallowed Implicit int and Implicit Function Declarations
	D.8 Declaration in for-Loop Statement
	D.9 C99 Keywords
	D.9.1 Using the restrict Keyword

	D.10 __func__ Support
	D.11 Macros With A Variable Number of Arguments
	D.12 Variable Length Arrays (VLA):
	D.13 inline Specifier For Static Functions
	D.14 Commenting Code With //

	Performance Tuning (SPARC)
	E.1 Limits
	E.2 libfast.a Library

	The Differences Between K&R Sun�C and Sun ISO C
	F.1 K&R Sun C Incompatibilities With Sun ISO C
	F.2 Keywords

	Implementation-Specific Information of OpenMP
	Index

