
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Program Performance Analysis
Tools

Forte Developer 7

Part No. 816-2458-10
May 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In

particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Sun f90 /f95 is derived in part from Cray CF90™, a product of Cray Inc.

libdwarf and lidredblack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from

http://www.sgi.com .

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-

Unis et dans d’autres pays.

Sun f90 /f95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

libdwarf et lidredblack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License à

http://www.sgi.com .

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

iii

Contents

Before You Begin xv

How This Book Is Organized xv

Typographic Conventions xvi

Shell Prompts xvii

Accessing Forte Developer Development Tools and Man Pages xvii

Accessing Forte Developer Documentation xix

Accessing Related Solaris Documentation xxii

Sending Your Comments xxii

1. Overview of Program Performance Analysis Tools 1

2. Learning to Use the Performance Tools 3

Setting Up the Examples for Execution 4

System Requirements 5

Choosing Alternative Compiler Options 5

Basic Features of the Performance Analyzer 6

Example 1: Basic Performance Analysis 7

Collecting Data for synprog 7

Simple Metric Analysis 8

Extension Exercise for Simple Metric Analysis 11

iv Program Performance Analysis Tools • May 2002

Metric Attribution and the gprof Fallacy 11

The Effects of Recursion 14

Loading Dynamically Linked Shared Objects 17

Descendant Processes 19

Example 2: OpenMP Parallelization Strategies 24

Collecting Data for omptest 25

Comparing Parallel Sections and Parallel Do Strategies 26

Comparing Critical Section and Reduction Strategies 28

Example 3: Locking Strategies in Multithreaded Programs 29

Collecting Data for mttest 29

How Locking Strategies Affect Wait Time 30

How Data Management Affects Cache Performance 33

Extension Exercises for mttest 36

Example 4: Cache Behavior and Optimization 36

Collecting Data for cachetest 37

Execution Speed 37

Program Structure and Cache Behavior 38

Program Optimization and Performance 41

3. Performance Data 45

What Data the Collector Collects 45

Clock Data 46

Hardware-Counter Overflow Data 48

Synchronization Wait Tracing Data 50

Heap Tracing (Memory Allocation) Data 51

MPI Tracing Data 52

Global (Sampling) Data 53

How Metrics Are Assigned to Program Structure 54

Contents v

Function-Level Metrics: Exclusive, Inclusive, and Attributed 55

Interpreting Function-Level Metrics: An Example 56

How Recursion Affects Function-Level Metrics 57

4. Collecting Performance Data 59

Preparing Your Program for Data Collection and Analysis 59

Use of System Libraries 60

Use of Signal Handlers 61

Use of setuid 61

Controlling Data Collection From Your Program 62

Dynamic Functions and Modules 64

Compiling and Linking Your Program 65

Source Code Information 66

Static Linking 66

Optimization 66

Intermediate Files 67

Limitations on Data Collection 67

Limitations on Clock-based Profiling 67

Limitations on Collection of Tracing Data 67

Limitations on Hardware-Counter Overflow Profiling 68

Limitations on Data Collection for Descendant Processes 68

Limitations on Java Profiling 69

Where the Data Is Stored 69

Experiment Names 70

Moving Experiments 70

Estimating Storage Requirements 71

Collecting Data Using the collect Command 72

Data Collection Options 73

vi Program Performance Analysis Tools • May 2002

Experiment Control Options 76

Output Options 78

Other Options 79

Obsolete Options 79

Collecting Data From the Integrated Development Environment 80

Collecting Data Using the dbx collector Subcommands 80

Data Collection Subcommands 81

Experiment Control Subcommands 83

Output Subcommands 84

Information Subcommands 85

Obsolete Subcommands 85

Collecting Data From a Running Process 86

Collecting Data From MPI Programs 88

Storing MPI Experiments 89

Running the collect Command Under MPI 91

Collecting Data by Starting dbx Under MPI 91

5. The Performance Analyzer Graphical User Interface 93

Running the Performance Analyzer 93

The Performance Analyzer Displays 95

The Functions Tab 96

The Callers-Callees Tab 97

The Source Tab 98

The Disassembly Tab 99

The Timeline Tab 100

The LeakList Tab 101

The Statistics Tab 102

The Experiments Tab 103

Contents vii

The Summary Tab 104

The Event Tab 104

The Legend Tab 106

Using the Performance Analyzer 106

Comparing Metrics 106

Selecting Experiments 107

Selecting the Data to Be Displayed 107

Setting Defaults 108

Searching for Names or Metric Values 109

Generating and Using a Mapfile 110

6. The er_print Command Line Performance Analysis Tool 111

er_print Syntax 112

Metric Lists 112

Function List Commands 115

Callers-Callees List Commands 117

Source and Disassembly Listing Commands 119

Memory Allocation List Commands 121

Filtering Commands 122

Selection Lists 122

Selection Commands 123

Listing of Selections 123

Metric List Commands 125

Defaults Commands 126

Output Commands 127

Other Display Commands 128

Mapfile Generation Command 129

Control Commands 129

viii Program Performance Analysis Tools • May 2002

Information Commands 129

Obsolete Commands 130

7. Understanding the Performance Analyzer and Its Data 131

Interpreting Performance Metrics 132

Clock-Based Profiling 132

Synchronization Wait Tracing 135

Hardware-Counter Overflow Profiling 136

Heap Tracing 136

MPI Tracing 137

Call Stacks and Program Execution 138

Single-Threaded Execution and Function Calls 138

Explicit Multithreading 141

Parallel Execution and Compiler-Generated Body Functions 142

Incomplete Stack Unwinds 146

Mapping Addresses to Program Structure 147

The Process Image 147

Load Objects and Functions 147

Aliased Functions 148

Non-Unique Function Names 148

Static Functions From Stripped Shared Libraries 149

Fortran Alternate Entry Points 149

Cloned Functions 150

Inlined Functions 150

Compiler-Generated Body Functions 151

Outline Functions 152

Dynamically Compiled Functions 152

The <Unknown> Function 152

Contents ix

The <Total> Function 153

Annotated Code Listings 154

Annotated Source Code 154

Annotated Disassembly Code 156

8. Manipulating Experiments and Viewing Annotated Code Listings 161

Manipulating Experiments 161

Viewing Annotated Code Listings With er_src 162

Other Utilities 164

The er_archive Utility 164

The er_export Utility 165

A. Profiling Programs With prof , gprof , and tcov 167

Using prof to Generate a Program Profile 168

Using gprof to Generate a Call Graph Profile 170

Using tcov for Statement-Level Analysis 173

Creating tcov Profiled Shared Libraries 176

Locking Files 177

Errors Reported by tcov Runtime Functions 177

Using tcov Enhanced for Statement-Level Analysis 179

Creating Profiled Shared Libraries for tcov Enhanced 180

Locking Files 180

tcov Directories and Environment Variables 181

Index 183

x Program Performance Analysis Tools • May 2002

xi

Figures

FIGURE 3-1 Call Tree Illustrating Exclusive, Inclusive, and Attributed Metrics 56

FIGURE 5-1 The Performance Analyzer Window 95

FIGURE 5-2 The Functions Tab 96

FIGURE 5-3 The Callers-Callees Tab 97

FIGURE 5-4 The Source Tab 98

FIGURE 5-5 The Disassembly Tab 99

FIGURE 5-6 The Timeline Tab 100

FIGURE 5-7 The LeakList Tab 101

FIGURE 5-8 The Statistics Tab 102

FIGURE 5-9 The Experiments Tab 103

FIGURE 5-10 The Summary Tab 104

FIGURE 5-11 The Event Tab, Showing Event Data. 105

FIGURE 5-12 The Event Tab, Showing Sample Data. 105

FIGURE 5-13 The Legend Tab 106

FIGURE 7-1 Schematic Call Tree for a Multithreaded Program That Contains a Parallel Do or Parallel For
Construct 144

FIGURE 7-2 Schematic Call Tree for a Parallel Region With a Worksharing Do or Worksharing For
Construct 145

xii Program Performance Analysis Tools • May 2002

xiii

Tables

TABLE 3-1 Timing Metrics 47

TABLE 3-2 Aliased Hardware Counters Available on SPARC and IA Hardware 49

TABLE 3-3 Synchronization Wait Tracing Metrics 50

TABLE 3-4 Memory Allocation (Heap Tracing) Metrics 51

TABLE 3-5 MPI Tracing Metrics 52

TABLE 3-6 Classification of MPI Functions Into Send, Receive, Send and Receive, and Other 53

TABLE 4-1 Parameter List for collector_func_load() 64

TABLE 4-2 Environment Variable Settings for Preloading the Library libcollector.so 88

TABLE 5-1 Options for the analyzer Command 94

TABLE 5-2 Default Metrics Displayed in the Functions Tab 109

TABLE 6-1 Options for the er_print Command 112

TABLE 6-2 Metric Type Characters 113

TABLE 6-3 Metric Visibility Characters 113

TABLE 6-4 Metric Name Strings 114

TABLE 7-1 How Kernel Microstates Contribute to Metrics 132

TABLE 7-2 Annotated Source-Code Metrics 155

TABLE A-1 Performance Profiling Tools 167

xiv Program Performance Analysis Tools • May 2002

xv

Before You Begin

This manual describes the performance analysis tools that are available with the

Forte™ Developer 7 product.

■ The Collector and Performance Analyzer are a pair of tools that perform

statistical profiling of a wide range of performance data and tracing of various

system calls, and relate the data to program structure at the function, source line

and instruction level.

■ prof and gprof are tools that perform statistical profiling of CPU usage and

provide execution frequencies at the function level.

■ tcov is a tool that provides execution frequencies at the function and source line

levels.

This manual is intended for application developers with a working knowledge of

Fortran, C, C++, or Java™, the Solaris™ operating environment, and UNIX®

operating system commands. Some knowledge of performance analysis is helpful

but is not required to use the tools.

How This Book Is Organized

Chapter 1 introduces the performance analysis tools, briefly discussing what they do

and when to use them.

Chapter 2 is a tutorial that demonstrates how to use the Collector and Performance

Analyzer to assess the performance of four example programs.

Chapter 3 describes the data collected by the Collector and how the data is

converted into metrics of performance.

Chapter 4 describes how to use the Collector to collect timing data, synchronization

delay data, and hardware event data from your program.

xvi Program Performance Analysis Tools • May 2002

Chapter 5 describes the features of the Performance Analyzer graphical user

interface. Note: you must have a license to use the Performance Analyzer.

Chapter 6 describes how to use the er_print command line interface to analyze the

data collected by the Collector.

Chapter 7 describes the process of converting the data collected by the Sampling

Collector into performance metrics and how the metrics are related to program

structure.

Chapter 8 presents information on the utilities that are provided for manipulating

and converting performance experiments and viewing annotated source code and

disassembly code without running an experiment.

Appendix A describes the UNIX profiling tools prof , gprof , and tcov . These tools

provide timing information and execution frequency statistics.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or value

To delete a file, type rm filename.

Before You Begin xvii

Shell Prompts

Accessing Forte Developer Development

Tools and Man Pages

The Forte Developer product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Forte

Developer compilers and tools, you must have the Forte Developer component

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments

that are optional.

O[n] O4, O

{ } Braces contain a set of choices

for required option.

d{y|n} dy

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is

sometimes used to separate

arguments.

Rdir[: dir] R/local/libs:/U/a

… The ellipsis indicates omission

in a series.

xinline= f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

xviii Program Performance Analysis Tools • May 2002

directory in your PATHenvironment variable. To access the Forte Developer man

pages, you must have the Forte Developer man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this Forte Developer release, see the installation guide or your system

administrator.

Note – The information in this section assumes that your Forte Developer products

are installed in the /opt directory. If your product software is not installed in the

/opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Forte Developer Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Forte Developer compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATHvariable by typing the following at a
command prompt:

2. Review the output for a string of paths that contain /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Forte Developer

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

▼ To Set Your PATHEnvironment Variable to Enable Access to
Forte Developer Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

% echo $PATH

Before You Begin xix

Accessing Forte Developer Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Forte Developer man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt:

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the

current version of the software installed, follow the instructions in the next section

for setting your MANPATHenvironment variable.

▼ To Set Your MANPATHEnvironment Variable to Enable
Access to Forte Developer Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Forte Developer

Documentation

You can access Forte Developer product documentation at the following locations:

■ The product documentation is available from the documentation index installed

with the product on your local system or network at

/opt/SUNWspro/docs/index.html .

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.com sm web site. The following

titles are available through your installed product only:

% man dbx

xx Program Performance Analysis Tools • May 2002

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

Product Documentation in Accessible Formats

Forte Developer 7 product documentation is provided in accessible formats that are

readable by assistive technologies for users with disabilities. You can find accessible

versions of documentation as described in the following table. If your product

software is not installed in the /opt directory, ask your system administrator for the

equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party

manuals)

HTML at http://docs.sun.com

Third-party manuals:

• Standard C++ Library Class
Reference

• Standard C++ Library
User’s Guide

• Tools.h++ Class Library
Reference

• Tools.h++ User’s Guide

HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed product through the documentation

index at file:/opt/SUNWspro/docs/index.html

Release notes Text file on the product CD at

/cdrom/devpro_v10n1_sparc/release_notes.txt

Before You Begin xxi

Related Forte Developer Documentation

The following table describes related documentation that is available at

file:/opt/SUNWspro/docs/index.html . If your product software is not

installed in the /opt directory, ask your system administrator for the equivalent

path on your system.

Document Title Description

OpenMP API User’s Guide Information on compiler directuves used to parallelize

programs.

Fortran Programming Guide Discusses programming techniques, including parallelization,

optimization, creation of shared libraries.

Debugging a Program With
dbx

Reference manual for use of the debugger. Provides

information on attaching and detaching to Solaris processes,

and executing programs in a controlled environment.

Language user’s guides Describe compilation and compiler options.

xxii Program Performance Analysis Tools • May 2002

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs.sun.com web site.

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Document Collection Document Title Description

Solaris Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris Software Developer

Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris Software Developer

Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.

Solaris Software Developer

Collection

SPARC Assembly Language
Reference Manual

Describes the assembly

language for SPARC™

processors.

Solaris 8 Update Collection Solaris Tunable Parameters
Reference Manual

Provides reference information

on Solaris tunable parameters.

1

CHAPTER 1

Overview of Program Performance
Analysis Tools

Developing high performance applications requires a combination of compiler

features, libraries of optimized functions, and tools for performance analysis.

Program Performance Analysis Tools describes the tools that are available to help you

assess the performance of your code, identify potential performance problems, and

locate the part of the code where the problems occur.

This manual deals primarily with the Collector and Performance Analyzer, a pair of

tools that you use to collect and analyze performance data for your application. Both

tools can be used from the command line or from a graphical user interface.

The Collector collects performance data using a statistical method called profiling

and by tracing function calls. The data can include call stacks, microstate accounting

information, thread-synchronization delay data, hardware-counter overflow data,

MPI function call data, memory allocation data and summary information for the

operating system and the process. The Collector can collect all kinds of data for C,

C++ and Fortran programs, and it can collect profiling data for Java™programs. It

can collect data for dynamically-generated functions and for descendant processes.

See Chapter 3 for information about the data collected and Chapter 4 for detailed

information about the Collector. The Collector can be run from the IDE, from the

dbx command line tool, and using the collect command.

The Performance Analyzer displays the data recorded by the Collector, so that you

can examine the information. The Performance Analyzer processes the data and

displays various metrics of performance at the level of the program, the functions,

the source lines, and the instructions. These metrics are classed into five groups:

timing metrics, hardware counter metrics, synchronization delay metrics, memory

allocation metrics, and MPI tracing metrics. The Performance Analyzer also displays

the raw data in a graphical format as a function of time. The Performance Analyzer

can create a mapfile that you can use to improve the order of function loading in the

program’s address space. See Chapter 5 for detailed information about the

Performance Analyzer, and Chapter 6 for information about the command-line

analysis tool, er_print . Annotated source code listings and disassembly code

listings that include compiler commentary but do not include performance data can

be viewed with the er_src utility (see Chapter 8 for more information).

2 Program Performance Analysis Tools • May 2002

These two tools help to answer the following kinds of questions:

■ How much of the available resources does the program consume?

■ Which functions or load objects are consuming the most resources?

■ Which source lines and instructions are responsible for resource consumption?

■ How did the program arrive at this point in the execution?

■ Which resources are being consumed by a function or load object?

The Performance Analyzer window consists of a multi-tabbed display, with a menu

bar and a toolbar. The tab that is displayed when the Performance Analyzer is

started shows a list of functions for the program with exclusive and inclusive

metrics for each function. The list can be filtered by load object, by thread, by LWP,

and by time slice. For a selected function, another tab displays the callers and callees

of the function. This tab can be used to navigate the call tree—in search of high

metric values, for example. Two more tabs display source code that is annotated

line-by-line with performance metrics and interleaved with compiler commentary,

and disassembly code that is annotated with metrics for each instruction and

interleaved with both source code and compiler commentary if they are available.

The performance data is displayed as a function of time in another tab. Other tabs

show details of the experiments and load objects, summary information for a

function, and statistics for the process. The Performance Analyzer can be navigated

from the keyboard as well as using a mouse.

The er_print command presents in plain text all the displays that are presented by

the Performance Analyzer, with the exception of the Timeline display.

The Collector and Performance Analyzer are designed for use by any software

developer, even if performance tuning is not the developer’s main responsibility.

These tools provide a more flexible, detailed, and accurate analysis than the

commonly used profiling tools prof and gprof , and are not subject to an

attribution error in gprof .

This manual also includes information about the following performance tools:

■ prof and gprof

prof and gprof are UNIX® tools for generating profile data and are included

with the Solaris™ 7, 8 and 9 operating environments (SPARC™ Platform Edition).

■ tcov

tcov is a code coverage tool that reports the number of times each function is

called and each source line is executed.

For more information about prof , gprof , and tcov , see Appendix A.

Note – The Performance Analyzer GUI and the IDE are part of the Forte™ for Java™

4, Enterprise Edition for the Solaris operating environment, versions 8 and 9.

3

CHAPTER 2

Learning to Use the Performance
Tools

This chapter shows you how to use the Collector and the Performance Analyzer by

means of a tutorial. The tutorial has three main purposes:

■ To provide simple examples of performance problems and how they can be

identified.

■ To demonstrate the capabilities of the Performance Analyzer.

■ To show how the Performance Analyzer presents performance data and how it

handles various code constructions.

Note – The Performance Analyzer GUI and the IDE are part of the Forte™ for Java™

4, Enterprise Edition for the Solaris™ operating environment, versions 8 and 9.

Four example programs are provided that illustrate the capabilities of the

Performance Analyzer in several different situations.

■ Example 1: Basic Performance Analysis. This example demonstrates the use of

timing data to identify a performance problem, shows how time is attributed to

functions, source lines and instructions, and shows how the Performance Analyzer

handles recursive calls, dynamic loading of object modules and descendant

processes. The example illustrates the use of the main Analyzer displays: the

Functions tab, the Callers-Callees tab, the Source tab, the Disassembly tab and the

Timeline tab. The example program, synprog , is written in C.

■ Example 2: OpenMP Parallelization Strategies. This example demonstrates the

efficiency of different approaches to parallelization of a Fortran program,

omptest , using OpenMP directives.

■ Example 3: Locking Strategies in Multithreaded Programs. This example

demonstrates the efficiency of different approaches to scheduling of work among

threads and the effect of data management on cache performance, making use of

synchronization delay data. The example uses an explicitly multithreaded C

program, mttest , that is a model of a client/server application.

4 Program Performance Analysis Tools • May 2002

■ Example 4: Cache Behavior and Optimization. This example demonstrates the

effect of memory access and compiler optimization on execution speed for a

Fortran 90 program, cachetest . The example illustrates the use of hardware

counter data and compiler commentary for performance analysis.

Note – The data that you see in this chapter might differ from the data that you see

when you run the examples for yourself.

The instructions for collecting performance data in this tutorial are given only for

the command line. For most of the examples you can also use the IDE to collect

performance data. To collect data from the IDE, you use the dbx Debugger and the

Performance Toolkit submenu of the Debug menu.

Setting Up the Examples for Execution

The information in this section assumes that your Forte™ Developer 7 products are

installed in the /opt directory. If your product software is not installed in the /opt
directory, ask your system administrator for the path on your system.

The source code and makefiles for each of the example programs are in the

Performance Analyzer example directory.

This directory contains a separate subdirectory for each example, named synprog ,

omptest , mttest and cachetest .

To compile the examples with the default options:

1. Ensure that the Forte Developer software directory /opt/SUNWspro/bin appears
in your path.

2. Copy the files in one or more of the example subdirectories to your own work
directory using the following commands.

Choose example from the list of example subdirectory names given in this section. In

this tutorial it is assumed that your directory is set up as described in the preceding

code box.

/opt/SUNWspro/examples/analyzer

% mkdir work-directory
% cp -r /opt/SUNWspro/examples/analyzer/ example work-directory/ example

Chapter 2 Learning to Use the Performance Tools 5

3. Type make to compile and link the example program.

System Requirements

The following requirements must be met in order to run the example programs as

described in this chapter:

■ synprog should be run on a single CPU.

■ omptest requires that you run the program on SPARC™ hardware with at least

four CPUs.

■ mttest requires that you have access to a machine with at least four CPUs. You

should run the test under the Solaris 7 or 8 operating environment with the

standard threads library. If you use the alternate threads library in the Solaris 8

operating environment or the threads library in the Solaris 9 operating

environment some of the details of the example are different.

■ cachetest requires that you run the program on UltraSPARC™ III hardware

with at least 160 Mbytes of memory.

Choosing Alternative Compiler Options

The default compiler options have been chosen to make the examples work in a

particular way. Some of them can affect the performance of the program, such as the

-xarch option, which selects the instruction set architecture. This option is set to

native so that you use the instruction set that is best suited to your computer. If

you want to use a different setting, change the definition of the ARCHenvironment

variable in the makefile.

If you run the examples on a SPARC platform with the default V7 architecture, the

compiler generates code that calls the .mul and .div routines from libc.so rather

than using integer multiply and divide instructions. The time spent in these

arithmetic operations shows up in the <Unknown> function; see “The <Unknown>
Function” on page 152 for more information.

The makefiles for all three examples contain a selection of alternative settings for the

compiler options in the environment variable OFLAGS, which are commented out.

After you run the examples with the default setting, choose one of these alternative

settings to compile and link the program to see what effect the setting has on how

the compiler optimizes and parallelizes code. For information on the compiler

options in the OFLAGSsettings, see the C User’s Guide or the Fortran User’s Guide.

% cd work-directory/ example
% make

6 Program Performance Analysis Tools • May 2002

Basic Features of the Performance
Analyzer

Some basic features of the Performance Analyzer are described in this section.

The Performance Analyzer displays the Functions tab when it is started. If the

default data options were used in the Collector, the Functions tab shows a list of

functions with the default clock-based profiling metrics, which are:

■ Exclusive user CPU time (the amount of time spent in the function itself), in

seconds

■ Inclusive user CPU time (the amount of time spent in the function itself and any

functions it calls), in seconds

The function list is sorted on exclusive CPU time by default. For a more detailed

discussion of metrics, see “How Metrics Are Assigned to Program Structure” on

page 54.

Selecting a function in the Functions tab and clicking the Callers-Callees tab displays

information about the callers and callees of a function. The tab is divided into three

horizontal panes:

■ The middle pane shows data for the selected function.

■ The top pane shows data for all functions that call the selected function.

■ The bottom pane shows data for all functions that the selected function calls.

In addition to exclusive and inclusive metrics, the Callers-Callees tab displays

attributed metrics for callers and callees. Attributed metrics are the parts of the

inclusive metric of the selected function that are due to calls from a caller or calls to

a callee.

The Source tab displays the source code, if it is available, for the selected function,

with performance metrics for each line of code. The Disassembly tab displays the

instructions for the selected function with performance metrics for each instruction.

The Timeline tab displays global timing data for each experiment and the data for

each event recorded by the Collector. The data is presented for each LWP and each

data type for each experiment.

Chapter 2 Learning to Use the Performance Tools 7

Example 1: Basic Performance Analysis

This example is designed to demonstrate the main features of the Performance

Analyzer using four programming scenarios:

■ “Simple Metric Analysis” on page 8 demonstrates how to use the function list, the

annotated source code listing and the annotated disassembly code listing to do a

simple performance analysis of two routines that shows the cost of type

conversions.

■ “Metric Attribution and the gprof Fallacy” on page 11 demonstrates the Callers-

Callees tab and shows how time that is used in a low-level routine is attributed to

its callers. gprof is a standard UNIX performance tool that properly identifies the

function where the program is spending most of its CPU time, but in this case

wrongly reports the caller that is responsible for most of that time. See

Appendix A for a description of gprof .

■ “The Effects of Recursion” on page 14 shows how time is attributed to callers in a

recursive sequence for both direct recursive function calls and indirect recursive

function calls.

■ “Loading Dynamically Linked Shared Objects” on page 17 demonstrates the

handling of load objects and shows how a function is correctly identified even if

it is loaded in different locations at different times.

■ “Descendant Processes” on page 19 demonstrates the use of the Timeline tab and

filtering to analyze experiments on a program that creates descendant processes.

Collecting Data for synprog

Read the instructions in the sections, “Setting Up the Examples for Execution” on

page 4 and “Basic Features of the Performance Analyzer” on page 6, if you have not

done so. Compile synprog before you begin this example.

To collect data for synprog and start the Performance Analyzer from the command

line, type the following commands.

You are now ready to analyze the synprog experiment using the procedures in the

following sections.

% cd work-directory/synprog
% collect synprog
% analyzer test.1.er &

8 Program Performance Analysis Tools • May 2002

Simple Metric Analysis

This section examines CPU times for two functions, cputime() and icputime() .

Both contain a for loop that increments a variable x by one. In cputime() , x is a

floating-point variable, but in icputime() , x is an integer variable.

1. Locate cputime() and icputime() in the Functions tab.

You can use the Find tool to find the functions instead of scrolling the display.

Compare the exclusive user CPU time for the two functions. Much more time is

spent in cputime() than in icputime() .

2. Choose File → Create New Window (Alt-F, N).

A new Analyzer window is displayed with the same data. Position the windows so

that you can see both of them.

3. In the Functions tab of the first window, click cputime() to select it, then click
the Source tab.

Chapter 2 Learning to Use the Performance Tools 9

4. In the Functions tab of the second window, click icputime() to select it, then
click the Source tab.

The annotated source listing tells you which lines of code are responsible for the

CPU time. Most of the time in both functions is used by the loop line and the line in

which x is incremented.

The time spent on the loop line in icputime() is approximately the same as the

time spent on the loop line in cputime() , but the line in which x is incremented

takes much less time to execute in icputime() than the corresponding line in

cputime() .

5. In both windows, click the Disassembly tab and locate the instructions for the
line of source code in which x is incremented.

You can find these instructions by choosing High Metric Value in the Find tool

combo box and searching.

The time given for an instruction is the time spent waiting for the instruction to

execute, not the time spent executing the instruction.

10 Program Performance Analysis Tools • May 2002

Chapter 2 Learning to Use the Performance Tools 11

In cputime() , there are six instructions that must be executed to add 1 to x. A

significant amount of time is spent loading 1.0, which is a double floating-point

constant, and adding it to x . The fdtos and fstod instructions convert the value of

x from a single floating-point value to a double floating-point value and back again,

so that 1.0 can be added with the faddd instruction.

In icputime() , there are only three instructions: a load, an increment, and a store.

These instructions take approximately a third of the time of the corresponding set of

instructions in cputime() , because no conversions are necessary. The value 1 does

not need to be loaded into a register—it can be added directly to x by a single

instruction.

6. When you have finished the exercise, close the new Analyzer window.

Extension Exercise for Simple Metric Analysis

Edit the source code for synprog , and change the type of x to double in

cputime() . What effect does this have on the time? What differences do you see in

the annotated disassembly listing?

Metric Attribution and the gprof Fallacy

This section examines how time is attributed from a function to its callers and

compares the way attribution is done by the Performance Analyzer with the way it

is done by gprof .

1. In the Functions tab, select gpf_work() and then click Callers-Callees.

The Callers-Callees tab is divided into three panes. In the center pane is the selected

function. In the pane above are the callers of the selected function, and in the pane

below are the functions that are called by the selected function, which are termed

callees. This tab is described in “The Callers-Callees Tab” on page 97 and also in

“Basic Features of the Performance Analyzer” on page 6 of this chapter.

The Callers pane shows two functions that call the selected function, gpf_b() and

gpf_a() . The Callees pane is empty because gpf_work() does not call any other

functions. Such functions are called “leaf functions.”

Examine the attributed user CPU time in the Callers pane. Most of the time in

gpf_work() results from calls from gpf_b() . Much less time results from calls

from gpf_a() .

12 Program Performance Analysis Tools • May 2002

To see why gpf_b() calls account for over ten times as much time in gpf_work()
as calls from gpf_a() , you must examine the source code for the two callers.

2. Click gpf_a() in the Callers pane.

gpf_a() becomes the selected function, and moves to the center pane; its callers

appear in the Callers pane, and gpf_work() , its callee, appears in the Callees pane.

3. Click the Source tab and scroll down so that you can see the code for both
gpf_a() and gpf_b() .

gpf_a() calls gpf_work() ten times with an argument of 1, whereas gpf_b() calls

gpf_work() only once, but with an argument of 10. The arguments from gpf_a()
and gpf_b() are passed to the formal argument amt in gpf_work() .

Chapter 2 Learning to Use the Performance Tools 13

Now examine the code for gpf_work() , to see why the way the callers call

gpf_work() makes a difference.

4. Scroll down to display the code for gpf_work() .

Examine the line in which the variable imax is computed: imax is the upper limit

for the following for loop.The time spent in gpf_work() thus depends on the

square of the argument amt . So ten times as much time is spent on one call from a

function with an argument of 10 (400 iterations) than is spent on ten calls from a

function with an argument of 1 (10 instances of 4 iterations).

In gprof , however, the amount of time spent in a function is estimated from the

number of times the function is called, regardless of how the time depends on the

function’s arguments or any other data that it has access to. So for an analysis of

synprog , gprof incorrectly attributes ten times as much time to calls from

gpf_a() as it does to calls from gpf_b() . This is the gprof fallacy.

14 Program Performance Analysis Tools • May 2002

The Effects of Recursion

This section demonstrates how the Performance Analyzer assigns metrics to

functions in a recursive sequence. In the data collected by the Collector, each

instance of a function call is recorded, but in the analysis, the metrics for all

instances of a given function are aggregated. The synprog program contains two

examples of recursive calling sequences:

■ Function recurse() demonstrates direct recursion. It calls function

real_recurse() , which then calls itself until a test condition is met. At that

point it performs some work that requires user CPU time The flow of control

returns through successive calls to real_recurse() until it reaches recurse() .

■ Function bounce() demonstrates indirect recursion. It calls function

bounce_a() , which checks to see if a test condition is met. If it is not, it calls

function bounce_b() . bounce_b() in turn calls bounce_a() . This sequence

continues until the test condition in bounce_a() is met. Then bounce_a()
performs some work that requires user CPU time, and the flow of control returns

through successive calls to bounce_b() and bounce_a() until it reaches

bounce() .

In either case, exclusive metrics belong only to the function in which the actual work

is done, in these cases real_recurse() and bounce_a() . These metrics are

passed up as inclusive metrics to every function that calls the final function.

Chapter 2 Learning to Use the Performance Tools 15

First, examine the metrics for recurse() and real_recurse() :

1. In the Functions tab, find function recurse() and select it.

Instead of scrolling the function list you can use the Find tool.

Function recurse() shows inclusive user CPU time, but its exclusive user CPU

time is zero because all recurse() does is execute a call to real_recurse() .

Note – Because profiling experiments are statistical in nature, the experiment that

you run on synprog might record one or two profile events in recurse() , and

recurse() might show a small exclusive CPU time value. However, the exclusive

time due to these events is much less than the inclusive time.

2. Click the Callers-Callees tab.

The selected function, recurse() , is shown in the center pane. The function

real_recurse() , which is called by recurse() , is shown in the lower pane. This

pane is termed the Callees pane.

3. Click real_recurse() .

The Callers-Callees tab now displays information for real_recurse() :

■ Both recurse() and real_recurse() appear in the Callers pane (the upper

pane) as callers of real_recurse() . You would expect this, because after

recurse() calls real_recurse() , real_recurse() calls itself recursively.

16 Program Performance Analysis Tools • May 2002

■ real_recurse() appears in the Callees pane because it calls itself.

■ Exclusive metrics as well as inclusive metrics are displayed for

real_recurse() , where the actual user CPU time is spent. The exclusive

metrics are passed up to recurse() as inclusive metrics.

Now examine what happens in the indirect recursive sequence.

1. Find function bounce() in the Functions tab and select it.

Function bounce() shows inclusive user CPU time, but its exclusive user CPU time

is zero. This is because all bounce() does is to call bounce_a() .

2. Click the Callers-Callees tab.

The Callers-Callees tab shows that bounce() calls only one function, bounce_a() .

3. Click bounce_a() .

The Callers-Callees tab now displays information for bounce_a() :

■ Both bounce() and bounce_b() appear in the Callers pane as callers of

bounce_a() .

■ In addition, bounce_b() appears in the Callees pane because it is called by

bounce_a() .

■ Exclusive as well as inclusive metrics are displayed for bounce_a() , where the

actual user CPU time is spent. These are passed up to the functions that call

bounce_a() as inclusive metrics.

Chapter 2 Learning to Use the Performance Tools 17

4. Click bounce_b() .

The Callers-Callees tab now displays information for bounce_b() . bounce_a()

appears in both the Callers pane and the Callees pane.

Loading Dynamically Linked Shared Objects

This section demonstrates how the Performance Analyzer displays information for

shared objects and how it handles calls to functions that are part of a dynamically

linked shared object that can be loaded at different places at different times.

The synprog directory contains two dynamically linked shared objects, so_syn.so
and so_syx.so . In the course of execution, synprog first loads so_syn.so and

makes a call to one of its functions, so_burncpu() . Then it unloads so_syn.so ,

loads so_syx.so at what happens to be the same address, and makes a call to one

of the so_syx.so functions, sx_burncpu() . Then, without unloading so_syx.so ,

it loads so_syn.so again—at a different address, because the address where it was

first loaded is still being used by another shared object—and makes another call to

so_burncpu() .

The functions so_burncpu() and sx_burncpu() perform identical operations, as

you can see if you examine their source code. Therefore they should take the same

amount of user CPU time to execute.

18 Program Performance Analysis Tools • May 2002

The addresses at which the shared objects are loaded are determined at run time,

and the run-time loader chooses where to load the objects.

This example demonstrates that the same function can be called at different

addresses at different points in the program execution, that different functions can

be called at the same address, and that the Performance Analyzer deals correctly

with this behavior, aggregating the data for a function regardless of the address at

which it appears.

1. Click the Functions tab.

2. Choose View → Show/Hide Functions.

The Show/Hide Functions dialog box lists all the load objects used by the program

when it ran.

3. Click Clear All, select so_syx.so and so_syn.so , then click Apply.

The functions for all the load objects except the two selected objects no longer

appear in the function list. Their entries are replaced by a single entry for the entire

load object.

The list of load objects in the Functions tab includes only the load objects for which

metrics were recorded, so it can be shorter than the list in the Show/Hide Functions

dialog box.

4. In the Functions tab, examine the metrics for sx_burncpu() and so_burncpu() .

Chapter 2 Learning to Use the Performance Tools 19

so_burncpu() performs operations identical to those of sx_burncpu() . The user

CPU time for so_burncpu() is almost exactly twice the user CPU time for

sx_burncpu() because so_burncpu() was executed twice. The Performance

Analyzer recognized that the same function was executing and aggregated the data

for it, even though it appeared at two different addresses in the course of program

execution.

Descendant Processes

This part of the example illustrates different ways of creating descendant processes

and how they are handled, and demonstrates the Timeline display to get an

overview of the execution of a program that creates descendant processes. The

program forks two descendant processes. The parent process does some work, then

calls popen , then does some more work. The first descendant does some work and

then calls exec . The second descendant calls system , then calls fork . The

descendant from this call to fork immediately calls exec . After doing some work,

the descendant calls exec again and does some more work.

1. Start the Performance Analyzer on the experiment and its descendants:

Note that you could open the experiment test.2.er in the existing analyzer and

then add the descendant experiments. If you do this you must open the Add

Experiment dialog box once for each descendant experiment and type

test.2.er/ descendant-name in the text box, then click OK. You cannot navigate to

the descendant experiments to select them: you must type in the name. The list of

descendant names is: _f1.er , _f1_x1.er , _f2.er , _f2_f1.er , _f2_f1_x1.er ,

_f2_f1_x1_x1.er . You must add the experiments in this order, otherwise the

remaining instructions in this part of the example do not match the experiments you

see in the Performance Analyzer.

2. Click the Timeline tab.

The topmost bar for each experiment is the samples bar. The next bar contains the

clock-based profiling event data.

Some of the samples are colored yellow and green. The green color indicates that the

process is running in User CPU mode. The fraction of time spent in User CPU mode

is given by the proportion of the sample that is colored green. Because there are

three processes running most of the time, only about one-third of each sample is

colored green. The rest is colored yellow, which indicates that the process is waiting

for the CPU. This kind of display is normal when there are more processes running

than there are CPUs to run on. When the parent process (experiment 1) has finished

% cd work-directory/synprog
% analyzer test.2.er test.2.er/_*.er &

20 Program Performance Analysis Tools • May 2002

executing and is waiting for its children to finish, the samples for the running

processes are half green and half yellow, showing that there are only two processes

contending for the CPU. When the process that generates experiment 3 has

completed, the remaining process (experiment 7) is able to use the CPU exclusively,

and the samples in experiment 7 show all green after that time.

3. Click the sample bar for experiment 7 in the region that shows half yellow and
half green samples.

4. Zoom in so that you can see the individual event markers.

You can zoom in by dragging through the region you want to zoom in to, or clicking

the zoom in button , or choosing Timeline → Zoom In x2, or typing Alt-T, I.

There are gaps between the event markers in both experiment 3 and experiment 7,

but the gaps in one experiment occur where there are event markers in the other

experiment. These gaps show where one process is waiting for the CPU while the

other process is executing.

Chapter 2 Learning to Use the Performance Tools 21

5. Reset the display to full width.

You can reset the display by clicking the Reset Display button , or choosing

Timeline → Reset Display, or typing Alt-T, R.

Some experiments do not extend for the entire length of the run. This situation is

indicated by a light gray color for the regions of time where these experiments do

not have any data. Experiments 3, 5, 6, and 7 are created after their parent processes

have done some work. Experiments 2, 5, and 6 are terminated by a successful call to

exec. Experiment 3 ends before experiment 7 and its process terminates normally.

The points at which exec is called show clearly: the data for experiment 3 starts

where the data for experiment 2 ends, and the data for experiment 7 starts where the

data for experiment 6 ends.

6. Click the Experiments tab, then click the turner for test.2.er .

The experiments that are terminated by a successful call to exec show up as “bad

experiments” in the Experiments tab. The experiment icon has a cross in a red circle

superimposed on it.

22 Program Performance Analysis Tools • May 2002

7. Click the turner for test.2.er/_f1.er .

At the bottom of the text pane is a warning that the experiment terminated

abnormally. Whenever a process successfully calls exec , the process image is

replaced and the collector library is unloaded. The normal completion of the

experiment cannot take place, and is done instead when the experiment is loaded

into the Analyzer.

8. Click the Timeline tab.

The dark gray regions in the samples bars indicate time spent waiting, other than

waiting for the CPU or for a user lock. The first dark gray region in experiment 1

occurs during the call to popen . Most of the time is spent waiting, but there are

some events recorded during this time. In this region, the process created by popen
is using CPU time and competing with the other processes, but it is not recorded in

an experiment. Similarly, the first dark gray region in experiment 4 occurs during a

call to system . In this case the calling process waits until the call is complete, and

does no work until that time. The process created by the call to system is also

competing with the other processes for the CPU, and does not record an experiment.

The last gray region in experiment 1 occurs when the process is waiting for its

descendants to complete. The process that records experiment 4 calls fork after the

call to system is complete, and then waits until all its descendant processes have

completed. This wait time is indicated by the last gray region. In both these cases,

the waiting processes do no work and have no descendants that are not recording

experiments.

Experiment 4 spends most of its time waiting. As a consequence, it records no

profiling data until the very end of the experiment.

Experiment 5 appears to have no data at all. It is created by a call to fork that is

immediately followed by a call to exec .

Chapter 2 Learning to Use the Performance Tools 23

9. Zoom in on the boundary between the two gray regions in experiment 4.

At sufficiently high zoom, you can see that there is a very small sample in

experiment 5.

10. Click the sample in experiment 5 and look at the Event tab.

The experiment lasted long enough to record an initial sample point and a sample

point in the call to exec , but not long enough to record any profiling data. This is

the reason why there is no profiling data bar for experiment 5.

24 Program Performance Analysis Tools • May 2002

Example 2: OpenMP Parallelization
Strategies

The Fortran program omptest uses OpenMP parallelization and is designed to test

the efficiency of parallelization strategies for two different cases:

■ The first case compares the use of a PARALLEL SECTIONSdirective with a

PARALLEL DOdirective for a section of code in which two arrays are updated

from another array. This case illustrates the issue of balancing the work load

across the threads.

■ The second case compares the use of a CRITICAL SECTION directive with a

REDUCTIONdirective for a section of code in which array elements are summed to

give a scalar result. This case illustrates the cost of contention among threads for

memory access.

See the Fortran Programming Guide for background on parallelization strategies and

OpenMP directives. When the compiler identifies an OpenMP directive, it generates

special functions and calls to the threads library. These functions appear in the

Performance Analyzer display. For more information, see “Parallel Execution and

Chapter 2 Learning to Use the Performance Tools 25

Compiler-Generated Body Functions” on page 142 and “Compiler-Generated Body

Functions” on page 151. Messages from the compiler about the actions it has taken

appear in the annotated source and disassembly listings.

Collecting Data for omptest

Read the instructions in the sections, “Setting Up the Examples for Execution” on

page 4 and “Basic Features of the Performance Analyzer” on page 6, if you have not

done so. Compile omptest before you begin this example.

In this example you generate two experiments: one that is run with 4 CPUs and one

that is run with 2 CPUs. The experiments are labeled with the number of CPUs.

To collect data for omptest , type the following commands in the C shell.

If you are using the Bourne shell or the Korn shell, type the following commands.

The collection commands are included in the makefile, so in any shell you can type

the following commands.

To start the Performance Analyzer for both experiments, type .

% cd ~/ work-directory/omptest
% setenv PARALLEL 4
% collect -o omptest.4.er omptest
% setenv PARALLEL 2
% collect -o omptest.2.er omptest
% unsetenv PARALLEL

$ cd ~/ work-directory/omptest
$ PARALLEL=4; export PARALLEL
$ collect -o omptest.4.er omptest
$ PARALLEL=2; export PARALLEL
$ collect -o omptest.2.er omptest
$ unset PARALLEL

$ cd ~/ work-directory/omptest
$ make collect

$ analyzer omptest.4.er &
$ analyzer omptest.2.er &

26 Program Performance Analysis Tools • May 2002

You are now ready to analyze the omptest experiment using the procedures in the

following sections.

Comparing Parallel Sections and Parallel Do

Strategies

This section compares the performance of two routines, psec_() and pdo_() , that

use the PARALLEL SECTIONSdirective and the PARALLEL DOdirective. The

performance of the routines is compared as a function of the number of CPUs.

To compare the four-CPU run with the two-CPU run, you must have two Analyzer

windows, with omptest.4.er loaded into one, and omptest.2.er loaded into the

other.

1. In the Functions tab of each Performance Analyzer window, find psec_ and select
it.

You can use the Find tool to find this function. Note that there are other functions

that start with psec_ which have been generated by the compiler.

2. Position the windows so that you can compare the Summary tabs.

The data for the four-CPU run is on the left in this figure.

Chapter 2 Learning to Use the Performance Tools 27

3. Compare the inclusive metrics for user CPU time, wall clock time, and total LWP
time.

For the two-CPU run, the ratio of wall clock time to either user CPU time or total

LWP is about 1 to 2, which indicates relatively efficient parallelization.

For the four-CPU run, psec_() takes about the same wall clock time as for the two-

CPU run, but both the user CPU time and the total LWP time are higher. There are

only two sections within the psec_() PARALLEL SECTION construct, so only two

threads are required to execute them, using only two of the four available CPUs at

any given time. The other two threads are spending CPU time waiting for work.

Because there is no more work available, the time is wasted.

4. In each Analyzer window, click the line containing pdo_ in the Function List
display.

The data for pdo_() is now displayed in the Summary Metrics tabs.

5. Compare the inclusive metrics for user CPU time, wall-clock time, and total LWP.

The user CPU time for pdo_() is about the same as for psec_() . The ratio of wall-

clock time to user CPU time is about 1 to 2 on the two-CPU run, and about 1 to 4 on

the four-CPU run, indicating that the pdo_() parallelizing strategy scales much

more efficiently on multiple CPUs, taking into account how many CPUs are

available and scheduling the loop appropriately.

The data for the four-CPU run is on the left in this figure.

6. Close the Analyzer window that is displaying omptest.2.er .

28 Program Performance Analysis Tools • May 2002

Comparing Critical Section and Reduction

Strategies

This section compares the performance of two routines, critsec_() and

reduc_() , in which the CRITICAL SECTIONS directive and REDUCTIONdirective

are used. In this case, the parallelization strategy deals with an identical assignment

statement embedded in a pair of do loops. Its purpose is to sum the contents of three

two-dimensional arrays.

1. For the four-CPU experiment, omptest.4.er , locate critsum_() and redsum_()
in the Functions tab.

2. Compare the inclusive user CPU time for the two functions.

The inclusive user CPU time for critsum_() is much larger than for redsum_() ,

because critsum_() uses a critical section parallelization strategy. Although the

summing operation is spread over all four CPUs, only one CPU at a time is allowed

to add its value of t to sum. This is not a very efficient parallelization strategy for

this kind of coding construct.

t = (a(j,i)+b(j,i)+c(j,i))/k
sum = sum+t

Chapter 2 Learning to Use the Performance Tools 29

The inclusive user CPU time for redsum_() is much smaller than for critsum_() .

This is because redsum_() uses a reduction strategy, by which the partial sums of

(a(j,i)+b(j,i)+c(j,i))/k are distributed over multiple processors, after which

these intermediate values are added to sum. This strategy makes much more efficient

use of the available CPUs.

Example 3: Locking Strategies in
Multithreaded Programs

The mttest program emulates the server in a client-server, where clients queue

requests and the server uses multiple threads to service them, using explicit

threading. Performance data collected on mttest demonstrates the sorts of

contentions that arise from various locking strategies, and the effect of caching on

execution time.

The executable mttest is compiled for explicit multithreading, and it will run as a

multithreaded program on a machine with multiple CPUs or with one CPU. There

are some interesting differences and similarities in its performance metrics between

a multiple CPU system and a single CPU system.

Collecting Data for mttest

Read the instructions in the sections, “Setting Up the Examples for Execution” on

page 4 and “Basic Features of the Performance Analyzer” on page 6, if you have not

done so. Compile mttest before you begin this example.

In this example you generate two experiments: one that is run with 4 CPUs and one

that is run with 1 CPU. The experiments record synchronization wait tracing data as

well as clock data. The experiments are labeled with the number of CPUs.

To collect data for mttest and start the Performance Analyzer, type the following

commands.

% cd work-directory/mttest
% collect -s on -o mttest.4.er mttest
% collect -s on -o mttest.1.er mttest -u
% analyzer mttest.4.er &
% analyzer mttest.1.er &

30 Program Performance Analysis Tools • May 2002

The collect commands are included in the makefile, so instead you can type the

following commands.

After you have loaded the two experiments, position the two Performance Analyzer

windows so that you can see them both.

You are now ready to analyze the mttest experiment using the procedures in the

following sections.

How Locking Strategies Affect Wait Time

1. Find lock_local() and lock_global() in the Functions tab for the four-CPU
experiment, mttest.4.er .

Both functions have approximately the same inclusive user CPU time, so they are

doing the same amount of work. However, lock_global() has a high

synchronization wait time, whereas lock_local() has none.

% cd work-directory/mttest
% make collect
% analyzer mttest.4.er &
% analyzer mttest.1.er &

Chapter 2 Learning to Use the Performance Tools 31

The annotated source code for the two functions shows why this is so.

2. Click lock_global() , then click the Source tab.

lock_global() uses a global lock to protect all the data. Because of the global lock,

all running threads must contend for access to the data, and only one thread has

access to it at a time. The rest of the threads must wait until the working thread

releases the lock to access the data. This line of source code is responsible for the

synchronization wait time.

3. Click lock_local() in the Functions tab, then click the Source tab.

32 Program Performance Analysis Tools • May 2002

lock_local() only locks the data in a particular thread’s work block. No thread

can have access to another thread’s work block, so each thread can proceed without

contention or time wasted waiting for synchronization. The synchronization wait

time for this line of source code, and hence for lock_local() , is zero.

4. Change the metric selection for the one-CPU experiment, mttest.1.er :

a. Choose View → Set Data Presentation.

b. Clear Exclusive User CPU Time and Inclusive Synchronization Wait Counts.

c. Select Inclusive Total LWP Time, Inclusive Wait CPU Time and Inclusive Other
Wait Time.

d. Click Apply.

5. In the Functions tab for the one-CPU experiment, find lock_local() and
lock_global() .

As in the four-CPU experiment, both functions have the same inclusive user CPU

time, and therefore are doing the same amount of work. The synchronization

behavior is also the same as on the four-CPU system: lock_global() uses a lot of

time in synchronization waiting but lock_local() does not.

However, total LWP time for lock_global() is actually less than for

lock_local() . This is because of the way each locking scheme schedules the

threads to run on the CPU. The global lock set by lock_global() allows each

thread to execute in sequence until it has run to completion. The local lock set by

lock_local() schedules each thread onto the CPU for a fraction of its run and

then repeats the process until all the threads have run to completion. In both cases,

the threads spend a significant amount of time waiting for work. The threads in

lock_global() are waiting for the lock. This wait time appears in the Inclusive

Chapter 2 Learning to Use the Performance Tools 33

Synchronization Wait Time metric and also the Other Wait Time metric. The threads

in lock_local() are waiting for the CPU. This wait time appears in the Wait CPU

Time metric.

6. Restore the metric selection to the default values for mttest.1.er .

In the Set Data Presentation dialog box, which should still be open, do the following:

a. Select Exclusive User CPU Time and Inclusive Synchronization Wait Counts.

b. Clear Inclusive Total LWP Time, Inclusive Wait CPU Time and Inclusive Other
Wait Time in the Time column.

c. Click OK.

How Data Management Affects Cache

Performance

1. Find ComputeA() and ComputeB() in the Functions tab of both Performance
Analyzer windows.

In the one-CPU experiment, mttest.1.er , the inclusive user CPU time for

ComputeA() is almost the same as for ComputeB() .

In the four-CPU experiment, mttest.4.er , ComputeB() uses much more inclusive

user CPU time than ComputeA() .

34 Program Performance Analysis Tools • May 2002

The remaining instructions apply to the four-CPU experiment, mttest.4.er .

2. Click ComputeA() , then click the Source tab. Scroll down so that the source for
both ComputeA() and ComputeB() is displayed.

The code for these functions is identical: a loop adding one to a variable. All the user

CPU time is spent in this loop. To find out why ComputeB() uses more time than

ComputeA() , you must examine the code that calls these two functions.

Chapter 2 Learning to Use the Performance Tools 35

3. Use the Find tool to find cache_trash . Repeat the search until the source code
for cache_trash() is displayed.

Both ComputeA() and ComputeB() are called by reference using a pointer, so their

names do not appear in the source code.

You can verify that cache_trash() is the caller of ComputeB() by selecting

ComputeB() in the Function List display then clicking Callers-Callees.

4. Compare the calls to ComputeA() and ComputeB() .

ComputeA() is called with a double in the thread’s work block as an argument

(&array->list[0]), that can be read and written to directly without danger of

contention with other threads.

ComputeB() , however, is called with a series of doubles that occupy successive

words in memory (&element[array->index]). Whenever a thread writes to one

of these addresses in memory, any other threads that have that address in their cache

must delete the data, which is now out-of-date. If one of the threads needs the data

again later in the program, the data must be copied back into the data cache from

memory, even if the data item that is needed has not changed. The resulting cache

misses, which are attempts to access data not available in the data cache, waste a lot

of CPU time. This explains why ComputeB() uses much more user CPU time than

ComputeA() in the four-CPU experiment.

36 Program Performance Analysis Tools • May 2002

In the one-CPU experiment, only one thread is running at a time and no other

threads can write to memory. The running thread’s cache data never becomes

invalid. No cache misses or resulting copies from memory occur, so the performance

for ComputeB() is just as efficient as the performance for ComputeA() when only

one CPU is available.

Extension Exercises for mttest

1. If you are using a computer that has hardware counters, run the four-CPU

experiment again and collect data for one of the cache hardware counters, such as

cache misses or stall cycles. On UltraSPARC III hardware you can use the

command

You can combine the information from this new experiment with the previous

experiment by choosing File → Add. Examine the hardware counter data for

ComputeA and ComputeB in the Functions tab and the Source tab.

2. The makefile contains optional settings for compilation variables that are

commented out. Try changing some of these options and see what effect the

changes have on program performance. The compilation variables to try are:

■ THREADS– Select the threads model.

■ OFLAGS– Compiler optimization flags

Example 4: Cache Behavior and
Optimization

This example addresses the issue of efficient data access and optimization. It uses

two implementations of a matrix-vector multiplication routine, dgemv, which is

included in standard BLAS libraries. Three copies of the two routines are included in

the program. The first copy is compiled without optimization, to illustrate the effect

of the order in which elements of an array are accessed on the performance of the

routines. The second copy is compiled with -O2 , and the third with -fast , to

illustrate the effect of compiler loop reordering and optimization.

This example illustrates the use of hardware counters and compiler commentary for

performance analysis.

% collect -p off -h dcstall -o mttest.3.er mttest

Chapter 2 Learning to Use the Performance Tools 37

Collecting Data for cachetest

Read the instructions in the sections, “Setting Up the Examples for Execution” on

page 4 and “Basic Features of the Performance Analyzer” on page 6, if you have not

done so. Compile cachetest before you begin this example.

In this example you generate several experiments with data collected from different

hardware counters, as well as an experiment that contains clock-based data.

To collect data for cachetest and start the Performance Analyzer from the

command line, type the following commands.

The collect commands have been included in the makefile, so instead you can

type the following commands.

The Performance Analyzer shows exclusive metrics only. This is different from the

default, and has been set in a local defaults file. See “Defaults Commands” on

page 126 for more information.

You are now ready to analyze the cachetest experiment using the procedures in

the following sections.

Execution Speed

1. Start the analyzer on the floating point operations experiment.

2. Click the header of the Name column.

The functions are sorted by name, and the display is centered on the selected

function, which remains the same.

% cd work-directory/cachetest
% collect -o flops.er -S off -p on -h fpadd,,fpmul cachetest
% collect -o cpi.er -S off -p on -h cycles,,insts cachetest
% collect -o dcstall.er -h dcstall cachetest

% cd work-directory/cachetest
% make collect

% cd work-directory/cachetest
% analyzer flops.er &

38 Program Performance Analysis Tools • May 2002

3. For each of the six functions, dgemv_g1 , dgemv_g2 , dgemv_opt1 , dgemv_opt2 ,
dgemv_hi1 , and dgemv_hi2 , add the FP Adds and FP Muls counts and divide by
the User CPU time and 106.

The numbers obtained are the MFLOPS counts for each routine. All of the

subroutines have the same number of floating-point instructions issued but use

different amounts of CPU time. (The variation between the counts is due to counting

statistics.) The performance of dgemv_g2 is better than that of dgemv_g1 , the

performance of dgemv_opt2 is better than that of dgemv_opt1 , but the

performance of dgemv_hi2 and dgemv_hi1 are about the same.

4. Compare the MFLOPS values obtained here with the MFLOPS values printed by
the program.

The values computed from the data are lower because of the overhead for the

collection of the hardware counter data.

Program Structure and Cache Behavior

In this section, we examine the reasons why dgemv_g2 has better performance than

dgemv_g1 . If you already have the Performance Analyzer running, do the following:

1. Choose File → Open and open cpi.er .

2. Choose File → Add and add dcstall.er .

Chapter 2 Learning to Use the Performance Tools 39

If you do not have the Performance Analyzer running, type the following commands

at the prompt:

1. Compare the values for User CPU time and CPU Cycles.

There is a difference between these two metrics for dgemv_g1 because of DTLB

(data translation lookaside buffer) misses. The system clock is still running while the

CPU is waiting for a DTLB miss to be resolved, but the cycle counter is turned off.

The difference for dgemv_g2 is negligible, indicating that there are few DTLB

misses.

2. Compare the D- and E-cache stall times for dgemv_g1 and dgemv_g2 .

There is less time spent waiting for the cache to be reloaded in dgemv2 than in

dgemv, because in dgemv2 the way in which data access occurs makes more efficient

use of the cache.

To see why, we examine the annotated source code. First, to limit the data in the

display we remove most of the metrics.

3. Choose View → Set Data Presentation and deselect the metrics for Instructions
Executed and CPU Cycles in the Metrics tab.

4. Click dgemv_g1 , then click the Source tab.

% cd work-directory/cachetest
% analyzer cpi.er dcstall.er &

40 Program Performance Analysis Tools • May 2002

5. Resize and scroll the display so that you can see the source code for both
dgemv_g1 and dgemv_g2 .

The loop structure in the two routines is different. Because the code is not optimized,

the data in the array in dgemv_g1 is accessed by rows, with a large stride (in this

case, 6000). This is the cause of the DTLB and cache misses. In dgemv_g2 , the data is

accessed by column, with a unit stride. Since the data for each loop iteration is

contiguous, a large segment can be mapped and loaded into cache and there are

cache misses only when this segment has been used and another is required.

Chapter 2 Learning to Use the Performance Tools 41

Program Optimization and Performance

In this section we examine the effect of two different optimization options on the

program performance, -O2 and -fast . The transformations that have been made on

the code are indicated by compiler commentary messages, which appear in the

annotated source code.

1. Load the experiments cpi.er and dcstall.er into the Performance Analyzer.

If you have just completed the previous section, Choose View → Set Data

Presentation and ensure that the metrics for CPU Cycles as a time and for

Instructions Executed are selected.

If you do not have the Performance Analyzer running, type the following commands

at the prompt:.

2. Click the header of the Name column.

The functions are sorted by name, and the display is centered on the selected

function, which remains the same.

3. Compare the metrics for dgemv_opt1 and dgemv_opt2 with the metrics for
dgemv_g1 and dgemv_g2 .

% cd work-directory/cachetest
% analyzer cpi.er dcstall.er &

42 Program Performance Analysis Tools • May 2002

The source code is identical to that in dgemv_g1 and dgemv_g2 . The difference is

that they have been compiled with the -O2 compiler option. Both functions show

about the same decrease in CPU time, whether measured by User CPU time or by

CPU cycles, and about the same decrease in the number of instructions executed, but

in neither routine is the cache behavior improved.

4. In the Functions tab, compare the metrics for dgemv_opt1 and dgemv_opt2 with
the metrics for dgemv_hi1 and dgemv_hi2 .

The source code is identical to that in dgemv_opt1 and dgemv_opt2 . The difference

is that they have been compiled with the -fast compiler option. Now both routines

have the same CPU time and the same cache performance. Both the CPU time and

the cache stall cycle time have decreased compared to dgemv_opt1 and

dgemv_opt 2. Waiting for the cache to be loaded takes about 80% of the execution

time.

5. Click dgemv_hi1 , then click the Source tab. Resize and scroll the display so that
you can see the source for all of dgemv_hi1 .

Chapter 2 Learning to Use the Performance Tools 43

The compiler has done much more work to optimize this function. It has

interchanged the loops that were the cause of the DTLB miss problems. In addition,

the compiler has created new loops that have more floating-point add and floating-

point multiply operations per loop cycle, and inserted prefetch instructions to

improve the cache behavior.

Note that the messages apply to the loop that appears in the source code and any

loops that the compiler generates from it.

6. Scroll down to see the source code for dgemv_hi2 .

The compiler commentary messages are the same as for dgemv_hi1 except for the

loop interchange. The code generated by the compiler for the two versions of the

routine is now essentially the same.

44 Program Performance Analysis Tools • May 2002

7. Click the Disassembly tab.

Compare the disassembly listing with that for dgemv_g1 or dgemv_opt1 . There are

many more instructions generated for dgemv_hi 1, but the number of instructions

executed is the smallest of the three versions of the routine. Optimization can

produce more instructions, but the instructions are used more efficiently and

executed less frequently.

45

CHAPTER 3

Performance Data

The performance tools work by recording data about specific events while a

program is running, and converting the data into measures of program performance

called metrics.

This chapter describes the data collected by the performance tools, how it is

processed and displayed, and how it can be used for performance analysis. For

information on collecting and storing performance data, see Chapter 4. For

information on analyzing performance data, see Chapter 5 and Chapter 6.

Because there is more than one tool that collects performance data, the term

Collector is used to refer to any of these tools. Likewise, because there is more than

one tool that analyzes performance data, the term analysis tools is use to refer to any

of these tools.

This chapter covers the following topics.

■ What Data the Collector Collects

■ How Metrics Are Assigned to Program Structure

What Data the Collector Collects

The Collector collects three different kinds of data: profiling data, tracing data and

global data.

■ Profiling data is collected by recording a profile of the program and the system at

regular intervals. The interval is either a time interval obtained by using the

system clock or a number of hardware events of a specific type. When the interval

expires, a signal is delivered to the system and the data is recorded at the next

opportunity.

46 Program Performance Analysis Tools • May 2002

■ Tracing data is collected by interposing a wrapper function on various system

functions so that calls to the system functions can be intercepted and data

recorded about the calls.

■ Global data is collected by calling various system routines to obtain information.

The global data packet is called a sample.

Both profiling data and tracing data contain information about specific events, and

both types of data are converted into performance metrics. Global data is not

converted into metrics, but is used to provide markers that can be used to divide the

program execution into time segments. The global data gives an overview of the

program execution during that time segment.

The data packets collected at each profiling event or tracing event include the

following information:

■ A header identifying the data

■ A high-resolution timestamp

■ A thread ID

■ A lightweight process (LWP) ID

■ A processor ID

■ A copy of the call stack

For more information on threads and lightweight processes, see Chapter 7.

In addition to the common data, each event-specific data packet contains

information specific to the data type. The five types of data that the Collector can

record are:

■ Clock data

■ Hardware-counter overflow data

■ Synchronization wait tracing data

■ Heap tracing (memory allocation) data

■ MPI tracing data

These five data types, the metrics that are derived from them, and how you might

use them, are described in the next five subsections.

Clock Data

In clock-based profiling, the state of each LWP is stored at regular time intervals.

This time interval is called the profiling interval. The information is stored in an

integer array: one element of the array is used for each of the ten microaccounting

states maintained by the kernel.The data collected is converted by the Performance

Analyzer into times spent in each state, with a resolution of the profiling interval.

The default profiling interval is 10 ms. The Collector provides a high-resolution

profiling interval of 1 ms and a low-resolution profiling interval of 100 ms.

Chapter 3 Performance Data 47

The metrics that are computed from clock-based data are defined in the following

table.

For multithreaded experiments, times other than wall clock time are summed across

all LWPs. Wall time as defined is not meaningful for multiple-program multiple-data

(MPMD) programs.

Timing metrics tell you where your program spent time in several categories and can

be used to improve the performance of your program.

■ High user CPU time tells you where the program did most of the work. It can be

used to find the parts of the program where there may be the most gain from

redesigning the algorithm.

■ High system CPU time tells you that your program is spending a lot of time in

calls to system routines.

■ High wait CPU time tells you that there are more threads ready to run than there

are CPUs available, or that other processes are using the CPUs.

■ High user lock time tells you that threads are unable to obtain the lock that they

request.

■ High text page fault time means that the code generated by the linker is

organized in memory so that calls or branches cause a new page to be loaded.

Creating and using a mapfile (see “Generating and Using a Mapfile” on page 110)

can fix this kind of problem.

■ High data page fault time indicates that access to the data is causing new pages to

be loaded. Reorganizing the data structure or the algorithm in your program can

fix this problem.

TABLE 3-1 Timing Metrics

Metric Definition

User CPU time LWP time spent running in user mode on the CPU.

Wall time LWP time spent in LWP 1. This is the “wall clock time”

Total LWP time Sum of all LWP times.

System CPU time LWP time spent running in kernel mode on the CPU or in a trap

state.

Wait CPU time LWP time spent waiting for the CPU.

User lock time LWP time spent waiting for a lock.

Text page fault time LWP time spent waiting for a text page.

Data page fault time LWP time spent waiting for a data page.

Other wait time LWP time spent waiting for a kernel page, or time spent sleeping

or stopped.

48 Program Performance Analysis Tools • May 2002

Hardware-Counter Overflow Data

Hardware counters are commonly used to keep track of events like cache misses,

cache stall cycles, floating-point operations, branch mispredictions, CPU cycles, and

instructions executed. In hardware-counter overflow profiling, the Collector records

a profile packet when a designated hardware counter of the CPU on which an LWP

is running overflows. The counter is reset and continues counting. The profile packet

includes the overflow value and the counter type.

The UltraSPARC™ III processor family and the IA processor family have two

registers that can be used to count events. The Collector can collect data from both

registers. For each register the Collector allows you to select the type of counter to

monitor for overflow, and to set an overflow value for the counter. Some hardware

counters can use either register, others are only available on a particular register.

Consequently, not all combinations of hardware counters can be chosen in a single

experiment.

Hardware-counter overflow profiling data is converted by the Performance Analyzer

into count metrics. For counters that count in cycles, the metrics reported are

converted to times; for counters that do not count in cycles, the metrics reported are

event counts. On machines with multiple CPUs, the clock frequency used to convert

the metrics is the harmonic mean of the clock frequencies of the individual CPUs.

Because each type of processor has its own set of hardware counters, and because

the number of hardware counters is large, the hardware counter metrics are not

listed here. The next subsection tells you how to find out what hardware counters

are available.

One use of hardware counters is to diagnose problems with the flow of information

into and out of the CPU. High counts of cache misses, for example, indicate that

restructuring your program to improve data or text locality or to increase cache

reuse can improve program performance.

Some of the hardware counters provide similar or related information. For example,

branch mispredictions and instruction cache misses are often related because a

branch misprediction causes the wrong instructions to be loaded into the instruction

cache, and these must be replaced by the correct instructions. The replacement can

cause an instruction cache miss, or an instruction translation lookaside buffer (ITLB)

miss.

Hardware Counter Lists

Hardware counters are processor-specific, so the choice of counters available to you

depends on the processor that you are using. For convenience, the performance tools

provide aliases for a number of counters that are likely to be in common use. You

can obtain a list of available hardware counters from the Collector by typing

collect with no arguments in a terminal window.

Chapter 3 Performance Data 49

The entries in the counter list for aliased counters are formatted as in the following

example.

The first field, “CPU Cycles ”, is the name of the corresponding Performance

Analyzer metric. The aliased counter name, “cycles ”, is in parentheses to the left of

the “=” sign. The field to the right of the “=” sign, “Cycle_cnt/* ”, contains the

internal name, Cycle_cnt , as it is used by cputrack (1), followed by a slash and

the register number on which that counter can be used. The register number can be

0 or 1, or * to indicate that the counter can count on either register. The first field

after the parentheses is the default overflow value, the next field is the default high-

resolution overflow value, and the last field is the default low-resolution overflow

value.

The aliased counters that are available on both UltraSPARC and IA hardware are

given in TABLE 3-2. There are other aliases that are available on UltraSPARC

hardware.

The non-aliased entries in the counter list are formatted as in the following example.

“Cycle_cnt ” gives the internal name as used by cputrack (1). The string

“Cycle_cnt Events” is the name of the Performance Analyzer metric for this

counter. The register on which the event can be counted is given next, in

parentheses. The first field after the parentheses is the default overflow value, the

next field is the default high-resolution overflow value, and the last field is the

default low-resolution overflow value.

In the counter list, the aliased counters appear first, then all the counters available

on register 0, then all the counters available on register 1. The aliased counters

appear twice, with and without the alias. In the non-aliased list, these counters can

have different overflow values. The default overflow values for the aliased counters

have been chosen to produce approximately the same data collection rate as for

clock data.

CPU Cycles (cycles = Cycle_cnt/*) 9999991 hi=1000003, lo=100000007

TABLE 3-2 Aliased Hardware Counters Available on SPARC and IA Hardware

Aliased Counter Name Metric Name Description

cycles CPU Cycles CPU cycles, counted on either register

insts Instructions Executed Instructions executed, counted on either

register

Cycle_cnt Events (reg. 0) 1000003 hi=100003, lo=9999991

50 Program Performance Analysis Tools • May 2002

Synchronization Wait Tracing Data

In multithreaded programs, the synchronization of tasks performed by different

threads can cause delays in execution of your program, because one thread might

have to wait for access to data that has been locked by another thread, for example.

These events are called synchronization delay events and are collected by tracing

calls to the functions in the threads library, libthread.so . The process of collecting

and recording these events is called synchronization wait tracing. The time spent

waiting for the lock is called the wait time.

Events are only recorded if their wait time exceeds a threshold value, which is given

in microseconds. A threshold value of 0 means that all synchronization delay events

are traced, regardless of wait time. The default threshold is determined by running a

calibration test, in which calls are made to the threads library without any

synchronization delay. The threshold is the average time for these calls multiplied by

an arbitrary factor (currently 6). This procedure prevents the recording of events for

which the wait times are due only to the call itself and not to a real delay. As a result,

the amount of data is greatly reduced, but the count of synchronization events can

be significantly underestimated.

Synchronization wait tracing data is not recorded for Java™ monitors.

Synchronization wait tracing data is converted into the following metrics:

From this information you can determine if functions or load objects are either

frequently blocked, or experience unusually long wait times when they do make a

call to a synchronization routine. High synchronization wait times indicate

contention among threads. You can reduce the contention by redesigning your

algorithms, particularly restructuring your locks so that they cover only the data for

each thread that needs to be locked.

TABLE 3-3 Synchronization Wait Tracing Metrics

Metric Definition

Synchronization delay events. The number of calls to a synchronization routine where

the wait time exceeded the prescribed threshold.

Synchronization wait time. Total of wait times that exceeded the prescribed threshold.

Chapter 3 Performance Data 51

Heap Tracing (Memory Allocation) Data

Calls to memory allocation and deallocation functions that are not properly

managed can be a source of inefficient data usage and can result in poor program

performance. In heap tracing, the Collector traces memory allocation and

deallocation requests by interposing on the C standard library memory allocation

functions malloc , realloc , and memalign and the deallocation function free .

The Fortran functions allocate and deallocate call the C standard library

functions, so these routines are also traced indirectly. Java memory allocations do

not use the C memory allocation functions so they are not traced.

Heap tracing data is converted into the following metrics:

Collecting heap tracing data can help you identify memory leaks in your program or

locate places where there is inefficient allocation of memory.

There is another definition of memory leaks that is commonly used, such as in the

debugging tool, dbx . The definition is “a dynamically-allocated block of memory

that has no pointers pointing to it anywhere in the data space of the program.” The

definition of leaks used here includes this alternative definition.

TABLE 3-4 Memory Allocation (Heap Tracing) Metrics

Metric Definition

Allocations The number of calls to the memory allocation functions.

Bytes allocated The sum of the number of bytes allocated in each call to the

memory allocation functions.

Leaks The number of calls to the memory allocation functions that did

not have a corresponding call to free .

Bytes leaked The number of bytes that were allocated but not freed.

52 Program Performance Analysis Tools • May 2002

MPI Tracing Data

The Collector can collect data on calls to the Message Passing Interface (MPI) library.

The functions for which data is collected are listed below.

MPI tracing data is converted into the following metrics:

The number of bytes recorded as received or sent is the buffer size given in the call.

This might be larger than the actual number of bytes received or sent. In the global

communication functions and collective communication functions, the number of

bytes sent or received is the maximum number, assuming direct interprocessor

communication and no optimization of the data transfer or re-transmission of the

data.

MPI_Allgather MPI_Allgatherv MPI_Allreduce

MPI_Alltoall MPI_Alltoallv MPI_Barrier

MPI_Bcast MPI_Bsend MPI_Gather

MPI_Gatherv MPI_Recv MPI_Reduce

MPI_Reduce_scatter MPI_Rsend MPI_Scan

MPI_Scatter MPI_Scatterv MPI_Send

MPI_Sendrecv MPI_Sendrecv_replace MPI_Ssend

MPI_Wait MPI_Waitall MPI_Waitany

MPI_Waitsome MPI_Win_fence MPI_Win_lock

TABLE 3-5 MPI Tracing Metrics

Metric Definition

MPI Receives Number of calls to MPI functions that receive data

MPI Bytes Received Number of bytes received in MPI functions

MPI Sends Number of calls to MPI functions that send data

MPI Bytes Sent Number of bytes sent in MPI functions

MPI Time Time spent in all calls to MPI functions

Other MPI Calls Number of calls to other MPI functions

Chapter 3 Performance Data 53

The functions from the MPI library that are traced are listed in TABLE 3-6, categorized

as MPI send functions, MPI receive functions, MPI send and receive functions, and

other MPI functions.

Collecting MPI tracing data can help you identify places where you have a

performance problem in an MPI program that could be due to MPI calls. Examples

of possible performance problems are load balancing, synchronization delays, and

communications bottlenecks.

Global (Sampling) Data

Global data is recorded by the Collector in packets called sample packets. Each

packet contains a header, a timestamp, execution statistics from the kernel such as

page fault and I/O data, context switches, and a variety of page residency (working-

set and paging) statistics. The data recorded in sample packets is global to the

program and is not converted into performance metrics. The process of recording

sample packets is called sampling.

Sample packets are recorded in the following circumstances:

■ When the program stops for any reason in the Debugging window or in dbx ,

such as at a breakpoint, if the option to do this is set

■ At the end of a sampling interval, if you have selected periodic sampling. The

sampling interval is specified as an integer in units of seconds. The default value

is 1 second

■ When you choose Debug → Performance Toolkit → New Sample, or click the New

Sample button in the Debugging window, or use the dbx collector sample
record command

TABLE 3-6 Classification of MPI Functions Into Send, Receive, Send and Receive, and
Other

Category Functions

MPI send functions MPI_Send , MPI_Bsend , MPI_Rsend , MPI_Ssend

MPI receive functions MPI_Recv

MPI send and receive

functions

MPI_Allgather , MPI_Allgatherv , MPI_Allreduce ,

MPI_Alltoall , MPI_Alltoallv , MPI_Bcast , MPI_Gather ,

MPI_Gatherv , MPI_Reduce , MPI_Reduce_scatter ,

MPI_Scan , MPI_Scatter , MPI_Scatterv , MPI_Sendrecv ,

MPI_Sendrecv_replace

Other MPI functions MPI_Barrier , MPI_Wait , MPI_Waitall , MPI_Waitany ,

MPI_Waitsome , MPI_Win_fence , MPI_Win_lock

54 Program Performance Analysis Tools • May 2002

■ At a call to collector_sample , if you have put calls to this routine in your code

(see “Controlling Data Collection From Your Program” on page 62)

■ When a specified signal is delivered, if you have used the -l option with the

collect command (see “Experiment Control Options” on page 76)

■ When collection is initiated and terminated

■ Before and after a descendant process is created

The performance tools use the data recorded in the sample packets to group the data

into time periods, which are called samples. You can filter the event-specific data by

selecting a set of samples, so that you see only information on a particular time

period. You can also view the global data for each sample.

The performance tools make no distinction between the different kinds of sample

points. To make use of sample points for analysis you should choose only one kind

of point to be recorded. In particular, if you want to record sample points that are

related to the program structure or execution sequence, you should turn off periodic

sampling, and use samples recorded when dbx stops the process, or when a signal is

delivered to the process that is recording data using the collect command, or

when a call is made to the Collector API functions.

How Metrics Are Assigned to Program
Structure

Metrics are assigned to program instructions using the call stack that is recorded

with the event-specific data. If the information is available, each instruction is

mapped to a line of source code and the metrics assigned to that instruction are also

assigned to the line of source code. See Chapter 7 for a more detailed explanation of

how this is done.

In addition to source code and instructions, metrics are assigned to higher level

objects: functions and load objects. The call stack contains information on the

sequence of function calls made to arrive at the instruction address recorded when a

profile was taken. The Performance Analyzer uses the call stack to compute metrics

for each function in the program. These metrics are called function-level metrics.

Chapter 3 Performance Data 55

Function-Level Metrics: Exclusive, Inclusive, and

Attributed

The Performance Analyzer computes three types of function-level metrics: exclusive

metrics, inclusive metrics and attributed metrics.

■ Exclusive metrics for a function are calculated from events which occur inside the

function itself: they exclude metrics coming from calls to other functions.

■ Inclusive metrics are calculated from events which occur inside the function and

any functions it calls: they include metrics coming from calls to other functions.

■ Attributed metrics tell you how much of an inclusive metric came from calls from

or to another function: they attribute metrics to another function.

For a function at the bottom of a particular call stack (the “leaf function”), the

exclusive and inclusive metrics are the same, because the function makes no calls to

other functions.

Exclusive and inclusive metrics are also computed for load objects. Exclusive metrics

for a load object are calculated by summing the function-level metrics over all

functions in the load object. Inclusive metrics for load objects are calculated in the

same way as for functions.

Exclusive and inclusive metrics for a function give information about all recorded

paths through the function. Attributed metrics give information about particular

paths through a function. They show how much of a metric came from a particular

function call. The two functions involved in the call are described as a caller and a

callee. For each function in the call tree:

■ The attributed metrics for a function’s callers tell you how much of the function’s

inclusive metric was due to calls from each caller. The attributed metrics for the

callers sum to the function’s inclusive metric.

■ The attributed metrics for a function’s callees tell you how much of the function’s

inclusive metric came from calls to each callee. Their sum plus the function’s

exclusive metric equals the function’s inclusive metric.

Comparison of attributed and inclusive metrics for the caller or the callee gives

further information:

■ The difference between a caller’s attributed metric and its inclusive metric tells

you how much of the metric came from calls to other functions and from work in

the caller itself.

■ The difference between a callee’s attributed metric and its inclusive metric tells

you how much of the callee’s inclusive metric came from calls to it from other

functions.

To locate places where you could improve the performance of your program:

■ Use exclusive metrics to locate functions that have high metric values.

56 Program Performance Analysis Tools • May 2002

■ Use inclusive metrics to determine which call sequence in your program was

responsible for high metric values.

■ Use attributed metrics to trace a particular call sequence to the function or

functions that are responsible for high metric values.

Interpreting Function-Level Metrics: An Example

Exclusive, inclusive and attributed metrics are illustrated in FIGURE 3-1, which

contains a fragment of a call tree. The focus is on the central function, function C.

There may be calls to other functions which do not appear in this figure.

FIGURE 3-1 Call Tree Illustrating Exclusive, Inclusive, and Attributed Metrics

Function C calls two functions, function E and function F, and attributes 10 units of

its inclusive metric to function E and 10 units to function F. These are the callee

attributed metrics. Their sum (10+10) added to the exclusive metric of function C (5)

equals the inclusive metric of function C (25).

The callee attributed metric and the callee inclusive metric are the same for function

E but different for function F. This means that function E is only called by function C

but function F is called by some other function or functions. The exclusive metric

and the inclusive metric are the same for function E but different for function F. This

means that function F calls other functions, but function E does not.

Function A
Exclusive: 1
Inclusive: 11

Function B
Exclusive: 0
Inclusive: 20

Function E
Exclusive: 10
Inclusive: 10

Function F
Exclusive: 0
Inclusive: 15

Function C
Exclusive: 5
Inclusive: 25

Attributed: 15Attributed: 10

Attributed: 10 Attributed: 10

Chapter 3 Performance Data 57

Function C is called by two functions: function A and function B, and attributes 10

units of its inclusive metric to function A and 15 units to function B. These are the

caller attributed metrics. Their sum (10+15) equals the inclusive metric of function C.

The caller attributed metric is equal to the difference between the inclusive and

exclusive metric for function A, but it is not equal to this difference for function B.

This means that function A only calls function C, but function B calls other functions

besides function C. (In fact, function A might call other functions but the time is so

small that it does not appear in the experiment.)

How Recursion Affects Function-Level Metrics

Recursive function calls, whether direct or indirect, complicate the calculation of

metrics. The Performance Analyzer displays metrics for a function as a whole, not

for each invocation of a function: the metrics for a series of recursive calls must

therefore be compressed into a single metric. This does not affect exclusive metrics,

which are calculated from the function at the bottom of the call stack (the “leaf

function”), but it does affect inclusive and attributed metrics.

Inclusive metrics are computed by adding the exclusive metric for the leaf function

to the inclusive metric of the functions in the call stack. To ensure that the metric is

not counted multiple times in a recursive call stack, the exclusive metric for the leaf

function is only added to the inclusive metric for each unique function.

Attributed metrics are computed from inclusive metrics. In the simplest case of

recursion, a recursive function has two callers: itself and another function (the

initiating function). If all the work is done in the final call, the inclusive metric for

the recursive function will be attributed to itself and not to the initiating function.

This is because the inclusive metric for all the higher invocations of the recursive

function are regarded as zero to avoid multiple counting of the metric. The initiating

function, however, correctly attributes to the recursive function as a callee the

portion of its inclusive metric due to the recursive call.

58 Program Performance Analysis Tools • May 2002

59

CHAPTER 4

Collecting Performance Data

The first stage of performance analysis is data collection. This chapter describes

what is required for data collection, where the data is stored, how to collect data and

how to manage the data collection. For more information about the data itself, see

Chapter 3.

This chapter covers the following topics.

■ Preparing Your Program for Data Collection and Analysis

■ Compiling and Linking Your Program

■ Limitations on Data Collection

■ Where the Data Is Stored

■ Estimating Storage Requirements

■ Collecting Data Using the collect Command

■ Collecting Data From the Integrated Development Environment

■ Collecting Data Using the dbx collector Subcommands

■ Collecting Data From a Running Process

■ Collecting Data From MPI Programs

Preparing Your Program for Data
Collection and Analysis

For most programs, you do not need to do anything special to prepare your program

for data collection and analysis. You should read one or more of the subsections

below if your program does any of the following:

■ Installs a signal handler

■ Explicitly dynamically loads a system library

■ Dynamically loads a module (.o file)

■ Dynamically compiles functions

■ Creates descendant processes

60 Program Performance Analysis Tools • May 2002

■ Uses the asynchronous I/O library

■ Uses the profiling timer or hardware counter API directly

■ Calls setuid (2) or executes a setuid file.

Also, if you want to control data collection from your program you should read the

relevant subsection.

Use of System Libraries

The Collector interposes on functions from various system libraries, to collect tracing

data and to ensure the integrity of data collection. The following list describes

situations in which the Collector interposes on calls to library functions.

■ Collection of synchronization wait tracing data. The Collector interposes on

functions from the threads library, libthread.so .

■ Collection of heap tracing data. The Collector interposes on the functions malloc ,

realloc , memalign and free . Versions of these functions are found in the C

standard library, libc.so and also in other libraries such as libmalloc.so and

libmtmalloc.so .

■ Collection of MPI tracing data. The Collector interposes on functions from the

MPI library, libmpi.so .

■ Ensuring the integrity of clock data. The Collector interposes on setitimer and

prevents the program from using the profiling timer.

■ Ensuring the integrity of hardware counter data. The Collector interposes on

functions from the hardware counter library, libcpc.so and prevents the

program from using the counters. Calls from the program to functions from this

library return with a return value of -1 .

■ Enabling data collection on descendant processes. The Collector interposes on the

functions fork (2), fork1 (2), vfork (2), fork (3F), system (3C), system (3F),

sh (3F), popen (3C), and exec (2) and its variants. Calls to vfork are replaced

internally by calls to fork1 . These interpositions are only done for the collect
command.

■ Guaranteeing the handling of the SIGPROFand SIGEMTsignals by the Collector.

The Collector interposes on sigaction to ensure that its signal handler is the

primary signal handler for these signals.

There are some circumstances in which the interposition does not succeed:

■ Statically linking a program with any of the libraries that contain functions that

are interposed.

■ Attaching dbx to a running application that does not have the collector library

preloaded.

■ Dynamically loading one of these libraries and resolving the symbols by

searching only within the library.

Chapter 4 Collecting Performance Data 61

The failure of interposition by the Collector can cause loss or invalidation of

performance data.

Use of Signal Handlers

The Collector uses two signals to collect profiling data, SIGPROFand SIGEMT. The

Collector installs a signal handler for each of these signals, which intercept and

process the signals, but pass on signals they do not use to any other signal handlers

that are installed. If a program installs its own signal handler for these signals, the

Collector re-installs its signal handler as the primary handler to guarantee the

integrity of the performance data.

The collect command can also use user-specified signals for pausing and

resuming data collection and for recording samples. These signals are not protected

by the Collector. It is the responsibility of the user to ensure that there is no conflict

between use of the specified signals by the Collector and any use made by the

application of the same signals.

The signal handlers installed by the Collector set a flag that ensures that system calls

are not interrupted for signal delivery. This flag setting could change the behavior of

the program if the program’s signal handler sets the flag to permit interruption of

system calls. One important example of a change in behavior occurs for the

asynchronous I/O library, libaio.so , which uses SIGPROFfor asynchronous

cancel operations, and which does interrupt system calls. If the collector library,

libcollector.so , is installed, the cancel signal arrives late.

If you attach dbx to a process without preloading the collector library and enable

performance data collection, and the program subsequently installs its own signal

handler, the Collector does not re-install its own signal handler. In this case, the

program’s signal handler must ensure that the SIGPROFand SIGEMTsignals are

passed on so that performance data is not lost. If the program’s signal handler

interrupts system calls, both the program behavior and the profiling behavior will be

different from when the collector library is preloaded.

Use of setuid

There are restrictions enforced by the dynamic loader that make it difficult to use

setuid (2) and collect performance data. If your program calls setuid or executes a

setuid file, it is likely that the Collector cannot write an experiment file because it

lacks the necessary permissions for the new user ID.

62 Program Performance Analysis Tools • May 2002

Controlling Data Collection From Your Program

If you want to control data collection from your program, the Collector shared

library, libcollector.so contains some API functions that you can use in your

program. The functions are written in C, and a Fortran interface is provided. Both

the C interface and the Fortran interface are defined in header files that are provided

with the library.

To use the API functions from C or C++, insert the following statement.

The functions are defined as follows.

To use the API functions from Fortran, insert the following statement:.

When you link your program, link with -lfcollector .

Caution – Do not link a program in any language with -lcollector . If you do,

the Collector can exhibit unpredictable behavior.

The C include file contains macros that bypass the calls to the real API functions if

data is not being collected. In this case the functions are not dynamically loaded. The

Fortran API subroutines call the C API functions if performance data is being

collected, otherwise they return. The overhead for the checking is very small and

should not significantly affect program performance.

To collect performance data you must run your program using the Collector, as

described later in this chapter. Inserting calls to the API functions does not enable

data collection.

If you intend to use the API functions in a multithreaded program, you should

ensure that they are only called by one thread. The API functions perform actions

that apply to the process and not to individual threads. If each thread calls the API

functions, the data that is recorded might not be what you expect. For example, if

#include "libcollector.h"

void collector_sample(char *name);
void collector_pause(void);
void collector_resume(void);
void collector_terminate_expt(void);

include libfcollector.h

Chapter 4 Collecting Performance Data 63

collector_pause() or collector_terminate_expt() is called by one thread

before the other threads have reached the same point in the program, collection is

paused or terminated for all threads, and data can be lost from the threads that were

executing code before the API call.

The descriptions of the four API functions follow.

collector_sample(char *name) (C and C++)

collector_sample(string) (Fortran)

Record a sample packet and label the sample with the given name or string. The

label is not currently used by the Performance Analyzer. The Fortran argument

string is of type character .

Sample points contain data for the process and not for individual threads. In a

multithreaded application, the collector_sample() API function ensures that

only one sample is written if another call is made while it is recording a sample. The

number of samples recorded can be less than the number of threads making the call.

The Performance Analyzer does not distinguish between samples recorded by

different mechanisms. If you want to see only the samples recorded by API calls,

you should turn off all other sampling modes when you record performance data.

collector_pause()

Stop writing event-specific data to the experiment. The experiment remains open,

and global data continues to be written. The call is ignored if no experiment is active

or if data recording is already stopped.

collector_resume()

Resume writing event-specific data to the experiment after a call to

collector_pause() . The call is ignored if no experiment is active or if data

recording is active.

collector_terminate_expt()

Terminate the experiment whose data is being collected. No further data is collected,

but the program continues to run normally. The call is ignored if no experiment is

active.

64 Program Performance Analysis Tools • May 2002

Dynamic Functions and Modules

If your C program or C++ program dynamically compiles functions or dynamically

loads modules (.o files) into the data space of the program, you must supply

information to the Collector if you want to see data for the dynamic function or

module in the Performance Analyzer. The information is passed by calls to collector

API functions. The definitions of the API functions are as follows.

You do not need to use these API functions for Java™ methods that are compiled by

the Java HotSpot™ virtual machine, for which a different interface is used. The Java

interface provides the name of the method that was compiled to the Collector. You

can see function data and annotated disassembly listings for Java compiled methods,

but not annotated source listings.

The descriptions of the four API functions follow.

collector_func_load()

Pass information about dynamically compiled functions to the Collector for

recording in the experiment. The parameter list is described in the following table.

void collector_func_load(char *name, char *alias,
char *sourcename, void *vaddr, int size, int lntsize,
Lineno *lntable);

void collector_func_unload(void *vaddr);
void collector_module_load(char *modulename, void *vaddr);
void collector_module_unload(void *vaddr);

TABLE 4-1 Parameter List for collector_func_load()

Parameter Definition

name The name of the dynamically compiled function that is used by the

performance tools. The name does not have to be the actual name of

the function. The name need not follow any of the normal naming

conventions of functions, although it should not contain embedded

blanks or embedded quote characters.

alias An arbitrary string used to describe the function. It can be NULL. It

is not interpreted in any way, and can contain embedded blanks. It

is displayed in the Summary tab of the Analyzer. It can be used to

indicate what the function is, or why the function was dynamically

constructed.

sourcename The path to the source file from which the function was constructed.

It can be NULL. The source file is used for annotated source listings.

Chapter 4 Collecting Performance Data 65

collector_func_unload()

Inform the collector that the dynamic function at the address vaddr has been

unloaded.

collector_module_load()

Used to inform the collector that the module modulename has been loaded into the

address space at address vaddr by the program. The module is read to determine its

functions and the source and line number mappings for these functions.

collector_module_unload()

Inform the collector that the module that was loaded at the address vaddr has been

unloaded.

Compiling and Linking Your Program

You can collect and analyze data for a program compiled with almost any option,

but some choices affect what you can collect or what you can see in the Performance

Analyzer. The issues that you should take into account when you compile and link

your program are described in the following subsections.

vaddr The address at which the function was loaded.

size The size of the function in bytes.

lntsize A count of the number of entries in the line number table. It should

be zero if line number information is not provided.

lntable A table containing lntsize entries, each of which is a pair of

integers. The first integer is an offset, and the second entry is a line

number. All instructions between an offset in one entry and the

offset given in the next entry are attributed to the line number given

in the first entry. Offsets must be in increasing numeric order, but

the order of line numbers is arbitrary. If lntable is NULL, no source

listings of the function are possible, although disassembly listings

are available.

TABLE 4-1 Parameter List for collector_func_load() (Continued)

Parameter Definition

66 Program Performance Analysis Tools • May 2002

Source Code Information

To see source code information, you must use the -g compiler option (-g0 for C++

to ensure that front-end inlining is enabled). When this option is used the compiler

generates symbol tables that are used by the Performance Analyzer to obtain source

line numbers and file names and print compiler commentary messages. Without this

option you cannot view annotated source code listings or compiler commentary, and

you might not have all function names in the main Performance Analyzer display.

You must also use the -g (or -xF) compiler option if you want to generate a mapfile.

If you need to move or remove the object (.o) files for any reason, you can load your

program with the -xs option. With this option, all the information on the source

files is put into the executable. This option makes it easier to move the experiment

and the program-related files to a new location before analyzing it, for example.

Static Linking

When you compile your program, you must not disable dynamic linking, which is

done with the -dn and -Bstatic compiler options. If you try to collect data for a

program that is entirely statically linked, the Collector prints an error message and

does not collect data. This is because the collector library, among others, is

dynamically loaded when you run the Collector.

You should not statically link any of the system libraries. If you do, you might not be

able to collect any kind of tracing data. Nor should you link to the Collector library,

libcollector.so .

Optimization

If you compile your program with optimization turned on at some level, the

compiler can rearrange the order of execution so that it does not strictly follow the

sequence of lines in your program. The Performance Analyzer can analyze

experiments collected on optimized code, but the data it presents at the disassembly

level is often difficult to relate to the original source code lines. In addition, the call

sequence can appear to be different from what you expect if the compiler performs

tail-call optimizations.

If you compile a C program on an IA platform with an optimization level of 4 or 5,

the Collector is unable to reliably unwind the call stack. As a consequence, only the

exclusive metrics for a function are reliable. If you compile a C++ program on an IA

platform, you can use any optimization level, as long as you do not use the -noex

Chapter 4 Collecting Performance Data 67

(or -features=no@except) compiler option to disable C++ exceptions. If you do

use this option the Collector is unable to reliably unwind the call stack, and only the

exclusive metrics for a function are reliable.

Intermediate Files

If you generate intermediate files using the -E or -P compiler options, the

Performance Analyzer uses the intermediate file for annotated source code, not the

original source file. The #line directives generated with -E can cause problems in

the assignment of metrics to source lines.

Limitations on Data Collection

This section describes the limitations on data collection that are imposed by the

hardware, the operating environment, the way you run your program or by the

Collector itself.

Limitations on Clock-based Profiling

The profiling interval must be a multiple of the system clock resolution. The default

resolution is 10 milliseconds. If you want to do profiling at higher resolution, you

can change the system clock rate to give a resolution of 1 millisecond. If you have

root privilege, you can do this by adding the following line to the file /etc/system ,

and then rebooting.

See the Solaris Tunable Parameters Reference Manual for more information.

Limitations on Collection of Tracing Data

You cannot collect any kind of tracing data from a program that is already running

unless the Collector library, libcollector.so , has been preloaded. See “Collecting

Data From a Running Process” on page 86 for more information.

set hires_tick=1

68 Program Performance Analysis Tools • May 2002

Limitations on Hardware-Counter Overflow

Profiling

There are several limitations on hardware counter overflow profiling:

■ You can only collect hardware-counter overflow data on processors that have

hardware counters and that support overflow profiling. On other systems,

hardware-counter overflow profiling is disabled. UltraSPARC™ processors prior

to the UltraSPARC III processor family do not support hardware-counter

overflow profiling.

■ You cannot collect hardware-counter overflow data with versions of the operating

environment that precede the Solaris™ 8 release.

■ You can record data for at most two hardware counters in an experiment. To

record data for more than two hardware counters or for counters that use the

same register you must run separate experiments.

■ You cannot collect hardware-counter overflow data on a system while

cpustat (1) is running, because cpustat takes control of the counters and does

not let a user process use the counters. If cpustat is started during data

collection, the experiment is terminated.

■ You cannot use the hardware counters in your own code via the libcpc (3) API if

you are doing hardware-counter overflow profiling. The Collector interposes on

the libcpc library functions and returns with a return value of -1 if the call did

not come from the Collector.

■ If you try to collect hardware counter data on a running program that is using the

hardware counter library, by attaching dbx to the process, the experiment is

corrupted.

Limitations on Data Collection for Descendant

Processes

You can collect data on descendant processes subject to the following limitations:

■ If you want to collect data for all descendant processes that are followed by the

Collector, you must use the collect command with the -F on option.

■ You can collect data automatically for calls to fork and its variants and exec and

its variants. Calls to system , popen , and sh are not followed by the Collector.

■ If you want to collect data for individual descendant processes, you must attach

dbx to the process. See Appendix “Collecting Data From a Running Process” on

page 86 for more information.

Chapter 4 Collecting Performance Data 69

Limitations on Java Profiling

You can collect data on Java programs subject to the following limitations:

■ You must use a version of the Java™ 2 Software Development Kit no earlier than

1.4. The path to the Java virtual machine1 should be specified in one of the

following four environment variables: JDK_1_4_HOME, JDK_HOME, JAVA_PATH,

PATH. The Collector verifies that the version of java it finds in these environment

variables is an ELF executable, and if it is not, an error message is printed,

indicating which environment variable was used, and the full path name that was

tried.

■ You cannot collect tracing data for Java monitors or Java allocations. However,

you can collect tracing data for any C or C++ functions that are called from a Java

method.

■ You must use the collect command to collect data. You cannot use the dbx
collector subcommands or the data collection capabilities of the IDE.

■ If you want to use the 64 bit JVM™ machine, it must either be the default, or you

must specify the path to it when you collect data. Do not use java -d64 to

collect data using the 64 bit JVM machine. If you do, no data is collected.

Where the Data Is Stored

The data collected during one execution of your application is called an experiment.

The experiment consists of a set of files that are stored in a directory. The name of

the experiment is the name of the directory.

In addition to recording the experiment data, the Collector creates its own archives

of the load objects used by the program. These archives contain the addresses, sizes

and names of each object file and each function in the load object, as well as the

address of the load object and a time stamp for its last modification.

Experiments are stored by default in the current directory. If this directory is on a

networked file system, storing the data takes longer than on a local file system, and

can distort the performance data. You should always try to record experiments on a

local file system if possible. You can change the storage location when you run the

Collector.

Experiments for descendant processes are stored inside the experiment for the

founder process.

1. The terms “Java virtual machine” and “JVM” mean a virtual machine for the Java platform.

70 Program Performance Analysis Tools • May 2002

Experiment Names

The default name for a new experiment is test.1.er . The suffix .er is mandatory:

if you give a name that does not have it, an error message is displayed and the name

is not accepted.

If you choose a name with the format experiment. n.er , where n is a positive integer,

the Collector automatically increments n by one in the names of subsequent

experiments—for example, mytest.1.er is followed by mytest.2.er ,

mytest.3.er , and so on. The Collector also increments n if the experiment already

exists, and continues to increment n until it finds an experiment name that is not in

use. If the experiment name does not contain n and the experiment exists, the

Collector prints an error message.

Experiments can be collected into groups. The group is defined in an experiment

group file, which is stored by default in the current directory. The experiment group

file is a plain text file with a special header line and an experiment name on each

subsequent line. The default name for an experiment group file is test.erg . If the

name does not end in .erg , an error is displayed and the name is not accepted.

Once you have created an experiment group, any experiments you run with that

group name are added to the group.

The default experiment name is different for experiments collected from MPI

programs, which create one experiment for each MPI process. The default

experiment name is test. m.er , where m is the MPI rank of the process. If you

specify an experiment group group.erg , the default experiment name is

group. m.er . If you specify an experiment name, it overrides these defaults. See

“Collecting Data From MPI Programs” on page 88 for more information.

Experiments for descendant processes are named with their lineage as follows. To

form the experiment name for a descendant process, an underscore, a code letter and

a number are added to the stem of its creator’s experiment name. The code letter is

f for a fork and x for an exec. The number is the index of the fork or exec (whether

successful or not). For example, if the experiment name for the founder process is

test.1.er , the experiment for the child process created by the third call to fork is

test.1.er/_f3.er . If that child process calls exec successfully, the experiment

name for the new descendant process is test.1.er/_f3_x1.er .

Moving Experiments

If you want to move an experiment to another computer to analyze it, you should be

aware of the dependencies of the analysis on the operating environment in which

the experiment was recorded.

Chapter 4 Collecting Performance Data 71

The archive files contain all the information necessary to compute metrics at the

function level and to display the timeline. However, if you want to see annotated

source code or annotated disassembly code, you must have access to versions of the

load objects or source files that are identical to the ones used when the experiment

was recorded.

The Performance Analyzer searches for the source, object and executable files in the

following locations in turn, and stops when it finds a file of the correct basename:

■ The experiment.

■ The absolute pathname as recorded in the executable.

■ The current working directory.

To ensure that you see the correct annotated source code and annotated disassembly

code for your program, you can copy the source code, the object files and the

executable into the experiment before you move or copy the experiment. If you don’t

want to copy the object files, you can link your program with -xs to ensure that the

information on source lines and file locations are inserted into the executable.

Estimating Storage Requirements

In this section some guidelines are given for estimating the amount of disk space

needed to record an experiment. The size of the experiment depends directly on the

size of the data packets and the rate at which they are recorded, the number of LWPs

used by the program, and the execution time of the program.

The data packets contain event-specific data and data that depends on the program

structure (the call stack). The amount of data that depends on the data type is

approximately 50 to 100 bytes. The call stack data consists of return addresses for

each call, and contains 4 bytes (8 bytes on 64 bit SPARC™ architecture) per address.

Data packets are recorded for each LWP in the experiment.

The rate at which profiling data packets are recorded is controlled by the profiling

interval for clock data and by the overflow value for hardware counter data.

However, the choice of these parameters also affects the data quality and the

distortion of program performance due to the data collection overhead. Smaller

values of these parameters give better statistics but also increase the overhead. The

default values of the profiling interval and the overflow value have been carefully

chosen as a compromise between obtaining good statistics and minimizing the

overhead. Smaller values also mean more data.

For a clock-based profiling experiment with a profiling interval of 10ms and a small

call stack, such that the packet size is 100 bytes, data is recorded at a rate of 10

kbytes/sec per LWP. For a hardware counter overflow profiling experiment

collecting data for CPU cycles and instructions executed on a 750MHz processor

72 Program Performance Analysis Tools • May 2002

with an overflow value of 1000000 and a packet size of 100 bytes, data is recorded at

a rate of 150 kbytes/sec per LWP. Applications that have call stacks with a depth of

hundreds of calls could easily record data at ten times these rates.

Your estimate of the size of the experiment should also take into account the disk

space used by the archive files, which is usually a small fraction of the total disk

space requirement (see the previous section). If you are not sure how much space

you need, try running your experiment for a short time. From this test you can

obtain the size of the archive files, which are independent of the data collection time,

and scale the size of the profile files to obtain an estimate of the size for the full-

length experiment.

As well as allocating disk space, the Collector allocates buffers in memory to store

the profile data before writing it to disk. There is currently no way to specify the size

of these buffers. If the Collector runs out of memory, you should try to reduce the

amount of data collected.

If your estimate of the space required to store the experiment is larger than the space

you have available, you can consider collecting data for part of the run rather than

the whole run. You can do this with the collect command, with the dbx
collector subcommands, or by inserting calls in your program to the collector

API. You can also limit the total amount of profiling and tracing data collected with

the collect command or with the dbx collector subcommands.

Note – The Performance Analyzer cannot read more than 2 GB of performance data.

Collecting Data Using the collect
Command

To run the Collector from the command line using the collect command, type the

following.

Here, collect-options are the collect command options, program is the name of the

program you want to collect data on, and program-arguments are its arguments.

If no command arguments are given, the default is to turn on clock-based profiling

with a profiling interval of 10 milliseconds.

% collect collect-options program program-arguments

Chapter 4 Collecting Performance Data 73

To obtain a list of options and a list of the names of any hardware counters that are

available for profiling, type the collect command with no arguments.

For a description of the list of hardware counters, see “Hardware-Counter Overflow

Data” on page 48. See also “Limitations on Hardware-Counter Overflow Profiling”

on page 68.

Data Collection Options

These options control the types of data that are collected. See “What Data the

Collector Collects” on page 45 for a description of the data types.

If no data collection options are given, the default is -p on , which enables clock-

based profiling with the default profiling interval of 10 milliseconds. The default is

turned off by the -h option but not by any of the other data collection options.

If clock-based profiling is explicitly disabled, and neither any kind of tracing nor

hardware counter overflow profiling is enabled, the collect command prints a

warning message, and collects global data only.

-p option

Collect clock-based profiling data. The allowed values of option are:

■ off – Turn off clock-based profiling.

■ on – Turn on clock-based profiling with the default profiling interval of 10

milliseconds.

■ lo[w] – Turn on clock-based profiling with the low-resolution profiling interval

of 100 milliseconds.

■ hi[gh] – Turn on clock-based profiling with the high-resolution profiling interval

of 1 millisecond. High-resolution profiling must be explicitly enabled. See

“Limitations on Clock-based Profiling” on page 67 for information on enabling

high-resolution profiling.

■ value – Turn on clock-based profiling and set the profiling interval to value, given

in milliseconds. The value should be a multiple of the system clock resolution. If it

is larger but not a multiple it is rounded down. If it is smaller, a warning message

is printed and it is set to the system clock resolution. See “Limitations on Clock-

based Profiling” on page 67 for information on enabling high-resolution profiling.

Collecting clock-based profiling data is the default action of the collect command.

% collect

74 Program Performance Analysis Tools • May 2002

-h counter[, value[, counter2[, value2]]]

Collect hardware counter overflow profiling data. The counter names counter and

counter2 can be one of the following:

■ An aliased counter name

■ An internal name, as used by cputrack (1). If the counter can use either event

register, the event register to be used can be specified by appending /0 or /1 to

the internal name.

If two counters are specified, they must use different registers. If they do not use

different registers, the collect command prints an error message and exits. Some

counters can count on either register.

To obtain a list of available counters, type collect with no arguments in a terminal

window. A description of the counter list is given in the section “Hardware Counter

Lists” on page 48.

The overflow value is the number of events counted at which the hardware counter

overflows and the overflow event is recorded. The overflow values can be specified

using value and value2, which can be set to one of the following:

■ hi[gh] – The high-resolution value for the chosen counter is used. The

abbreviation h is also supported for compatibility with previous software

releases.

■ lo[w] – The low-resolution value for the chosen counter is used.

■ number – The overflow value. Must be a positive integer.

■ 0, on , or a null string – The default overflow value is used.

The default is the normal threshold, which is predefined for each counter and which

appears in the counter list. See also “Limitations on Hardware-Counter Overflow

Profiling” on page 68.

If you use the -h option without explicitly specifying a -p option, clock-based

profiling is turned off. To collect both hardware counter data and clock-based data,

you must specify both a -h option and a -p option.

-s option

Collect synchronization wait tracing data. The allowed values of option are:

■ all – Turn on synchronization wait tracing with a zero threshold. This option

will force all synchronization events to be recorded.

■ calibrate – Turn on synchronization wait tracing and set the threshold value by

calibration at runtime. (Equivalent to on .)

■ off – Turn off synchronization wait tracing.

Chapter 4 Collecting Performance Data 75

■ on – Turn on synchronization wait tracing with the default threshold, which is to

set the value by calibration at runtime. (Equivalent to calibrate .)

■ value – Set the threshold to value, given as a positive integer in microseconds.

Synchronization wait tracing data is not recorded for Java monitors.

-H option

Collect heap tracing data. The allowed values of option are:

■ on – Turn on tracing of heap allocation and deallocation requests.

■ off – Turn off heap tracing.

Heap tracing is turned off by default.

Heap tracing data is not recorded for Java memory allocations.

-m option

Collect MPI tracing data. The allowed values of option are:

■ on – Turn on tracing of MPI calls.

■ off – Turn off tracing of MPI calls.

MPI tracing is turned off by default.

See “MPI Tracing Data” on page 52 for more information about the MPI functions

whose calls are traced and the metrics that are computed from the tracing data.

-S option

Record sample packets periodically. The allowed values of option are:

■ off – Turn off periodic sampling.

■ on – Turn on periodic sampling with the default sampling interval of 1 second.

■ value – Turn on periodic sampling and set the sampling interval to value. The

interval value must be an integer, and is given in seconds.

By default, periodic sampling at 1 second intervals is enabled.

76 Program Performance Analysis Tools • May 2002

Experiment Control Options

-F option

Control whether or not descendant processes should have their data recorded. The

allowed values of option are:

■ on – Record experiments on all descendant processes that are followed by the

Collector.

■ off – Do not record experiments on descendant processes.

The Collector follows processes created by calls to the functions fork (2), fork1 (2),

fork (3F), vfork (2), and exec(2) and its variants. The call to vfork is replaced

internally by a call to fork1. The Collector does not follow processes created by

calls to system (3C), system (3F), sh (3F), and popen (3C).

-j option

Enable Java profiling for a nonstandard Java installation, or choose whether to

collect data on methods compiled by the Java HotSpot virtual machine. The allowed

values of option are:

■ on – Recognize methods compiled by the Java HotSpot virtual machine.

■ off – Do not attempt to recognize methods compiled by the Java HotSpot virtual

machine.

This option is not needed if you want to collect data on a .class file or a .jar file,

provided that the path to the java executable is in one of the following environment

variables: JDK_1_4_HOME, JDK_HOME, JAVA_PATH, or PATH. You can then specify

program as the .class file or the .jar file, with or without the extension.

If you cannot define the path to java in any of these variables, or if you want to

disable the recognition of methods compiled by the Java HotSpot virtual machine

you can use this option. If you use this option, program must be a Java virtual

machine whose version is not earlier than 1.4. The collect command does not

verify that program is a JVM machine, and collection can fail if it is not. However it

does verify that program is an ELF executable, and if it is not, the collect command

prints an error message.

If you want to collect data using the 64 bit JVM machine, you must not use the -d64
option to java for a 32 bit JVM machine. If you do, no data is collected. Instead you

must specify the path to the 64 bit JVM machine either in program or in one of the

environment variables given in this section.

Chapter 4 Collecting Performance Data 77

-l signal

Record a sample packet when the signal named signal is delivered to the process.

The signal can be specified by the full signal name, by the signal name without the

initial letters SIG , or by the signal number. Do not use a signal that is used by the

program or that would terminate execution. Suggested signals are SIGUSR1and

SIGUSR2. Signals can be delivered to a process by the kill (1) command.

If you use both the -l and the -y options, you must use different signals for each

option.

If you use this option and your program has its own signal handler, you should

make sure that the signal that you specify with -l is passed on to the Collector’s

signal handler, and is not intercepted or ignored.

See the signal (3HEAD) man page for more information about signals.

-x

Leave the target process stopped on exit from the exec system call in order to allow

a debugger to attach to it. If you attach dbx to the process, use the dbx commands

ignore PROF and ignore EMT to ensure that collection signals are passed on to the

collect command.

-y signal[,r]

Control recording of data with the signal named signal. Whenever the signal is

delivered to the process, it switches between the paused state, in which no data is

recorded, and the recording state, in which data is recorded. Sample points are

always recorded, regardless of the state of the switch.

The signal can be specified by the full signal name, by the signal name without the

initial letters SIG , or by the signal number. Do not use a signal that is used by the

program or that would terminate execution. Suggested signals are SIGUSR1and

SIGUSR2. Signals can be delivered to a process by the kill (1) command.

If you use both the -l and the -y options, you must use different signals for each

option.

When the -y option is used, the Collector is started in the recording state if the

optional r argument is given, otherwise it is started in the paused state. If the -y
option is not used, the Collector is started in the recording state.

If you use this option and your program has its own signal handler, you should

make sure that the signal that you specify with -y is passed on to the Collector’s

signal handler, and is not intercepted or ignored.

78 Program Performance Analysis Tools • May 2002

See the signal (3HEAD) man page for more information about signals.

Output Options

-d directory-name

Place the experiment in directory directory-name. This option only applies to

individual experiments and not to experiment groups. If the directory does not exist,

the collect command prints an error message and exits.

-g group-name

Make the experiment part of experiment group group-name. If group-name does not

end in .erg , the collect command prints an error message and exits. If the group

exists, the experiment is added to it. The experiment group is placed in the current

directory unless group-name includes a path.

-o experiment-name

Use experiment-name as the name of the experiment to be recorded. If experiment-name
does not end in .er , the collect command prints an error message and exits. See

“Experiment Names” on page 70 for more information on experiment names and

how the Collector handles them.

-L size

Limit the amount of profiling data recorded to size megabytes. The limit applies to

the sum of the amounts of clock-based profiling data, hardware-counter overflow

profiling data, and synchronization wait tracing data, but not to sample points. The

limit is only approximate, and can be exceeded.

When the limit is reached, no more profiling data is recorded but the experiment

remains open until the target process terminates. If periodic sampling is enabled,

sample points continue to be written.

The default limit on the amount of data recorded is 2000 Mbytes. This limit was

chosen because the Performance Analyzer cannot process experiments that contain

more than 2 Gbytes of data.

Chapter 4 Collecting Performance Data 79

Other Options

-n

Do not run the target but print the details of the experiment that would be generated

if the target were run. This is a “dry run” option.

Note – This option has changed from the Forte™ Developer 6 update 2 release.

-R

Display the text version of the performance tools readme in the terminal window. If

the readme is not found, a warning is printed.

-V

Print the current version of the collect command. No further arguments are

examined, and no further processing is done.

-v

Print the current version of the collect command and detailed information about

the experiment being run.

Obsolete Options

-a

Address space data collection and display is no longer supported. This option is

ignored with a warning.

80 Program Performance Analysis Tools • May 2002

Collecting Data From the Integrated
Development Environment

Note – The Performance Analyzer GUI and the IDE are part of the Forte™ for Java™

4, Enterprise Edition for the Solaris operating environment, versions 8 and 9.

You can collect performance data using the Debugger in the Solaris Native Language

Support module of the IDE. For information on how to collect performance data in

the IDE, refer to the online help for the Solaris Native Language Support module.

Collecting Data Using the dbx
collector Subcommands

To run the Collector from dbx :

1. Load your program into dbx by typing the following command.

2. Use the collector command to enable data collection, select the data types, and
set any optional parameters.

To get a listing of available collector subcommands, type:

You must use one collector command for each subcommand.

3. Set up any dbx options you wish to use and run the program.

% dbx program

(dbx) collector subcommand

(dbx) help collector

Chapter 4 Collecting Performance Data 81

If a subcommand is incorrectly given, a warning message is printed and the

subcommand is ignored. A complete listing of the collector subcommands

follows.

Data Collection Subcommands

The following subcommands control the types of data that are collected by the

Collector. They are ignored with a warning if an experiment is active.

profile option

Controls the collection of clock-based profiling data. The allowed values for option
are:

■ on – Enables clock-based profiling with the default profiling interval of 10 ms.

■ off – Disables clock-based profiling.

■ timer value – Sets the profiling interval to value milliseconds. The default setting

is 10 ms. The value should be a multiple of the system clock resolution. If the

value is larger than the system clock resolution but not a multiple it is rounded

down. If the value is smaller than the system clock resolution it is set to the

system clock resolution. In both cases a warning message is printed. See

“Limitations on Clock-based Profiling” on page 67 to find out how to enable high-

resolution profiling.

The Collector collects clock-based profiling data by default, unless the collection of

hardware-counter overflow profiling data is turned on using the hwprofile
subcommand.

hwprofile option

Controls the collection of hardware-counter overflow profiling data. If you attempt

to enable hardware-counter overflow profiling on systems that do not support it,

dbx returns a warning message and the command is ignored. The allowed values for

option are:

■ on – Turns on hardware-counter overflow profiling. The default action is to

collect data for the cycles counter at the normal overflow value.

■ off – Turns off hardware-counter overflow profiling.

■ list – Returns a list of available counters See “Hardware Counter Lists” on

page 48 for a description of the list. If your system does not support hardware-

counter overflow profiling, dbx returns a warning message.

82 Program Performance Analysis Tools • May 2002

■ counter name value [name2 value2] – Selects the hardware counter name, and

sets its overflow value to value; optionally selects a second hardware counter

name2 and sets its overflow value to value2. An overflow value of 0 is interpreted

as the default overflow value. The two counters must use different registers. If

they do not, a warning message is printed and the command is ignored.

The Collector does not collect hardware-counter overflow profiling data by default.

If hardware-counter overflow profiling is enabled and a profile command has not

been given, clock-based profiling is turned off.

See also “Limitations on Hardware-Counter Overflow Profiling” on page 68.

synctrace option

Controls the collection of synchronization wait tracing data. The allowed values for

option are

■ on – Enables synchronization wait tracing.

■ off – Disables synchronization wait tracing.

■ threshold value – Sets the threshold for the minimum synchronization delay. The

allowed values for value are calibrate , to use a calibrated threshold determined

at runtime, or a value given in microseconds. Setting value to 0 (zero) causes the

Collector to trace all events, regardless of wait time. The default setting is

calibrate .

By default, the Collector does not collect synchronization wait tracing data.

heaptrace option

Controls the collection of heap tracing data. The allowed values for option are

■ on – Enables heap tracing.

■ off – Disables heap tracing.

By default, the Collector does not collect heap tracing data.

mpitrace option

Controls the collection of MPI tracing data. The allowed values for option are

■ on – Enables tracing of MPI calls.

■ off – Disables tracing of MPI calls.

By default, the Collector does not collect MPI tracing data.

Chapter 4 Collecting Performance Data 83

sample option

Controls the sampling mode. The allowed values for option are:

■ periodic – Enables periodic sampling.

■ manual – Disables periodic sampling. Manual sampling remains enabled.

■ period value – Sets the sampling interval to value, given in seconds.

By default, periodic sampling is enabled, with a sampling interval value of 1 second.

dbxsample { on | off }

Controls the recording of samples when dbx stops the target process. The meanings

of the keywords are as follows:

■ on – A sample is recorded each time dbx stops the target process.

■ off – Samples are not recorded when dbx stops the target process.

By default, samples are recorded when dbx stops the target process.

Experiment Control Subcommands

disable

Disables data collection. If a process is running and collecting data, it terminates the

experiment and disables data collection. If a process is running and data collection is

disabled, it is ignored with a warning. If no process is running, it disables data

collection for subsequent runs.

enable

Enables data collection. If a process is running but data collection is disabled, it

enables data collection and starts a new experiment. If a process is running and data

collection is disabled, it is ignored with a warning. If no process is running, it

enables data collection for subsequent runs.

You can enable and disable data collection as many times as you like during the

execution of any process. Each time you enable data collection, a new experiment is

created.

84 Program Performance Analysis Tools • May 2002

pause

Suspends the collection of data, but leaves the experiment open. Sample points are

still recorded. This subcommand is ignored if data collection is already paused.

resume

Resumes data collection after a pause has been issued. This subcommand is ignored

if data is being collected.

sample record name

Record a sample packet with the label name. The label is not currently used.

Output Subcommands

The following subcommands define storage options for the experiment. They are

ignored with a warning if an experiment is active.

limit value

Limit the amount of profiling data recorded to value megabytes. The limit applies to

the sum of the amounts of clock-based profiling data, hardware-counter overflow

profiling data, and synchronization wait tracing data, but not to sample points. The

limit is only approximate, and can be exceeded.

When the limit is reached, no more profiling data is recorded but the experiment

remains open and sample points continue to be recorded.

The default limit on the amount of data recorded is 2000 Mbytes. This limit was

chosen because the Performance Analyzer cannot process experiments that contain

more than 2 Gbytes of data.

store option

Governs where the experiment is stored. This command is ignored with a warning if

an experiment is active. The allowed values for option are:

■ directory directory-name – Sets the directory where the experiment is stored.

This subcommand is ignored with a warning if the directory does not exist.

Chapter 4 Collecting Performance Data 85

■ experiment experiment-name – Sets the name of the experiment. If the

experiment name does not end in .er , the subcommand is ignored with a

warning. See “Where the Data Is Stored” on page 69 for more information on

experiment names and how the Collector handles them.

■ group group-name – Sets the name of the experiment group. If the group name

does not end in .erg , the subcommand is ignored with a warning. If the group

already exists, the experiment is added to the group.

The filename option is obsolete. It has been replaced by experiment . It is

accepted as a synonym for experiment for compatibility with the previous Forte

Developer software release.

Information Subcommands

show

Shows the current setting of every Collector control.

status

Reports on the status of any open experiment.

Obsolete Subcommands

address_space

Address space data collection is no longer supported. This subcommand is ignored

with a warning.

close

Synonym for disable .

86 Program Performance Analysis Tools • May 2002

enable_once

Formerly used to enable data collection for one run only. This subcommand is

ignored with a warning.

quit

Synonym for disable .

store filename

Synonym for store experiment .

Collecting Data From a Running Process

The Collector allows you to collect data from a running process. If the process is

already under the control of dbx (either in the command line version or in the IDE),

you can pause the process and enable data collection using the methods described in

previous sections.

Note – The Performance Analyzer GUI and the IDE are part of the Forte™ for Java™

4, Enterprise Edition for the Solaris operating environment, versions 8 and 9.

If the process is not under the control of dbx , you can attach dbx to it, collect

performance data, and then detach from the process, leaving it to continue. If you

want to collect performance data for selected descendant processes, you must attach

dbx to each process.

To collect data from a running process that is not under the control of dbx :

1. Determine the program’s process ID (PID).

If you started the program from the command line and put it in the background, its

PID will be printed to standard output by the shell. Otherwise you can determine

the program’s PID by typing the following.

% ps -ef | grep program-name

Chapter 4 Collecting Performance Data 87

2. Attach to the process.

■ From the Debug menu of the IDE, choose Debug → Attach to Solaris Process and

select the process using the dialog box. Use the online help for instructions.

■ From dbx , type the following.

If dbx is not already running, type the following.

See the manual, Debugging a Program With dbx , for more details on attaching to a

process. Attaching to a running process pauses the process.

3. Start data collection.

■ From the Debug menu of the IDE, choose Performance Toolkit → Enable Collector

and use the dialog box to set up the data collection parameters. Then choose

Debug → Continue to resume execution of the process.

■ From dbx, use the collector command to set up the data collection parameters

and the cont command to resume execution of the process.

4. Detach from the process.

When you have finished collecting data, pause the program and then detach the

process from dbx .

■ In the IDE, right-click the session for the process in the Sessions view of the

Debugger window and choose Detach from the contextual menu. If the Sessions

view is not displayed, click the Sessions button at the top of the Debugger

window.

■ From dbx , type the following.

If you want to collect any kind of tracing data, you must preload the Collector

library, libcollector.so , before you run your program, because the library

provides wrappers to the real functions that enable data collection to take place. In

addition, the Collector adds wrapper functions to other system library calls to

guarantee the integrity of performance data. If you do not preload the Collector

library, these wrapper functions cannot be inserted. See “Use of System Libraries” on

page 60 for more information on how the Collector interposes on system library

functions.

(dbx) attach program-name pid

% dbx program-name pid

(dbx) detach

88 Program Performance Analysis Tools • May 2002

To preload libcollector.so , you must set both the name of the library and the

path to the library using environment variables. Use the environment variable

LD_PRELOADto set the name of the library. Use the environment variable

LD_LIBRARY_PATHto set the path to the library. If you are using SPARC V9 64 bit

architecture, you must also set the environment variable LD_LIBRARY_PATH_64. If

you have already defined these environment variables, add the new values to them.

The values of the environment variables are shown in TABLE 4-2.

If your Forte Developer software is not installed in /opt/SUNWspro , ask your

system administrator for the correct path. You can set the full path in LD_PRELOAD,
but doing this can create complications when using SPARC V9 64-bit architecture.

Note – Remove the LD_PRELOADand LD_LIBRARY_PATHsettings after the run, so

they do not remain in effect for other programs that are started from the same shell.

If you want to collect data from an MPI program that is already running, you must

attach a separate instance of dbx to each process and enable the Collector for each

process. When you attach dbx to the processes in an MPI job, each process will be

halted and restarted at a different time. The time difference could change the

interaction between the MPI processes and affect the performance data you collect.

To minimize this problem, one solution is to use pstop (1) to halt all the processes.

However, once you attach dbx to the processes, you must restart them from dbx ,

and there will be a timing delay in restarting the processes, which can affect the

synchronization of the MPI processes. See also “Collecting Data From MPI

Programs” on page 88.

Collecting Data From MPI Programs

The Collector can collect performance data from multi-process programs that use the

Sun Message Passing Interface (MPI) library. The MPI library is included in the Sun

HPC ClusterTools™ software. You should use the latest version of the ClusterTools

software if possible, which is 4.0, but you can use 3.1 or a compatible version. To

TABLE 4-2 Environment Variable Settings for Preloading the Library
libcollector.so

Environment variable Value

LD_PRELOAD libcollector.so

LD_LIBRARY_PATH /opt/SUNWspro/lib

LD_LIBRARY_PATH_64 /opt/SUNWspro/lib/v9

Chapter 4 Collecting Performance Data 89

start the parallel jobs, use the Sun Cluster Runtime Environment (CRE) command

mprun . See the Sun HPC ClusterTools documentation for more information. For

information about MPI and the MPI standard, see the MPI web site

http://www.mcs.anl.gov/mpi .

Because of the way MPI and the Collector are implemented, each MPI process

records a separate experiment. Each experiment must have a unique name. Where

and how the experiment is stored depends on the kinds of file systems that are

available to your MPI job. Issues about storing experiments are discussed in the next

subsection.

To collect data from MPI jobs, you can either run the collect command under MPI

or start dbx under MPI and use the dbx collector subcommands. Each of these

options is discussed in subsequent subsections.

Storing MPI Experiments

Because multiprocessing environments can be complex, there are some issues about

storing MPI experiments you should be aware of when you collect performance data

from MPI programs. These issues concern the efficiency of data collection and

storage, and the naming of experiments. See “Where the Data Is Stored” on page 69

for information on naming experiments, including MPI experiments.

Each MPI process that collects performance data creates its own experiment. When

an MPI process creates an experiment, it locks the experiment directory. All other

MPI processes must wait until the lock is released before they can use the directory.

Thus, if you store the experiments on a file system that is accessible to all MPI

processes, the experiments are created sequentially, but if you store the experiments

on file systems that are local to each MPI process, the experiments are created

concurrently.

If you store the experiments on a common file system and specify an experiment

name in the standard format, experiment. n.er , the experiments have unique names.

The value of n is determined by the order in which MPI processes obtain a lock on

the experiment directory, and cannot be guaranteed to correspond to the MPI rank of

the process. If you attach dbx to MPI processes in a running MPI job, n will be

determined by the order of attachment.

If you store the experiments on a local file system and specify an experiment name

in the standard format, the names are not unique. For example, suppose you ran an

MPI job on a machine with 4 single-processor nodes labelled node0 , node1 , node2

http://www-unix.mcs.anl.gov/mpi

90 Program Performance Analysis Tools • May 2002

and node3 . Each node has a local disk called /scratch , and you store the

experiments in directory username on this disk. The experiments created by the MPI

job have the following full path names.

The full name including the node name is unique, but in each experiment directory

there is an experiment named test.1.er . If you move the experiments to a common

location after the MPI job is completed, you must make sure that the names remain

unique. For example, to move these experiments to your home directory, which is

assumed to be accessible from all nodes, and rename the experiments, type the

following commands.

For large MPI jobs, you might want to move the experiments to a common location

using a script. Do not use the Unix commands cp or mv; see “Manipulating

Experiments” on page 161 for information on how to copy and move experiments.

If you do not specify an experiment name, the Collector uses the MPI rank to

construct an experiment name with the standard form experiment.n.er , but in this

case n is the MPI rank. The stem, experiment, is the stem of the experiment group

name if you specify an experiment group, otherwise it is test . The experiment

names are unique, regardless of whether you use a common file system or a local file

system. Thus, if you use a local file system to record the experiments and copy them

to a common file system, you will not have to rename the experiments when you

copy them and reconstruct any experiment group file.

If you do not know which local file systems are available to you, use the df -lk
command or ask your system administrator. You should always make sure that the

experiments are stored in a directory that already exists, that is uniquely defined and

that is not in use for any other experiment. You should also make sure that the file

system has enough space for the experiments. See “Estimating Storage

Requirements” on page 71 for information on how to estimate the space needed.

node0:/scratch/ username/test.1.er
node1:/scratch/ username/test.1.er
node2:/scratch/ username/test.1.er
node3:/scratch/ username/test.1.er

rsh node0 ’er_mv /scratch/ username/test.1.er test.0.er’
rsh node1 ’er_mv /scratch/ username/test.1.er test.1.er’
rsh node2 ’er_mv /scratch/ username/test.1.er test.2.er’
rsh node3 ’er_mv /scratch/ username/test.1.er test.3.er’

Chapter 4 Collecting Performance Data 91

Note – If you copy or move experiments between computers or nodes you cannot

view the annotated source code or source lines in the annotated disassembly code

unless you have access to the load objects and source files that were used to run the

experiment, or a copy with the same path and timestamp.

Running the collect Command Under MPI

To collect data with the collect command under the control of MPI, use the

following syntax.

Here, n is the number of processes to be created by MPI. This procedure creates n
separate instances of collect , each of which records an experiment. Read the

section “Where the Data Is Stored” on page 69 for information on where and how to

store the experiments.

To ensure that the sets of experiments from different MPI runs are stored separately,

you can create an experiment group with the -g option for each MPI run. The

experiment group should be stored on a file system that is accessible to all MPI

processes. Creating an experiment group also makes it easier to load the set of

experiments for a single MPI run into the Performance Analyzer. An alternative to

creating a group is to specify a separate directory for each MPI run with the -d
option.

Collecting Data by Starting dbx Under MPI

To start dbx and collect data under the control of MPI, use the following syntax.

Here, n is the number of processes to be created by MPI and collection-script is a dbx
script that contains the commands necessary to set up and start data collection. This

procedure creates n separate instances of dbx , each of which records an experiment

on one of the MPI processes. If you do not define the experiment name, the

experiment will be labelled with the MPI rank. Read the section “Storing MPI

Experiments” on page 89 for information on where and how to store the

experiments.

%mprun -np n collect [collect-arguments] program-name [program-arguments]

%mprun -np n dbx program-name < collection-script

92 Program Performance Analysis Tools • May 2002

You can name the experiments with the MPI rank by using the collection script and

a call to MPI_Comm_rank() in your program. For example, in a C program you

would insert the following line.

In a Fortran program you would insert the following line.

If this call was inserted at line 17, for example, you could use a script like this.

ier = MPI_Comm_rank(MPI_COMM_WORLD,&me);

call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)

stop at 18
run program-arguments
rank=$[me]
collector enable
collector store filename experiment.$rank.er
cont
quit

93

CHAPTER 5

The Performance Analyzer
Graphical User Interface

The Performance Analyzer analyzes the program performance data that is collected

by the Sampling Collector. This chapter provides a brief description of the

Performance Analyzer GUI, its capabilities, and how to use it. The online help

system of the Performance Analyzer provides information on new features, the GUI

displays, how to use the GUI, interpreting performance data, finding performance

problems, troubleshooting, a quick reference, keyboard shortcuts and mnemonics,

and a tutorial.

This chapter covers the following topics.

■ Running the Performance Analyzer

■ The Performance Analyzer Displays

■ Using the Performance Analyzer

For an introduction to the Performance Analyzer in tutorial format, see Chapter 2.

For a more detailed description of how the Performance Analyzer analyzes data and

relates it to program structure, see Chapter 7.

Note – The Performance Analyzer GUI and the IDE are part of the Forte™ for Java™

4, Enterprise Edition for the Solaris™ operating environment, versions 8 and 9.

Running the Performance Analyzer

The Performance Analyzer can be started from the command line or from the

integrated development environment (IDE).

94 Program Performance Analysis Tools • May 2002

To start the Performance Analyzer from the IDE, do one of the following:

● Choose Debug → Performance Toolkit → Run Analyzer from the menu bar.

This option automatically loads the most recent experiment that was collected.

● Double-click an experiment in the Filesystems tab of the Explorer.

To start the Performance Analyzer from the command line, use the analyzer (1)

command. The syntax of the analyzer command is shown here.

Here, experiment-list is a list of experiment names or experiment group names. See

“Where the Data Is Stored” on page 69 for information on experiment names. If you

omit the experiment name, the Open Experiment dialog box is displayed when the

Performance Analyzer starts. If you give more than one experiment name, the data

for all experiments are added in the Performance Analyzer.

The options for the analyzer command are described in TABLE 5-1.

To exit the Performance Analyzer, choose File → Exit.

% analyzer [-h] [-j jvm-path] [-J jvm-options] [-u] [-V] [-v] [experiment-
list]

TABLE 5-1 Options for the analyzer Command

-h Prints a usage message for the analyzer command

-j jvm-path Specify the path to the Java™ virtual machine used to run the

Performance Analyzer

-J jvm-options Specify options to the JVM™ machine used to run the Performance

Analyzer

-u user-directory Specify the user directory. The user directory contains configuration

information for the IDE and the Performance Analyzer.

-v Print information while the Performance Analyzer is starting

-V Prints the version number of the Performance Analyzer to stdout

Chapter 5 The Performance Analyzer Graphical User Interface 95

The Performance Analyzer Displays

The Performance Analyzer window contains a menu bar, a tool bar, and a split pane

for data display. Each pane of the split pane contains several tab panes that are used

for the displays of the Performance Analyzer. The Performance Analyzer window is

shown in FIGURE 5-1.

The menu bar contains a File menu, a View menu, a Timeline menu and a Help

menu. In the center of the menu bar, the selected function or load object is displayed

in a text box. This function or load object can be selected from any of the tabs that

display information for functions. From the File menu you can open new

Performance Analyzer windows that use the same experiment data. From each

window, whether new or the original, you can close the window or close all

windows.

The toolbar contains buttons that open the Set Data Presentation dialog box, the

Filter Data dialog box, and the Show/Hide Functions dialog box. These dialog boxes

can also be opened from the View menu. The toolbar also contains a Find tool. The

button icons are shown below, in the order given.

The following subsections describe what is displayed in each of the tabs.

FIGURE 5-1 The Performance Analyzer Window

96 Program Performance Analysis Tools • May 2002

The Functions Tab

The Functions tab shows a list of functions and load objects and their metrics. Only

the functions that have non-zero metrics are listed. The term functions includes

Fortran subroutines, C++ methods and Java™ methods. Java methods that were

compiled with the Java HotSpot™ virtual machine are listed in the Functions tab, but

Java interpreted methods are not listed.

The Functions tab can display inclusive metrics and exclusive metrics. The metrics

initially shown are based on the data collected and on the default settings. The

function list is sorted by the data in one of the columns. This allows you to easily

identify which functions have high metric values. The sort column header text is

displayed in bold face and a triangle appears in the lower left corner of the column

header. Changing the sort metric in the Functions tab changes the sort metric in the

Callers-Callees tab unless the sort metric in the Callers-Callees tab is an attributed

metric.

FIGURE 5-2 The Functions Tab

Chapter 5 The Performance Analyzer Graphical User Interface 97

The Callers-Callees Tab

The Callers-Callees tab shows the selected function in a pane in the center, with

callers of that function in a pane above it, and callees of that function in a pane below

it. Functions that appear in the Functions tab can appear in the Callers-Callees tab.

In addition to showing exclusive and inclusive metric values for each function, the

tab also shows attributed metrics. If either an inclusive or an exclusive metric is

shown, the corresponding attributed metric is also shown. The default metrics

shown are derived from the metrics shown in the Function List display.

The percentages given for attributed metrics are the percentages that the attributed

metrics contribute to the selected function’s inclusive metric. For exclusive and

inclusive metrics, the percentages are percentages of the total program metrics.

You can navigate through the structure of your program, searching for high metric

values, by selecting a function from the callers or the callees pane. Whenever a new

function is selected in any tab, the Callers-Callees tab is updated to center it on the

selected function.

The callers list and the callees list are sorted by the data in one of the columns. This

allows you to easily identify which functions have high metric values. The sort

column header text is displayed in bold face. Changing the sort metric in the Callers-

Callees tab changes the sort metric in the Functions tab.

FIGURE 5-3 The Callers-Callees Tab

98 Program Performance Analysis Tools • May 2002

The Source Tab

The Source tab shows the source file that contains the selected function. Each line in

the source file for which instructions have been generated is annotated with

performance metrics. If compiler commentary is available, it appears above the

source line to which it refers.

Lines with high metric values have the metrics highlighted. A high metric value is

one that exceeds a threshold percentage of the maximum value of that metric on any

line in the file. The entry point for the function you selected is also highlighted.

The choice of performance metrics, compiler commentary and highlighting can be

changed in the Set Data Presentation dialog box.

You can view annotated source code for a C or C++ function that was dynamically

compiled if you provide information on the function using the collector API, but you

only see non-zero metrics for the selected function, even if there are more functions

in the source file. You cannot see annotated source code for any Java methods,

whether compiled by the Java HotSpot virtual machine or not.

FIGURE 5-4 The Source Tab

Chapter 5 The Performance Analyzer Graphical User Interface 99

The Disassembly Tab

The Disassembly tab shows a disassembly listing for the object file that contains the

selected function, annotated with performance metrics for each instruction. The

instructions can also be displayed in hexadecimal.

If the source code is available it is inserted into the listing. Each source line is placed

above the first instruction that it generates. Source lines can appear in blocks when

compiler optimizations of the code rearrange the order of the instructions. If

compiler commentary is available it is inserted with the source code. The source

code can also be annotated with performance metrics.

Lines with high metric values have the metric highlighted. A high metric value is

one that exceeds a threshold percentage of the maximum value of that metric on any

line in the file.

The choice of performance metrics, compiler commentary, highlighting threshold,

source annotation and hexadecimal display can be changed in the Set Data

Presentation dialog box.

If the selected function was dynamically compiled, you only see instructions for that

function. If you provided information on the function using the Collector API (see

“Dynamic Functions and Modules” on page 64), you only see non-zero source

metrics for the specified function, even if there are more functions in the source file.

You can see instructions for Java compiled methods without using the Collector API.

FIGURE 5-5 The Disassembly Tab

100 Program Performance Analysis Tools • May 2002

The Timeline Tab

The Timeline tab shows a chart of events as a function of time. The event and sample

data for each experiment and each LWP is displayed separately, rather than being

aggregated. The Timeline display allows you to examine individual events recorded

by the Sampling Collector.

Data is displayed in horizontal bars. The display for each experiment consists of a

number of bars. By default, the top bar shows sample information, and is followed

by a set of bars for each LWP, one bar for each data type (clock-based profiling,

hardware counter profiling, synchronization tracing, heap tracing), showing the

events recorded. The bar label for each data type contains an icon that identifies the

data type and a number in the format n.m that identifies the experiment (n) and the

LWP (m). LWPs that are created in multithreaded programs to execute system

threads are not displayed in the Timeline tab, but their numbering is included in the

LWP index. See “Parallel Execution and Compiler-Generated Body Functions” on

page 142 for more information.

The sample bar shows a color-coded representation of the process times, which are

aggregated in the same way as the timing metrics. Each sample is represented by a

rectangle, colored according to the proportion of time spent in each microstate.

Clicking a sample displays the data for that sample in the Event tab. When you click

a sample, the Legend and Summary tabs are dimmed.

FIGURE 5-6 The Timeline Tab

Chapter 5 The Performance Analyzer Graphical User Interface 101

The event markers in the other bars consist of a color-coded representation of part of

the call stack starting from the leaf function, which is shown at the top of the marker.

Clicking a colored rectangle in an event marker selects the corresponding function

from the call stack and displays the data for that event and that function in the Event

tab. The selected function is highlighted in both the Event tab and the Legend tab

and its name is displayed in the menu bar.

Selecting the Timeline tab enables the Event tab, which shows details of a selected

event. The Event tab is displayed by default in the right pane when the Timeline tab

is selected. Selecting an event marker in the Timeline tab enables and displays the

Legend tab, which is in the right pane, and which shows color-coding information

for functions.

The LeakList Tab

The LeakList tab shows a list of all the leaks and allocations that occurred in the

program. Each leak entry includes the number of bytes leaked and the call stack for

the allocation. Each allocation entry includes the number of bytes allocated and the

call stack for the allocation.

FIGURE 5-7 The LeakList Tab

102 Program Performance Analysis Tools • May 2002

The Statistics Tab

The Statistics tab shows totals for various system statistics summed over the selected

experiments and samples, followed by the statistics for the selected samples of each

experiment. The process times are summed over the microaccounting states in the

same way that metrics are summed. See “Clock Data” on page 46 for more

information.

The statistics displayed in the Statistics tab should in general match the timing

metrics displayed for the <Total> function in the Functions tab. The values

displayed in the Statistics tab are more accurate than the microstate accounting

values for <Total> . But in addition, the values displayed in the Statistics tab

include other contributions that account for the difference between the timing metric

values for <Total> and the timing values in the Statistics tab. These contributions

come from the following sources:

■ Threads that are created by the system that are not profiled. The standard threads

library in the Solaris 7 and 8 operating environments creates system threads that

are not profiled. These threads spend most of their time sleeping, and the time

shows in the Statistics tab as Other Wait time.

■ Periods of time in which data collection is paused.

For information on the definitions and meanings of the execution statistics that are

presented, see the getrusage (3C) and proc (4) man pages.

FIGURE 5-8 The Statistics Tab

Chapter 5 The Performance Analyzer Graphical User Interface 103

The Experiments Tab

The Experiments tab is divided into two panes.

The top pane contains a tree that shows information on the experiments collected

and on the load objects accessed by the collection target. The information includes

any error messages or warning messages generated during the processing of the

experiment or the load objects.

The bottom pane lists error and warning messages from the Performance Analyzer

session.

FIGURE 5-9 The Experiments Tab

104 Program Performance Analysis Tools • May 2002

The Summary Tab

The top section of the Summary tab shows information on the selected function or

load object. This information includes the name, address and size of the function or

load object, and for functions, the name of the source file, object file and load object.

The bottom section of the Summary tab shows all the recorded metrics for the

selected function or load object, both exclusive and inclusive, and as values and

percentages. The information in the Summary tab is not affected by metric selection.

The Summary tab is updated whenever a new function or load object is selected.

FIGURE 5-10 The Summary Tab

The Event Tab

The Event tab shows the available data for the selected event, including the event

type, leaf function, LWP ID, thread ID and CPU ID. Below the data panel the call

stack is displayed with the color coding that is used in the event markers for each

function in the stack. Clicking a function in the call stack makes it the selected

function.

When a sample is selected, the Event tab shows the sample number, the start and

end time of the sample, and a list of timing metrics. For each timing metric the

amount of time spent and the color coding is shown. The timing information in a

sample is more accurate than the timing information recorded in clock profiling.

Chapter 5 The Performance Analyzer Graphical User Interface 105

This tab is only available when the Timeline tab is selected in the left pane.

FIGURE 5-11 The Event Tab, Showing Event Data.

FIGURE 5-12 The Event Tab, Showing Sample Data.

106 Program Performance Analysis Tools • May 2002

The Legend Tab

The Legend tab shows the mapping of colors to functions for the display of events in

the Timeline tab. The Legend tab is only enabled when an event is selected in the

Timeline tab. It is dimmed when a sample is selected in the Timeline tab. The color

coding can be changed using the color chooser in the Timeline menu.

FIGURE 5-13 The Legend Tab

Using the Performance Analyzer

This section describes some of the capabilities of the Performance Analyzer and how

its displays can be configured.

Comparing Metrics

The Performance Analyzer computes a single set of performance metrics for the data

that is loaded. The data can come from a single experiment, from a predefined

experiment group or from several experiments.

Chapter 5 The Performance Analyzer Graphical User Interface 107

To compare two selections of metrics from the same set, you can open a new

Analyzer window by choosing File → Open New Window from the menu bar. To

dismiss this window, choose File → Close from the menu bar in the new window.

To compute and display more than one set of metrics—if you want to compare two

experiments, for example—you must start an instance of the Performance Analyzer

for each set.

Selecting Experiments

The Performance Analyzer allows you to compute metrics for a single experiment,

from a predefined experiment group or from several experiments. This section tells

you how to load, add and drop experiments from the Performance Analyzer.

Opening an Experiment. Opening an experiment clears all experiment data from the

Performance Analyzer and reads in a new set of data. (It has no effect on the

experiments as stored on disk.)

Adding an Experiment. Adding an experiment to the Performance Analyzer reads a

set of data into a new storage location in the Performance Analyzer and recomputes

all the metrics. The data for each experiment is stored separately, but the metrics

displayed are the combined metrics for all experiments. This capability is useful

when you have to record data for the same program in separate runs—for example,

if you want timing data and hardware counter data for the same program.

To examine the data collected from an MPI run, open one experiment in the

Performance Analyzer, then add the others, so you can see the data for all the MPI

processes in aggregate. If you have defined an experiment group, loading the

experiment group has the same effect.

Dropping an Experiment. Dropping an experiment clears the data for that

experiment from the Performance Analyzer, and recomputes the metrics. (It has no

effect on the experiment files.)

If you have loaded an experiment group, you can only drop individual experiments,

not the whole group.

Selecting the Data to Be Displayed

Once you have experiment data loaded into the Performance Analyzer, there are

various ways you can select what is displayed.

108 Program Performance Analysis Tools • May 2002

Selecting metrics. You can select the metrics that are displayed and the sort metric

using the Metrics and Sort tabs of the Set Data Presentation dialog box. The choice of

metrics applies to all tabs. The Callers-Callees tab adds attributed metrics for any

metric that is chosen for display. The Set Data Presentation dialog box can be opened

using the following toolbar button:

All metrics are available as either a time in seconds or a count, and as a percentage

of the total program metric. Hardware counter metrics for which the count is in

cycles are available as a time, a count, and a percentage.

Configuring the Source and Disassembly tabs. You can select the threshold for

highlighting high metric values, select the classes of compiler commentary and

choose whether to display metrics on annotated source code and whether to display

the hexadecimal code for the instructions in the annotated disassembly listing from

the Source/Disassembly tab of the Set Data Presentation dialog box.

Filtering by Experiment, Sample, Thread and LWP. You can control the information

in the Performance Analyzer displays by specifying only certain experiments,

samples, threads, and LWPs for which to display metrics. You make the selection

using the Filter Data dialog box. Selection by thread and by sample does not apply

to the Timeline display. The Filter Data dialog box can be opened using the

following toolbar button:

Showing and Hiding Functions. For each load object, you can choose whether to

show metrics for each function separately or to show metrics for the load object as a

whole, using the Show/Hide Functions dialog box. The Show/Hide Functions

dialog box can be opened using the following toolbar button:

Setting Defaults

The settings for all the data displays are initially determined by a defaults file, which

you can edit to set your own defaults.

The default metrics are read from a defaults file. In the absence of any user defaults

files, the system defaults file is read. A defaults file can be stored in a user’s home

directory, where it will be read each time the Performance Analyzer is started, or in

any other directory, where it will be read when the Performance Analyzer is started

from that directory. The user defaults files, which must be named .er.rc , can

contain selected er_print commands. See “Defaults Commands” on page 126 for

Chapter 5 The Performance Analyzer Graphical User Interface 109

more details. The selection of metrics to be displayed, the order of the metrics and

the sort metric can be specified in the defaults file. The following table summarizes

the system default settings for metrics.

For each function or load-object metric displayed, the system defaults select a value

in seconds or in counts, depending on the metric. The lines of the display are sorted

by the first metric in the default list.

For C++ programs, you can display the long or the short form of a function name.

The default is long. This choice can also be set up in the defaults file.

You can save any settings you make in the Set Data Presentation dialog box in a

defaults file.

See “Defaults Commands” on page 126 for more information about defaults files and

the commands that you can use in them.

Searching for Names or Metric Values

Find tool. The Performance Analyzer includes a Find tool in the toolbar that you can

use to locate text in the Name column of the Functions tab and the Callers-Callees

tab, and in the code column of the Source tab and the Disassembly tab. You can also

use the Find tool to locate a high metric value in the Source tab and the Disassembly

tab. High metric values are highlighted if they exceed a given threshold of the

maximum value in a source file. See “Selecting the Data to Be Displayed” on

page 107 for information on selecting the highlighting threshold.

TABLE 5-2 Default Metrics Displayed in the Functions Tab

Data Type Default Metrics

clock-based profiling inclusive and exclusive User CPU time

hardware-counter overflow

profiling

inclusive and exclusive times (for counters that count

in cycles) or event counts (for other counters)

synchronization delay tracing inclusive synchronization wait count and inclusive

synchronization delay time

heap tracing inclusive leaks and inclusive bytes leaked

MPI tracing inclusive MPI Time, inclusive MPI Bytes Sent,

inclusive MPI Sends, inclusive MPI Bytes Received,

inclusive MPI Receives, and inclusive MPI

Other

110 Program Performance Analysis Tools • May 2002

Generating and Using a Mapfile

Using the performance data from an experiment, the Performance Analyzer can

generate a mapfile that you can use with the static linker (ld) to create an executable

with a smaller working-set size, more effective instruction cache behavior, or both.

The mapfile provides the linker with an order in which it loads the functions.

To create the mapfile, you must compile your program with the -g option or the -xF
option. Both of these options ensure that the required symbol table information is

inserted into the object files.

The order of the functions in the mapfile is determined by the metric sort order. If

you want to use a particular metric to order the functions, you must collect the

corresponding performance data. Choose the metric carefully: the default metric is

not always the best choice, and if you record heap tracing data, the default metric is

likely to be a very poor choice.

To use the mapfile to reorder your program, you must ensure that your program is

compiled using the -xF option, which causes the compiler to generate functions that

can be relocated independently, and link your program with the -M option.

% compiler-name -xF -c source-file-list
% compiler-name -M mapfile-name -o program-name object-file-list

111

CHAPTER 6

The er_print Command Line
Performance Analysis Tool

This chapter explains how to use the er_print utility for performance analysis. The

er_print utility prints an ASCII version of the various displays supported by the

Performance Analyzer. The information is written to standard output unless you

redirect it to a file or printer. You must give the er_print utility the name of one or

more experiments or experiment groups generated by the Collector as arguments.

Using the er_print utility you can display metrics of performance for functions,

callers and callees; source code and disassembly listings; sampling information;

address-space data; and execution statistics.

This chapter covers the following topics.

■ er_print Syntax

■ Metric Lists

■ Function List Commands

■ Callers-Callees List Commands

■ Source and Disassembly Listing Commands

■ Memory Allocation List Commands

■ Filtering Commands

■ Metric List Commands

■ Defaults Commands

■ Output Commands

■ Other Display Commands

■ Mapfile Generation Command

■ Control Commands

■ Information Commands

■ Obsolete Commands

For a description of the data collected by the Collector, see Chapter 3.

For instructions on how to use the Performance Analyzer to display information in a

graphical format, see Chapter 5.

112 Program Performance Analysis Tools • May 2002

er_print Syntax

The command-line syntax for er_print is as follows.

The options for er_print are listed in TABLE 6-1.

Multiple options can appear on the er_print command line. They are processed in

the order they appear. You can mix scripts, hyphens, and explicit commands in any

order. The default action if you do not supply any commands or scripts is to enter

interactive mode, in which commands are entered from the keyboard. To exit

interactive mode type quit or Ctrl-D.

The commands accepted by er_print are listed in the following sections. You can

abbreviate any command with a shorter string as long as the command is

unambiguous.

Metric Lists

Many of the er_print commands use a list of metric keywords. The syntax of the

list is as follows.

er_print [-script script | - command | - | -V] experiment-list

TABLE 6-1 Options for the er_print Command

Option Description

- Read er_print commands entered from the keyboard.

-script script Read commands from the file script, which contains a list of

er_print commands, one per line. If the -script option is not

present, er_print reads commands from the terminal or from the

command line.

- command [argument] Process the given command.

-V Display version information and exit.

metric-keyword-1[: metric-keyword2…]

Chapter 6 The er_print Command Line Performance Analysis Tool 113

Except for the size , address , and name keywords, a metric keyword consists of

three parts: a metric type string, a metric visibility string, and a metric name string.

These are joined with no spaces, as follows.

The metric type and metric visibility strings are composed of type and visibility

characters.

The allowed metric type characters are given in TABLE 6-2. A metric keyword that

contains more than one type character is expanded into a list of metric keywords.

For example, ie.user is expanded into i.user:e.user .

The allowed metric visibility characters are given in TABLE 6-3. The order of the

visibility characters in the visibility string does not matter: it does not affect the

order in which the corresponding metrics are displayed. For example, both i%.user
and i.%user are interpreted as i.user:i%user .

Metrics that differ only in the visibility are always displayed together in the

standard order. If two metric keywords that differ only in the visibility are separated

by some other keywords, the metrics appear in the standard order at the position of

the first of the two metrics.

<type><visibility><name>

TABLE 6-2 Metric Type Characters

Character Description

e Show exclusive metric value

i Show inclusive metric value

a Show attributed metric value (only for callers-callees metrics)

TABLE 6-3 Metric Visibility Characters

Character Description

. Show metric as a time. Applies to timing metrics and hardware counter

metrics that measure cycle counts. Interpreted as “+” for other metrics.

% Show metric as a percentage of the total program metric. For attributed

metrics in the callers-callees list, show metric as a percentage of the

inclusive metric for the selected function.

+ Show metric as an absolute value. For hardware counters, this value is

the event count. Interpreted as a “. ” for timing metrics.

! Do not show any metric value. Cannot be used in combination with other

visibility characters.

114 Program Performance Analysis Tools • May 2002

When both type and visibility strings have more than one character, the type is

expanded first. Thus ie.%user is expanded to i.%user:e.%user , which is then

interpreted as i.user:i%user:e.user:e%user .

The visibility characters “. ”, “+” and “%” are equivalent for the purposes of defining

the sort order. Thus sort i%user , sort i.user , and sort i+user all mean

“sort by inclusive user CPU time if it is visible in any form”, and sort i!user
means “sort by inclusive user CPU time, whether or not it is visible”.

TABLE 6-4 lists the available er_print metric name strings for timing metrics,

synchronization delay metrics, memory allocation metrics, MPI tracing metrics, and

the two common hardware counter metrics. For other hardware counter metrics, the

metric name string is the same as the counter name. A list of counter names can be

obtained by using the collect command with no arguments. See “Hardware-

Counter Overflow Data” on page 48 for more information on hardware counters.

TABLE 6-4 Metric Name Strings

Category String Description

Timing metrics user User CPU time

wall Wall-clock time

total Total LWP time

system System CPU time

wait CPU wait time

ulock User lock time

text Text-page fault time

data Data-page fault time

owait Other wait time

Synchronization delay
metrics

sync Synchronization wait time

syncn Synchronization wait count

Memory allocation
metrics

alloc Number of allocations

balloc Bytes allocated

leak Number of leaks

bleak Bytes leaked

Chapter 6 The er_print Command Line Performance Analysis Tool 115

In addition to the name strings listed in TABLE 6-4, there are two name strings that

can only be used in default metrics lists. These are hwc, which matches any

hardware counter name, and any , which matches any metric name string.

Function List Commands

The following commands control the display of function information.

functions

Write the function list with the currently selected metrics. The function list includes

all functions in load objects that are selected for display of functions, and the load

objects whose functions are hidden. See the command for more information.

The number of lines written can be limited by using the limit command (see

“Output Commands” on page 127).

The default metrics printed are exclusive and inclusive user CPU time, in both

seconds and percentage of total program metric. You can change the current metrics

displayed with the metrics command. This must be done before you issue the

functions command. You can also change the defaults with the dmetrics
command.

MPI tracing metrics mpitime Time spent in MPI calls

mpisend Number of MPI send operations

mpibytessent Number of bytes sent in MPI send operations

mpireceive Number of MPI receive operations

mpibytesrecv Number of bytes received in MPI receive operations

mpiother Number of calls to other MPI functions

Hardware counter
overflow metrics

cycles CPU cycles

insts Instructions issued

TABLE 6-4 Metric Name Strings (Continued)

Category String Description

116 Program Performance Analysis Tools • May 2002

fsummary

Write a summary metrics panel for each function in the function list. The number of

panels written can be limited by using the limit command (see “Output

Commands” on page 127).

The summary metrics panel includes the name, address and size of the function or

load object, and for functions, the name of the source file, object file and load object,

and all the recorded metrics for the selected function or load object, both exclusive

and inclusive, as values and percentages.

fsingle function-name [N]

Write a summary metrics panel for the specified function. The optional parameter N
is needed for those cases where there are several functions with the same name. The

summary metrics panel is written for the Nth function with the given function name.

When the command is given on the command line, N is required; if it is not needed

it is ignored. When the command is given interactively without N but N is required,

a list of functions with the corresponding N value is printed.

For a description of the summary metrics for a function, see the fsummary
command description.

metrics metric-list

Specify a selection of function-list metrics. The string metric-list can either be the

keyword default , which restores the default metric selection, or a list of metric

keywords, separated by colons. The following example illustrates a metric list.

This command instructs er_print to display the following metrics:

■ Inclusive user CPU time in seconds

■ Inclusive user CPU time percentage

■ Exclusive user CPU time in seconds

■ Exclusive user CPU time percentage

When the metrics command is finished, a message is printed showing the current

metric selection. For the preceding example the message is as follows.

% metrics i.user:i%user:e.user:e%user

current: i.user:i%user:e.user:e%user:name

Chapter 6 The er_print Command Line Performance Analysis Tool 117

For information on the syntax of metric lists, see “Metric Lists” on page 112. To see a

listing of the available metrics, use the metric_list command.

If a metrics command has an error in it, it is ignored with a warning, and the

previous settings remain in effect.

objects

List the load objects with any error or warning messages that result from the use of

the load object for performance analysis. The number of load objects listed can be

limited by using the limit command (see “Output Commands” on page 127).

sort metric-keyword

Sort the function list on the specified metric. The string metric-keyword is one of the

metric keywords described in “Metric Lists” on page 112, as shown in this example.

This command tells er_print to sort the function list by inclusive user CPU time. If

the metric is not in the experiments that have been loaded, a warning is printed and

the command is ignored. When the command is finished, the sort metric is printed.

Callers-Callees List Commands

The following commands control the display of caller and callee information.

% sort i.user

118 Program Performance Analysis Tools • May 2002

callers-callees

Print the callers-callees panel for each of the functions, in the order in which they are

sorted. The number of panels written can be limited by using the limit command

(see “Output Commands” on page 127). The selected (center) function is marked

with an asterisk, as shown in this example.

In this example, gpf is the selected function; it is called by commandline , and it

calls gpf_a and gpf_b .

csingle function-name [N]

Write the callers-callees panel for the named function. The optional parameter N is

needed for those cases where there are several functions with the same name. The

callers-callees panel is written for the Nth function with the given function name.

When the command is given on the command line, N is required; if it is not needed

it is ignored. When the command is given interactively without N but N is required,

a list of functions with the corresponding N value is printed.

cmetrics metric-list

Specify a selection of callers-callees metrics. metric-list is a list of metric keywords,

separated by colons, as shown in this example.

This command instructs er_print to display the following metrics.

■ Inclusive user CPU time in seconds

■ Inclusive user CPU time percentage

■ Attributed user CPU time in seconds

■ Attributed user CPU time percentage

Attr. Excl. Incl. Name
User CPU User CPU User CPU
 sec. sec. sec.
4.440 0. 42.910 commandline
0. 0. 4.440 *gpf
4.080 0. 4.080 gpf_b
0.360 0. 0.360 gpf_a

% cmetrics i.user:i%user:a.user:a%user

Chapter 6 The er_print Command Line Performance Analysis Tool 119

When the cmetrics command is finished, a message is printed showing the current

metric selection. For the preceding example the message is as follows.

For information on the syntax of metric lists, see “Metric Lists” on page 112. To see a

listing of the available metrics, use the cmetric_list command.

csort metric-keyword

Sort the callers-callees display by the specified metric. The string metric-keyword is

one of the metric keywords described in “Metric Lists” on page 112, as shown in this

example.

This command tells er_print to sort the callers-callees display by attributed user

CPU time. When the command finishes, the sort metric is printed.

Source and Disassembly Listing
Commands

The following commands control the display of annotated source and disassembly

code.

source | src { file | function } [N]

Write out annotated source code for either the specified file or the file containing the

specified function. The file in either case must be in a directory in your path.

Use the optional parameter N (a positive integer) only in those cases where the file

or function name is ambiguous; in this case, the Nth possible choice is used. If you

give an ambiguous name without the numeric specifier, er_print prints a list of

possible object-file names; if the name you gave was a function, the name of the

function is appended to the object-file name, and the number that represents the

value of N for that object file is also printed.

current: i.user:i%user:a.user:a%user:name

% csort a.user

120 Program Performance Analysis Tools • May 2002

disasm { file | function } [N]

Write out annotated disassembly code for either the specified file, or the file

containing the specified function. The file in either case must be in a directory in

your path.

The optional parameter N is used in the same way as for the source command.

scc class-list

Specify the classes of compiler commentary that are shown in the annotated source

listing. The class list is a colon-separated list of classes, containing zero or more of

the following message classes.

■ b[asic] – Show the basic level messages.

■ v[ersion] – Show version messages, including source file name and last

modified date, versions of the compiler components, compilation date and

options.

■ pa[rallel] – Show messages about parallelization.

■ q[uery] – Show questions about the code that affect its optimization.

■ l[oop] – Show messages about loop optimizations and transformations.

■ pi[pe] – Show messages about pipelining of loops.

■ i[nline] – Show messages about inlining of functions.

■ m[emops] – Show messages about memory operations, such as load, store,

prefetch.

■ f[e] – Show front-end messages.

■ all – Show all messages.

■ none – Do not show any messages.

The classes all and none cannot be used with other classes.

If no scc command is given, the default class shown is basic . If the scc command

is given with an empty class-list, compiler commentary is turned off. The scc
command is normally used only in a .er.rc file.

For compatibility, the highlighting threshold can also be specified using

t[hreshold]= nn, where nn is the threshold percentage. See the sthresh section

for more information.

Chapter 6 The er_print Command Line Performance Analysis Tool 121

sthresh value

Specify the threshold percentage for highlighting metrics in the annotated source

code. If the value of any metric is equal to or greater than value % of the maximum

value of that metric for any source line in the file, the line on which the metrics occur

have ## inserted at the beginning of the line.

dcc class-list

Specify the classes of compiler commentary that are shown in the annotated

disassembly listing. The class list is a colon-separated list of classes. The list of

available classes is the same as the list of classes for annotated source code listing.

The following options can be added to the class list.

■ h[ex] – Show the hexadecimal value of the instructions.

■ s[rc] – Interleave the source listing in the annotated disassembly listing.

■ as[rc] – interleave the annotated source code in the annotated disassembly

listing.

For compatibility, the highlighting threshold can also be specified using

t[hreshold]= nn, where nn is the threshold percentage. See the dthresh section

for more information.

dthresh value

Specify the threshold percentage for highlighting metrics in the annotated

disassembly code. If the value of any metric is equal to or greater than value % of the

maximum value of that metric for any instruction line in the file, the line on which

the metrics occur have ## inserted at the beginning of the line.

Memory Allocation List Commands

This section describes commands relating to memory allocations and deallocations.

allocs

Display a list of memory allocations, aggregated by common call stack. Each entry

presents the number of allocations and the total bytes allocated for the given call

stack. The list is sorted by the number of bytes allocated.

122 Program Performance Analysis Tools • May 2002

leaks

Display a list of memory leaks, aggregated by common call stack. Each entry

presents the total number of leaks and the total bytes leaked for the given call stack.

The list is sorted by the number of bytes leaked.

Filtering Commands

This section describes commands that are used to control selection of experiments,

samples, threads, and LWPs for display, and to list the current selections.

Selection Lists

The syntax of a selection is shown in the following example. This syntax is used in

the command descriptions.

Each selection list can be preceded by an experiment list, separated from it by a

colon and no spaces. You can make multiple selections by joining selection lists with

a + sign.

The experiment list and the selection list have the same syntax, which is either the

keyword all or a list of numbers or ranges of numbers (n-m) separated by commas

but no spaces, as shown in this example.

The experiment numbers can be determined by using the exp_list command.

Some examples of selections are as follows.

In the first example, objects 1 through 4 are selected from experiment 1 and objects 5

and 6 are selected from experiment 2. In the second example, objects 1 and 3 through

6 are selected from all experiments. The objects may be LWPs, threads, or samples.

[experiment-list:] selection-list[+[experiment-list:] selection-list …]

2,4,9-11,23-32,38,40

1:1-4+2:5,6
all:1,3-6

Chapter 6 The er_print Command Line Performance Analysis Tool 123

Selection Commands

The commands to select LWPs, samples, and threads are not independent. If the

experiment list for a command is different from that for the previous command, the

experiment list from the latest command is applied to all three selection targets –

LWPs, samples, and threads, in the following way.

■ Existing selections for experiments not in the latest experiment list are turned off.

■ Existing selections for experiments in the latest experiment list are kept.

■ Selections are set to “all ” for targets for which no selection has been made.

lwp_select lwp-selection

Select the LWPs about which you want to display information. The list of LWPs you

selected is displayed when the command finishes.

sample_select sample-selection

Select the samples for which you want to display information. The list of samples

you selected is displayed when the command finishes.

thread_select thread-selection

Select the threads about which you want to display information. The list of threads

you selected is displayed when the command finishes.

object_select object-list

Select the load objects for which you want to display information about the

functions in the load object. object-list is a list of load objects, separated by commas

but no spaces. For load objects that are not selected, information for the entire load

object is displayed instead of information for the functions in the load object.

The names of the load objects should be either full path names or the basename. If

an object name itself contains a comma, you must surround the name with double

quotation marks.

Listing of Selections

The commands for listing what has been selected are given in this section, followed

by some examples.

124 Program Performance Analysis Tools • May 2002

exp_list

Display the full list of experiments loaded with their ID number.

lwp_list

Display the list of LWPs currently selected for analysis.

object_list

Display the list of load objects.The name of each load object is preceded by a “+” if

its functions are shown in the function list, and by a “-” if its functions are not

shown in the function list.

sample_list

Display the list of samples currently selected for analysis.

thread_list

Display the list of threads currently selected for analysis.

The following example is an example of an experiment list.

The sample list, thread list and LWP list have the same format. The following

example is an example of a sample list.

(er_print) exp_list
ID Experiment
== ==========
1 test.1.er
2 test.6.er

(er_print) sample_list
Exp Sel Total
=== ======= =====
 1 1-6 31
 2 7-10,15 31

Chapter 6 The er_print Command Line Performance Analysis Tool 125

The following example is an example of a load object list.

Metric List Commands

The following commands list the currently selected metrics and all available metric

keywords.

metric_list

Display the currently selected metrics in the function list and a list of metric

keywords that you can use in other commands (for example, metrics and sort) to

reference various types of metrics in the function list.

cmetric_list

Display the currently selected metrics in the callers-callees list and a list of metric

keywords that you can use in other commands (for example, cmetrics and csort)

to reference various types of metrics in the callers-callees list.

Note – Attributed metrics can only be specified for display with the cmetrics
command, not the metrics command, and displayed only with the callers-
callees command, not the functions command.

(er_print) object_list
Sel Load Object
=== ==
yes /tmp/var/synprog/synprog
yes /opt/SUNWspro/lib/libcollector.so
yes /usr/lib/libdl.so.1
yes /usr/lib/libc.so.1

126 Program Performance Analysis Tools • May 2002

Defaults Commands

The following commands can be used to set the defaults for er_print and for the

Performance Analyzer. They can only be used for setting defaults: they cannot be

used in input for er_print . They can be included in a defaults filed named

.er.rc .

A defaults file can be included in your home directory, to set defaults for all

experiments, or in any other directory, to set defaults locally. When er_print ,

er_src or the Performance Analyzer is started, the current directory and your home

directory are scanned for defaults files, which are read if they are present, and the

system defaults file is also read. Defaults from the .er.rc file in your home

directory override the system defaults, and defaults from the .er.rc file in the

current directory override both home and system defaults.

Note – To ensure that you read the defaults file from the directory where your

experiment is stored, you must start the Performance Analyzer or the er_print
utility from that directory.

The defaults file can also include the scc , sthresh , dcc , and dthresh commands.

Multiple dmetrics and dsort commands can be given in a defaults file, and the

commands within a file are concatenated.

dmetrics metric-list

Specify the default metrics to be displayed or printed in the function list. The syntax

and use of the metric list is described in the section “Metric Lists” on page 112. The

order of the metric keywords in the list determines the order in which the metrics

are presented and the order in which they appear in the Metric chooser in the

Performance Analyzer.

Default metrics for the Callers-Callees list are derived from the function list default

metrics by adding the corresponding attributed metric before the first occurrence of

each metric name in the list.

dsort metric-list

Specify the default metric by which the function list is sorted. The sort metric is the

first metric in this list that matches a metric in any loaded experiment, subject to the

following conditions:

Chapter 6 The er_print Command Line Performance Analysis Tool 127

■ If the entry in metric-list has a visibility string of “!”, the first metric whose name

matches is used, whether it is visible or not.

■ If the entry in metric-list has any other visibility string, the first visible metric

whose name matches is used.

The syntax and use of the metric list is described in the section “Metric Lists” on

page 112.

The default sort metric for the Callers-Callees list is the attributed metric

corresponding to the default sort metric for the function list.

gdemangle library-name

Set the path to the shared object that supports an API to demangle C++ function

names. The shared object must export the C function cplus_demangle() ,

conforming to the GNU standard libiberty.so interface.

Output Commands

The following commands control er_print display output.

limit n

Limit output to the first n entries of the report; n is an unsigned positive integer.

name { long | short }

Specify whether to use the long or the short form of function names (C++ only).

outfile { filename | - }

Close any open output file, then open filename for subsequent output. If you specify

a dash (-) instead of filename, output is written to standard output.

128 Program Performance Analysis Tools • May 2002

Other Display Commands

header experiment-ID

Display descriptive information about the specified experiment. The experiment-ID
can be obtained from the exp_list command. If the experiment-ID is all or is not

given, the information is displayed for all experiments loaded.

Following each header, any errors or warnings are printed. Headers for each

experiment are separated by a line of dashes.

experiment-ID is required on the command line, but not in a script or in interactive

mode.

overview experiment-ID

Write out the sample data of each of the currently selected samples for the specified

experiment. The experiment-ID can be obtained from the exp_list command. If the

experiment-ID is all or is not given, the sample data is displayed for all experiments.

experiment-ID is required on the command line, but not in a script or in interactive

mode.

statistics experiment-ID

Write out execution statistics, aggregated over the current sample set for the

specified experiment. For information on the definitions and meanings of the

execution statistics that are presented, see the getrusage (3C) and proc (4) man

pages. The execution statistics include statistics from system threads for which the

Collector does not collect any data. The standard threads library in the Solaris™ 7

and 8 operating environments creates system threads that are not profiled. These

threads spend most of their time sleeping, and the time shows in the statistics

display as Other Wait time.

The experiment-ID can be obtained from the exp_list command. If the experiment-
ID is not given, the sum of data for all experiments is displayed, aggregated over the

sample set for each experiment. If experiment-ID is all , the sum and the individual

statistics for each experiment are displayed.

experiment-ID is required on the command line, but not in a script or in interactive

mode.

Chapter 6 The er_print Command Line Performance Analysis Tool 129

Mapfile Generation Command

mapfile load-object { mapfilename | - }

Write a mapfile for the specified load object to the file mapfilename. If you specify a

dash (-) instead of mapfilename, er_print writes the mapfile to standard output.

Control Commands

quit

Terminate processing of the current script, or exit interactive mode.

script script

Process additional commands from the script file script.

Information Commands

help

Print a list of er_print commands.

{ Version | version }

Print the current release number of er_print .

130 Program Performance Analysis Tools • May 2002

Obsolete Commands

address_space

Address-space data collection and display is no longer supported. This command is

ignored with a warning.

osummary

The load objects list has been incorporated into the function list. To see metrics for

load objects, use the object_select command and the fsummary command. This

command is ignored with a warning.

131

CHAPTER 7

Understanding the Performance
Analyzer and Its Data

The Performance Analyzer reads the event data that is collected by the Collector and

converts it into performance metrics. The metrics are computed for various elements

in the structure of the target program, such as instructions, source lines, functions,

and load objects. In addition to a header, the data recorded for each event collected

has two parts:

■ Some event-specific data that is used to compute metrics

■ A call stack of the application that is used to associate those metrics with the

program structure

The process of associating the metrics with the program structure is not always

straightforward, due to the insertions, transformations, and optimizations made by

the compiler. This chapter describes the process in some detail and discusses the

effect on what you see in the Performance Analyzer displays.

This chapter covers the following topics:

■ Interpreting Performance Metrics

■ Call Stacks and Program Execution

■ Mapping Addresses to Program Structure

■ Annotated Code Listings

132 Program Performance Analysis Tools • May 2002

Interpreting Performance Metrics

The data for each event contains a high-resolution timestamp, a thread ID, an LWP

ID, and a processor ID. The first three of these can be used to filter the metrics in the

Performance Analyzer by time, thread or LWP. See the getcpuid (2) man page for

information on processor IDs. On systems where getcpuid is not available, the

processor ID is -1, which maps to Unknown.

In addition to the common data, each event generates specific raw data, which is

described in the following sections. Each section also contains a discussion of the

accuracy of the metrics derived from the raw data and the effect of data collection on

the metrics.

Clock-Based Profiling

The event-specific data for clock-based profiling consists of an array of profiling

interval counts for each of the ten microstates maintained by the kernel for each

LWP. At the end of the profiling interval, the count for the microstate of each LWP is

incremented by 1, and a profiling signal is scheduled. The array is only recorded and

reset when the LWP is in user mode in the CPU. If the LWP is in user mode when

the profiling signal is scheduled, the array element for the User-CPU state is 1, and

the array elements for all the other states are 0. If the LWP is not in user mode, the

data is recorded when the LWP next enters user mode, and the array can contain an

accumulation of counts for various states.

The call stack is recorded at the same time as the data. If the LWP is not in user

mode at the end of the profiling interval, the call stack cannot change until the LWP

enters user mode again. Thus the call stack always accurately records the position of

the program counter at the end of each profiling interval.

The metrics to which each of the microstates contributes are shown in TABLE 7-1.

TABLE 7-1 How Kernel Microstates Contribute to Metrics

Kernel Microstate Description Metric Name

LMS_USER Running in user mode User CPU Time

LMS_SYSTEM Running in system call or page fault System CPU Time

LMS_TRAP Running in any other trap System CPU Time

LMS_TFAULT Asleep in user text page fault Text Page Fault Time

LMS_DFAULT Asleep in user data page fault Data Page Fault Time

Chapter 7 Understanding the Performance Analyzer and Its Data 133

Accuracy of Timing Metrics

Timing data is collected on a statistical basis, and is therefore subject to all the errors

of any statistical sampling method. For very short runs, in which only a small

number of profile packets is recorded, the call stacks might not represent the parts of

the program which consume the most resources. You should run your program for

long enough or enough times to accumulate hundreds of profile packets for any

function or source line you are interested in.

In addition to statistical sampling errors, there are specific errors that arise from the

way the data is collected and attributed and the way the program progresses

through the system. Some of the circumstances in which inaccuracies or distortions

can appear in the timing metrics are described in what follows.

■ When an LWP is created, the time it has spent before the first profile packet is

recorded is less than the profiling interval, but the entire profiling interval is

ascribed to the microstate recorded in the first profile packet. If there are many

LWPs created the error can be many times the profiling interval.

■ When an LWP is destroyed, some time is spent after the last profile packet is

recorded. If there are many LWPs destroyed the error can be many times the

profiling interval.

■ LWP rescheduling can occur during a profiling interval. As a consequence, the

recorded state of the LWP might not represent the microstate in which it spent

most of the profiling interval. The errors are likely to be larger when there are

more LWPs to run than there are processors to run them.

■ It is possible for a program to behave in a way which is correlated with the

system clock. In this case, the profiling interval always expires when the LWP is

in a state which might represent a small fraction of the time spent, and the call

stacks recorded for a particular part of the program are overrepresented. On a

multiprocessor system, it is possible for the profiling signal to induce a

correlation: processors that are interrupted by the profiling signal while they are

running LWPs for the program are likely to be in the Trap-CPU microstate when

the microstate is recorded.

LMS_KFAULT Asleep in kernel page fault Other Wait Time

LMS_USER_LOCK Asleep waiting for user-mode lock User Lock Time

LMS_SLEEP Asleep for any other reason Other Wait Time

LMS_STOPPED Stopped (/proc , job control, or lwp_stop) Other Wait Time

LMS_WAIT_CPU Waiting for CPU Wait CPU Time

TABLE 7-1 How Kernel Microstates Contribute to Metrics (Continued)

Kernel Microstate Description Metric Name

134 Program Performance Analysis Tools • May 2002

■ The kernel records the microstate value when the profiling interval expires. When

the system is under heavy load, that value might not represent the true state of

the process. This situation is likely to result in overaccounting of the Trap-CPU or

Wait-CPU microstate.

■ The threads library sometimes discards profiling signals when it is in a critical

section, resulting in an underaccounting of timing metrics.

■ When the system clock is being synchronized with an external source, the time

stamps recorded in profile packets do not reflect the profiling interval but include

any adjustment that was made to the clock. The clock adjustment can make it

appear that profile packets are lost. The time period involved is usually several

seconds, and the adjustments are made in increments.

In addition to the inaccuracies just described, timing metrics are distorted by the

process of collecting data. The time spent recording profile packets never appears in

the metrics for the program, because the recording is initiated by profiling signal.

(This is another instance of correlation.) The user CPU time spent in the recording

process is distributed over whatever microstates are recorded. The result is an

underaccounting of the User CPU Time metric and an overaccounting of other

metrics. The amount of time spent recording data is typically less than one percent

of the CPU time for the default profiling interval.

Comparisons of Timing Metrics

If you compare timing metrics obtained from the profiling done in a clock-based

experiment with times obtained by other means, you should be aware of the

following issues.

For a single-threaded application, the total LWP time recorded for a process is

usually accurate to a few tenths of a percent, compared with the values returned by

gethrtime (3C) for the same process. The CPU time can vary by several percentage

points from the values returned by gethrvtime (3C) for the same process. Under

heavy load, the variation might be even more pronounced. However, the CPU time

differences do not represent a systematic distortion, and the relative times reported

for different functions, source-lines, and such are not substantially distorted.

For multithreaded applications using unbound threads, differences in values

returned by gethrvtime() could be meaningless. This is because gethrvtime()
returns values for an LWP, and a thread can change from one LWP to another.

The LWP times that are reported in the Performance Analyzer can differ

substantially from the times that are reported by vmstat , because vmstat reports

times that are summed over CPUs. If the target process has more LWPs than the

system on which it is running has CPUs, the Performance Analyzer shows more wait

time than vmstat reports.

Chapter 7 Understanding the Performance Analyzer and Its Data 135

The microstate timings that appear in the Statistics tab of the Performance Analyzer

and the er_print statistics display are based on process file system usage reports,

for which the times spent in the microstates are recorded to high accuracy. See the

proc (4) man page for more information. You can compare these timings with the

metrics for the <Total> function, which represents the program as a whole, to gain

an indication of the accuracy of the aggregated timing metrics. However, the values

displayed in the Statistics tab can include other contributions that are not included

in the timing metric values for <Total> . These contributions come from the

following sources:

■ Threads that are created by the system that are not profiled. The standard threads

library in the Solaris™ 7 and 8 operating environments creates system threads that

are not profiled. These threads spend most of their time sleeping, and the time

shows in the Statistics tab as Other Wait time.

■ Periods of time in which data collection is paused.

Synchronization Wait Tracing

The Collector collects synchronization delay events by tracing calls to the functions

in the threads library, libthread.so , or to the real time extensions library,

librt.so . The event-specific data consists of high-resolution timestamps for the

request and the grant (beginning and end of the call that is traced), and the address

of the synchronization object (the mutex lock being requested, for example). The

thread and LWP IDs are the IDs at the time the data is recorded. The wait time is the

difference between the request time and the grant time. Only events for which the

wait time exceeds the specified threshold are recorded. The synchronization wait

tracing data is recorded in the experiment at the time of the grant.

If the program uses bound threads, the LWP on which the waiting thread is

scheduled cannot perform any other work until the event that caused the delay is

completed. The time spent waiting appears both as Synchronization Wait Time and

as User Lock Time. User Lock Time can be larger than Synchronization Wait Time

because the synchronization delay threshold screens out delays of short duration.

If the program uses unbound threads, it is possible for the LWP on which the

waiting thread is scheduled to have other threads scheduled on it and continue to

perform user work. The User Lock Time is zero if all LWPs are kept busy while some

threads are waiting for a synchronization event. However, the Synchronization Wait

Time is not zero because it is associated with a particular thread, not with the LWP

on which the thread is running.

The wait time is distorted by the overhead for data collection. The overhead is

proportional to the number of events collected. The fraction of the wait time spent in

overhead can be minimized by increasing the threshold for recording events.

Synchronization wait tracing does not record data for Java™ monitors.

136 Program Performance Analysis Tools • May 2002

Hardware-Counter Overflow Profiling

Hardware-counter overflow profiling data includes a counter ID and the overflow

value. The value can be larger than the value at which the counter is set to overflow,

because the processor executes some instructions between the overflow and the

recording of the event. This is especially true of cycle and instruction counters,

which are incremented much more frequently than counters such as floating-point

operations or cache misses. The delay in recording the event also means that the

program counter address recorded with call stack does not correspond exactly to the

overflow event. See “Attribution of Hardware Counter Overflows” on page 160 for

more information.

The amount of data collected depends on the overflow value. Choosing a value that

is too small can have the following consequences.

■ The amount of time spent collecting data can be a substantial fraction of the

execution time of the program. The collection run might spend most of its time

handling overflows and writing data instead of running the program.

■ A substantial fraction of the counts can come from the collection process. These

counts are attributed to the collector function collector_record_counters . If

you see high counts for this function, the overflow value is too small.

■ The collection of data can alter the behavior of the program. For example, if you

are collecting data on cache misses, the majority of the misses could come from

flushing the collector instructions and profiling data from the cache and replacing

it with the program instructions and data. The program would appear to have a

lot of cache misses, but without data collection there might in fact be very few

cache misses.

Choosing a value that is too large can result in too few overflows for good statistics.

The counts that are accrued after the last overflow are attributed to the collector

function collector_final_counters . If you see a substantial fraction of the

counts in this function, the overflow value is too large.

Heap Tracing

The Collector records tracing data for calls to the memory allocation and

deallocation functions malloc , realloc , memalign and free by interposing on

these functions. If your program bypasses these functions to allocate memory,

tracing data is not recorded. Tracing data is not recorded for Java memory

management, which uses a different mechanism.

The functions that are traced could be loaded from any of a number of libraries. The

data that you see in the Performance Analyzer might depend on the library from

which a given function is loaded.

Chapter 7 Understanding the Performance Analyzer and Its Data 137

If a program makes a large number of calls to the traced functions in a short space of

time, the time taken to execute the program can be significantly lengthened. The

extra time is used in recording the tracing data.

MPI Tracing

MPI tracing records information about calls to MPI library functions. The event-

specific data consists of high-resolution timestamps for the request and the grant

(beginning and end of the call that is traced), the number of send and receive

operations and the number of bytes sent or received. Tracing is done by interposing

on the calls to the MPI library. The interposing functions do not have detailed

information about the optimization of data transmission, nor about transmission

errors, so the information that is presented represents a simple model of the data

transmission, which is explained in the following paragraphs.

The number of bytes received is the length of the buffer as defined in the call to the

MPI function. The actual number of bytes received is not available to the interposing

function.

Some of the Global Communication functions have a single origin or a single

receiving process known as the root. The accounting for such functions is done as

follows:

■ Root sends data to all processes, itself included.

■ Root receives data from all processes. itself included.

■ Each process communicates with each process, itself included

The following examples illustrate the accounting procedure. In these examples, G is

the size of the group.

For a call to MPI_Bcast() ,

■ Root sends G packets of N bytes, one packet to each process, including itself

■ All G processes in the group (including root) receive N bytes

For a call to MPI_Allreduce() ,

■ Each process sends G packets of N bytes

■ Each process receives G packets of N bytes

For a call to MPI_Reduce_scatter() ,

■ Each process sends G packets of N/G bytes

■ Each process receives G packets of N/G bytes

138 Program Performance Analysis Tools • May 2002

Call Stacks and Program Execution

A call stack is a series of program counter addresses (PCs) representing instructions

from within the program. The first PC, called the leaf PC, is at the bottom of the

stack, and is the address of the next instruction to be executed. The next PC is the

address of the call to the function containing the leaf PC; the next PC is the address

of the call to that function, and so forth, until the top of the stack is reached. Each

such address is known as a return address. The process of recording a call stack

involves obtaining the return addresses from the program stack and is referred to as

“unwinding the stack”.

The leaf PC in a call stack is used to assign exclusive metrics from the performance

data to the function in which that PC is located. Each PC on the stack, including the

leaf PC, is used to assign inclusive metrics to the function in which it is located.

Most of the time, the PCs in the recorded call stack correspond in a natural way to

functions as they appear in the source code of the program, and the Performance

Analyzer’s reported metrics correspond directly to those functions. Sometimes,

however, the actual execution of the program does not correspond to a simple

intuitive model of how the program would execute, and the Performance Analyzer’s

reported metrics might be confusing. See “Mapping Addresses to Program

Structure” on page 147 for more information about such cases.

Single-Threaded Execution and Function Calls

The simplest case of program execution is that of a single-threaded program calling

functions within its own load object.

When a program is loaded into memory to begin execution, a context is established

for it that includes the initial address to be executed, an initial register set, and a

stack (a region of memory used for scratch data and for keeping track of how

functions call each other). The initial address is always at the beginning of the

function _start() , which is built into every executable.

When the program runs, instructions are executed in sequence until a branch

instruction is encountered, which among other things could represent a function call

or a conditional statement. At the branch point, control is transferred to the address

given by the target of the branch, and execution proceeds from there. (Usually the

next instruction after the branch is already committed for execution: this instruction

is called the branch delay slot instruction. However, some branch instructions annul

the execution of the branch delay slot instruction.)

Chapter 7 Understanding the Performance Analyzer and Its Data 139

When the instruction sequence that represents a call is executed, the return address

is put into a register, and execution proceeds at the first instruction of the function

being called.

In most cases, somewhere in the first few instructions of the called function, a new

frame (a region of memory used to store information about the function) is pushed

onto the stack, and the return address is put into that frame. The register used for

the return address can then be used when the called function itself calls another

function. When the function is about to return, it pops its frame from the stack, and

control returns to the address from which the function was called.

Function Calls Between Shared Objects

When a function in one shared object calls a function in another shared object, the

execution is more complicated than in a simple call to a function within the

program. Each shared object contains a Program Linkage Table, or PLT, which

contains entries for every function external to that shared object that is referenced

from it. Initially the address for each external function in the PLT is actually an

address within ld.so , the dynamic linker. The first time such a function is called,

control is transferred to the dynamic linker, which resolves the call to the real

external function and patches the PLT address for subsequent calls.

If a profiling event occurs during the execution of one of the three PLT instructions,

the PLT PCs are deleted, and exclusive time is attributed to the call instruction. If a

profiling event occurs during the first call through a PLT entry, but the leaf PC is not

one of the PLT instructions, any PCs that arise from the PLT and code in ld.so are

replaced by a call to an artificial function, @plt , which accumulates inclusive time.

There is one such artificial function for each shared object. If the program uses the

LD_AUDIT interface, the PLT entries might never be patched, and non-leaf PCs from

@plt can occur more frequently.

Signals

When a signal is sent to a process, various register and stack operations occur that

make it look as though the leaf PC at the time of the signal is the return address for

a call to a system function, sigacthandler() . sigacthandler() calls the user-

specified signal handler just as any function would call another.

The Performance Analyzer treats the frames resulting from signal delivery as

ordinary frames. The user code at the point at which the signal was delivered is

shown as calling the system function sigacthandler() , and it in turn is shown as

calling the user’s signal handler. Inclusive metrics from both sigacthandler()
and any user signal handler, and any other functions they call, appear as inclusive

metrics for the interrupted function.

140 Program Performance Analysis Tools • May 2002

The Collector interposes on sigaction() to ensure that its handlers are the

primary handlers for the SIGPROFsignal when clock data is collected and SIGEMT
signal when hardware counter data is collected.

Traps

Traps can be issued by an instruction or by the hardware, and are caught by a trap

handler. System traps are traps which are initiated from an instruction and trap into

the kernel. All system calls are implemented using trap instructions, for example.

Some examples of hardware traps are those issued from the floating point unit when

it is unable to complete an instruction (such as the fitos instruction on the

UltraSPARC™ III platform), or when the instruction is not implemented in the

hardware.

When a trap is issued, the LWP enters system mode. The microstate is usually

switched from User CPU state to Trap state then to System state. The time spent

handling the trap can show as a combination of System CPU time and User CPU

time, depending on the point at which the microstate is switched. The time is

attributed to the instruction in the user’s code from which the trap was initiated (or

to the system call).

For some system calls, it is considered critical to provide as efficient handling of the

call as possible. The traps generated by these calls are known as fast traps. Among

the system functions which generate fast traps are gethrtime and gethrvtime . In

these functions, the microstate is not switched because of the overhead involved.

In other circumstances it is also considered critical to provide as efficient handling of

the trap as possible. Some examples of these are TLB (translation lookaside buffer)

misses and register window spills and fills, for which the microstate is not switched.

In both cases, the time spent is recorded as User CPU time. However, the hardware

counters are turned off because the mode has been switched to system mode. The

time spent handling these traps can therefore be estimated by taking the difference

between User CPU time and Cycles time, preferably recorded in the same

experiment.

There is one case in which the trap handler switches back to user mode, and that is

the misaligned memory reference trap for an 8-byte integer which is aligned on a 4-

byte boundary in Fortran. A frame for the trap handler appears on the stack, and a

call to the handler can appear in the Performance Analyzer, attributed to the integer

load or store instruction.

When an instruction traps into the kernel, the instruction following the trapping

instruction appears to take a long time, because it cannot start until the kernel has

finished executing the trapping instruction.

Chapter 7 Understanding the Performance Analyzer and Its Data 141

Tail-Call Optimization

The compiler can do one particular optimization whenever the last thing a particular

function does is to call another function. Rather than generating a new frame, the

callee re-uses the frame from the caller, and the return address for the callee is

copied from the caller. The motivation for this optimization is to reduce the size of

the stack, and, on SPARC™ platforms, to reduce the use of register windows.

Suppose that the call sequence in your program source looks like this:

A -> B -> C -> D

When B and C are tail-call optimized, the call stack looks as if function A calls

functions B, C, and D directly.

A -> B

A -> C

A -> D

That is, the call tree is flattened. When code is compiled with the -g option, tail-call

optimization takes place only at a compiler optimization level of 4 or higher. When

code is compiled without the -g option, tail-call optimization takes place at a

compiler optimization level of 2 or higher.

Explicit Multithreading

A simple program executes in a single thread, on a single LWP (light-weight

process). Multithreaded executables make calls to a thread creation function, to

which the target function for execution is passed. When the target exits, the thread is

destroyed by the threads library. Newly-created threads begin execution at a

function called _thread_start() , which calls the function passed in the thread

creation call. For any call stack involving the target as executed by this thread, the

top of the stack is _thread_start() , and there is no connection to the caller of the

thread creation function. Inclusive metrics associated with the created thread

therefore only propagate up as far as _thread_start() and the <Total> function.

In addition to creating the threads, the threads library also creates LWPs to execute

the threads. Threading can be done either with bound threads, where each thread is

bound to a specific LWP, or with unbound threads, where each thread can be

scheduled on a different LWP at different times.

■ If bound threads are used, the threads library creates one LWP per thread.

■ If unbound threads are used, the threads library decides how many LWPs to

create to run efficiently, and which LWPs to schedule the threads on. The threads

library can create more LWPs at a later time if they are needed. Unbound threads

are not part of the Solaris 9 operating environment or of the alternate threads

library in the Solaris 8 operating environment.

142 Program Performance Analysis Tools • May 2002

As an example of the scheduling of unbound threads, when a thread is at a

synchronization barrier such as a mutex_lock , the threads library can schedule a

different thread on the LWP on which the first thread was executing. The time

spent waiting for the lock by the thread that is at the barrier appears in the

Synchronization Wait Time metric, but since the LWP is not idle, the time is not

accrued into the User Lock Time metric.

In addition to the user threads, the standard threads library in the Solaris 7 and

Solaris 8 operating environments creates some threads are used to perform signal

handling and other tasks. If the program uses bound threads, additional LWPs are

also created for these threads. Performance data is not collected or displayed for

these threads, which spend most of their time sleeping. However, the time spent in

these threads is included in the process statistics and in the times recorded in the

sample data. The threads library in the Solaris 9 operating environment and the

alternate threads library in the Solaris 8 operating environment do not create these

extra threads.

Parallel Execution and Compiler-Generated Body

Functions

If your code contains Sun, Cray, or OpenMP parallelization directives, it can be

compiled for parallel execution. OpenMP is a feature available with the Forte™

Developer 7 compilers. Refer to the OpenMP API User’s Guide and the relevant

sections in the Fortran Programming Guide and C User’s Guide, or visit the web site

defining the OpenMP standard, http://www.openmp.org .

When a loop or other parallel construct is compiled for parallel execution, the

compiler-generated code is executed by multiple threads, coordinated by the

microtasking library. Parallelization by the Forte Developer compilers follows the

procedure outlined below.

Generation of Body Functions

When the compiler encounters a parallel construct, it sets up the code for parallel

execution by placing the body of the construct in a separate body function and

replacing the construct with a call to a microtasking library function. The

microtasking library function is responsible for dispatching threads to execute the

body function. The address of the body function is passed to the microtasking

library function as an argument.

If the parallel construct is delimited with one of the directives in the following list,

then the construct is replaced with a call to the microtasking library function

_ _mt_MasterFunction_() .

■ The Sun Fortran directive c$par doall

http://www.openmp.org/specs/

Chapter 7 Understanding the Performance Analyzer and Its Data 143

■ The Cray Fortran directive c$mic doall

■ A Fortran OpenMP c$omp PARALLEL, c$omp PARALLEL DO, or c$omp PARALLEL
SECTIONSdirective

■ A C or C++ OpenMP #pragma omp parallel , #pragma omp parallel for , or

#pragma omp parallel sections directive

A loop that is parallelized automatically by the compiler is also replaced by a call to

_ _mt_MasterFunction_() .

If an OpenMP parallel construct contains one or more worksharing do, for or

sections directives, each worksharing construct is replaced by a call to the

microtasking library function _ _mt_Worksharing_() and a new body function is

created for each.

The compiler assigns names to body functions that encode the type of parallel

construct, the name of the function from which the construct was extracted, the line

number of the beginning of the construct in the original source, and the sequence

number of the parallel construct. These mangled names vary from release to release

of the microtasking library.

Parallel Execution Sequence

The program begins execution with only one thread, the main thread. The first time

the program calls _ _mt_MasterFunction_() , this function calls the Solaris

threads library function, thr_create() to create worker threads. Each worker

thread executes the microtasking library function _ _mt_SlaveFunction_() ,

which was passed as an argument to thr_create() .

In addition to worker threads, the standard threads library in the Solaris 7 and

Solaris 8 operating environments creates some threads to perform signal handling

and other tasks. Performance data is not collected for these threads, which spend

most of their time sleeping. However, the time spent in these threads is included in

the process statistics and the times recorded in the sample data. The threads library

in the Solaris 9 operating environment and the alternate threads library in the Solaris

8 operating environment do not create these extra threads.

Once the threads have been created, _ _mt_MasterFunction_() manages the

distribution of available work among the main thread and the worker threads. If

work is not available, _ _mt_SlaveFunction_() calls _ _mt_WaitForWork_() , in

which the worker thread waits for available work. As soon as work becomes

available, the thread returns to _ _mt_SlaveFunction_() .

When work is available, each thread executes a call to _ _ mt_run_my_job_() , to

which information about the body function is passed. The sequence of execution

from this point depends on whether the body function was generated from a parallel

sections directive, a parallel do (or parallel for) directive, or a parallel directive.

144 Program Performance Analysis Tools • May 2002

■ In the parallel sections case, _ _ mt_run_my_job_() calls the body function

directly.

■ In the parallel do or for case, _ _ mt_run_my_job_() calls other functions, which

depend on the nature of the loop, and the other functions call the body function.

■ In the parallel case, _ _mt_run_my_job_() calls the body function directly, and

all threads execute the code in the body function until they encounter a call to

_ _mt_WorkSharing_() . In this function there is another call to

_ _mt_run_my_job_() , which calls the worksharing body function, either

directly in the case of a worksharing section, or through other library functions in

the case of a worksharing do or for. If nowait was specified in the worksharing

directive, each thread returns to the parallel body function and continues

executing. Otherwise, the threads return to _ _mt_WorkSharing_() , which calls

_ _mt_EndOfTaskBarrier_() to synchronize the threads before continuing.

FIGURE 7-1 Schematic Call Tree for a Multithreaded Program That Contains a Parallel Do
or Parallel For Construct

_start

main

__mt_MasterFunction_

__mt_run_my_job_

__mt_runLoop_int_

__mt_EndOfTaskBarrier_

_thread_start

__mt_SlaveFunction_

__mt_WaitForWork_

__mt_run_my_job_

__mt_EndOfTaskBarrier_

function

loop body function

__mt_runLoop_int_

loop body function

Chapter 7 Understanding the Performance Analyzer and Its Data 145

When all parallel work is finished, the threads return to either

_ _mt_MasterFunction_() or _ _mt_SlaveFunction_() and call

_ _mt_EndOfTaskBarrier_() to perform any synchronization work involved in

the termination of the parallel construct. The worker threads then call

_ _mt_WaitForWork_() again, while the main thread continues to execute in the

serial region.

The call sequence described here applies not only to a program running in parallel,

but also to a program compiled for parallelization but running on a single-CPU

machine, or on a multiprocessor machine using only one LWP.

The call sequence for a simple parallel do construct is illustrated in FIGURE 7-1. The

call stack for a worker thread begins with the threads library function

_thread_start() , the function which actually calls _ _mt_SlaveFunction_() .

The dotted arrow indicates the initiation of the thread as a consequence of a call

from _ _mt_MasterFunction_() to thr_create() . The continuing arrows

indicate that there might be other function calls which are not represented here.

The call sequence for a parallel region in which there is a worksharing do construct

is illustrated in FIGURE 7-2. The caller of _ _ mt_run_my_job_() is either

_ _mt_MasterFunction_() or _ _mt_SlaveFunction_() . The entire diagram

can replace the call to _ _mt_run_my_job_() in FIGURE 7-1.

FIGURE 7-2 Schematic Call Tree for a Parallel Region With a Worksharing Do or
Worksharing For Construct

__mt_run_my_job_

__mt_WorkSharing_

__mt_run_my_job_

__mt_runLoop_int_

__mt_EndOfTaskBarrier_

parallel body function

loop body function

146 Program Performance Analysis Tools • May 2002

In these call sequences, all the compiler-generated body functions are called from the

same function (or functions) in the microtasking library, which makes it difficult to

associate the metrics from the body function with the original user function. The

Performance Analyzer inserts an imputed call to the body function from the original

user function, and the microtasking library inserts an imputed call from the body

function to the barrier function, _ _mt_EndOfTaskBarrier_() . The metrics due to

the synchronization are therefore attributed to the body function, and the metrics for

the body function are attributed to the original function. With these insertions,

inclusive metrics from the body function propagate directly to the original function

rather than through the microtasking library functions. The side effect of these

imputed calls is that the body function appears as a callee of both the original user

function and the microtasking functions. In addition, the user function appears to

have microtasking library functions as its callers, and can appear to call itself.

Double-counting of inclusive metrics is avoided by the mechanism used for

recursive function calls (see “How Recursion Affects Function-Level Metrics” on

page 57).

Worker threads typically use CPU time while they are in _ _mt_WaitForWork_()
in order to reduce latency when new work arrives, that is, when the main thread

reaches a new parallel construct. This is known as a busy-wait. However, you can set

an environment variable to specify a sleep wait, which shows up in the Performance

Analyzer as Other Wait time instead of User CPU time. There are generally two

situations where the worker threads spend time waiting for work, where you might

want to redesign your program to reduce the waiting:

■ When the main thread is executing in a serial region and there is nothing for the

worker threads to do

■ When the work load is unbalanced, and some threads have finished and are

waiting while others are still executing

By default, the microtasking library uses threads that are bound to LWPs. You can

override this default in the Solaris 7 and 8 operating environments by setting the

environment variable MT_BIND_LWPto FALSE.

Note – The multiprocessing dispatch process is implementation-dependent and

might change from release to release.

Incomplete Stack Unwinds

If the call stack contains more than about 250 frames, the Collector does not have the

space to completely unwind the call stack. In this case, PCs for functions from

_start to some point in the call stack are not recorded in the experiment, and

<Total> appears as the caller of the last function whose PC was recorded.

Chapter 7 Understanding the Performance Analyzer and Its Data 147

Mapping Addresses to Program
Structure

Once a call stack is processed into PC values, the Performance Analyzer maps those

PCs to shared objects, functions, source lines, and disassembly lines (instructions) in

the program. This section describes those mappings.

The Process Image

When a program is run, a process is instantiated from the executable for that

program. The process has a number of regions in its address space, some of which

are text and represent executable instructions, and some of which are data which is

not normally executed. PCs as recorded in the call stack normally correspond to

addresses within one of the text segments of the program.

The first text section in a process derives from the executable itself. Others

correspond to shared objects that are loaded with the executable, either at the time

the process is started, or dynamically loaded by the process. The PCs in a call stack

are resolved based on the executable and shared objects loaded at the time the call

stack was recorded. Executables and shared objects are very similar, and are

collectively referred to as load objects.

Because shared objects can be loaded and unloaded in the course of program

execution, any given PC might correspond to different functions at different times

during the run. In addition, different PCs might correspond to the same function,

when a shared object is unloaded and then reloaded at a different address.

Load Objects and Functions

Each load object, whether an executable or a shared object, contains a text section

with the instructions generated by the compiler, a data section for data, and various

symbol tables. All load objects must contain an ELF symbol table, which gives the

names and addresses of all the globally-known functions in that object. Load objects

compiled with the -g option contain additional symbolic information, which can

augment the ELF symbol table and provide information about functions that are not

global, additional information about object modules from which the functions came,

and line number information relating addresses to source lines.

148 Program Performance Analysis Tools • May 2002

The term function is used to describe a set of instructions that represent a high-level

operation described in the source code. The term covers subroutines as used in

Fortran, methods as used in C++ and Java, and the like. Functions are described

cleanly in the source code, and normally their names appear in the symbol table

representing a set of addresses; if the program counter is within that set, the

program is executing within that function.

In principle, any address within the text segment of a load object can be mapped to

a function. Exactly the same mapping is used for the leaf PC and all the other PCs on

the call stack. Most of the functions correspond directly to the source model of the

program. Some do not; these functions are described in the following sections.

Aliased Functions

Typically, functions are defined as global, meaning that their names are known

everywhere in the program. The name of a global function must be unique within

the executable. If there is more than one global function of a given name within the

address space, the runtime linker resolves all references to one of them. The others

are never executed, and so do not appear in the function list. In the Summary tab,

you can see the shared object and object module that contain the selected function.

Under various circumstances, a function can be known by several different names. A

very common example of this is the use of so-called weak and strong symbols for the

same piece of code. A strong name is usually the same as the corresponding weak

name, except that it has a leading underscore. Many of the functions in the threads

library also have alternate names for pthreads and Solaris threads, as well as strong

and weak names and alternate internal symbols. In all such cases, only one name is

used in the function list of the Performance Analyzer. The name chosen is the last

symbol at the given address in alphabetic order. This choice most often corresponds

to the name that the user would use. In the Summary tab, all the aliases for the

selected function are shown.

Non-Unique Function Names

While aliased functions reflect multiple names for the same piece of code, there are

circumstances under which multiple pieces of code have the same name:

■ Sometimes, for reasons of modularity, functions are defined as static, meaning

that their names are known only in some parts of the program (usually a single

compiled object module). In such cases, several functions of the same name

referring to quite different parts of the program appear in the Performance

Analyzer. In the Summary tab, the object module name for each of these functions

Chapter 7 Understanding the Performance Analyzer and Its Data 149

is given to distinguish them from one another. In addition, any selection of one of

these functions can be used to show the source, disassembly, and the callers and

callees of that specific function.

■ Sometimes a program uses wrapper or interposition functions that have the weak

name of a function in a library and supersede calls to that library function. Some

wrapper functions call the original function in the library, in which case both

instances of the name appear in the Performance Analyzer function list. Such

functions come from different shared objects and different object modules, and

can be distinguished from each other in that way. The Collector wraps some

library functions, and both the wrapper function and the real function can appear

in the Performance Analyzer.

Static Functions From Stripped Shared Libraries

Static functions are often used within libraries, so that the name used internally in a

library does not conflict with a name that the user might use. When libraries are

stripped, the names of static functions are deleted from the symbol table. In such

cases, the Performance Analyzer generates an artificial name for each text region in

the library containing stripped static functions. The name is of the form

<static>@0x12345 , where the string following the @sign is the offset of the text

region within the library. The Performance Analyzer cannot distinguish between

contiguous stripped static functions and a single such function, so two or more such

functions can appear with their metrics coalesced.

Stripped static functions are shown as called from the correct caller, except when the

PC from the static function is a leaf PC that appears after the save instruction in the

static function. Without the symbolic information, the Performance Analyzer does

not know the save address, and cannot tell whether to use the return register as the

caller. It always ignores the return register. Since several functions can be coalesced

into a single <static>@0x12345 function, the real caller or callee might not be

distinguished from the adjacent functions.

Fortran Alternate Entry Points

Fortran provides a way of having multiple entry points to a single piece of code,

allowing a caller to call into the middle of a function. When such code is compiled,

it consists of a prologue for the main entry point, a prologue to the alternate entry

point, and the main body of code for the function. Each prologue sets up the stack

for the function’s eventual return and then branches or falls through to the main

body of code.

150 Program Performance Analysis Tools • May 2002

The prologue code for each entry point always corresponds to a region of text that

has the name of that entry point, but the code for the main body of the subroutine

receives only one of the possible entry point names. The name received varies from

one compiler to another.

The prologues rarely account for any significant amount of time, and the “functions”

corresponding to entry points other than the one that is associated with the main

body of the subroutine rarely appear in the Performance Analyzer. Call stacks

representing time in Fortran subroutines with alternate entry points usually have

PCs in the main body of the subroutine, rather than the prologue, and only the name

associated with the main body will appear as a callee. Likewise, all calls from the

subroutine are shown as being made from the name associated with the main body

of the subroutine.

Cloned Functions

The compilers have the ability to recognize calls to a function for which extra

optimization can be performed. An example of such calls is a call to a function for

which some of the arguments are constants. When the compiler identifies particular

calls that it can optimize, it creates a copy of the function, which is called a clone,

and generates optimized code. The clone function name is a mangled name that

identifies the particular call. The Analyzer demangles the name, and presents each

instance of a cloned function separately in the function list. Each cloned function has

a different set of instructions, so the annotated disassembly listing shows the cloned

functions separately. Each cloned function has the same source code, so the

annotated source listing sums the data over all copies of the function.

Inlined Functions

An inlined function is a function for which the instructions generated by the

compiler are inserted at the call site of the function instead of an actual call. There

are two kinds of inlining, both of which are done to improve performance, and both

of which affect the Performance Analyzer.

■ C++ inline function definitions. The rationale for inlining in this case is that the

cost of calling a function is much greater than the work done by the inlined

function, so it is better to simply insert the code for the function at the call site,

instead of setting up a call. Typically, access functions are defined to be inlined,

because they often only require one instruction. When you compile with the -g
option, inlining of functions is disabled; compilation with -g0 permits inlining of

functions.

Chapter 7 Understanding the Performance Analyzer and Its Data 151

■ Explicit or automatic inlining performed by the compiler at high optimization

levels (4 and 5). Explicit and automatic inlining is performed even when -g is

turned on. The rationale for this type of inlining can be to save the cost of a

function call, but more often it is to provide more instructions for which register

usage and instruction scheduling can be optimized.

Both kinds of inlining have the same effect on the display of metrics. Functions that

appear in the source code but have been inlined do not show up in the function list,

nor do they appear as callees of the functions into which they have been inlined.

Metrics that would otherwise appear as inclusive metrics at the call site of the

inlined function, representing time spent in the called function, are actually shown

as exclusive metrics attributed to the call site, representing the instructions of the

inlined function.

Note – Inlining can make data difficult to interpret, so you might want to disable

inlining when you compile your program for performance analysis.

In some cases, even when a function is inlined, a so-called out-of-line function is left.

Some call sites call the out-of-line function, but others have the instructions inlined.

In such cases, the function appears in the function list but the metrics attributed to it

represent only the out-of-line calls.

Compiler-Generated Body Functions

When a compiler parallelizes a loop in a function, or a region that has parallelization

directives, it creates new body functions that are not in the original source code.

These functions are described in “Parallel Execution and Compiler-Generated Body

Functions” on page 142.

The Performance Analyzer shows these functions as normal functions, and assigns a

name to them based on the function from which they were extracted, in addition to

the compiler-generated name. Their exclusive and inclusive metrics represent the

time spent in the body function. In addition, the function from which the construct

was extracted shows inclusive metrics from each of the body functions. The means

by which this is achieved is described in “Parallel Execution Sequence” on page 143.

When a function containing parallel loops is inlined, the names of its compiler-

generated body functions reflect the function into which it was inlined, not the

original function.

152 Program Performance Analysis Tools • May 2002

Outline Functions

Outline functions can be created during feedback optimization. They represent code

that is not normally expected to be executed. Specifically, it is code that is not

executed during the “training run” used to generate the feedback. To improve

paging and instruction-cache behavior, such code is moved elsewhere in the address

space, and is made into a separate function. The name of the outline function

encodes information about the section of outlined code, including the name of the

function from which the code was extracted and the line number of the beginning of

the section in the source code. These mangled names can vary from release to

release. The Performance Analyzer provides a readable version of the function

name.

Outline functions are not really called, but rather are jumped to; similarly they do

not return, they jump back. In order to make the behavior more closely match the

user’s source code model, the Performance Analyzer imputes an artificial call from

the main function to its outline portion.

Outline functions are shown as normal functions, with the appropriate inclusive and

exclusive metrics. In addition, the metrics for the outline function are added as

inclusive metrics in the function from which the code was outlined.

Dynamically Compiled Functions

Dynamically compiled functions are functions that are compiled and linked while

the program is executing. The Collector has no information about dynamically

compiled functions that are written in C or C++, unless the user supplies the

required information using the Collector API functions. See “Dynamic Functions

and Modules” on page 64 for information about the API functions. If information is

not supplied, the function appears in the performance analysis tools as <Unknown>.

For Java programs, the Collector obtains information on methods that are compiled

by the Java HotSpot™ virtual machine, and there is no need to use the API functions

to provide the information. For other methods, the performance tools show

information for the Java™ virtual machine that executes the methods.

The <Unknown> Function

Under some circumstances, a PC does not map to a known function. In such cases,

the PC is mapped to the special function named <Unknown>.

The following circumstances show PCs mapping to <Unknown>:

Chapter 7 Understanding the Performance Analyzer and Its Data 153

■ When a function written in C or C++ is dynamically generated, and information

about the function is not provided to the Collector using the Collector API

functions. See “Dynamic Functions and Modules” on page 64 for more

information about the Collector API functions.

■ When a Java method is dynamically compiled but Java profiling is disabled.

■ When the PC corresponds to an address in the data section of the executable or a

shared object. One case is the SPARC V7 version of libc.so , which has several

functions (.mul and .div , for example) in its data section. The code is in the data

section so that it can be dynamically rewritten to use machine instructions when

the library detects that it is executing on a SPARC V8 or V9 platform.

■ When the PC corresponds to a shared object in the address space of the executable

that is not recorded in the experiment.

■ When the PC is not within any known load object. The most likely cause of this is

an unwind failure, where the value recorded as a PC is not a PC at all, but rather

some other word. If the PC is the return register, and it does not seem to be within

any known load object, it is ignored, rather than attributed to the <Unknown>
function.

■ When a PC maps to an internal part of the Java™ virtual machine for which the

Collector has no symbolic information.

Callers and callees of the <Unknown> function represent the previous and next PCs

in the call stack, and are treated normally.

The <Total> Function

The <Total> function is an artificial construct used to represent the program as a

whole. All performance metrics, in addition to being attributed to the functions on

the call stack, are attributed to the special function <Total> . It appears at the top of

the function list and its data can be used to give perspective on the data for other

functions. In the Callers-Callees list, it is shown as the nominal caller of _start()
in the main thread of execution of any program, and also as the nominal caller of

_thread_start() for created threads. If the stack unwind was incomplete, the

<Total> function can appear as the caller of other functions.

154 Program Performance Analysis Tools • May 2002

Annotated Code Listings

Annotated source code and annotated disassembly code are useful for determining

which source lines or instructions within a function are responsible for poor

performance. This section describes the annotation process and some of the issues

involved in interpreting the annotated code.

Annotated Source Code

Annotated source code shows the resource consumption of an application at the

source-line level. It is produced by taking the PCs that are recorded in the

application’s call stack, and mapping each PC to a source line. To produce an

annotated source file, the Performance Analyzer first determines all of the functions

that are generated in a particular object module (.o file) or load object, then scans

the data for all PCs from each function. In order to produce annotated source, the

Performance Analyzer must be able to find and read the object module or load object

to determine the mapping from PCs to source lines, and it must be able to read the

source file to produce an annotated copy, which is displayed. The Performance

Analyzer searches for the source, object and executable files in the following

locations in turn, and stops when it finds a file of the correct basename:

■ The experiment.

■ The absolute pathname as recorded in the executable.

■ The current working directory.

The compilation process goes through many stages, depending on the level of

optimization requested, and transformations take place which can confuse the

mapping of instructions to source lines. For some optimizations, source line

information might be completely lost, while for others, it might be confusing. The

compiler relies on various heuristics to track the source line for an instruction, and

these heuristics are not infallible.

Interpreting Source Line Metrics

Metrics for an instruction must be interpreted as metrics accrued while waiting for

the instruction to be executed. If the instruction being executed when an event is

recorded comes from the same source line as the leaf PC, the metrics can be

interpreted as due to execution of that source line. However, if the leaf PC comes

from a different source line from the instruction being executed, at least some of the

metrics for the source line that the leaf PC belongs to must be interpreted as metrics

accumulated while this line was waiting to be executed. An example is when a value

that is computed on one source line is used on the next source line.

Chapter 7 Understanding the Performance Analyzer and Its Data 155

The issue of how to interpret the metrics matters most when there is a substantial

delay in execution, such as at a cache miss or a resource queue stall, or when an

instruction is waiting for a result from a previous instruction. In such cases the

metrics for the source lines can seem to be unreasonably high, and you should look

at other lines in the code to find the line responsible for the high metric value.

Metric Formats

The four possible formats for the metrics that can appear on a line of annotated

source code are explained in TABLE 7-2.

Compiler Commentary

Various parts of the compiler can incorporate commentary into the executable. Each

comment is associated with a specific line of source code. When the annotated

source is written, the compiler commentary for any source line appears immediately

preceding the source line.

The compiler commentary describes many of the transformations which have been

made to the source code to optimize it. These transformations include loop

optimizations, parallelization, inlining and pipelining.

TABLE 7-2 Annotated Source-Code Metrics

Metric Significance

(Blank) No PC in the program corresponds to this line of code. This case should always

apply to comment lines, and applies to apparent code lines in the following

circumstances:

• All the instructions from the apparent piece of code have been eliminated

during optimization.

• The code is repeated elsewhere, and the compiler performed common

subexpression recognition and tagged all the instructions with the lines for the

other copy.

• The compiler tagged an instruction with an incorrect line number.

0. Some PCs in the program were tagged as derived from this line, but there was no

data that referred to those PCs: they were never in a call stack that was sampled

statistically or traced for thread-synchronization data. The 0. metric does not

indicate that the line was not executed, only that it did not show up statistically

in a profiling data packet or a tracing data packet.

0.000 At least one PC from this line appeared in the data, but the computed metric

value rounded to zero.

1.234 The metrics for all PCs attributed to this line added up to the non-zero numerical

value shown.

156 Program Performance Analysis Tools • May 2002

The <Unknown> Line

Whenever the source line for a PC cannot be determined, the metrics for that PC are

attributed to a special source line that is inserted at the top of the annotated source

file. High metrics on that line indicates that part of the code from the given object

module does not have line-mappings. Annotated disassembly can help you

determine the instructions that do not have mappings.

Common Subexpression Elimination

One very common optimization recognizes that the same expression appears in

more than one place, and that performance can be improved by generating the code

for that expression in one place. For example, if the same operation appears in both

the if and the else branches of a block of code, the compiler can move that

operation to just before the if statement. When it does so, it assigns line numbers to

the instructions based on one of the previous occurrences of the expression. If the

line numbers assigned to the common code correspond to one branch of an if
structure, and the code actually always takes the other branch, the annotated source

shows metrics on lines within the branch that is not taken.

Parallelization Directives

When the compiler generates body functions from code that contains parallelization

directives, inclusive metrics for the parallel loop or section are attributed to the

parallelization directive, because this line is the call site for the compiler-generated

body function. Inclusive and exclusive metrics also appear on the code in the loops

or sections. These metrics sum to the inclusive metrics on the parallelization

directives.

Annotated Disassembly Code

Annotated disassembly provides an assembly-code listing of the instructions of a

function or object module, with the performance metrics associated with each

instruction. Annotated disassembly can be displayed in several ways, determined by

whether line-number mappings and the source file are available, and whether the

object module for the function whose annotated disassembly is being requested is

known:

■ If the object module is not known, the Performance Analyzer disassembles the

instructions for just the specified function, and does not show any source lines in

the disassembly.

■ If the object module is known, the disassembly covers all functions within the

object module.

Chapter 7 Understanding the Performance Analyzer and Its Data 157

■ If the source file is available, and line number data is recorded, the Performance

Analyzer can interleave the source with the disassembly, depending on the

display preference.

■ If the compiler has inserted any commentary into the object code, it too, is

interleaved in the disassembly if the corresponding preferences are set.

Each instruction in the disassembly code is annotated with the following

information.

■ A source line number, as reported by the compiler

■ Its relative address

■ The hexadecimal representation of the instruction, if requested

■ The assembler ASCII representation of the instruction

Where possible, call addresses are resolved to symbols (such as function names).

Metrics are shown on the lines for instructions, and can be shown on any interleaved

source code if the corresponding preference is set. Possible metric values are as

described for source-code annotations, in TABLE 7-2.

When code is not optimized, the line numbers for each instruction are in sequential

order, and the interleaving of source lines and disassembled instructions occurs in

the expected way. When optimization takes place, instructions from later lines

sometimes appear before those from earlier lines. The Performance Analyzer’s

algorithm for interleaving is that whenever an instruction is shown as coming from

line N, all source lines up to and including line N are written before the instruction.

One effect of optimization is that source code can appear between a control transfer

instruction and its delay slot instruction. Compiler commentary associated with line

N of the source is written immediately before that line.

Interpreting annotated disassembly is not straightforward. The leaf PC is the address

of the next instruction to execute, so metrics attributed to an instruction should be

considered as time spent waiting for the instruction to execute. However, the

execution of instructions does not always happen in sequence, and there might be

delays in the recording of the call stack. To make use of annotated disassembly, you

should become familiar with the hardware on which you record your experiments

and the way in which it loads and executes instructions.

The next few subsections discuss some of the issues of interpreting annotated

disassembly.

Instruction Issue Grouping

Instructions are loaded and issued in groups known as instruction issue groups.

Which instructions are in the group depends on the hardware, the instruction type,

the instructions already being executed, and any dependencies on other instructions

or registers. This means that some instructions might be underrepresented because

they are always issued in the same clock cycle as the previous instruction, so they

158 Program Performance Analysis Tools • May 2002

never represent the next instruction to be executed. It also means that when the call

stack is recorded, there might be several instructions which could be considered the

“next” instruction to execute.

Instruction issue rules vary from one processor type to another, and depend on the

instruction alignment within cache lines. Since the linker forces instruction

alignment at a finer granularity than the cache line, changes in a function that might

seem unrelated can cause different alignment of instructions. The different

alignment can cause a performance improvement or degradation.

The following artificial situation shows the same function compiled and linked in

slightly different circumstances. The two output examples shown below are the

annotated disassembly listings from er_print . The instructions for the two

examples are identical, but the instructions are aligned differently.

In this example the instruction alignment maps the two instructions cmp and bl,a
to different cache lines, and a significant amount of time is used waiting to execute

these two instructions.

 Excl. Incl.
User CPU User CPU
 sec. sec.
 1. static int
 2. ifunc()
 3. {
 4. int i;
 5.
 6. for (i=0; i<10000; i++)
 <function: ifunc>
 0.010 0.010 [6] 1066c: clr %o0
 0. 0. [6] 10670: sethi %hi(0x2400), %o5
 0. 0. [6] 10674: inc 784, %o5
 7. i++;
 0. 0. [7] 10678: inc 2, %o0
1.360 1.360 [7] 1067c: cmp %o0, %o5
1.510 1.510 [7] 10680: bl,a 0x1067c
 0. 0. [7] 10684: inc 2, %o0
 0. 0. [7] 10688: retl
 0. 0. [7] 1068c: nop
 8. return i;
 9. }

Chapter 7 Understanding the Performance Analyzer and Its Data 159

In this example, the instruction alignment maps the two instructions cmp and bl,a
to the same cache line, and a significant amount of time is used waiting to execute

only one of these instructions.

Instruction Issue Delay

Sometimes, specific leaf PCs appear more frequently because the instruction that

they represent is delayed before issue. This can occur for a number of reasons, some

of which are listed below:

■ The previous instruction takes a long time to execute and is not interruptible, for

example when an instruction traps into the kernel.

■ An arithmetic instruction needs a register that is not available because the register

contents were set by an earlier instruction that has not yet completed. An example

of this sort of delay is a load instruction that has a data cache miss.

■ A floating-point arithmetic instruction is waiting for another floating-point

instruction to complete. This situation occurs for instructions that cannot be

pipelined, such as square root and floating-point divide.

■ The instruction cache does not include the memory word that contains the

instruction (I-cache miss).

 Excl. Incl.
User CPU User CPU
 sec. sec.
 1. static int
 2. ifunc()
 3. {
 4. int i;
 5.
 6. for (i=0; i<10000; i++)
 <function: ifunc>
 0. 0. [6] 10684: clr %o0
 0. 0. [6] 10688: sethi %hi(0x2400), %o5
 0. 0. [6] 1068c: inc 784, %o5
 7. i++;
 0. 0. [7] 10690: inc 2, %o0
1.440 1.440 [7] 10694: cmp %o0, %o5
 0. 0. [7] 10698: bl,a 0x10694
 0. 0. [7] 1069c: inc 2, %o0
 0. 0. [7] 106a0: retl
 0. 0. [7] 106a4: nop
 8. return i;
 9. }

160 Program Performance Analysis Tools • May 2002

■ On UltraSPARC III processors, a cache miss on a load instruction blocks all

instructions that follow it until the miss is resolved, regardless of whether these

instructions use the data item that is being loaded. UltraSPARC II processors only

block instructions that use the data item that is being loaded.

Attribution of Hardware Counter Overflows

Apart from TLB misses, the call stack for a hardware counter overflow event is

recorded at some point further on in the sequence of instructions than the point at

which the overflow occurred, for various reasons including the time taken to handle

the interrupt generated by the overflow. For some counters, such as cycles or

instructions issued, this does not matter. For other counters, such as those counting

cache misses or floating point operations, the metric is attributed to a different

instruction from that which is responsible for the overflow. Often the PC that caused

the event is only a few instructions before the recorded PC, and the instruction can

be correctly located in the disassembly listing. However, if there is a branch target

within this instruction range, it might be difficult or impossible to tell which

instruction corresponds to the PC that caused the event.

Program Linkage Table (PLT) Instructions

When a function in one load object calls a function in a different shared object, the

actual call transfers first to a three-instruction sequence in the PLT, and then to the

real destination. The analyzer removes PCs that correspond to the PLT, and assigns

the metrics for these PCs to the call instruction. Therefore, if a call instruction has an

unexpectedly high metric, it could be due to the PLT instructions rather than the call

instructions. See also “Function Calls Between Shared Objects” on page 139.

161

CHAPTER 8

Manipulating Experiments and
Viewing Annotated Code Listings

This chapter describes the utilities which are available for use with the Collector and

Performance Analyzer.

This chapter covers the following topics:

■ Manipulating Experiments

■ Viewing Annotated Code Listings With er_src
■ Other Utilities

Manipulating Experiments

Experiments are stored in a hidden directory, which is created by the Collector. To

manipulate experiments, you cannot use the usual Unix commands cp , mv and rm.

Three utilities which behave like the Unix commands have been provided to copy,

move and delete experiments. These are er_cp (1), er_mv (1) and er_rm (1), and are

described below.

The visible experiment file contains an absolute path to the experiment when the

experiment is created. If you change the path without using one of these utilities to

move the experiment, the path in the experiment no longer matches the location of

the experiment. Running the Analyzer or er_print on the experiment in the new

location either does not find the experiment, because the path is not valid, or finds

the wrong experiment, if a new experiment has been created in the old location. The

utilities remove the path from the experiment name when they copy or move an

experiment.

The data in the experiment includes archive files for each of the load objects used by

your program. These archive files contain the absolute path of the load object and

the date on which it was last modified. This information is not changed when you

move or copy an experiment.

162 Program Performance Analysis Tools • May 2002

er_cp [-V] experiment1 experiment2

er_cp [-V] experiment-list directory

The first form of the er_cp command copies experiment1 to experiment2. If

experiment2 exists, er_cp exits with an error message. The second form copies a

blank-separated list of experiments to a directory. If the directory already contains

an experiment with the same name as one of the experiments being copied, er_mv
exits with an error message. The -V option prints the version of er_cp .

er_mv [-V] experiment1 experiment2

er_mv [-V] experiment-list directory

The first form of the er_mv command moves experiment1 to experiment2. If

experiment2 exists, er_mv exits with an error message. The second form moves a

blank-separated list of experiments to a directory. If the directory already contains

an experiment with the same name as one of the experiments being moved, er_mv
exits with an error message. The -V option prints the version of er_mv .

er_rm [-f] [-V] experiment-list

Removes a list of experiments or experiment groups. When experiment groups are

removed, each experiment in the group is removed then the group file is removed.

The -f option suppresses error messages and ensures successful completion,

whether or not the experiments are found. The -V option prints the version of

er_rm .

Viewing Annotated Code Listings With
er_src
Annotated source code and annotated disassembly code can be viewed using the

er_src utility, without running an experiment. The display is generated in the same

way as in the Performance Analyzer, except that it does not display any metrics. The

syntax of the er_src command is

er_src [options] object item tag

Chapter 8 Manipulating Experiments and Viewing Annotated Code Listings 163

object is the name of an executable, a shared object, or an object file (.o file).

item is the name of a function or of a source or object file used to build the executable

or shared object; it can be omitted when an object file is specified.

tag is an index used to determine which item is being referred to when multiple

functions have the same name. If it is not needed, it can be omitted. If it is needed

and is omitted, a message listing the possible choices is printed.

The following sections describe the options accepted by the er_src utility.

-c commentary-classes

Define the compiler commentary classes to be shown. commentary-classes is a list of

classes separated by colons. See “Source and Disassembly Listing Commands” on

page 119 for a description of these classes.

The commentary classes can be specified in a defaults file. The system wide er.rc
defaults file is read first, then a .er.rc file in the user’s home directory, if present,

then a .er.rc file in the current directory. Defaults from the .er.rc file in your

home directory override the system defaults, and defaults from the .er.rc file in

the current directory override both home and system defaults. These files are also

used by the Performance Analyzer and er_print , but only the settings for source

and disassembly compiler commentary are used by er_src .

See “Defaults Commands” on page 126 for a description of the defaults files.

Commands in a defaults file other than scc and dcc are ignored by er_src .

-d

Include the disassembly in the listing. The default listing does not include the

disassembly. If there is no source available, a listing of the disassembly without

compiler commentary is produced.

-o filename

Open the file filename for output of the listing. By default, output is written to

stdout .

-V

Print the current release version.

164 Program Performance Analysis Tools • May 2002

Other Utilities

There are some other utilities that should not need to be used in normal

circumstances. They are documented here for completeness, with a description of

the circumstances in which it might be necessary to use them.

The er_archive Utility

The syntax of the er_archive command is as follows.

The er_archive utility is automatically run when an experiment completes

normally, or when the Performance Analyzer or er_print command is started on

an experiment. It reads the list of shared objects referenced in the experiment, and

constructs an archive file for each. Each output file is named with a suffix of

.archive , and contains function and module mappings for the shared object.

If the target program terminates abnormally, er_archive might not be run by the

Collector. If you want to examine the experiment from an abnormally-terminated

run on a different machine from the one on which it was recorded, you must run

er_archive on the experiment, on the machine on which the data was recorded.

An archive file is generated for all shared objects referred to in the experiment. These

archives contain the addresses, sizes and names of each object file and each function

in the load object, as well as the absolute path of the load object and a time stamp for

its last modification.

If the shared object cannot be found when er_archive is run, or if it has a time

stamp differing from that recorded in the experiment, or if er_archive is run on a

different machine from that on which the experiment was recorded, the archive file

contains a warning. Warnings are also written to stderr whenever er_archive is

run manually (without the -q flag).

The following sections describe the options accepted by the er_archive utility.

–q

Do not write any warnings to stderr . Warnings are incorporated into the archive

file, and shown in the Performance Analyzer or er_print output.

er_archive [–q] [–F] [–V] experiment

Chapter 8 Manipulating Experiments and Viewing Annotated Code Listings 165

–F

Force writing or rewriting of archive files. This argument can be used to run

er_archive by hand, to rewrite files that had warnings.

–V

Write version number information.

The er_export Utility

The syntax of the er_export command is as follows.

The er_export utility converts the raw data in an experiment into ASCII text. The

format and the content of the file are subject to change, and should not be relied on

for any use. This utility is intended to be used only when the Performance Analyzer

cannot read an experiment; the output allows the tool developers to understand the

raw data and analyze the failure. The –V option prints version number information.

er_export [–V] experiment

166 Program Performance Analysis Tools • May 2002

167

APPENDIX A

Profiling Programs With prof ,
gprof , and tcov

The tools discussed in this appendix are standard utilities for timing programs and

obtaining performance data to analyze, and are called “traditional profiling tools”.

The profiling tools prof and gprof are provided with the Solaris™ operating

environment. tcov is a code coverage tool provided with the Forte™ Developer

product.

Note – If you want to track how many times a function is called or how often a line

of source code is executed, use the traditional profiling tools. If you want a detailed

analysis of where your program is spending time, you can get more accurate

information using the Collector and Performance Analyzer. See Chapter 4 and

Chapter 5 for information on using these tools.

TABLE A-1 describes the information that is generated by these standard performance

profiling tools.

Not all the traditional profiling tools work on modules written in programming

languages other than C. See the sections on each tool for more information about

languages.

TABLE A-1 Performance Profiling Tools

Command Output

prof Generates a statistical profile of the CPU time used by a program and an exact

count of the number of times each function is entered.

gprof Generates a statistical profile of the CPU time used by a program, along with an

exact count of the number of times each function is entered and the number of

times each arc (caller-callee pair) in the program’s call graph is traversed.

tcov Generates exact counts of the number of times each statement in a program is

executed.

168 Program Performance Analysis Tools • May 2002

This appendix covers the following topics:

■ Using prof to Generate a Program Profile

■ Using gprof to Generate a Call Graph Profile

■ Using tcov for Statement-Level Analysis

■ Using tcov Enhanced for Statement-Level Analysis

■ Creating Profiled Shared Libraries for tcov Enhanced

Using prof to Generate a Program
Profile

prof generates a statistical profile of the CPU time used by a program and counts

the number of times each function in a program is entered. Different or more

detailed data is provided by the gprof call-graph profile and the tcov code

coverage tools.

To generate a profile report using prof :

1. Compile your program with the -p compiler option.

2. Run your program.

Profiling data is sent to a profile file called mon.out . This file is overwritten each

time you run the program.

3. Run prof to generate a profile report.

The syntax of the prof command is as follows.

Here, program-name is the name of the executable. The profile report is written to

stdout . It is presented as a series of rows for each function under these column

headings:

■ %Time—The percentage of the total CPU time consumed by this function.

■ Seconds —The total CPU time accounted for by this function.

■ Cumsecs—A running sum of the number of seconds accounted for by this

function and those listed before it.

■ #Calls —The number of times this function is called.

■ msecs/call —The average number of milliseconds this function consumes each

time it is called.

■ Name—The name of the function.

% prof program-name

Appendix A Profiling Programs With prof , gprof , and tcov 169

The use of prof is illustrated in the following example.

The profile report from prof is shown in the table below:

The profile report shows that most of the program execution time is spent in the

compare_strings() function; after that, most of the CPU time is spent in the

_strlen() library function. To make this program more efficient, the user would

concentrate on the compare_strings() function, which consumes nearly 20% of

the total CPU time, and improve the algorithm or reduce the number of calls.

% cc -p -o index.assist index.assist.c
% index.assist
% prof index.assist

%Time Seconds Cumsecs #Calls msecs/call Name

19.4 3.28 3.28 11962 0.27 compare_strings

15.6 2.64 5.92 32731 0.08 _strlen

12.6 2.14 8.06 4579 0.47 __doprnt

10.5 1.78 9.84 mcount

9.9 1.68 11.52 6849 0.25 _get_field

5.3 0.90 12.42 762 1.18 _fgets

4.7 0.80 13.22 19715 0.04 _strcmp

4.0 0.67 13.89 5329 0.13 _malloc

3.4 0.57 14.46 11152 0.05 _insert_index_entry

3.1 0.53 14.99 11152 0.05 _compare_entry

2.5 0.42 15.41 1289 0.33 lmodt

0.9 0.16 15.57 761 0.21 _get_index_terms

0.9 0.16 15.73 3805 0.04 _strcpy

0.8 0.14 15.87 6849 0.02 _skip_space

0.7 0.12 15.99 13 9.23 _read

0.7 0.12 16.11 1289 0.09 ldivt

0.6 0.10 16.21 1405 0.07 _print_index

.

.

. (The rest of the output is insignificant)

170 Program Performance Analysis Tools • May 2002

It is not obvious from the prof profile report that compare_strings() is heavily

recursive, but you can deduce this by using the call graph profile described in

“Using gprof to Generate a Call Graph Profile” on page 170. In this particular case,

improving the algorithm also reduces the number of calls.

Note – For Solaris 7 and 8 platforms, the profile of CPU time is accurate for

programs that use multiple CPUs, but the fact that the counts are not locked may

affect the accuracy of the counts for functions.

Using gprof to Generate a Call Graph
Profile

While the flat profile from prof can provide valuable data for performance

improvements, a more detailed analysis can be obtained by using a call graph profile

to display a list identifying which modules are called by other modules, and which

modules call other modules. Sometimes removing calls altogether can result in

performance improvements.

Note – gprof attributes the time spent within a function to the callers in proportion

to the number of times that each arc is traversed. Because all calls are not equivalent

in performance, this behavior might lead to incorrect assumptions. See “Metric

Attribution and the gprof Fallacy” on page 11 for an example.

Like prof , gprof generates a statistical profile of the CPU time that is used by a

program and it counts the number of times that each function is entered. gprof also

counts the number of times that each arc in the program’s call graph is traversed. An

arc is a caller-callee pair.

Note – For Solaris 7 and 8 platforms, the profile of CPU time is accurate for

programs that use multiple CPUs, but the fact that the counts are not locked may

affect the accuracy of the counts for functions.

To generate a profile report using gprof :

1. Compile your program with the appropriate compiler option.

■ For C programs, use the -xpg option.

■ For Fortran programs, use the -pg option.

Appendix A Profiling Programs With prof , gprof , and tcov 171

2. Run your program.

Profiling data is sent to a profile file called gmon.out . This file is overwritten each

time you run the program.

3. Run gprof to generate a profile report.

The syntax of the prof command is as follows.

Here, program-name is the name of the executable. The profile report is written to

stdout , and can be large. The report consists of two major items:

■ The full call graph profile, which shows information about the callers and callees

of each function in the program. The format is illustrated in the example given

below.

■ The “flat” profile, which is similar to the summary the prof command supplies.

The profile report from gprof contains an explanation of what the various parts of

the summary mean and identifies the granularity of the sampling, as shown in the

following example.

The “4 bytes” means resolution to a single instruction. The “0.07% of 14.74 seconds“

means that each sample, representing ten milliseconds of CPU time, accounts for

0.07% of the run.

The use of gprof is illustrated in the following example.

% gprof program-name

granularity: each sample hit covers 4 byte(s) for 0.07% of 14.74
seconds

% cc -xpg -o index.assist index.assist.c
% index.assist
% gprof index.assist > g.output

172 Program Performance Analysis Tools • May 2002

The following table is part of the call graph profile.

In this example there are 761 lines of data in the input file to the index.assist
program. The following conclusions can be made:

■ fgets() is called 762 times. The last call to fgets() returns an end-of-file.

■ The insert_index_entry() function is called 760 times from main() .

called/total
parents

index %time self descendants called+self name index

called/total
children

0.00 14.47 1/1 start [1]

[2] 98.2 0.00 14.47 1 _main [2]

0.59 5.70 760/760 _insert_index_entry [3]

0.02 3.16 1/1 _print_index [6]

0.20 1.91 761/761 _get_index_terms [11]

0.94 0.06 762/762 _fgets [13]

0.06 0.62 761/761 _get_page_number [18]

0.10 0.46 761/761 _get_page_type [22]

0.09 0.23 761/761 _skip_start [24]

0.04 0.23 761/761 _get_index_type [26]

0.07 0.00 761/820 _insert_page_entry [34]

10392 _insert_index_entry [3]

0.59 5.70 760/760 _main [2]

[3] 42.6 0.59 5.70 760+10392 _insert_index_entry [3]

0.53 5.13 11152/11152 _compare_entry [4]

0.02 0.01 59/112 _free [38]

0.00 0.00 59/820 _insert_page_entry [34]

10392 _insert_index_entry [3]

Appendix A Profiling Programs With prof , gprof , and tcov 173

■ In addition to the 760 times that insert_index_entry() is called from

main() , insert_index_entry() also calls itself 10,392 times.

insert_index_entry() is heavily recursive.

■ compare_entry() , which is called from insert_index_entry() , is called

11,152 times, which is equal to 760+10,392 times. There is one call to

compare_entry() for every time that insert_index_entry() is called. This

is correct. If there were a discrepancy in the number of calls, you would suspect

some problem in the program logic.

■ insert_page_entry() is called 820 times in total: 761 times from main()
while the program is building index nodes, and 59 times from

insert_index_entry() . This frequency indicates that there are 59 duplicated

index entries, so their page number entries are linked into a chain with the index

nodes. The duplicate index entries are then freed; hence the 59 calls to free() .

Using tcov for Statement-Level
Analysis

The tcov utility gives information on how often a program executes segments of

code. It produces a copy of the source file, annotated with execution frequencies. The

code can be annotated at the basic block level or the source line level. A basic block

is a linear segment of source code with no branches. The statements in a basic block

are executed the same number of times, so a count of basic block executions also tells

you how many times each statement in the block was executed. The tcov utility

does not produce any time-based data.

Note – Although tcov works with both C and C++ programs, it does not support

files that contain #line or #file directives. tcov does not enable test coverage

analysis of the code in the #include header files.

To generate annotated source code using tcov :

1. Compile your program with the appropriate compiler option.

■ For C programs, use the -xa option.

■ For Fortran and C++ programs, use the -a option.

If you compile with the -a or -xa option you must also link with it. The compiler

creates a coverage data file with the suffix .d for each object file. The coverage data

file is created in the directory specified by the environment variable TCOVDIR. If

TCOVDIRis not set, the coverage data file is created in the current directory.

174 Program Performance Analysis Tools • May 2002

Note – Programs compiled with -xa (C) or -a (other compilers) run more slowly

than they normally would, because updating the .d file for each execution takes

considerable time.

2. Run your program.

When your program completes, the coverage data files are updated.

3. Run tcov to generate annotated source code.

The syntax of the tcov command is as follows.

Here, source-file-list is a list of the source code filenames. For a list of options, see the

tcov (1) man page. The default output of tcov is a set of files, each with the suffix

.tcov , which can be changed with the -o filename option.

A program compiled for code coverage analysis can be run multiple times (with

potentially varying input); tcov can be used on the program after each run to

compare behavior.

The following example illustrates the use of tcov .

% tcov options source-file-list

% cc -xa -o index.assist index.assist.c
% index.assist
% tcov index.assist.c

Appendix A Profiling Programs With prof , gprof , and tcov 175

This small fragment of the C code from one of the modules of index.assist shows

the insert_index_entry() function, which is called recursively. The numbers to

the left of the C code show how many times each basic block was executed. The

insert_index_entry() function is called 11,152 times .

The tcov utility places a summary like the following at the end of the annotated

program listing. The statistics for the most frequently executed basic blocks are listed

in order of execution frequency. The line number is the number of the first line in the

block.

struct index_entry *
11152-> insert_index_entry(node, entry)

struct index_entry *node;
struct index_entry *entry;
{

int result;
int level;

result = compare_entry(node, entry);
if (result == 0) { /* exact match */

/* Place the page entry for the duplicate */
/* into the list of pages for this node */

59 -> insert_page_entry(node, entry->page_entry);
free(entry);
return(node);

}

11093-> if (result > 0)/* node greater than new entry -- */
/* move to lesser nodes */

3956-> if (node->lesser != NULL)
3626-> insert_index_entry(node->lesser, entry);

else {
330 -> node->lesser = entry;

return (node->lesser);
}

else /* node less than new entry -- */
/* move to greater nodes */

7137-> if (node->greater != NULL)
6766-> insert_index_entry(node->greater, entry);

else {
371 -> node->greater = entry;

return (node->greater);
}

}

176 Program Performance Analysis Tools • May 2002

The following is the summary for the index.assist program:

Creating tcov Profiled Shared Libraries

It is possible to create a tcov profiled shareable library and use it in place of the

corresponding library in binaries which have already been linked. Include the -xa
(C) or -a (other compilers) option when creating the shareable libraries, as shown in

this example.

Top 10 Blocks

Line Count

240 21563

241 21563

245 21563

251 21563

250 21400

244 21299

255 20612

257 16805

123 12021

124 11962

77 Basic blocks in this file

55 Basic blocks executed

71.43 Percent of the file executed

439144 Total basic block executions

5703.17 Average executions per basic block

% cc -G -xa -o foo.so.1 foo.o

Appendix A Profiling Programs With prof , gprof , and tcov 177

This command includes a copy of the tcov profiling functions in the shareable

libraries, so that clients of the library do not need to relink. If a client of the library is

already linked for profiling, then the version of the tcov functions used by the client

is used to profile the shareable library.

Locking Files

tcov uses a simple file-locking mechanism for updating the block coverage database

in the .d files. It employs a single file, tcov.lock , for this purpose. Consequently,

only one executable compiled with -xa (C) or -a (other compilers) should be

running on the system at a time. If the execution of the program compiled with the

-xa (or -a) option is manually terminated, then the tcov.lock file must be deleted

manually.

Files compiled with the -xa or -a option call the profiling tool functions

automatically when a program is linked for tcov profiling. At program exit, these

functions combine the information collected at runtime for file xyz.f (for example)

with the existing profiling information stored in file xyz.d . To ensure this

information is not corrupted by several people simultaneously running a profiled

binary, a xyz.d.lock lock file is created for xyz.d for the duration of the update. If

there are any errors in opening or reading xyz.d or its lock file, or if there are

inconsistencies between the runtime information and the stored information, the

information stored in xyz.d is not changed.

If you edit and recompile xyz.f the number of counters in xyz.d can change. This

is detected if an old profiled binary is run.

If too many people are running a profiled binary, some of them cannot obtain a lock.

An error message is displayed after a delay of several seconds. The stored

information is not updated. This locking is safe across a network. Since locking is

performed on a file-by-file basis, other files may be correctly updated.

The profiling functions attempt to deal with automounted file systems that have

become inaccessible. They still fail if the file system containing a coverage data file is

mounted with different names on different machines, or if the user running the

profiled binary does not have permission to write to either the coverage data file or

the directory containing it. Be sure all the directories are uniformly named and

writable by anyone expected to run the binary.

Errors Reported by tcov Runtime Functions

The following error messages may be reported by the tcov runtime functions:

178 Program Performance Analysis Tools • May 2002

■ The user running the binary lacks permission to read or write to the coverage

data file. The problem also occurs if the coverage data file has been deleted.

■ The user running the binary lacks permission to write to the directory containing

the coverage data file. The problem also occurs if the directory containing the

coverage data file is not mounted on the machine where the binary is being run.

■ Too many users are trying to update a coverage data file at the same time. The

problem also occurs if a machine has crashed while a coverage data file is being

updated, leaving behind a lock file. In the event of a crash, the longer of the two

files should be used as the post-crash coverage data file. Manually remove the

lock file.

■ No memory is available, and the standard I/O package will not work. You cannot

update the coverage data file at this point.

■ The lock file name is longer by six characters than the coverage data file name.

Therefore, the derived lock file name may not be legal.

■ A library or binary that has tcov profiling enabled is simultaneously being run,

edited, and recompiled. The old binary expects a coverage data file of a certain

size, but the editing often changes that size. If the compiler creates a new

tcov_exit: Could not open coverage data file ' coverage-data-file-name'
because ' system-error-message-string'.

tcov_exit: Could not write coverage data file ' coverage-data-file-name'
because ' system-error-message-string'.

tcov_exit: Failed to create lock file ' lock-file-name' for coverage
data file ' coverage-data-file-name' after 5 tries. Is someone else
running this executable?

tcov_exit: Stdio failure, probably no memory left.

tcov_exit: Coverage data file path name too long (length
characters) ' coverage-data-file-name'.

Appendix A Profiling Programs With prof , gprof , and tcov 179

coverage data file at the same time that the old binary is trying to update the old

coverage data file, the binary may see an apparently empty or corrupt coverage

file.

Using tcov Enhanced for Statement-
Level Analysis

Like the original tcov , tcov Enhanced gives line-by-line information on how a

program executes. It produces a copy of the source file, annotated to show which

lines are used and how often. It also gives a summary of information about basic

blocks. tcov Enhanced works with both C and C++ source files.

tcov Enhanced overcomes some of the shortcomings of the original tcov . The

improved features of tcov Enhanced are:

■ It provides more complete support for C++.

■ It supports code found in #include header files and corrects a flaw that

obscured coverage numbers for template classes and functions.

■ Its runtime is more efficient than the original tcov runtime.

■ It is supported for all the platforms that the compilers support.

To generate annotated source code using tcov Enhanced:

1. Compile your program with the -xprofile=tcov compiler option.

Unlike tcov , tcov Enhanced does not generate any files at compile time.

2. Run your program.

A directory is created to store the profile data, and a single coverage data file called

tcovd is created in that directory. By default, the directory is created in the location

where you run the program program-name, and it is called program-name.profile .

The directory is also known as the profile bucket. The defaults can be changed using

environment variables (see “tcov Directories and Environment Variables” on

page 181).

tcov_exit: Coverage data file ' coverage-data-file-name' is too short.
Is it out of date?

180 Program Performance Analysis Tools • May 2002

3. Run tcov to generate annotated source code.

The syntax of the tcov command is as follows.

Here, source-file-list is a list of the source code filenames, and option-list is a list of

options, which can be obtained from the tcov (1) man page. You must include the -x
option to enable tcov Enhanced processing.

The default output of tcov Enhanced is a set of annotated source files whose names

are derived by appending .tcov to the corresponding source file name.

The following example illustrates the syntax of tcov Enhanced.

The output of tcov Enhanced is identical to the output from the original tcov .

Creating Profiled Shared Libraries for tcov
Enhanced

You can create profiled shared libraries for use with tcov Enhanced by including

the -xprofile=tcov compiler option, as shown in the following example.

Locking Files

tcov Enhanced uses a simple file-locking mechanism for updating the block

coverage data file. It employs a single file created in the same directory as the tcovd
file. The file name is tcovd.temp.lock . If execution of the program compiled for

coverage analysis is manually terminated, then the lock file must be deleted

manually.

% tcov option-list source-file-list

% cc -xprofile=tcov -o index.assist index.assist.c
% index.assist
% tcov -x index.assist.profile index.assist.c

% cc -G -xprofile=tcov -o foo.so.1 foo.o

Appendix A Profiling Programs With prof , gprof , and tcov 181

The locking scheme does an exponential back-off if there is a contention for the lock.

If, after five tries, the tcov runtime cannot acquire the lock, it exits, and the data is

lost for that run. In this case, the following message is displayed.

tcov Directories and Environment Variables

When you compile a program for tcov and run the program, the running program

generates a profile bucket. If a previous profile bucket exists, the program uses that

profile bucket. If a profile bucket does not exist, it creates the profile bucket.

The profile bucket specifies the directory where the profile output is generated. The

name and location of the profile output are controlled by defaults that you can

modify with environment variables.

Note – tcov uses the same defaults and environment variables that are used by the

compiler options that you use to gather profile feedback: -xprofile=collect and

-xprofile=use . For more information about these compiler options, see the

documentation for the relevant compiler.

The default profile bucket is named after the executable with a .profile extension

and is created in the directory where the executable is run. Therefore, if you run a

program called /usr/bin/xyz from /home/userdir , the default behavior is to

create a profile bucket called xyz.profile in /home/userdir .

A UNIX process can change its current working directory during the execution of a

program. The current working directory used to generate the profile bucket is the

current working directory of the program at exit. In the rare case where a program

actually does change its current working directory during execution, you can use the

environment variables to control where the profile bucket is generated.

You can set the following environment variables to modify the defaults:

■ SUN_PROFDATA

Can be used to specify the name of the profile bucket at runtime. The value of this

variable is always appended to the value of SUN_PROFDATA_DIRif both variables

are set. Doing this may be useful if the name of the executable is not the same as

the value in argv[0] (for example, the invocation of the executable was through

a symbolic link with a different name).

■ SUN_PROFDATA_DIR

tcov_exit: temp file exists, is someone else running this
executable?

182 Program Performance Analysis Tools • May 2002

Can be used to specify the name of the directory that contains the profile bucket.

It is used at runtime and by the tcov command.

■ TCOVDIR

TCOVDIRis supported as a synonym for SUN_PROFDATA_DIRto maintain

backward compatibility. Any setting of SUN_PROFDATA_DIRcauses TCOVDIRto

be ignored. If both SUN_PROFDATA_DIRand TCOVDIRare set, a warning is

displayed when the profile bucket is generated.

TCOVDIRis used at runtime and by the tcov command.

Index 183

Index

A
accessible documentation, xx

adding experiments to the Performance

Analyzer, 107

address spaces, text and data regions, 147

aliased functions, 148

alternate entry points in Fortran functions, 149

analyzer command, 94

Analyzer, See Performance Analyzer

annotated disassembly code, See disassembly code,

annotated

annotated source code, See source code, annotated

API, Collector, 62

arc, call graph, defined, 170

asynchronous I/O library, interaction with data

collection, 61

attaching the Collector to a running process, 86

attributed metrics

defined, 55

displayed in the Callers-Callees tab, 97

effect of recursion on, 57

illustrated, 56

use of, 56

B
body functions, compiler-generated

defined, 142

displayed by the Performance Analyzer, 151

names, 143

propagation of inclusive metrics, 146

C
C++ name demangling, setting default library in

.er.rc file, 127

call stacks

defined, 138

effect of tail-call optimization on, 141

in the Event tab, 104

incomplete unwind, 146

mapping addresses to program structure, 147

navigating, 97

representation in the Timeline tab, 101

unwinding, 138

callers-callees metrics

attributed, defined, 55

default, 97

displaying list of in er_print , 125

printing for a single function in er_print , 118

printing in er_print , 118

selecting in er_print , 118

sort order in er_print , 119

clock-based profiling

accuracy of metrics, 135

collecting data in dbx , 81

collecting data with collect, 73

comparison with gethrtime and

gethrvtime , 134

data in profile packet, 132

defined, 46

distortion due to overheads, 134

high-resolution, 67

interval, See profiling interval

metrics, 47, 132

cloned functions, 150

Index 184 Program Performance Analysis Tools • May 2002

collect command

address space (-a) option (obsolete), 79

clock-based profiling (-p) option, 73

collecting data with, 72

data limit (-L) option, 78

dry run (-n) option, 79

experiment directory (-d) option, 78

experiment group (-g) option, 78

experiment name (-o) option, 78

follow descendant processes (-F) option, 76

hardware-counter overflow profiling (-h)

option, 74

heap tracing (-H) option, 75

Java version (-j) option, 76

listing the options of, 73

MPI tracing (-m) option, 75

pause and resume data recording (-y) option, 77

periodic sampling (-S) option, 75

readme display (-R) option, 79

record sample point (-l) option, 77

stop target after exec (-x) option, 77

synchronization wait tracing (-s) option, 74

syntax, 72

verbose (-v) option, 79

version (-V) option, 79

Collector

API, using in your program, 62

attaching to a running process, 86

defined, 1, 45

disabling in dbx , 83

enabling in dbx , 83

running in dbx , 80

running with collect , 72

color coding

for all functions, 106

for functions in event markers, 104

in the Timeline tab, 100

common subexpression elimination, 156

comparing experiments, 107

compiler commentary

classes defined, 120

description of, 155

example, 43

in the Disassembly tab, 99

in the Source tab, 98

selecting for annotated disassembly listing in

er_print , 121

selecting for annotated source listing in

er_print , 120

selecting for display in the Source and

Disassembly tabs, 108

compiler-generated body functions

defined, 142

displayed by the Performance Analyzer, 151

names, 143

propagation of inclusive metrics, 146

compilers, accessing, xvii

compiling

for data collection and analysis, 66

for gprof , 170

for prof , 168

for tcov , 173

for tcov Enhanced, 179

copying an experiment, 162

correlation, effect on metrics, 133

D
data collection

controlling from your program, 62

disabling from your program, 63

disabling in dbx , 83

enabling in dbx , 83

from MPI programs, 88

linking for, 66

MPI program, using collect , 91

MPI program, using dbx , 91

pausing for collect , 77

pausing from your program, 63

pausing in dbx , 84

rate of, 71

resuming for collect , 77

resuming from your program, 63

resuming in dbx , 84

using collect , 72

using dbx , 80

dbx
collecting data under MPI, 91

running the Collector in, 80

dbx collector subcommands

address_space (obsolete), 85

close (obsolete), 85

dbxsample , 83

disable , 83

enable , 83

Index 185

enable_once (obsolete), 86

hwprofile , 81

limit , 84

pause , 84

profile , 81

quit (obsolete), 86

resume , 84

sample , 83

sample record , 84

show, 85

status , 85

store , 84

store filename (obsolete), 86

synctrace , 82

defaults

read by the Performance Analyzer, 108

saving from the Performance Analyzer, 109

setting in a defaults file, 126

descendant processes

collecting data for all followed, 76

collecting data for selected, 86

example, 19

experiment location, 69

experiment names, 70

followed by Collector, 68

limitations on data collection for, 68

directives, parallelization

attribution of metrics to, 156

microtasking library calls from, 142

disassembly code, annotated

description, 156

for cloned functions, 150

for Java compiled methods, 99

hardware counter metric attribution, 160

in the Disassembly tab, 99

instruction issue dependencies, 157

interpreting, 157

location of executable, 71

metric formats, 155

printing in er_print , 120

setting preferences in er_print , 121

setting preferences in the Performance

Analyzer, 108

setting the highlighting threshold in

er_print , 121

viewing with er_src , 162

disk space, estimating for experiments, 71

documentation index, xix

documentation, accessing, xix to xxi

dropping experiments from the Performance

Analyzer, 107

dynamically compiled functions

Collector API for, 64

definition, 152

in the Source tab, 98

E
entry points, alternate, in Fortran functions, 149

environment variables

JAVA_PATH, 69

JDK_1_4_HOME, 69

JDK_HOME, 69

LD_LIBRARY_PATH, 88

LD_PRELOAD, 88

PATH, 69

SUN_PROFDATA, 181

SUN_PROFDATA_DIR, 182

TCOVDIR, 173, 182

er_archive utility, 164

er_cp utility, 162

er_export utility, 165

er_mv utility, 162

er_print commands

address_space (obsolete), 130

allocs , 121

callers-callees , 118

cmetric_list , 125

cmetrics , 118

csingle , 118

csort , 119

dcc , 121

disasm , 120

dmetrics , 126

dsort , 126

exp_list , 124

fsingle , 116

fsummary , 116

functions , 115

gdemangle , 127

header , 128

help , 129

leaks , 122

limit , 127

lwp_list , 124

lwp_select , 123

mapfile , 129

Index 186 Program Performance Analysis Tools • May 2002

metric_list , 125

metrics , 116

name, 127

object_list , 124

object_select , 123

objects , 117

osummary (obsolete), 130

outfile , 127

overview , 128

quit , 129

sample_list , 124

sample_select , 123

scc , 120

script , 129

sort , 117

source , 119

src , 119

statistics , 128

sthresh , 121

thread_list , 124

thread_select , 123

Version , 129

version , 129

er_print utility

command-line options, 112

commands, See er_print commands

metric keywords, 114

metric lists, 112

purpose, 111

syntax, 112

er_rm utility, 162

er_src utility, 162

error messages, from Performance Analyzer

session, 103

errors reported by tcov , 177

event markers

color coding, 104

description, 101

exclusive metrics

defined, 55

for PLT instructions, 139

how computed, 138

illustrated, 56

use of, 55

execution statistics

comparison of times with the <Total>
function, 135

in the Statistics tab, 102

printing in er_print , 128

experiment directory

default, 69

specifying in dbx , 84

specifying with collect , 78

experiment groups

default name, 70

defined, 70

name restrictions, 70

removing, 162

specifying name in dbx , 85

specifying name with collect , 78

experiment names

default, 70

MPI default, 70, 90

MPI, using MPI_comm_rank and a script, 92

restrictions, 70

specifying in dbx , 85

specifying with collect , 78

experiments

See also experiment directory; experiment

groups; experiment names

adding to the Performance Analyzer, 107

comparing, 107

copying, 162

default name, 70

defined, 69

dropping from the Performance Analyzer, 107

groups, 70

header information in er_print , 128

header information in the Experiments tab, 103

limiting the size of, 78, 84

listing in er_print , 124

location, 69

moving, 70, 162

moving MPI, 90

MPI storage issues, 89

naming, 70

removing, 162

storage requirements, estimating, 71

terminating from your program, 63

where stored, 78, 84

explicit multithreading, 141

F
fast traps, 140

Index 187

Fortran

alternate entry points, 149

Collector API, 62

subroutines, 148

frames, stack, See stack frames

function calls

between shared objects, 139

imputed, in OpenMP programs, 146

in single-threaded programs, 138

recursive, example, 14

recursive, metric assignment to, 57

function list

printing in er_print , 115

sort order, specifying in er_print , 117

function names, C++

choosing long or short form in er_print , 127

setting default demangling library in .er.rc
file, 127

function-list metrics

displaying list of in er_print , 125

selecting default in .er.rc file, 126

selecting in er_print , 116

setting default sort order in .er.rc file, 126

functions

@plt , 139

address within a load object, 148

aliased, 148

alternate entry points (Fortran), 149

body, compiler-generated, See body functions,

compiler-generated

cloned, 150

Collector API, 62, 64

color coding for Timeline tab, 106

definition of, 148

dynamically compiled, 64, 152

global, 148

inlined, 150

Java methods displayed, 96

MPI, traced, 52

non-unique, names of, 148

outline, 152

searching for in the Functions and Callers-

Callees tabs, 109

selected, 95

static, in stripped shared libraries, 149

static, with duplicate names, 148

system library, interposition by Collector, 60

<Total> , 153

<Unknown>, 152

variation in addresses of, 147

wrapper, 149

G
gprof

fallacy, 13

limitations, 170

output from, interpreting, 171

summary, 167

using, 170

H
hardware counter library, libcpc.so , 68

hardware counter list

description of fields, 49

obtaining with collect , 73

obtaining with dbx collector , 81

hardware counters

choosing with collect , 74

choosing with dbx collector , 82

list described, 49

names, 49

obtaining a list of, 73, 81

overflow value, 48

hardware-counter overflow profiling

collecting data with collect , 74

collecting data with dbx , 81

data in profile packet, 136

defined, 48

example, 37

limitations, 68

hardware-counter overflow value

consequences of too small or too large, 136

defined, 48

experiment size, effect on, 72

setting in dbx , 82

setting with collect , 74

heap tracing

collecting data in dbx , 82

collecting data with collect , 75

limitations, 67

metrics, 51

preloading the Collector library, 88

Index 188 Program Performance Analysis Tools • May 2002

high metric values

in annotated disassembly code, 99, 121

in annotated source code, 98, 121

searching for in the Source and Disassembly

tabs, 109

highlighting threshold, See threshold, highlighting

high-resolution profiling, 67

I
inclusive metrics

defined, 55

effect of recursion on, 57

for PLT instructions, 139

how computed, 138

illustrated, 56

use of, 56

inlined functions, 150

input file

terminating in er_print , 129

to er_print , 129

instruction issue

delay, 159

grouping, effect on annotated disassembly, 157

intermediate files, use for annotated source

listings, 67

interposition by Collector on system library

functions, 60

interval, profiling, See profiling interval

interval, sampling, See sampling interval

J
Java memory allocations, 51

Java methods

annotated disassembly code for, 99

annotated source code for, 98

dynamically compiled, 64, 152

in the Functions tab, 96

Java monitors, 50

Java profiling, limitations, 69

JAVA_PATH environment variable, 69

JDK_1_4_HOME environment variable, 69

JDK_HOME environment variable, 69

K
keywords, metric, er_print utility, 114

L
LD_LIBRARY_PATH environment variable, 88

LD_PRELOAD environment variable, 88

leaf PC, defined, 138

leaks, memory: definition, 51

libaio.so , interaction with data collection, 61

libcollector.so shared library

preloading, 88

using in your program, 62

libcpc.so , use of, 68

libraries

interposition on, 60

libaio.so , 61

libcollector.so , 61, 62, 88

libcpc.so , 60, 68

libthread.so , 60, 141, 142, 143

MPI, 60, 88

static linking, 66

stripped shared, and static functions, 149

system, 60

limitations

descendant process data collection, 68

experiment group names, 70

experiment name, 70

hardware-counter overflow profiling, 68

Java profiling, 69

profiling interval value, 67

tcov , 173

tracing data, 67

limiting output in er_print , 127

limiting the experiment size, 78, 84

load objects

addresses of functions, 148

contents of, 147

defined, 147

information on in Experiments tab, 103

listing selected, in er_print , 124

printing list in er_print , 117

searching for in the Functions and Callers-

Callees tabs, 109

selecting in er_print , 123

symbol tables, 147

Index 189

lock file management

tcov , 177

tcov Enhanced, 180

LWPs

creation by threads library, 141

data display in Timeline tab, 100

listing selected, in er_print , 124

selecting in er_print , 123

selecting in the Performance Analyzer, 108

M
man pages, accessing, xviii

MANPATH environment variable, setting, xix

mapfiles

generating with er_print , 129

generating with the Performance Analyzer, 110

reordering a program with, 110

memory allocations, 51

memory leaks, definition, 51

methods, See functions

metrics

attributed, See attributed metrics

clock-based profiling, 47, 132

default, 109

defined, 45

effect of correlation, 133

exclusive, See exclusive metrics

function-list, See function-list metrics

hardware counter, attributing to

instructions, 160

heap tracing, 51

inclusive, See inclusive metrics

interpreting for instructions, 157

interpreting for source lines, 155

memory allocation, 51

MPI tracing, 52

synchronization wait tracing, 50

timing, 47

microstates

contribution to metrics, 132

switching, 140

microtasking library routines, 142

moving an experiment, 70, 162

MPI experiments

default name, 70

loading into the Performance Analyzer, 107

moving, 90

storage issues, 89

MPI programs

attaching to, 88

collecting data from, 88

collecting data with collect , 91

collecting data with dbx , 91

experiment names, 70, 89, 90

experiment storage issues, 89

MPI tracing

collecting data in dbx , 82

collecting data with collect , 75

data in profile packet, 137

functions traced, 52

interpretation of metrics, 137

limitations, 67

metrics, 52

preloading the Collector library, 88

multithreaded applications

attaching the Collector to, 86

execution sequence, 143

multithreading

explicit, 141

parallelization directives, 142

N
naming an experiment, 70

navigating program structure, 97

non-unique function names, 148

O
OpenMP parallelization, 142

optimizations

common subexpression elimination, 156

tail-call, 141

options, command-line, er_print utility, 112

outline functions, 152

output file, in er_print , 127

overflow value, hardware-counter, See hardware-

counter overflow value

overview data, printing in er_print , 128

Index 190 Program Performance Analysis Tools • May 2002

P
parallel execution

call sequence, 143

directives, 142

PATH environment variable, xviii, 69

pausing data collection

for collect , 77

from your program, 63

in dbx , 84

PC (program counter), defined, 138

Performance Analyzer

adding experiments to, 107

callers-callees metrics, default, 97

configuring the display, 107

defined, 1, 93

display defaults, 108

dropping experiments from, 107

main window, 95

mapfiles, generating, 110

saving settings, 109

searching for functions and load objects, 109

starting, 93

performance data, conversion into metrics, 45

performance metrics, See metrics

PLT (Program Linkage Table), 139, 160

@plt function, 139

preloading libcollector.so , 88

process address-space text and data regions, 147

prof
limitations, 170

output from, 169

summary, 167

using, 168

profile bucket, tcov Enhanced, 179, 181

profile packet

clock-based data, 132

hardware-counter overflow data, 136

MPI tracing data, 137

size of, 71

synchronization wait tracing data, 135

profiled shared libraries, creating

for tcov , 176

for tcov Enhanced, 180

profiling interval

defined, 46

experiment size, effect on, 71

limitations on value, 67

setting with dbx collector , 81

setting with the collect command, 73

profiling, defined, 45

program counter (PC), defined, 138

program execution

call stacks described, 138

explicit multithreading, 141

OpenMP parallel, 143

shared objects and function calls, 139

signal handling, 139

single-threaded, 138

tail-call optimization, 141

traps, 140

Program Linkage Table (PLT), 139, 160

program structure, mapping call-stack addresses

to, 147

program, reordering with a mapfile, 110

R
recursive function calls

apparent, in OpenMP programs, 146

example, 14

metric assignment to, 57

removing an experiment or experiment group, 162

reordering a program with a mapfile, 110

restrictions, See limitations

resuming data collection

for collect , 77

from your program, 63

in dbx , 84

S
samples

circumstances of recording, 53

defined, 54

information contained in packet, 53

interval, See sampling interval

listing selected, in er_print , 124

manual recording in dbx , 84

manual recording with collect , 77

periodic recording in dbx , 83

periodic recording with collect , 75

recording from your program, 63

Index 191

recording when dbx stops a process, 83

representation in the Timeline tab, 100

selecting in er_print , 123

selecting in the Performance Analyzer, 108

Sampling Collector, See Collector

sampling interval

defined, 53

setting in dbx , 83

setting with the collect command, 75

searching for functions and load objects in the

Performance Analyzer, 109

setuid , use of, 61

shared objects, function calls between, 139

shell prompts, xvii

signal handlers

installed by Collector, 61, 140

user program, 61

signals

calls to handlers, 139

profiling, 61

profiling, passing from dbx to collect , 77

use for manual sampling with collect , 77

use for pause and resume with collect , 77

single-threaded program execution, 138

sort order

callers-callees metrics, in er_print , 119

function list, specifying in er_print , 117

source code, annotated

compiler commentary, 155

description, 154

for cloned functions, 150

from tcov , 175

in the Disassembly tab, 99

interpreting, 155

location of source files, 71

metric formats, 155

parallelization directives in, 156

printing in er_print , 119

required compiler options, 66

setting compiler commentary classes in

er_print , 120

setting preferences in the Performance

Analyzer, 108

setting the highlighting threshold in

er_print , 121

<Unknown> line, 156

use of intermediate files, 67

viewing with er_src , 162

stack frames

defined, 139

from trap handler, 140

reuse of in tail-call optimization, 141

starting the Performance Analyzer, 93

static functions

duplicate names, 148

in stripped shared libraries, 149

static linking, effect on data collection, 66

storage requirements, estimating for

experiments, 71

subroutines, See functions

summary metrics

displaying in the Summary tab, 104

for a single function, printing in er_print , 116

for all functions, printing in er_print , 116

SUN_PROFDATA environment variable, 181

SUN_PROFDATA_DIR environment variable, 182

symbol tables, load-object, 147

synchronization delay events

data in profile packet, 135

defined, 50

metric defined, 50

synchronization wait time

defined, 50, 135

metric, defined, 50

with unbound threads, 135

synchronization wait tracing

collecting data in dbx , 82

collecting data with collect , 74

data in profile packet, 135

defined, 50

example, 29

limitations, 67

metrics, 50

preloading the Collector library, 88

threshold, See threshold, synchronization wait

tracing

wait time, 50, 135

syntax

er_archive utility, 164

er_export utility, 165

er_print utility, 112

er_src utility, 162

Index 192 Program Performance Analysis Tools • May 2002

T
tail-call optimization, 141

tcov
annotated source code, 175

compiling a program for, 173

errors reported by, 177

limitations, 173

lock file management, 177

output, interpreting, 175

profiled shared libraries, creating, 176

summary, 167

using, 173

tcov Enhanced

advantages of, 179

compiling a program for, 179

lock file management, 180

profile bucket, 179, 181

profiled shared libraries, creating, 180

using, 179

TCOVDIR environment variable, 173, 182

threads

bound and unbound, 141, 146

creation of, 141

library, 60, 141, 142, 143

listing selected, in er_print , 124

main, 143

scheduling of, 141, 142

selecting in er_print , 123

selecting in the Performance Analyzer, 108

system, 135, 143

wait mode, 146

worker, 141, 143

threshold, highlighting

defined, 98

in annotated disassembly code, er_print , 121

in annotated source code, er_print , 121

selecting for the Source and Disassembly

tabs, 108

threshold, synchronization wait tracing

calibration, 50

defined, 50

effect on collection overhead, 135

setting with dbx collector , 82

setting with the collect command, 75

TLB (translation lookaside buffer) misses, 39, 140,

160

<Total> function

comparing times with execution statistics, 135

described, 153

traps, 140

typographic conventions, xvi

U
<Unknown> function

callers and callees, 153

mapping of PC to, 152

<Unknown> line, in annotated source code, 156

unwinding the stack, 138

V
version information

for collect , 79

for er_cp , 162

for er_mv , 162

for er_print , 129

for er_rm , 162

for er_src , 163

for the Performance Analyzer, 94

W
wait time, See synchronization wait time

warning messages, 103

wrapper functions, 149

	Program Performance Analysis Tools
	Contents
	Figures
	Tables
	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Accessing Forte Developer Development Tools and Man Pages
	Accessing Forte Developer Compilers and Tools
	Accessing Forte Developer Man Pages

	Accessing Forte Developer Documentation
	Product Documentation in Accessible Formats
	Related Forte Developer Documentation

	Accessing Related Solaris Documentation
	Sending Your Comments

	Overview of Program Performance Analysis Tools
	Learning to Use the Performance Tools
	Setting Up the Examples for Execution
	System Requirements
	Choosing Alternative Compiler Options

	Basic Features of the Performance Analyzer
	Example 1: Basic Performance Analysis
	Collecting Data for synprog
	Simple Metric Analysis
	Extension Exercise for Simple Metric Analysis
	Metric Attribution and the gprof Fallacy
	The Effects of Recursion
	Loading Dynamically Linked Shared Objects
	Descendant Processes

	Example 2: OpenMP Parallelization Strategies
	Collecting Data for omptest
	Comparing Parallel Sections and Parallel Do Strategies
	Comparing Critical Section and Reduction Strategies

	Example 3: Locking Strategies in Multithreaded Programs
	Collecting Data for mttest
	How Locking Strategies Affect Wait Time
	How Data Management Affects Cache Performance
	Extension Exercises for mttest

	Example 4: Cache Behavior and Optimization
	Collecting Data for cachetest
	Execution Speed
	Program Structure and Cache Behavior
	Program Optimization and Performance

	Performance Data
	What Data the Collector Collects
	Clock Data
	Hardware-Counter Overflow Data
	Hardware Counter Lists

	Synchronization Wait Tracing Data
	Heap Tracing (Memory Allocation) Data
	MPI Tracing Data
	Global (Sampling) Data

	How Metrics Are Assigned to Program Structure
	Function-Level Metrics: Exclusive, Inclusive, and Attributed
	Interpreting Function-Level Metrics: An Example
	How Recursion Affects Function-Level Metrics

	Collecting Performance Data
	Preparing Your Program for Data Collection and Analysis
	Use of System Libraries
	Use of Signal Handlers
	Use of setuid
	Controlling Data Collection From Your Program
	collector_sample(char *name) (C and C++)
	collector_sample(string) (Fortran)
	collector_pause()
	collector_resume()
	collector_terminate_expt()

	Dynamic Functions and Modules
	collector_func_load()
	collector_func_unload()
	collector_module_load()
	collector_module_unload()

	Compiling and Linking Your Program
	Source Code Information
	Static Linking
	Optimization
	Intermediate Files

	Limitations on Data Collection
	Limitations on Clock-based Profiling
	Limitations on Collection of Tracing Data
	Limitations on Hardware-Counter Overflow Profiling
	Limitations on Data Collection for Descendant Processes
	Limitations on Java Profiling

	Where the Data Is Stored
	Experiment Names
	Moving Experiments

	Estimating Storage Requirements
	Collecting Data Using the collect Command
	Data Collection Options
	-p option
	-h counter[,value[,counter2[,value2]]]
	-s option
	-H option
	-m option
	-S option

	Experiment Control Options
	-F option
	-j option
	-l signal
	-x
	-y signal[,r]

	Output Options
	-d directory-name
	-g group-name
	-o experiment-name
	-L size

	Other Options
	-n
	-R
	-V
	-v

	Obsolete Options
	-a

	Collecting Data From the Integrated Development Environment
	Collecting Data Using the dbx collector Subcommands
	Data Collection Subcommands
	profile option
	hwprofile option
	synctrace option
	heaptrace option
	mpitrace option
	sample option
	dbxsample { on | off }

	Experiment Control Subcommands
	disable
	enable
	pause
	resume
	sample record name

	Output Subcommands
	limit value
	store option

	Information Subcommands
	show
	status

	Obsolete Subcommands
	address_space
	close
	enable_once
	quit
	store filename

	Collecting Data From a Running Process
	Collecting Data From MPI Programs
	Storing MPI Experiments
	Running the collect Command Under MPI
	Collecting Data by Starting dbx Under MPI

	The Performance Analyzer Graphical User Interface
	Running the Performance Analyzer
	The Performance Analyzer Displays
	The Functions Tab
	The Callers-Callees Tab
	The Source Tab
	The Disassembly Tab
	The Timeline Tab
	The LeakList Tab
	The Statistics Tab
	The Experiments Tab
	The Summary Tab
	The Event Tab
	The Legend Tab

	Using the Performance Analyzer
	Comparing Metrics
	Selecting Experiments
	Selecting the Data to Be Displayed
	Setting Defaults
	Searching for Names or Metric Values
	Generating and Using a Mapfile

	The er_print Command Line Performance Analysis Tool
	er_print Syntax
	Metric Lists
	Function List Commands
	functions
	fsummary
	fsingle function-name [N]
	metrics metric-list
	objects
	sort metric-keyword

	Callers-Callees List Commands
	callers-callees
	csingle function-name [N]
	cmetrics metric-list
	csort metric-keyword

	Source and Disassembly Listing Commands
	source | src { file | function } [N]
	disasm { file | function } [N]
	scc class-list
	sthresh value
	dcc class-list
	dthresh value

	Memory Allocation List Commands
	allocs
	leaks

	Filtering Commands
	Selection Lists
	Selection Commands
	lwp_select lwp-selection
	sample_select sample-selection
	thread_select thread-selection
	object_select object-list

	Listing of Selections
	exp_list
	lwp_list
	object_list
	sample_list
	thread_list

	Metric List Commands
	metric_list
	cmetric_list

	Defaults Commands
	dmetrics metric-list
	dsort metric-list
	gdemangle library-name

	Output Commands
	limit n
	name { long | short }
	outfile { filename | - }

	Other Display Commands
	header experiment-ID
	overview experiment-ID
	statistics experiment-ID

	Mapfile Generation Command
	mapfile load-object { mapfilename | - }

	Control Commands
	quit
	script script

	Information Commands
	help
	{ Version | version }

	Obsolete Commands
	address_space
	osummary

	Understanding the Performance Analyzer and Its Data
	Interpreting Performance Metrics
	Clock-Based Profiling
	Accuracy of Timing Metrics
	Comparisons of Timing Metrics

	Synchronization Wait Tracing
	Hardware-Counter Overflow Profiling
	Heap Tracing
	MPI Tracing

	Call Stacks and Program Execution
	Single-Threaded Execution and Function Calls
	Function Calls Between Shared Objects
	Signals
	Traps
	Tail-Call Optimization

	Explicit Multithreading
	Parallel Execution and Compiler-Generated Body Functions
	Generation of Body Functions
	Parallel Execution Sequence

	Incomplete Stack Unwinds

	Mapping Addresses to Program Structure
	The Process Image
	Load Objects and Functions
	Aliased Functions
	Non-Unique Function Names
	Static Functions From Stripped Shared Libraries
	Fortran Alternate Entry Points
	Cloned Functions
	Inlined Functions
	Compiler-Generated Body Functions
	Outline Functions
	Dynamically Compiled Functions
	The <Unknown> Function
	The <Total> Function

	Annotated Code Listings
	Annotated Source Code
	Interpreting Source Line Metrics
	Metric Formats
	Compiler Commentary
	The <Unknown> Line
	Common Subexpression Elimination
	Parallelization Directives

	Annotated Disassembly Code
	Instruction Issue Grouping
	Instruction Issue Delay
	Attribution of Hardware Counter Overflows
	Program Linkage Table (PLT) Instructions

	Manipulating Experiments and Viewing Annotated Code Listings
	Manipulating Experiments
	er_cp [-V] experiment1 experiment2
	er_mv [-V] experiment1 experiment2
	er_rm [-f] [-V] experiment-list

	Viewing Annotated Code Listings With er_src
	-c commentary-classes
	-d
	-o filename
	-V

	Other Utilities
	The er_archive Utility
	–q
	–F
	–V

	The er_export Utility

	Profiling Programs With prof, gprof, and tcov
	Using prof to Generate a Program Profile
	Using gprof to Generate a Call Graph Profile
	Using tcov for Statement-Level Analysis
	Creating tcov Profiled Shared Libraries
	Locking Files
	Errors Reported by tcov Runtime Functions

	Using tcov Enhanced for Statement- Level Analysis
	Creating Profiled Shared Libraries for tcov Enhanced
	Locking Files
	tcov Directories and Environment Variables

	Index

