
Introduction to SPICE

NAIF

January 1997



2



3

Welcome...

Welcome to the SPICE system. This system allows you to easily combine the most
accurate space geometry and event data with your mission analysis, observation
planning or science data processing software.

SPICE has gained wide acceptance for organizing, distributing and accessing space
geometry and event data. As you move on from your current investigations to other
planetary science studies you will likely find SPICE available to assist you in your
new endeavors.

The SPICE system is available for the following computers:

• VAX/VMS systems

• DEC ALPHA OpenVMS and OFS/1 workstations

• SUN workstations

• HP workstations

• SGI workstations

• IBM-PCs and compatibles

• Apple Macintosh computers

• NeXT workstations

Since the source code of the software portion of the SPICE system is written in ANSI
Standard FORTRAN 77, the system can be easily ported to other environments that
support this language.

The SPICE system has many components. This overview is designed to help guide
you through the various components and to point to other, more extensive,
documentation.

Quality and Stability

We here at NAIF are committed to providing a robust, flexible, and understandable
product that suits the needs of SPICE users. The software that makes up the SPICE
toolkit undergoes careful review and testing. The documentation for the SPICE
software is extensive and accurate. And, we listen to input from users like you.

In addition to listening to users comments, we use the product ourselves. As a result,
we often can anticipate needs that you will encounter as you learn and use the SPICE
system.

The SPICE system is a work in progress. However, NAIF is equally committed to
providing SPICE users a stable product. We understand the frustrations of learning a
system only to have it change in unanticipated ways. For this reason we never change
the intended functionality of, or the interface to released software and data products. If
you build a program using today’s SPICE system, it will work the same way when you
re-build it with tomorrow’s SPICE system.

Installation

To make use of the SPICE system you need to install it on your computer. This means
that you must execute a script or command procedure (provided with your SPICE



4

package) that creates the SPICE directory system and populates this directory structure
with the various files that make up the SPICE system. Some of these files will be
created as a result of the installation. These files are the object libraries and executable
programs that are compiled and linked using the FORTRAN source code that comes
with the SPICE toolkit. The time required for installation varies with the speed of your
computer and its FORTRAN compiler. On most systems, installation can be done in
under an hour.

After installation all SPICE system documents mentioned in this overview can be
found under the doc subdirectory.

Contents of the Toolkit

Once you’ve installed the SPICE system on your computer, you can find out what you
have by consulting the document dscriptn.txt. This document describes the directory
structure created by the installation procedure and the contents of the various
directories.

Using SPICE

The only way to make use of the SPICE system is to write programs that call
subroutines in the SPICE toolkit. To do this you will need at a minimum:

1) some form of text editor for creating programs that call subroutines in
SPICELIB — the SPICE FORTRAN subroutine library. Its object module,
called spicelib, is located under the lib subdirectory. The source code files for
all SPICELIB subroutines are located under the src/spicelib subdirectory ;

2) a compiler for your computer that is capable of calling FORTRAN
subroutines; and

3) a linker for building executable programs.

You will need to be familiar with using your computer’s editor, compiler, and linker.
Familiarity with a debugger can also be helpful as you develop your application
program. Finally, you will need to know how to execute a program on your computer.

In future releases of the SPICE system, NAIF plans to provide documentation that
describes how to do this in the various computing environments for which we actively
support the SPICE system. But for now, if any of these topics (editing, compiling or
linking) are not clear to you, try examining the routines used by the installation
procedure to build the various SPICE applications. For example, examine the
procedure mkprodct (or mkspacit on some computer platforms) that is located in the
source code directory for SPACIT (see dscriptn.txt to locate this directory). If this
example isn’t sufficient to clear up any questions, we recommend that you consult a
colleague or your system administrator to find out the details of program development
on your computer.

Bilingual Programming

If you “speak” FORTRAN, the easiest way to create programs that call routines in
SPICELIB is to write your programs in FORTRAN. However, you may wish to write
programs in another programming language (for example C, C++ or Pascal). This can
be a bit tricky. Matrices and strings may be organized differently in your language of



5

choice from the way they are organized in FORTRAN. Nevertheless, this may be the
shortest path to your ultimate goal.

If you choose this path you will need to find out how your language of choice supports
calls to FORTRAN object modules. Your best source of information will be a
colleague who has already mastered this art. There may be a programmer’s reference
manual that describes cross–language syntax. In addition, you may be able to receive
support from the company that supplies the language you choose for writing your
software.

Files

The basic unit for organizing information on your computer is the file. The SPICE
system is composed of several different types of files. The two basic types are text
files and binary files.

Text files are interpreted as simply a string of ASCII characters with special markers
to indicate how line breaks and spacing should be arranged.

Binary files on the other hand have more specialized organization. They typically
contain numeric and textual information. The numeric information is stored in the
binary format used by your computer instead of a form that is easily read by people.

Text files can be examined or modified in a text editor. On the other hand, binary files
can typically be examined or modified only through use of specialized software that
understands the particular organization of the binary file.

Because, text files have a nearly universal format, they can be transported easily from
one machine to another. There are several readily available programs available to
assist with this task. For this reason, the SPICE system is almost always distributed as
a collection of text files.

The text files that make up the delivered product fall into several categories:
documentation, source code, make or link procedures, and some sample data.

Documentation that is of a generic nature is collected under doc subdirectory. These
files include user’s guides for the various applications, index information, and
discussion of related collections of routines that make up SPICELIB.

Documentation on a subroutine by subroutine basis is located in the source code for
the routine. The subroutine documentation is in the form of an extensive “header” that
appears at the beginning of the source file. All SPICELIB source files are located
under the src/spicelib subdirectory.

All source files are compiled to produce object files. Most of the object files are
gathered into an object library called spicelib located under the lib subdirectory. You
will use this object library when creating your own programs. Other object files are
linked with SPICELIB to create the application tools that are part of the SPICE
system.

Sample data files make up the remaining files. Some of these (LSK and PCK) can be
used as you receive them. Others must be converted from transfer to binary format
before you can use them with toolkit software; these are the ephemeris (SPK), attitude
(CK) and spacecraft events (EK) information files. The conversion programs used for
converting these files are called spacit, tobin and toxfr. They are provided with the



6

SPICE system and their executable modules are located under the exe subdirectory.
They are discussed briefly in the TOOLS section below and are documented in the
spacit.ug and convrt.ug User’s Guide documents that come with SPICE.

Kernels

The data files (both binary and text) that are used by the SPICE system are called
kernels. The binary kernels are the SP-kernels (SPK), a few PC-kernels (PCK), C-
kernels (CK) and some E-kernels (EK). The binary kernels are often delivered in the
SPICE “transfer format” which is portable between all computers. You will need to
convert such files to your computer’s binary format using either tobin or spacit utility
program delivered with the toolkit. There are also a handful of text kernels: Spacecraft
Clock kernels (SCLK), Leapseconds kernel (LSK), most Physical Constants kernels
(PCK), Instrument parameter kernels (IK) and some spacecraft Events kernels (EK).
These can be used as received — no conversion is needed.

Both types of kernels (text and binary) must be read to be useful. The SPICE system
provides software for reading (and in some cases writing) these kernels. You can use
these kernels without ever concerning yourself with the details of their format.

To make the information in kernels available to your software you will need to load
them. This lets the SPICE system know where to find these data. Loading text kernels
is discussed in the document kernels.req. Loading SP-kernels is discussed in the
document spk.req. Loading C-kernels is discussed in the document ck.req. Loading
PC-kernels is discussed in the document pck.req. Moreover examples of loading
kernels are provided in the cookbook programs that are provided with SPICE (see the
section on Example Programs below). Kernels of all types need to be loaded only once
in your program — don’t put the load statement in a loop.

Creating or Modifying Kernels

Most SPICE user’s will not need to create or modify kernels. Moreover, of the users
who need to create or modify kernels, most will only need to deal with one of the
various text kernels. Because these are text files they can be created and modified with
any text editor. Although the format of these files is fairly easy to deduce, we
recommend that you consult the document kernel.req before you attempt to edit a text
kernel for the first time.

Some of SPICE users will want to create binary kernels. This task requires a deeper
understanding of the SPICE kernel format and kernel readers. If you need to create
SPICE binary kernels we recommend that you read all of the material in the one of
spk.req, ck.req, pck.req or ek.req that is pertinent to your task. In addition, if you are
producing these data products in an official project capacity we encourage you to
contact NAIF to discuss any issues that might be relevant to your task of producing
binary kernels.

Obtaining Kernels

Since you will probably not be producing your own kernels, you will need to obtain
them from someplace. Usually, you will receive them from a project database or
project data management team. Once a mission is complete the kernels should be



7

available from a national data archive center. The NAIF node of the Planetary Data
System is one such example.

Programming Examples

We often learn new ideas best by seeing examples of their use. For this reason SPICE
comes with a collection of example programs called the SPICE Cookbook, located
under the cookbook subdirectory. These sample programs show in a page or so how to
load various kernel files, how to call the kernel readers and how to perform common
geometric and time computations. Most user’s find these to be very valuable in getting
started with the SPICE system. We recommend that you look at the Cookbook early to
help you get an idea of how easily you can begin programming using SPICE.

Tools

A handful of utility programs are provided to assist you in your use of SPICE. These
programs are:

SPACIT Used to convert binary format kernels to a “transfer” format (and
vice-versa) for porting between different environments. Also used
for summarizing the contents of binary kernels. (See the SPACIT
User’s Guide.)

INSPEKT Used for examining the contents of binary EK kernels. (See the
INSPEKT User’s Guide. This is available only as a printed
document or PostScript file.)

TOBIN Used to convert “transfer” format kernels to a binary format using a
simple command line interface. (See the CONVERT User’s
Guide.)

TOXFR Used to convert binary format kernels to a transfer format using a
simple command line interface. (See the CONVERT User’s
Guide.)

COMMNT Used to provide internal documentation in binary kernels. (See the
COMMNT User’s Guide.)

The executable modules of these programs are located under the exe subdirectory.

Concepts and Terminology

The SPICE system is very much concerned with concepts of geometry and time. To
talk about geometry and time the planetary science community uses several different
time and coordinate systems. Within the context of a single planetary mission, one
does not often need to be concerned with the details of these systems. Project
management simply dictates a common system to be used for all software and data
products. However, the scope of the SPICE system spans many planetary missions and
terrestrial based investigations. As a result, you will need to pay more careful attention
to the details of the various measurement systems.

NAIF has provided mechanisms for converting between different time systems such as
UTC, JED, TDB and Spacecraft Clock. SPICE also provides conversions between



8

various inertial reference frames such as J2000, B1950, EME50, and non-inertial
frames such as body-fixed frames.

For more detailed information consult:

naif_ids.req for a discussion of the coordinate frames supported within SPICE.

rotations.req for a discussion of the mathematical properties of rotations and the
software for manipulating them.

sclk.req for information about time as measured by the spacecraft clock.

time.req for detailed information about conversion between various time
systems

Better Programming

The SPICE system is much more than kernels and kernel readers. Over half the toolkit
is devoted to routines that make the process of building software easier. Those familiar
with the standard C library will find a find a parallel between some SPICE FORTRAN
routines and standard C functions.

Using the toolkit for more than simply getting data means that you can often produce
more robust software in less time than had you not used the toolkit routines. There are
some obvious reasons for this. You don’t have to write the software that duplicates
toolkit functions. Toolkit software has already undergone careful testing. The action of
toolkit software is carefully specified. In addition, you benefit from a centralized error
handling facility that is integrated with toolkit software.

To find out more about the various features that are part of the toolkit, consult the
following documents that can be found under the doc subdirectory:

cells.req Discusses a data structure based on arrays that carries declaration
information about the array.

ck.req Discusses the SPICE system for providing attitude information,
usually for a spacecraft.

daf.req Discusses the file architecture that is the basis for both SPK and CK
file formats. It can be used anywhere you need to store arrays of
floating point numbers in a file.

ellipses.req Discusses a data structure for ellipses and routines for manipulating
them.

error.req Discusses the central error and exception handling facility that is
built into the SPICE system.

naif_ids.req Discusses the NAIF numbering system for solar system objects,
reference frames, spacecraft and spacecraft structures, and
instruments.

pck.req Discusses models used for rotations of solar system bodies, their
shapes and how to put this information into a text kernel.

planes.req Discusses a data structure for representing geometric planes and
software for manipulating them.



9

rotations.req Discusses the representation and mathematics of rotations and
software for manipulating them.

scanning.req Discusses routines in SPICELIB for manipulating character strings.

sclk.req Discusses spacecraft clocks, their representations, and the
spacecraft clock kernel.

sets.req Discusses the SPICE data structure for representing sets of numbers
or character strings and software for performing basic set
operations.

spc.req Discusses tools for tagging SPK and CK files with internal
comments.

spk.req Discusses the NAIF ephemeris system.

symbols.req Discusses a data structure that is used to associate names with data
and software for manipulating these structures.

time.req Discusses the use of time in SPICE and the routines available for
converting between different representations.

windows.req Discusses a data structure used to represent subsets of the real line
composed of disjoint closed intervals and the software available for
performing set operations on them. These are often used to
represent intervals of time.

Finding the right routine

The real programming power of SPICELIB comes from the extensive set of built in
capabilities that you don’t have to re-invent. However, SPICELIB contains over 900
routines. Reading all of the headers for these routines is not an acceptable way to
locate the routine that does the job you want to do. If you can classify the function you
need as belonging to one of the categories listed in the previous section, then you can
consult one of the listed documents. However, there are many routines in SPICELIB
that don’t fit into one of the categories listed above. (For example there are over 40
routines for performing vector-matrix arithmetic.) With this indexing problem in
mind, we have provided additional documents to help you quickly locate the right
routine for the task at hand.

The document spicelib.idx provides a permuted index to all of the routines in
SPICELIB. Like the index to a reference work, this helps you find the right routine for
a specific task. Moreover, the index is permuted. Thus, the word you think of as an
index to a routine has a much greater chance of pointing to a relevant routine. For
example you will find:

Cross product of two vectors
Product of two vectors, cross
Vectors, cross product of two

all listed in the permuted index. Each of these point to the SPICELIB subroutine
VCRSS that computes a cross product.



10

What to do when you have a problem

With any new product people sometime encounter problems. If you run into a
problems here’s some steps that you can take to try to resolve them.

If you think the problem is related to a SPICE routine, look at the documents related to
that routine (these are listed in the required reading section of the routine’s header).
These documents may offer information to help you in diagnosing and correcting the
problem.

If the problem seems to be environmental (for example you can’t link a program, can't
find a file, don’t have sufficient privileges to perform some action, etc.) contact your
system manager. (S)he may be able to assist you. If the problem is truly an
environmental one, NAIF will probably not be able to provide much more than
sympathy.

If you are not using SPICE directly, but using a product developed by someone else,
contact that person to see if they can help out.

If you don’t seem to have the correct kernels or they don’t seem to be acting as you
expected, make sure you are using a text file where text is called for and a binary file
where binary files are called for.

If your program is working but your numbers don’t agree with those of a colleague,
make sure you are using the same kernel files.

If you don’t have the latest version of a kernel associated with a flight project (or want
to find out if you do) contact the project data administrator.

If you can’t seem to fit the problem into a category above, or just aren’t getting
anywhere, send us (NAIF) e-mail or call us on the phone. We’ll do what we can
within our resources to help out.

Let us know what you think

We are interested in your comments about the SPICE system. If you like what you’ve
received so far, let us know. If there’s something wrong tell us that too. If you have
ideas for improvements or enhancements, we’d like to hear about them. With the
support and suggestions of users such as yourself, the SPICE system will be a valuable
resource for the space science community into the next century.


