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Advanced Stirling Radioisotope Generator
(ASRG) Engineering Unit

• Operation in space and on surface
of atmosphere-bearing planets and
moons

• Characteristics:

– !14 year lifetime

– Nominal power : 140 We

– Mass ~ 20 kg

– System efficiency: ~ 30 %

– 2 GPHS (“Pu238 Bricks”)  modules

– Uses 0.8 kg Pu238

• Final wiring and connections for
ASRG engineering unit underway

• Reliability to be demonstrated by
the end of 2009

• NASA eager for Discovery-class
test flight of ASRGs, hence 9
studies funded.

Lockheed Martin/Sunpower

Outboard Housing and Paired ASC-Es

Paired converters

with interconnect

sleeve assembly
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IVO Study Team

• PI/Science team

– Alfred McEwen, UA, PI

– Laszlo Keszthelyi (USGS), John Spencer (SwRI), Nick Thomas (U
Bern), Torrence Johnson (JPL), Phil Christensen (ASU)

• Instrument teams

– US-built, mission floor:

• Imaging: UA lead: McEwen, Chris Shinohara, others

• Thermal mapper: ASU lead: Christensen

– Contributed:

• NMS: U. Bern leads: Nick Thomas, Peter Wurz

• Magnetometer: IGEP lead: Karl-Heinz Glassmeier

• Spacecraft team

– Tim Girard (MSI), Gred Heinsohn (MSI), Shinohara (UA), Roberto
Furfaro (UA), Thomas Gardner (RMS), Dan Cheeseman (RMS)

• JPL team

– Richard Beatty, Jan Ludwinski, Theresa Kowalkowski, Chen-wan
Yen, Robin Evans, Insoo Jun, many others from Team X
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An Io Mission is High Priority to NASA

• Mentioned in planetary Decadal Survey for a New Frontiers
Class mission
– Also of great interest to Space Physics community

• “Io is the heartbeat of the Jovian magnetosphere” - L. Frank

• An Io mission is on the list for NF-3, but not radioisotope
power
– A high data rate is needed given Io’s tremendous variability in

geography, wavelength, and time.  Large enough solar arrays
pose many engineering challenges.

• IVO will return >1000 times more data about Io than did Galileo

• Io is the most dynamic solid body in the Solar System!
– The only place beyond Earth where we can watch large-scale

geology in action

– Rich array of interconnected orbital, geophysical, geological,
atmospheric, and plasma phenomena

– Unique E/PO appeal

– Best place to study tidal heating, which greatly expands
habitability zones of planetary systems

• Io’s coupled orbital-tidal evolution is key to understanding tidal heating of
Europa and stability of its subsurface water.

– Provides unique insight into early volcanic processes on
terrestrial planets
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 IVO Overview
• Our #1 goal for this study is to define a mission that fits Discovery

– Really Discovery+ with government-furnished ASRG and NEPA

– Stick to minimum acceptable science

– Very simple spacecraft

• Primary Science Objectives

– 1. Understand active volcanic processes on Io

– 2. Understand tidal heating of Io

– 3. Understand loss of material from Io and effects on the magnetosphere, plasma torus, and neutral
clouds

• Technology Objectives

– Test ASRG long-term and in intense radiation environment

• Test microphonics via NAC

• Make sure life test can continue if 1 ASRG fails

– Information on Jupiter radiation environment for future exploration

Tupan Patera

GLL image of Io in eclipse
NH image of Io and
Tvashtar plume
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Trajectory Overview

• Plan for a trajectory to Jupiter launching in 2014-15 and a back-
up in 2016
– VEEGA trajectory in Jan 2015 looks best

• Io flyby before Jupiter Orbit Insertion (JOI)
– Does not reduce delta-v for JOI, but unique science

• Good equatorial view during approach

– Will also get Jupiter system science on approach and after JOI

• Science orbit
– High inclination (>45°) to Jupiter to lessen radiation exposure

– Multiple close (100-1000 km) Io flybys

Charged particles around
Jupiter (Cassini Ion and
neutral camera)
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Solar

230 krads behind 100 mils 

100 krads behind 450 mils shielding

30 krads behind 1000 mils shielding

IVO Total Dose Environment

• Primary science achieved in 6 fast (~19 km/s) fly-bys

– Expect 115 krads behind 100 mils, 230 krads with design margin = 2

– Significant “free” shielding available from S/C elements reduces this to under 100 krads
(RDM 2) for electronic parts

• Radiation “vault” and spot shielding planned

– 200 kg shielding mass planned
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Orbital Phase
• Current plan is to insert into a long period orbit (~200 days) to

keep JOI delta-V low

• Io flybys used to “pump down” the period to ~30 day orbit

• Goal: >10 Io flybys with extended mission
– Baseline: 6 Io flybys

• Flyby Conditions:
– Initial altitudes will be higher (~500-1000 km) for navigation

– Goal is to go as low as 100 km (esp. for NMS, Mag)

– Higher inclination (non-equatorial) is desired for polar coverage

– Repeat ~same solar longitude for change detection

– Observe many eclipses (occur every Io day-- 42.5 hours)
• Two high-resolution (~10 km/pixel imaging) eclipses per flyby

• End of mission: Impact Io for planetary protection

Tohil Mons
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Minimal Payload

• Narrow-angle camera (~15 kg)
– Monitor eruptions, measure peak lava temperatures, a few stereo

images for topography; optical navigation

• Thermal mapper (~12 kg)
– Map and monitor temperatures, heat flow pattern related to internal

structure and tidal heating mechanisms

• Ion and Neutral Mass Spectrometer (NMS) (4 kg)

• Magnetometers (1 kg)

• Total payload mass ~32 kg (50 kg with 50% margin)
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Narrow-Angle Radiation-hard Camera (RCam)

• Moderate resolution monitoring during approach and departure to/from Io; high resolution
and (limited) stereo near closest approach

– 10 urad/pixel gives 1 km/pixel from 100,000 km, 10 m/pixel from 1,000 km

– LORRI on NH: 5 urad/pixel, 9 kg

– LROC NAC: 10 urad/pixel, 5.5 kg

– New CMOS focal-plane system, pushbroom and framing modes

– New Digital Processing Unit (DPU) ~5 kg

• Simultaneous multispectral measurements for peak lava temperatures
– 0.1 sec time differential could ruin the measurement because hot lava is so dynamic

– Working on CMOS FPS with narrow (4 line) filters for nearly simultaneous color

• We do not consider ASRG-induced jitter to be a significant concern
– Unless 1 ASC fails, but pause option is available

Highest-resolution GLL: 6 m/pixel

Lava glowing in the dark
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RCam Concept

• 2000 x 2000 pixel CMOS arrays from Sarnoff (Jim Janesick)

• Excellent performance (~ 2 e- read noise) after 1-2 Mrad total dose
(100 mils Al) (Janesick et al. 2008)

• Data readout extremely fast (240 Mb/s per ADC) to essentially
eliminate radiation noise in images

• Can be used in either pushbroom mode (only way to get color) or
framing mode (plume movies, optical navigation)

• PIDDP submitted to develop narrow (4-line) spectral filters and to
further develop and radiation test the whole focal-plane system

• Separate (vaulted) digital processing unit (DPU)

– Working with APL on design

• Digital Time-Delay Integration (dTDI) enables:

– On-board super-resolution

– Flexible slew angles

– Sum interleaved color filters for nearly simultaneous color

– Low read noise to image extremely faint targets with dTDI (Io plasma torus,
Na cloud, Jupiter rings, Europa in eclipse)
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NAC Color Filters
• Spectral range of backside-thinned CMOS detector with UV

coatings is ~200-1000 nm (QE > 0.1)

• Threshold Mission:
– Broadband blue-green, red, near-IR for lava temperatures and

color images
• Need interleaved 4-line filters for nearly simultaneous temperatures

– UV (< 400 nm) for SO2, plumes

• Consider for baseline Mission:
– Spectrally narrow filters for Na, O, OH, S+

• Can monitor Na, O, S+; search for OH escaping from Europa; unique
viewing geometry (Io torus has never been seen at high inclination)

– Silicate mineralogy bands near 1 micron (also helps avoid
saturation of high-T hot spots)

– Methane bands for Jupiter

– H-alpha band for Jupiter lightning

– S+ for Io plasma torus

– More visible bands for S species and olivine

– 200-300 nm UV band for ?? (auroral phenomena?)

– Could have up to 15 filters with 64 dTDI lines on 2,000 x 2,000
array

• Save at least 1000 lines for clear framing mode
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Io disk-integrated spectrum
Spencer et al., 2004 Jupiter Book
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Wide-Angle Camera (WAC)
• It will be very difficult to get useful stereo imaging with just the

NAC
– Approach and departure geometries don’t provide good stereo

separation.

– Can’t slew spacecraft pointing near C/A fast enough in a 19 km/s
flyby, unless range to Io is large, and risk of smear is high from
rapid slews (via thrusters).

– Combining ~100 m/pixel approach or departure image with ~5
m/pixel near C/A gives narrow strip (10 km) with just 100 m/pixel
stereo scale.

• On wish list: WAC with ~25º FOV, same FPS and DPU as NAC
– Each flyby can provide a stereo strip across Io (pole-to-pole) at up

to 25 m/pixel (100 km range; 75 m/pixel DTM) and 10 m vertical
precision.

• Swath 50 km wide at 100 km range, widening towards poles

• Pushbroom mode best for stereo separation but framing mode also
possible with frame-frame overlap and 10-15 degree convergence
angles.

– Also provides better coverage of equatorial color and polar plumes
• Pole-Pole 5,700 km at 50 m/pixel (average) in 4 colors: 912 Mpixels or

~ 3.6 Gbits compressed to 4 bpp.
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Thermal Mapper
• Threshold Mission: 3 bandpasses from ~2-20 microns to monitor volcanism and measure

heat flow
– constraint on interior properties and tidal heating

– Io surface Ts range from 70 to perhaps 1600 K!
• Mercury T range is ~90 to 700 K

• IVO in high-inclination orbit provides unique polar views not available from Earth or GLL or
a likely Flagship mission.

• Thermal Emission Imaging System (THEMIS) is close to what IVO needs
– 4.6 deg FOV, 250 urad/pixel, 1 km/pixel from 4,000 km

• New 640 x 480 detectors: 1 km/pixel from 8,000 km; potentially 1000 x 800

– weighs 11.2 kg, including vis; 10 IR bandpasses

• Baseline Mission:
– Attempt thermal emission compositional studies

• Emission features present in glass

• Expect highly vesicular lava--little blackbody radiators eliminate emissivity variations--but overturning could
expose dense lava, or some flows could be degassed and not too vesicular

– Bandpasses for Jupiter monitoring (e.g., 5-micron hot/dry spots)

– Consider optics design for compatibility with NAC slew speeds

Nighttime T
map from
GLL PPR

THEMIS
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Models for heat flow patterns
(Segatz et al., 1988; Ross et al., 1990; Tackley et al., 2001)
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The CF: Diagnostic of Composition

• The Christiansen Feature location and other
features vary with silicate mineralogy

• This relationship is well defined for mineral
powders

• Good independent confirmation of lava
composition constraint from peak
temperatures

both after Nash et al, 1993

Mineral Powders in Air
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Thermal Mapper candidate bandpasses
(Up to 10 bandpasses)

• 2 micron band or as short in wavelength
as possible for microbolometer detector

• 2 micron band with neutral density filter
(NDF) to avoid saturation of hot lavas

• 5 micron band (Io Ts and Jupiter hot/dry
spots)

• 5-micron band with NDF

• 3 bandpasses from 7-9.5 microns to
define the wavelength of the Christiansen
Frequency (CF) emission peak

• 1-2 bandpasses in 10-12 micron range
for silicate mineralogy

• ~20 microns for background
temperatures

• Attempt >20 microns for coldest polar
temperatures?

after Salisbury et al, 1973

Lunar Soils in Vacuum

LRO Diviner bandpasses for CF
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Ion and Neutral Mass Spectrometer (NMS)
Science Questions:

• What is spatial distribution of the major neutrals contributing to the Io Plasma
Torus (IPT)?

– Determines the energy input to the IPT.

– Constrains models of the interaction.

• What is the gas composition of the volcanic plumes?

– SO2 and S2 detected (Spencer et al.)

• What is the composition of the neutrals?

– S/O ratio is critical in modeling.

– What molecules are present (SO2 for sure but NaCl, NaO, SiO2)

• Is there a relationship between neutral density and volcanic activity?

– Requires multiple passes - and some luck.

• Io‘s atmosphere

– SO2, SO, O2, Na, K, O, NaCl (Lellouch et al., 1990, 1995, 1996, 2003;
Bouchez et al., 1999; Postberg et al. 2006; de Pater et al. 2002)

– What trace elements are present?

– What is the temporal evolution, day-night dependence, leading-trailing side

– What are mechanisms and rates of atmospheric loss?
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NMS Sensor Head and E-Box

• Dimensions

– Sensor: 100 mm x 365 mm

– Electronics:
300 x 130 x 65 mm

• Power

– Standby: 3 W

– Operational: 9 W

• Mass

– Sensor: 2.5 kg

– Electronics and harness:
1.5 kg

• Mass spectra are recorded once
every 5 seconds (flyby mode) that
gives a direct science data rate of
19,200 bits/s.

Entrance of NMS has to
point into ram direction at
closest approach (CA) to
Io, within a few degrees

Field of view cone is ±60°

NMS to be contributed by U. Bern--Nick Thomas, Peter Wurz and Swedish Institute of

Space Physics--Martin Wieser and Stas Barabash

mass range 1-300 amu; M/!M = 300 – 1000, increases with mass
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• Polar-Balloon Atmospheric
Composition Experiment (P-
BACE) Instrument on MEAP
mission

– Test of the mass
spectrometer on a
stratospheric balloon flight
around the north pole.

Image left:

• Drift tubes

• Reflectron

Image right:

• Storage ion source

• Detector

NMS Prototype
P-BACE
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P-BACE quick-look data

• Raw data

• No background
subtracted

• Dynamic range:
6–7 orders of
magnitude

• Mass range:
1–1000 amu/q

• Can even detect
protons and H2

– Is Io really
completely dry?

H2

N2

ArN

He

O2

CO2
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Fluxgate Magnetometers

Vector compensated fluxgate
ringcore sensor
Heritage: Rosetta, Venus
Express, Themis, BepiColombo

hle
r! 
Kei
n 
Te
xt 

Eigenschaft. 

Mass Budget 
• Sensors 2 x 75g 150g 
• Tube 150g 
• Thermal Cover: 100g 
• Harness 60g/m x 2m 120g 
• Boards 2 x200g 400g 

Sum 920g 

Power Budget 

For each sensor: 
• secondary 1W 
• primary: 1.3W 

 

Total (if both sensors are powered) 
• secondary 2W 
• primary: 2.6W 

Mag Science Goals:

Characterize Jupiter’s
magnetosphere (easy)

Place tighter constraints on
Io’s internally-generated
magnetosphere (hard)
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Magnetometer on S/C

Can mount on 1-m bracket, no deployable boom

Use of 2 magnetometers
at different distances
from S/C helps calibrate
effects of S/C

Venus Express S/C
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Jupiter System Science

• Excellent monitoring of
Jupiter’s poles and rings
and Io Plasma Torus from
high-inclination orbit
– Data volume limited

• Maybe some good
opportunities to view small
inner Moons

• Only distant views of icy
Galilean Moons
– Na, O, OH (?) around Europa

• Extended opportunity in
first 200-day orbit after JOI
– Jupiter overfills NAC FOV

most of the time (< 7.15 x 106

km)
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Science/Sensors

Deck

Radiation Vault

With Avionics

Propulsion

ASRGs

HGA

Configuration Progression
- deck with payloads on top and avionics on

bottom

- enclosed in vault to shield from radiation
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Mission Operations

• Science operations at University of Arizona
– One interface to spacecraft team

• Spacecraft operations at TBD S/C manufacturer
– Team X study assumed industry build with JPL management

• Launch in 1/2015, flybys of Venus, Earth (2x), arrival at Jupiter
in 2021
– Lunar cal on one Earth flyby

– Magnetometer cal during an Earth flyby

– Asteroid flyby?

– Jupiter system science during approach and after JOI.

– Io flyby

• Baseline: 6 additional Io flybys, ~1.5 yrs of operations after JOI
– Collect up to 20 Gb of data within 1-2 days before and after each Io

flyby, relay to DSN near apoapsis

– Can return ~20 Gb/month via 34-m stations
• Mostly NAC data with up to ~10:1 wavelets compression
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How ASRGs enable IVO

• High data rate needed to achieve science
– Dynamic Io must be observed over many timescales and at high

spatial resolution and at multiple wavelengths to make major
advances over Galileo

– High data rate requires significant power; at 5 AU solar arrays
would need to be very large

• Pointing flexibility needed to achieve science
– Cannot keep solar arrays continuously pointed at sun without

gimbals (and more power)

• Solar arrays degrade in radiation environment near Io

• Safe modes much easier
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Study Progress

• Considerable work done in advance of Team X

– Science requirements and payload defined

– Representative interplanetary trajectory and Io tour developed by
JPL

– Spacecraft concept and grass-roots cost estimate completed

• Team X session at JPL Nov 4-6

– Cost estimate: $471M (including launch vehicle) with full reserves

• Assumption: Industry build with JPL management

• Fully compliant with JPL design principles

– Exploring areas to reduce cost ($450 M cap for the study)

• We will soon be ready to write final report; now looking forward
to Discovery proposal

– Need to pick spacecraft builder

– We did this right by first understanding what we need

– Payload development efforts are ongoing
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Issues

• Extending the ASRG life test
– Radiation is the likely life-limiting factor, but we can easily

boost the orbit to a longer period, even to 1 year, and
perhaps extend the life test for a decade.

• Opportunity to search for orbital evolution of Io (and Europa)

– We can also move periapse away from Jupiter and Io, but
Planetary Projection plan is to impact Io

• Cost
– Need at least ~21M cost reduction from conservative Team

X estimate

– Actual Discovery 13 PI-managed cost cap TBD

• Risk
– Replace single-string CDS with redundant system

• We believe this can be done without increasing cost, via a
different system than used by Team X

• Will result in fully redundant S/C
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Science Enhancement Options (or dreams)

• More spectral bandpasses on NAC and ThM
– Greatest added science per $

• More DSN time (or 70-m coverage) and data volume for distant monitoring
(Jupiter, torus, rings), if power available.

• Asteroid flyby  (good dress rehearsal for Io flybys)

• Investigate how to detect or place tighter constraints on Io’s intrinsic
magnetosphere

• Useful gravity science with MGA?
– HGA not pointed at Earth when we want to observe Io

• Fly 2 NMSs to get data during approach or departure from Io
– First NMS oriented orthogonal to remote sensing--ram direction at C/A

• Add wide-angle camera for equatorial mapping and stereo near C/A
– Can use same FPS design and actual DPU as NAC

– Or 2 cross-strapped DPUs for redundancy

– Nick Thomas (U Bern) may contribute optics

• Add NIR spectrometer for mineralogy
– But fresh silicate lavas very glassy

– Foreign contribution possible

• Add EUV spectrometer for torus and/or near-UV for atmosphere/plume gasses
– Probably too expensive, foreign contribution unlikely

• Energetic Particle Detector for science and future exploration

• Recommend use of SALMON to add an experiment?

• Student-built Dust Detector or other experiment for ~$3M.
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• Science Team
– Must limit Co-Is to those essential during development and

cruise phases

– Participating Scientist program at Jupiter
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Does IVO have a chance in

Hell of success?

Yes, because:

• Io is a world of fire and
brimstone.

• With 1/2015 launch we
arrive at Jupiter when
Alfred is 66 yrs old.

• Discovery #13 must be the
right opportunity to send a
mission to hell.
– (Don’t tell Venusians)


