NEW DATED IMPACTS ON MARS AND THE CURRENT CRATERING RATE

Ingrid Daubar¹ (ingrid@lpl.arizona.edu) A. McEwen¹, S. Byrne¹, M. Kreslavsky², L. Saper³, M. R. Kennedy³ ¹University of Arizona, Tucson, AZ ²UC Santa Cruz, Santa Cruz, CA ³Malin Space Science Systems, San Diego, CA

Annual Meeting of the Meteoritical Society Casablanca, Morocco • 8 September 2014

NEW DATED IMPACTS ON MARS AND THE CURRENT CRATERING RATE

Ingrid Daubar¹ (ingrid@lpl.arizona.edu) A. McEwen¹, S. Byrne¹, M. Kreslavsky², L. Saper³, M. R. Kennedy³ ¹University of Arizona, Tucson, AZ ²UC Santa Cruz, Santa Cruz, CA ³Malin Space Science Systems, San Diego, CA

Annual Meeting of the Met Casablanca, Morocco • 8

Lunar Chronology

Lunar sample from Apollo 12 3.2 Ga [Nyquist et al. 1977, 1979]

Lunar Chronology

12039,18

Lunar Chronology

hirise.lpl.arizona.edu

ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL - University of Arizona

12039,18

ESP_022299_2040

Daubar *et al.*, 2013

- Malin et al. 2006
- MOC-MOC campaign over
 - ~7 years

- Malin et al. 2006
- MOC-MOC campaign over ~7 years
- 20 new impacts
 - HiRISE confirmed 19 of them
- Remeasured diameters in HiRISE images

- Malin et al. 2006
- MOC-MOC campaign over ~7 years
- 20 new impacts
 HiRISE confirmed 19 of them
- Remeasured diameters in HiRISE images
- Scaled to ATF (Area-Time Factor): Area covered by MOC campaign, multiplied by time separation

Diameter

 44 CTX-CTX new crater detections

Ingrid Daubar • **NEW DATED IMPACTS ON MARS** ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL – University of Arizona

- 44 CTX-CTX new crater detections
- Effective diameter for clusters:

 $\mathsf{D}_{\rm eff} = (\Sigma \mathsf{D}^3)^{1/3}$

Ingrid Daubar • **NEW DATED IMPACTS ON MARS** ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL – University of Arizona

- 44 CTX-CTX new crater detections
- Effective diameter for clusters: $D_{eff} = (\Sigma D^3)^{1/3}$
- Scaled to ATF:

Sum of area covered repeatedly by CTX over dusty areas, multiplied by ∆t between successive images

- Update:
 - 110 CTX-CTX new crater detections
 - D_{eff} for clusters
 - Scaled to ATF
- Cumulative PF: 1.8×10⁻⁶ D≥3.9 m/km²/yr, slope = -1.5

Ingrid Daubar • NEW DATED IMPACTS ON MARS ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL - University of Arizona

-14-

- Lower than 1y model PFs:
- ~4x < Hartmann 2005 and Neukum/Ivanov 2001

- Lower than 1y model PFs:
- ~4x < Hartmann 2005 and Neukum/Ivanov 2001
- Shallower slope
- Difference depends
 on diameter range

Ingrid Daubar • NEW DATED IMPACTS ON MARS ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

-16-

• Models are not perfect.

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation

Ingrid Daubar • NEW DATED IMPACTS ON MARS

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries
 - Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries

Ingrid Daubar • NEW DATED IMPACTS ON MARS

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries
 - Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain

Ingrid Daubar • NEW DATED IMPACTS ON MARS

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries
 - Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain
- Missing some new impacts because of fading?

ESP_014010_1800, 7/23/09 ESP_031917_1800, 5/18/13 +2 Mars years

FADING LIFETIMES FOR NEW MARTIAN CRATERS

Ingrid Daubar • NEW DATED IMPACTS ON MARS

hirise.lpl.arizona.edu

ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL - University of Arizona

-23-

 \mathcal{P}

FADING LIFETIMES FOR NEW MARTIAN CRATERS

Ingrid Daubar • NEW DATED IMPACTS ON MARS

ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014

LPL – University of Arizona

-24-

 \bigcirc

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries
 - Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain
- Missing some new impacts because of fading No.

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries

hirise.lpl.arizona.edu

- Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain
- Missing some new impacts because of fading No.
- Impact rate variation over short timescales

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries

hirise.lpl.arizona.edu

- Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain
- Missing some new impacts because of fading? No.
- Impact rate variation over short timescales
- Strength regime → target properties important [Dundas et al. 2010]

-27-

- Models are not perfect.
- Atmospheric loss
 - Models [Popova 2003, Chappelow & Sharpton 2005] explain some of the discrepancy, but don't describe observed fragmentation
- Secondaries

hirise.lpl.arizona.edu

- Models based on crater counts that include distant unrecognized secondaries; New impacts = all primaries
- Cluster effect: mistaken for separate impacts on older terrain
- Missing some new impacts because of fading No.
- Impact rate variation over short timescales
- Strength regime → target properties important [Dundas et al. 2010]
- \rightarrow All of these contribute to discrepancy

 New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m

 New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m

– Long-term variation in orbital eccentricity \checkmark 2×

- New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m
 - Long-term variation in orbital eccentricity Ψ 2×
 - Randomness correction \uparrow ≥1.7×

Ingrid Daubar • NEW DATED IMPACTS ON MARS

 New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m

– Long-term variation in orbital eccentricity \checkmark 2×

– Randomness correction \uparrow ≥1.7×

• (Only!) ~4x lower than models predict

- New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m
 - Long-term variation in orbital eccentricity ↓ 2× - Randomness correction $♠ \ge 1.7×$
- (Only!) ~4x lower than models predict
- Uncertainties are still large
 - Published martian isochrons should be used with great caution with craters <~50m diameter

Thank you for support from:

Uwingu Graduate Student Grant Program for Travel to Research Conferences

Meteoritical Society Student Travel Grant

- New 1-10m craters on Mars are currently forming at a measurable rate: 1.8×10⁻⁶ km⁻²yr⁻¹ D_{eff}≥3.9 m
 - Long-term variation in orbital eccentricity ↓ 2× - Randomness correction $♠ \ge 1.7×$
- (Only!) ~4x lower than models predict
- Uncertainties are still large
 - Published martian isochrons should be used with great caution with craters <~50m diameter

BACKUP

RISE

hirise.lpl.arizona.edu

Cluster effect

Mistaking individual craters in a cluster as individual impact events \rightarrow

- Slope steepened from

 -2.45 ± 0.36 to -3.07 ± 0.14
 (1.9 m ≤ D ≤ 12 m).
- Model age is increased >2x, from to 0.21 to 0.58 yr (Hartmann 2005 model).
- Turnover at smaller diameters – appearance of completeness.

Randomness correction

- Monte-Carlo simulations to assess spatial randomness of impacts
- → Randomness of the detected population (even within dusty areas) is rejected with great confidence
- → Dark spots are not uniformly created or detected everywhere in dusty region
- To compensate, increase derived cratering rate by 1.7× (lower boundary)
 → Our current PF is only ~4× lower than models

Estimating Fading Lifetimes

\rightarrow Fading lifetime ~3,700 days ~5.5 Mars years

+1362 days ~2 Mars years

-40-

Ingrid Daubar • NEW DATED IMPACTS ON MARS ingrid@LPL.arizona.edu • Meteoritical Society Meeting • 8 Sep. 2014 1805, 6/22/12

LPL - University of Arizona

 \bigcirc