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CURRENT MARTIAN
PRODUCTION FUNCTION

 Malin et al. 2006

« MOC-MOC campaign over
~/ years
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CURRENT MARTIAN
PRODUCTION FUNCTION

 Malin et al. 2006

« MOC-MOC campaign over
~/ years

« 20 new impacts
* HIRISE confirmed 19 of them

* Remeasured diameters in
HIRISE images
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CURRENT MARTIAN
PRODUCTION FUNCTION

 Malin et al. 2006

« MOC-MOC campaign over
~/ years

« 20 new impacts
* HIRISE confirmed 19 of them

* Remeasured diameters in
HIRISE images

» Scaled to ATF (Area-Time
Factor):
Area covered by MOC
campaign, multiplied by time
separation
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CURRENT MARTIAN
x Malin et al. 2006, N=19, ATF=14.3e7
PRODUCTION FUNCTION O Daubar et al. 2013, N=44, ATF=2.0e7

e 44 CTX-CTX new crater
detections
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CURRENT MARTIAN
PRODUCTION FUNCTION

e 44 CTX-CTX new crater
detections

 Effective diameter for

clusters:
Doy = (2D3)13
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CURRENT MARTIAN
PRODUCTION FUNCTION

e 44 CTX-CTX new crater
detections

 Effective diameter for

clusters:
Doy = (2D3)13

« Scaled to ATF:
Sum of area covered
repeatedly by CTX over
dusty areas, multiplied by
At between successive
Images
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CURRENT MARTIAN
x Malin et al. 2006, N=19, ATF=14.3e7
PRODUCTION FU NCTION O Daubar et al. 2013, N=44, ATF=2.0e7

® CTX-CTX detections, N=110, ATF=4.7e7

* Update:

110 CTX-CTX new
crater detections

* D for clusters
* Scaled to ATF

« Cumulative PF:
1.8x10¢ D=3.9 m/km?/yr,

slope =-1.5
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CURRENT MARTIAN
x Malin et al. 2006, N=19, ATF=14.3e7
PRODUCTION FUNCTION O Daubar et al. 2013, N=44, ATF=2.0e7

® CTX-CTX detections, N=110, ATF=4.7e7

* Lower than 1y model

PFs:

e ~4x < Hartmann 2005 and
Neukum/lvanov 2001
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CURRENT MARTIAN
x Malin et al. 2006, N=19, ATF=14.3e7
PRODUCTION FUNCTION O Daubar et al. 2013, N=44, ATF=2.0e7

® CTX-CTX detections, N=110, ATF=4.7e7

* Lower than 1y model
PFs:

e ~4x < Hartmann 2005 and
Neukum/lvanov 2001

« Shallower slope

« Difference depends
on diameter range
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We're observing fewer craters forming
than models predict — Why?

* Models are not perfect.
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* Models are not perfect.

* Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation
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We're observing fewer craters forming
than models predict — Why?

* Models are not perfect.

* Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation

« Secondaries

— Models based on crater counts that include distant unrecognized
secondaries; New impacts = all primaries

« Cluster effect: mistaken for separate impacts on older terrain
« Missing some new impacts because of fading?
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FADING LIFETIMES FOR NEW MARTIAN CRATERS

Median fading lifetime:
~7 Mars years
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FADING LIFETIMES FOR NEW MARTIAN CRATERS

Median fading lifetime:
~7 Mars years

Compare avg At
between CTX overlaps:

0.7 Mars years
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Daubar et al., in prep.
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We're observing fewer craters forming
than models predict — Why?

* Models are not perfect.

* Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation

« Secondaries

— Models based on crater counts that include distant unrecognized
secondaries; New impacts = all primaries

« Cluster effect: mistaken for separate impacts on older terrain
* Missing some new impacts because of fading

e

hirise.Ipl.arizona.edu LPL - University of Arizona



We're observing fewer craters forming
than models predict — Why?

* Models are not perfect.

* Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation

« Secondaries

— Models based on crater counts that include distant unrecognized
secondaries; New impacts = all primaries

« Cluster effect: mistaken for separate impacts on older terrain

* Missing some new impacts because of fading
* Impact rate variation over short timescales
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We're observing fewer craters forming
than models predict — Why?

Models are not perfect.

Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation

Secondaries

— Models based on crater counts that include distant unrecognized
secondaries; New impacts = all primaries

Cluster effect: mistaken for separate impacts on older terrain

Missing some new impacts because of fading
Impact rate variation over short timescales

Strength regime - target properties important [pundas et al. 2010]
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We're observing fewer craters forming
than models predict — Why?

Models are not perfect.

Atmospheric loss

— Models [Popova 2003, Chappelow & Sharpton 2005] explain some of
the discrepancy, but don’t describe observed fragmentation

Secondaries

— Models based on crater counts that include distant unrecognized
secondaries; New impacts = all primaries

Cluster effect: mistaken for separate impacts on older terrain
Missing some new impacts because of fading

Impact rate variation over short timescales

Strength regime - target properties important [pundas et al. 2010]

- All of these contribute to discrepancy
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Conclusions

* New 1-10m craters on Mars are currently
forming at a measurable rate: 1.8x10°
km-2yr' D 3.9 m
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Conclusions

* New 1-10m craters on Mars are currently
forming at a measurable rate: 1.8x10°
km-2yr1 D 3.9 m
— Long-term variation in orbital eccentricity W 2x
— Randomness correction A 21.7x

* (Only!) ~4x lower than models predict

* Uncertainties are still large

— Published martian isochrons should be used
with great caution with craters <~50m
diameter
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Conclusions

* New 1-10m craters on Mars are currently
forming at a measurable rate: 1.8x10°
km-2yr1 D 3.9 m
— Long-term variation in orbital eccentricity W 2x
— Randomness correction A 21.7x

* (Only!) ~4x lower than models predict

* Uncertainties are still large

— Published martian isochrons should be used
with great caution with craters <~50m
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Randomness correction

* Monte-Carlo simulations to assess spatial
randomness of impacts

- Randomness of the detected population
(even within dusty areas) is rejected with
great confidence

« - Dark spots are not uniformly created or
detected everywhere in dusty region

* To compensate, increase derived cratering
rate by 1.7x (lower boundary)

—> Our current PF is only ~4x |ower than models
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Estimating Fading Lifetimes
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- Fading lifetime ~3,700 days
~5.5 Mars years
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